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SUMMARY 
 

This report investigates the seismic response of tall cantilever wall buildings subjected to pulse-
type ground excitation, with special focus on the relation between the characteristics of ground 
motion and the higher-modes of response. Buildings 10, 20, and 40 stories high were designed 
such that inelastic deformation was concentrated at a single flexural plastic hinge at their base. 
Using nonlinear response history analysis, the buildings were subjected to near-fault seismic 
ground motions as well as simple close-form pulses, which represented distinct pulses within the 
ground motions. Euler-Bernoulli beam models with lumped mass and lumped plasticity were 
used  to  model  the  buildings.  The  response  of  the  buildings  to  the  close-form  pulses  fairly  
matched that of the near-fault records. Subsequently, a parametric study was conducted for the 
buildings  subjected  to  three  types  of  close-form  pulses  with  a  broad  range  of  periods  and  
amplitudes.  The  results  of  the  parametric  study  demonstrate  the  importance  of  the  ratio  of  the  
fundamental period of the structure to the period of the pulse to the excitation of higher modes. 
The study shows that if the modal response spectrum analysis approach is used—considering the 
first four modes with a uniform yield reduction factor for all modes, and with the square root of 
sum of squares modal combination rule—it significantly underestimates various response 
parameters. A response spectrum analysis method that uses different yield reduction factors for 
the first and the higher modes is presented.  
 
KEY WORDS: higher-modes; near-fault; pulse-type ground motion; structural walls; tall 

buildings; 
 
 

INTRODUCTION 
 
The inelastic response of tall reinforced concrete wall buildings is greatly affected by higher-
mode effects. This phenomenon was first demonstrated by the pioneering analytical work of 
Blakeley et al. [1] and  has been corroborated by various analytical [2–8], small-scale [9] 
experimental, and large-scale [10, 11] experimental studies. The higher modes significantly 
affect the acceleration, force, and displacement inelastic seismic response of reinforced concrete 
wall buildings.  
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Seismic design of buildings for a code-prescribed design level earthquake recommends using 
reduced design lateral forces as opposed to the elastic ones, accepting the possibility of nonlinear 
deformations occurring in parts of the structural system. Current design procedures include 
methods consistent with traditional capacity design concepts [12], where parts of a structure are 
intended to remain elastic, and nonlinear deformations are restricted to regions defined as plastic 
hinges. Building codes [13] include prescriptive requirements to ensure the withstanding of 
deformation demands in plastic hinge regions. In reinforced concrete (RC) wall buildings, a 
single plastic hinge is selected to develop at the base of walls in vertically regular buildings [4, 
10, 13–18]. Capacity design of wall regions other than the plastic hinges, assuming an essentially 
elastic response, requires estimating the bending moment and shear force demands. 

To ensure elastic response in regions other than the plastic hinges, several seismic design 
codes [15–17] account for higher-mode effects by proposing a design bending moment envelope 
that varies linearly from the expected flexural overstrength at the wall base to zero at the top. 
Studies have found that such a linear envelope does not always preclude the spread of plasticity 
into regions above the bottom plastic hinge [7, 18–21]. For the shear design envelope, the NZS 
3101 code [16] uses an empirical factor that accounts for flexural overstrength and higher-mode 
response by amplifying the first mode design shear forces. The EC8 [15] proposes that design 
shear forces be taken at least 50% larger than the shear forces obtained from analysis, with the 
design shear force at any point along the height of the building to be taken as larger than 50% of 
the amplified base shear force. According to EC8, the magnification factor of shear forces can be 
as large as the behavior factor, q, used in the design. 

The design force envelopes in tall RC wall buildings are commonly estimated by modal 
response spectrum analysis (MRSA), using an accepted modal combination method such as the 
square root of sum of squares (SRSS). Elastic forces obtained from the modal combination are 
reduced by a response modification factor, R, to  obtain  the  design  forces.  Performing  MRSA  
using SRSS and an R, uniform to all the modes, will be termed MRSA throughout this paper.   

Research on RC cantilever wall buildings has shown that flexural yielding at the base reduces 
mainly the first-mode response [3, 10, 11, 19-22]; therefore, the relative contribution of the 
higher modes to response quantities increases with increasing ground motion intensity. Using 
MRSA, results in non-conservative estimates of seismic demand in nonlinear cantilever walls. 
For frame structures it has been also shown that nonlinear response reduces more the first than 
the higher modes of response [23, 24].  

A simplified modal superposition method proposed by Eibl [3] considers only the first two 
modes of response, with a response modification factor applied only at the first mode, i.e., the 
second mode of response is considered elastic. For the case of near-fault ground motions, 
Panagiotou and Restrepo [11] proposed a method that considers only the first two modes of 
response with different response modification factors in each of them. Researchers demonstrated 
that applying MRSA using the SRSS combination method—where the higher modes are 
considered to be elastic—provide a satisfactory estimate of acceleration [22] and force [19, 21] 
response parameters. Chopra and Goel [24] proposed a similar approach for frames, which was 
evaluated in terms of story drifts, not forces.  

Although previous research has investigated the effects of near-fault ground motions on the 
inelastic response of steel frame [25–31], RC frame [32, 33], and wall [11, 20, 34] buildings, 
none of these studies focusing on RC walls have investigated this effect for a broad range of 
pulse waveform, period, and amplitude. This type of ground motions can cause significant 
inelastic deformation demands with concurrent strong excitation of the higher than the first 
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modes of response. Nor have these studies investigated this effect on a broad range of inelastic 
response quantities, i.e. section curvatures, floor accelerations, story shear forces, and story 
bending moments. 

This study investigates the inelastic response of tall reinforced concrete cantilever wall 
buildings subjected to strong pulse-type ground motion. Emphasis is given to the relationship 
between the ground motion characteristics and higher-mode response. The study explores the 
accuracy of simplified close-form representations of pulse-type near-fault ground motions to 
compute the inelastic response. The response parameters considered are base section curvature, 
floor accelerations, bending moments, and shear forces. Three types of close-form pulses with a 
broad range of periods and amplitudes are considered. In order to evaluate the efficiency of 
MRSA, this study compared the response obtained using MRSA and nonlinear dynamic response 
history analysis (NDRHA). This study then went on to develop a modified modal response 
spectrum analysis (MMRSA) approach that considers only the first three modes of response 
using different yield reduction factors in the first and higher-modes. 
 
 

NEAR-FAULT GROUND MOTIONS AND THEIR CLOSED-FORM REPRESENTATION  
 
Near-fault ground motion records may contain high amplitude acceleration, velocity, and 
displacement pulses [35]. High amplitude low frequency pulses are contained in far field ground 
motions affected mostly by site effects. The waveform, number of cycles, predominant period, 
and amplitude of the pulses determine the motion’s damage potential for different structures [20, 
25-34, 36–42]. For near fault ground motions these pulse characteristics depend roughly on the 
fault type and orientation, as well as the direction of rupture propagation [35]. 

Several approaches use close-form mathematical pulses or waveforms [37–44] that 
approximate  the  distinct  pulses  observed  in  the  displacement,  velