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Abstract—Distributed data structures are key to implementing
scalable applications for scientific simulations and data analysis.
In this paper we look at two implementation styles for distributed
data structures: remote direct memory access (RDMA) and
remote procedure call (RPC). We focus on operations that require
individual accesses to remote portions of a distributed data
structure, e.g., accessing a hash table bucket or distributed queue,
rather than global operations in which all processors collectively
exchange information. We look at the trade-offs between the two
styles through microbenchmarks and a performance model that
approximates the cost of each. The RDMA operations have direct
hardware support in the network and therefore lower latency
and overhead, while the RPC operations are more expressive
but higher cost and can suffer from lack of attentiveness
from the remote side. We also run experiments to compare
the real-world performance of RDMA- and RPC-based data
structure operations with the predicted performance to evaluate
the accuracy of our model, and show that while the model does
not always precisely predict running time, it allows us to choose
the best implementation in the examples shown. We believe this
analysis will assist developers in designing data structures that
will perform well on current network architectures, as well as
network architects in providing better support for this class of
distributed data structures.

Index Terms—distributed data structures, remote procedure
call (RPC), remote direct memory access (RDMA)

I. INTRODUCTION

Many complex programs need to perform operations on
abstract data structures, such as hash tables, queues, and
arrays. While many mature, high quality libraries exist that
provide implementations of abstract data structures for serial
and multi-threaded programs, the development of techniques
for high-level data structures for distributed programs is still
an active area of research [1]–[3]. Of particular interest are
distributed data structures for irregular applications, where
data access patterns and volumes are not known in advance.
These applications commonly use data structures which may
be complex to implement using traditional message passing
methods in a distributed memory setting, including graphs,
trees, hash tables, and distributed queues. Some recently devel-
oped distributed data structure libraries are founded on remote
direct memory access (RDMA), meaning that all essential
data structure operations will be executed using one-sided
remote put, get, and atomic operations [2], [3]. These data
structure operations have the potential to be very efficient and
to offer low latency, since they operate directly on remote data

structure elements and can be executed directly by the network
interface card (NIC) on most modern supercomputer and dat-
acenter systems. Other high-level programming environments
encourage users to use remote procedure call (RPC) software
primitives to build distributed data structures [4]. While RPCs
require the attention of a remote CPU, which leads to higher
latency, they have the potential to be much more expressive
than the RDMA operations available on today’s interconnects,
potentially leading to fewer round trips.

In this paper, we evaluate the efficacy of RDMA- and RPC-
based manipulation of distributed data structures with a set of
systematic benchmarks. We perform two sets of experimemts.
First, we perform microbenchmarks to gather the costs of the
component operations that make up both RDMA- and RPC-
based data structure implementations. This includes the cost
of various RDMA operations along with the cost of an RPC.
Second, we measure the actual costs of various data structure
operations, such as queue or hash table insertions, at various
levels of concurrency requirements using both RDMA and
RPC-based implementations. We then compare the observed
results with an analytical cost model and determine where it is
more desirable to use RDMA and where it is more desirable
to use RPC.

We break down the cost of RDMA-based data structure
operations in terms of an analytical cost model, which we use
to predict the cost of RDMA-based data structure operations
based on the real measured cost of the component operations.
This type of analysis helps us to determine why RDMA-
based operations are expensive, when they are expensive,
and to focus in on (1) where data structures could be im-
proved to run on current-generation network hardware (e.g.
by avoiding expensive operations), and (2) which operations
hardware designers might focus on optimizing in order to
better support distributed data structures. Our paper has three
main contributions.

• We present a set of microbenchmarks that determine the
cost of various component operations for RDMA-based
distributed data structures on a modern supercomputer
network.

• We present an analytical cost model which can be used
to estimate the cost of RDMA-based distributed data
structure operations, based on the component costs.

• We provide a comparison of RDMA- and RPC-based



distributed data structure performance for queue and hash
table data structures at variable levels of concurrency
requirements.

II. BACKGROUND

A. Remote Direct Memory Access

Remote direct memory access (RDMA) provides an inter-
face to manipulate remote data in a one-sided manner, meaning
that an origin process can perform operations on the remote
memory of a target process without any explicit coordination
with the target. This is commonly executed by having the
target’s network interface card (NIC) directly communicate
with its on-node memory, resulting in very low round-trip
latency on the order of a microsecond. Low-latency RDMA
primitives are now available on a number of supercomputer
interconnects, including Cray Aries and Infiniband. RDMA is
also increasingly available on datacenter commodity hardware
through RDMA over converged Ethernet (RoCE).

For the purposes of this paper, we consider a common set
of RDMA operations available in most modern supercomputer
and datacenter systems. This set includes remote put and
remote get, which can be of variable size, along with the
fixed-size 32 and 64-bit atomic memory operations (AMOs)
compare-and-swap and fetch-and-op. Some have proposed an
expanded set of RDMA operations to support various types of
remote and distributed data structures, such as the Infiniband
extended atomics API [5]. In addition, there are recently
proposed API extensions to RDMA which would allow for
more expressive RDMA operations [1]. These APIs are outside
the scope of this paper.

RDMA-Based Data Structures: Distributed data struc-
tures can be directly built on top of one-sided RDMA op-
erations, so that all major data structure operations will be
executed with RDMA. Examples of such partitioned global
address space (PGAS) distributed data structure libraries in-
clude BCL, DASH, and Multipol [2], [3], [6]. Similar to shared
memory concurrent data structures, these libraries are built to
use a shared global memory space, with synchronization using
atomics when necessary, to operate upon shared data. How-
ever, unlike shared memory data structures, the component
costs and synchronization models of distributed programming
frameworks can be quite different, so care must be taken to
design data structures accordingly. As shown in Figure 1,
libraries can use RDMA operations, which will be directly
executed by the target process’ NIC, to operate on remote data.
There are two remote memory operations in this code example,
CAS, which is a remote compare-and-swap operation, and
RPUT, which is a remote put operation. In the best case,
our inserting process will perform a remote compare-and-
swap, succeed in reserving the first hash table slot, and then
perform a remote put operation. This would have a cost of
ACAS +W , that is the cost of a compare-and-swap operation
and a write. However, in the case of hash table collision,
the algorithm will move on to the next available slot, and
multiple round trips may be required to perform the insert
operation. The particular hash table shown here is a hash table

void insert(key, val) {
slot = hash(key);
while (!success) {
rval = CAS(flags + slot,

free_flag, taken_flag);
success = (rval == free_flag);
if (!success) {

slot++;
}

}
if (success) {

RPUT(data + slot, {key, val});
}

}

Fig. 1. Modifying a hash table using one-sided RDMA operations.

with open addressing and linear probing. Observant readers of
Figure 1 will also notice that the listed code is not fully atomic.
While the code is atomic with respect to concurrent insert
operations, there is no guarantee that the remote put operation
will finish before a remote find operation reads the half-
written value. If we wish for our insert operation to be atomic
with respect to concurrent find operations, we will require
a second fetch-and-op operation to mark the slot as ready
for reading after the remote put operation has finalized. This
would increase the best case cost of the remote insert operation
to ACAS + W + AFAO. So, depending on an application’s
atomicity requirements, data structure operations over RDMA
may have different best-case costs. Also, depending on a
particular execution of the application, the observed cost of
a method may vary due to the number of round trips caused
by contention.

B. Remote Procedure Calls

Remote procedure calls (RPCs), in contrast to RDMA
operations, allow an origin process to remotely trigger the
execution of a procedure on a target process. RPCs have
the advantage of being more expressive than RDMA. While
control flow in individual RDMA operations is limited to
single-instruction atomics like compare-and-swap and fetch-
and-op, RPCs can include complex control flow and arbitrary
computation. This allows more complex data structure oper-
ations, such as inserting into a hash table, pushing a value
onto a queue, or even modifying a dynamically sized data
structure, to be performed with a single communication event.
However, this added expressivity comes at a greater latency
cost, since an RPC operation must wait for the target process to
enter a progress function or interrupt the processor and make
a function call to execute the procedure. It also changes load
balancing across processors, moving away from the clearly
defined SPMD model of execution in ways that can shift
computational workload, intentionally or not.

In this paper, we consider a restricted type of RPC called an
active message (AM) [7]. For the purposes of this paper, AMs
have the following restrictions: (1) active message handlers



void insert_handler(key, val) {
local_hash.insert({key, val});

}

void insert(key, val) {
node = hash(key) % nprocs();
rpc(node, insert_handler, key, val);

}

Fig. 2. Modifying a hash table using an RPC.

may not send additional active messages, except for a single
response to the origin process and (2) active message handlers
may not perform network communication. These restrictions
allow for a high-performance, low-latency implementation of
active messages with bounded buffer space [8], [9].

RPC Data Structures: An implementation of a distributed
data structure operation with RPCs requires two parts: (1) a
handler function, which is the procedure that will be executed
on the target process, and (2) a wrapper function, which is the
function directly called by the user on the origin process and
the code that will issue the RPC request. RPC data structure
implementations can be quite simple, as shown in Figure 2.
The wrapper function insert uses a hash function to map
data to the appropriate nodes, then issues an RPC with the
handler function insert_handler. The handler function
in this case simply inserts the key and value into a local
hash table. In contrast to the hash table implementation based
on RDMA communication, this implementation will typically
only require a single round trip over the network, since the
origin node can push the RPC request onto the target node’s
RPC queue in a single network operation, then the target
node can execute the necessary control flow to unpack and
store the data. However, crucially, the number of network
operations is unrelated to the control flow logic inside the
data structure operation, which takes place on the target side
inside the RPC function. Depending on the specific manner
in which the handler function will be called (either serially
or simultaneously with other threads), the handler function
may require local atomic operations or other mechanisms
for synchronization. However, these local mechanisms are
significantly cheaper than remote memory operations.

One important detail not directly illustrated by the above
code listing is that the execution of the handler function is
dependent on the attentiveness of the target process, which
must enter a progress function in order for its RPC queue
to be serviced. While the liveness of RDMA operations is
guaranteed by the network interface card, which will be
constantly servicing instructions regardless of CPU state, RPC-
based systems must either dedicate specific resources, such
as a progress thread, to ensure attentiveness, or else pay the
possible latency cost associated with waiting until the target
process finishes its computation and enters a call to the RPC
progress function.

Name Notation Latency (us)

put W 3.0
get R 3.7
compare-and-swap ACAS 3.8
fetch-and-op AFAO 3.9

TABLE I
LATENCY OF VARIOUS RDMA OPERATIONS, MEASURED ON CORI WITH

64 NODES.

C. The Berkeley Container Library

In this paper, we compare the performance of RDMA-based
implementations of distributed data structures to RPC-based
implementations. For the RDMA-based implementations, we
will benchmark data structures provided in the Berkeley
Container Library (BCL). BCL is a cross-platform library of
distributed data structures that supports running on top of
MPI, OpenSHMEM, and GASNet-EX. BCL is a header-only
library and is designed to offer high-level interfaces without
any runtime cost for abstraction. BCL data structures are built
using remote put, remote get, and remote atomic operations
such as atomic compare-and-swap and fetch-and-op.

Performance Model: Data structure operations in BCL
can be characterized in terms of an analytical cost model,
which characterizes the best-case costs of data structure op-
erations in terms of the component RDMA operations. The
component costs include remote get, remote put, compare-
and-swap, and fetch-and-op operations. We do not distinguish
different fetch-and-op operations in this performance model,
since the operations involved are typically simple binary
functions such as fetch-and-add or fetch-and-XOR, which have
very low cost compared to the inherent network latency. A
summary of these operations and the associated notation are
shown in Table I.

Alternate Implementations: As discussed in Section II-A,
there are different levels of concurrency requirements with
which RDMA-based data structure operations can be imple-
mented, depending on the specific needs of an application.
BCL exposes multiple implementations of data structure oper-
ations using a mechanism called concurrency promises, which
allows users to optionally specify the operations that could oc-
cur concurrently with the operation being issued. To illustrate
the different levels of concurrency requirements with which a
data structure operation could be implemented, consider the
case of a hash table insertion with arbitrarily large keys and
values. Inserting an element into such a hash table will, in the
general case, require at least two atomic memory operations
and a write. The first atomic memory operation requests a
lock on the bucket into which the element will be inserted, the
write actually writes the value into the distributed hash table,
and a final unlock operation signals that the bucket is ready
to be read after the write hash completed. In this hash table
implementation, without the final atomic memory operation,
concurrent find operations might read halfway written data,
resulting in an incorrect program execution. However, in the
guaranteed absence of concurrent find operations within a



Method Concurrency Level Description Cost
insert

(a) Concurrent Read/Write (CRW ) Fully Atomic Insert ACAS +W +AFAO
(b) Concurrent Write (CW) Phasal Insertions ACAS +W

find
(c) Concurrent Read/Write (CRW ) Fully Atomic Find AFAO +R+AFAO
(d) Concurrent Read (CR) Phasal Finds R

TABLE II
RDMA-BASED HASH TABLE METHOD IMPLEMENTATIONS CONSIDERED IN

THIS PAPER.
Method Concurrency Level Description Cost
push

(a) Concurrent Read/Write (CRW ) Fully Atomic AFAO +W +ACAS-P
(b) Concurrent Write (CR) Only Pushes AFAO +W
(c) Concurrent Local (C`) Local Push `

pop
(d) Concurrent Read/Write (CRW ) Fully Atomic AFAO +RACAS-P
(e) Concurrent Read (CR) Only Pops AFAO +R
(f) Concurrent Local (C`) Local Pop `

TABLE III
IMPLEMENTATIONS FOR CIRCULAR QUEUE METHODS.

barrier region, we can elide the final atomic memory operation,
since the following barrier will ensure that the write completes
before any find operations may be issued.

Similar levels of concurrency requirements exist for both
hash table insert and find operations, as well as operations
on queues. Tables II and III show some of the data structure
implementations available in BCL’s hash table and queue
implementations, along with the associated best case costs. In
the notation used in this paper, CW indicates that an operation
is allowable with concurrent writes (pushes or inserts), while
CR indicates that an operation is allowable with concurrent
reads (pops or finds) and CRW indicates the operation is
allowable with either.

D. GASNet Active Messages

GASNet is a communication library that offers remote
procedure call functionality in the form of active messages.
Active messages are a restricted form of RPC, in that (1) active
message handlers cannot require network communication, and
(2) active message handlers cannot send additional active
messages except for request handlers, which may send a single
reply to the host. Since neither of these are necessary for the
class data structure operations we consider in this paper and
GASNet is known for having a high-quality, fast implemen-
tation of active messages, we use GASNet to implement a
set of RPC-based distributed data structure implementations
to compare against BCL’s RDMA-based data structures.

In our data structure implementations, we use GASNet-EX
2019.6.0, the most recent version of GASNet-EX API at the
time of submission, and our discussion of the active messages
API are as present in this version of GASNet-EX. GASNet-EX
active messages consist of a fixed-size header, which includes
an index referencing the desired handler function, and up
to 64 bytes of arguments, along with an optional variable
length payload. Active message handlers must be registered
with the GASNet runtime before they can be used. When
an origin process wishes to invoke an active message on a
remote target process, it issues an active message request. A
target process, inside the context of an active message handler,
can optionally issue an active message reply to the origin

process, which will result in the corresponding reply handler
running on the origin process. To wait for the completion of an
individual active message, an origin process must wait until a
reply handler issued by the target process has finished running
locally, writing some reply data or otherwise indicating that it
has completed.

In order to service active messages, each process must enter
the GASNet AM poll function, which can be called by the
main process or from a progress thread that constantly checks
the queue in order to provide attentiveness.

III. EXPERIMENTAL DESIGN

In this section, we examine the performance of RDMA-
and RPC-based designs for remote operations on distributed
data structures. Our expectation is that there are some data
structures, applications, and workloads for which RPC, with
its greater expressiveness, will achieve higher performance,
and some situations where RDMA, with its lower round trip
latency and hardware-accelerated execution in the network
interface card, will achieve higher performance. First, we
perform microbenchmarks to measure the component costs for
RDMA- and RPC-based distributed data structure implemen-
tations. That is, the cost of a remote put, remote get, compare-
and-swap, and fetch-and-op operations, as well as the round
trip cost of sending a GASNet active message request and
receiving a reply.

A. Component Benchmarks

For the component benchmarks, we measure the cost of
small-size remote put and remote get operations, along with
the cost of performing the atomic compare-and-swap fetch-
and-op operations. In each of these microbenchmarks, we
begin with a globally visible array located in the shared
segment of each process in the program. To perform the
benchmark, each process will continuously perform a remote
memory operation to a random location in a random process’
globally visible array. After the benchmark completes, we
divide the total amount of time taken by the number of
operations completed per process to arrive at the latency of
the individual operations.

We also measure the cost of sending an active message. In
this case, each process continually sends an active message to
another random process and then waits for a reply to complete
before proceeding.

The purpose of collecting these benchmarks is not only
to evaluate the relative costs of the operations that make
up RDMA-based distributed data structure methods, but also
to evaluate BCL’s analytical performance model. By plug-
ging in the component method costs into the formulas for
different data structure operations, we can evaluate to what
extent observed performance deviates from theoretical best
case performance. Performance could deviate for a number of
reasons, including higher than optimal latency due to specific
application workloads stressing the network hardware and high
contention leading to many more round trips than would be
necessary in the best case. This analysis will allow us to



evaluate what makes up the cost of RDMA-based remote data
structure operations, which can both allow data structure de-
velopers to better design data structure operations, prioritizing
use of cheaper component operations, and allow hardware
designers to identify which RDMA operations to optimize in
order to increase RDMA-based data structure performance.

B. Data Structure Benchmarks

After collecting microbenchmark results, we ran a series
of experiments where we benchmarked different distributed
data structure operations in BCL and compared them with
equivalent active message implementations. Full descriptions
of these distributed data structure implementations can be
found in the original BCL paper [2].

1) Hash Table: Distributed hash tables are an important
data structure for many applications, including various data
analysis problems such as genomics. In BCL, hash tables are
implemented as a distributed array of buckets, where each
bucket contains room for a key, a value, and a flag that will
be used for synchronization.

CRW Insert: As discussed earlier, to achieve fully concur-
rent safety, a hash table insertion requires, in the best case, two
atomic memory operations and a remote put operation. In the
BCL implementation, this is a compare-and-swap operation
to request the hash table bucket, a remote put, and an atomic
fetch-and-AND operation to mark the bucket as ready to read.

CW Insert: An insert operation without find concurrently
occurring can be preformed using using only one atomic
memory operation, setting the bucket’s flag to ready, then
performing a remote put. The collective barrier that must
separate the inserts from any find operations will guarantee
that the remote put has completed before any find operations
can read the value.

CRW Find: To perform a fully concurrently safe find
operation, the reading process must first obtain a read lock
on a bucket before reading what is inside it. This is to prevent
other processes from modifying the bucket while the process
is reading it. In BCL’s implementation, this is done with an
atomic fetch-and-OR operation to set one of a number of read
bits in the flag. After the lock is obtained, the process will
read the bucket with a remote get operation, then unset the
read bit with an atomic fetch-and-AND.

CR Find: A find without inserts concurrently occurring
can be performed with a single remote get operation, since it
is able to retrieve both the flag and the key and value in a
single remote memory operation.

2) Queue: Queues are widely used data structures in many
applications such as data redistribution and asynchronous all-
to-all operations, producer-consumer problems, frontier based
graph algorithms, and others. The most crucial operations for
queues are pushing and popping. Since these operations are
symmetric, we only consider push operations here for reasons
of brevity. Queues in BCL are implemented as hosted data
structures, meaning they live on a single host process, but
are visible to all processes. Applications may either require
a single queue to be manipulated by all or a subset of

processes, or, commonly, a queue on each process. Queues
are implemented as a ring buffer, with sets of head and tail
pointers marking the beginning and end of data stored within
the queue.

CRW Push: Similar to the hash table insertion example,
with this queue implementation, a fully concurrently safe push
requires two atomic memory operations and a remote put
operation. The first operation is a fetch-and-add operation,
which requests space in the queue by advancing the tail
pointer, followed by a remote put to the reserved space.
Finally, a remote compare-and-swap operation is necessary
to advance the ready tail pointer to indicate that the written
segment of the queue is ready to be read. A fetch-and-add
operation is not correct here, since it could advance the ready
tail pointer past previous insertions which are not yet finished
writing.

CW Push: A push without pops concurrently occurring
can be completed with a single atomic fetch-and-add, to
reserve space, followed by a remote put to write to the reserved
spot in the queue. This is because a barrier will separate all the
push operations from any pop operations, thus guaranteeing
that the written data is ready to be read.

C. RPC Implementations

Our RPC implementations, based on GASNet-EX active
messages, consist of a handler function, which performs the
relevant operation on a local data structure then sends a reply.
If the operation has no return value, the reply will simply
increment a counter on the origin side, which can be used to
ensure fine-grained completion of data structure operations. If
the operation has a return value, it will also write the return
value to a memory location passed in by the request AM.

IV. RESULTS

First we measured our set of component costs, which in-
clude individual operations that make up remote data structure
operations. Measured operations include 32-bit remote get,
remote put, atomic fetch-and-add, atomic compare-and-swap,
and a round-trip active message with a payload of 64-bits.
Each process picks a random process for each operation, and,
for the case of the RDMA operations, a random memory
location. The active message experiment measures the cost
of a round trip with a 64-bit payload, with the inner operation
being an insertion into a remote hash table.

Experimental Setup: We measured the component costs
on Cori Phase I, which is a Cray XC40 supercomputer
with a Cray Aries interconnect and 32 cores per node. All
benchmarks were run with one process per core. Experiments
were run with 100,000 local elements per process, unless noted
otherwise. In each experiment, the target operation is executed
a million times inside a loop, then the total time spent inside
the loop is divided by the number of issued operations to
calculate the operation’s latency. In order to avoid systematic
errors due to variations in network performance, which may
be caused by varying job placement within a cluster as well
as contention with other jobs, each dot on each graph was



submitted as a separate job submission, averaged over at least
four jobs.

Component Benchmarks: Our component benchmark re-
sults are shown in Figure 3. This figure includes the bench-
marks discussed above, along with two extra versions for the
two measured atomic operations.

Compare-And-Swap: We show two benchmarks for
compare-and-swap, “Single CAS,” which measures the cost
of a single compare-and-swap operation and “Persistent CAS,”
which measures the cost of a compare-and-swap which con-
tinually polls until it succeeds in changing the value from the
previous value to a new value. The Single CAS experiment
measures the cost of the CAS AMO operation, while the
Persistent CAS experiment provides some measure of the cost
of a persistent CAS that repeatedly polls until it succeeds in
modifying the target value.

Fetch-And-Add: We include two versions of the fetch-
and-add operation, “FAD,” which measures the cost of a
fetch-and-add operation issued to a random value on another
process, and “FAD, Single Variable,” which measures the cost
of a fetch-and-add operation issued when there is only a single
target variable per process.

In general, there is a large jump in latency for RDMA
operations when moving from a single node to two nodes,
which is to be expected when switching from shared memory
to distributed memory. From there, each operation increases in
cost gradually, which can be explained by (1) the decreasing
percentage of operations that will be operating on local, fast
memory and (2) an increase in the distance that messages must
travel across the network as the allocation size increases.

We find that the Put operation has the lowest cost, followed
by a cluster of operations of similar cost, including Get,
FAD, and Single CAS. As one might expect, the “Persis-
tent CAS” operations are much more expensive, since they
may require multiple round trips to succeed in swapping
the target value. More surprisingly, we also find that the
“Single FAD” benchmark, which operates on a single target
value per process, has a much higher cost than the “FAD”
benchmark, which operates on a range of values per process.
This indicates that, for this operation, the target memory
locations, not just the number of incoming operations on the
target NIC, can impact the amount of time that a fetch-and-add
operation will take (at least on the Cray Aries NIC). While
this might be expected for a shared memory environment,
where a directory or snooping protocol must be used to ensure
cache coherence, NIC-accelerated atomic memory operations
are not atomic with respect to CPU atomics, and the authors
expected the speed of NIC-accelerated fetch-and-add atomics
to be unaffected by the target address. Indeed, experiments
on the Summit supercomputer, which has an Infiniband FDR
interconnect, did not reveal any difference between the two
benchmarks.

Queue Benchmarks: Next, we measured the cost of a set
of queue data structure microbenchmarks, and compared our
empirical data structure benchmark results with our perfor-
mance model’s prediction using the component microbench-
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Fig. 3. The component latencies for RDMA operations and AMs on Cori.

mark results. These results are shown in Figure 4. Pushing
and popping are the primary queue operations, and since they
are symmetric, we choose to only show queue push results
here for reasons of space. We compare four different queue
results: (1) an “AM Push” benchmark, which uses an active
message to insert into a local queue on each process, (2)
a “RDMA Push CW” benchmark, which is a phasal queue
that allows either concurrent pushing or popping, but not
simultaneously, (3) an “RDMA Push CRW” benchmark, which
uses an additional atomic operation to signal the completion of
the write of data onto the queue, and (4) a “RDMA Checksum
Push CRW” benchmark, which is a separate design of queue
that in addition to writing the data values into the queue also
writes a checksum value that can be used to verify whether
the write has finished.

After accounting for the increased cost of the “Single FAD”
experimental result and plugging that in as the parameters for
our analytical performance model in Table I, we found that the
performance model generally predicted the behavior of the
queue data structure benchmarks. The one exception is the
RDMA Push (CRW) benchmark, which is consistently more
expensive than the performance model would predict. This
appears to be due to the fact that the second atomic memory
operation in the CRW push operation requires more round
trip attempts than the Persistent CAS microbenchmark would
suggest. While our Persistent CAS microbenchmark attempts
to change the target value from the previously seen value to
the desired value, the persistent CAS involved in the queue
benchmark attempts to increase a “tail ready” pointer that
marks the frontier of values written into the queue. It may only
proceed after any other insertions have finished writing, which
leads to some inherent serialization that is not represented in
the performance model.

Hash Table Benchmarks: We also measured the cost
of several hash table data structure operations, which are



displayed in Figure 5. The less expensive RDMA Find (CR)
operation is the cheapest operation, followed by the active
message implementations of AM Find (CRW) and AM Insert
(CRW), with find possibly having a slightly higher cost, due to
the fact that the return trip message is slightly larger, contain-
ing a return value. The more expensive RDMA Find (CRW)
is initially slightly more expensive than the active message
implementations, but appears to scale better, ending up at a
similar cost at 128 nodes. The insert implementations, both
CRW and CW, are more expensive. Both RDMA operations
seem to roughly match their associated performance models,
with some increase in the real benchmark runtime perhaps
due to hash table collisions, which are not included in the
performance model. Surprisingly, both hash table insertion
methods vary significantly from their associated cost models’
prediction. However, except for RDMA Insert CW , the pre-
dicted order of implementations in terms of performance is
correct.

Attentiveness Benchmarks: Each of the above active
message benchmarks could be considered a close to optimal
case in terms of attentiveness, by which we mean the avail-
ability of remote processes to service active message requests.
This is because, without an independent progress thread to
ensure attentiveness, which is the model assumed in the above
benchmarks, a process must enter a progress function in order
to ensure that inbound requests are serviced. In each of the
above benchmarks, each process issues a single active message
request, then polls on a progress function, servicing incoming
active messages, until a reply is received for the active message
request. In a more realistic scenario, remote data structure
operations will be interspersed with computation, which may
impact the attentiveness of remote processes, resulting in
longer latencies for active messages. Figure 6 shows the impact
of adding interspersed computation on the latency of a queue
insertion. We arrived at this plot by inserting a small function
to perform a given number of microseconds of computation
inside a loop of queue insertions. To calculate only the time
spent performing queue insertions, we subtract the compute
time from the total time taken in the calculation. As shown
in the plot, the active message version, while initially faster
than the RDMA-based implementation, quickly becomes more
expensive as the interspersed computation time exceeds 2
microseconds. From there, the increase in queue insert time
grows roughly linearly with the compute time, as the average
time an active message must wait to be serviced is half the
compute time. We observe that the latency for the RDMA
queue insertion actually goes down, which we attribute to
lower latency across a quieter network as queue insertions
are spaced out among a greater quantity of computation. It is
important to note that RPC-based implementations can attain
better attentiveness by explicitly using a progress thread, which
will continually poll for new RPC operations to execute. In the
figure, “AM Queue Insertion (PT)” demonstrates this. When
using a progress thread, active messages are not subject to the
same pathological behavior due to lack of attentiveness, but
do receive a performance hit, likely due to contention between
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the progress and main compute thread.

V. RELATED WORK

UPC++ is a high-level asynchronous PGAS programming
interface for C++ [4]. UPC++ has a heavy emphasis on
asynchrony and allows users to build arbitrary computation
graphs by combining futures together with callbacks. UPC++
also encourages users to build data structures and applications
on top of RPC.

AM++ is C++ library built on top of MPI that provides a
high-level active message API similar to that discussed in this
paper [10]. Active Pebbles extends AM++ by adding support
for message aggregation and more sophistocated termination
detection mechanisms [11]. You’ve Got Mail (YGM) is an
MPI-based system that provides an active message-like API
with message- and node-level aggregation [12].
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STAPL is a parallel programming framework that provides
distributed data structures loosely based on a partitioned global
address space (PGAS) model, but is not strictly designed to
support RDMA [13]. PETSc, Chombo, and AMReX provide
data structures for sparse and dense matrices and structured
and unstructured grids, but do not focus on the types of
irregular, generic data structures discussed here [14]–[16].

Aguilera, et al. have proposed various hardware extensions
to RDMA specifically to allow for the efficient execution of
operations on remote data structures in NIC hardware [1].
These include an indirect access primitive that can be used to
access a value at an offset from a pointer on a remote node,
allowing for a dynamically resizing remote vector; various
scatter and gather primitives, and a form of notifications. We
believe that performance models like the one presented here
are a good fit for evaluating potential new RDMA instructions,
and that similar microbenchmark analysis can help hardware
and software developers to design and evaluate new hardware
and data structures.

VI. CONCLUSIONS

In this paper, we compared implementing distributed data
structures using RDMA and RPC. We developed an analytical
performance model which predicts the performance of the
distributed data structures based on their components, then
compared this to real-world performance. In most of the cases,
our model’s predictions matched the real-world results. We
observed the impact of system-specific hardware behavior,
namely the increased cost of a fetch-and-add performed on a
single memory location on Cray Aries; and also observed the
impact of increased contention due to multiple round trips, as
in the case of a concurrent read/write queue insertion. We also
examined the impact of attentiveness on RPC performance,
observing that RDMA may have advantages when it comes to
communication interspersed with computation.
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APPENDIX A
ARTIFACT DESCRIPTION: RDMA VS. RPC FOR

IMPLEMENTING DISTRIBUTED DATA STRUCTURES

A. Abstract

This artifact describes all experiments presented in the sub-
mission titled “RDMA vs. RPC for Implementing Distributed
Data Structures.”

B. Description

1) Check-list (artifact meta information):

• Program C++, BCL, and GASNet-EX.
• Compilation Compilation with GCC 8.2.0 and GASNet-

EX 2019.6.0
• Datasets No datasets.
• Runtime Environment SUSE Linux Enterprise Server

12 on NERSC Cori.
• Hardware

– NERSC’s Cori Phase I supercomputer, a Cray XC40.
Each node is equipped with two 16-core Intel Xeon
E5-2698 v3 CPUs, which use the Intel Haswell
microarchitecture. All nodes have 128 GB of RAM
and are connected via a Cray Aries interconnect.

– NERSC’s Cori Phase II supercomputer, a Cray
XC40. Each node is a self-hosted 68-core Intel Xeon
Phi 7250 accelerator, which uses the Intel Knights
Landing microarchitecture. All nodes are equipped
with 96 GB of DRAM and 16 GB of MCDRAM
and are connected via a Cray Aries interconnect.

• Output Total execution time and operation latency (in
seconds and microseconds).

• Experiment Workflow Download software, compile
from source, run the applications, examine the outputs.

• Publicly available? Yes.

2) How software can be obtained:

• BCL can be downloaded from https://github.com/
berkeley-container-library/bcl. All benchmarks can be
found in the examples/benchmarks/am-comp di-
rectory on branch am-comp.

• GASNet-EX can be downloaded from https://gasnet.lbl.
gov/.

3) Hardware dependencies: The experiments can be per-
formed on any cluster than supports RDMA, although the
results may have discrepancies due to differences in hardware,
which is expected. Our precise results should be reproducible
on Cray Aries systems similar to Cori Phase I.

4) Software dependencies: To compile and run our bench-
marks, a C++-17-compliant compiler along with a copy of
GASNet-EX is required. Reproducing our precise results will
also require that GASNet-EX be compiled with the Cray uGNI
conduit for the Cray Aries interconnect.

5) Datasets: No datasets are required to run our bench-
marks.

C. Installation

• BCL can be installed by cloning the BCL Git reposi-
tory at https://github.com/berkeley-container-library/bcl,
checking out branch am-comp, and adding the new
directory to the CPLUS_INCLUDE_PATH environment
variable.

• Instructions for installing GASNet-EX are available at
https://gasnet.lbl.gov/. Our BCL Makefiles require that
the gasnet_prefix environment variable be set to the
directory of the GASNet-EX installation.

D. Experiment Workflow

Each benchmark is available in the
examples/benchmarks/am-comp folder of the
am-comp branch of the BCL Git repository. Each set
of benchmarks can be compiled with the Makefile included
in the corresponding directory. It may be necessary to modify
the Makefile if it is necessary to use another conduit or if
the user moves the benchmark files out of the main BCL
directory.

To reproduce our results, each benchmark should be exe-
cuted with one process per core, or 32 processes per node
on Cori Phase I. This can be done with Slurm commands
of the form srun -N NNODES -n $((NNODES*32))
./benchmark. To modify the local size, which is the size
of each process’ local portion of the global array in the
components benchmarks, users may use the flag -s. To change
the number of operations performed in each benchmark—for
example because a particular operation has a different cost on
a particular architecture and thus the total benchmark runtime
is unreasonably fast or slow—users may set the -n flag to
control the number of operations performed.

https://github.com/berkeley-container-library/bcl
https://github.com/berkeley-container-library/bcl
https://gasnet.lbl.gov/
https://gasnet.lbl.gov/
https://github.com/berkeley-container-library/bcl
https://gasnet.lbl.gov/

	Introduction
	Background
	Remote Direct Memory Access
	Remote Procedure Calls
	The Berkeley Container Library
	GASNet Active Messages

	Experimental Design
	Component Benchmarks
	Data Structure Benchmarks
	Hash Table
	Queue

	RPC Implementations

	Results
	Related Work
	Conclusions
	References
	Appendix A: Artifact Description: RDMA vs. RPC for Implementing Distributed Data Structures
	Abstract
	Description
	Check-list (artifact meta information)
	How software can be obtained
	Hardware dependencies
	Software dependencies
	Datasets

	Installation
	Experiment Workflow




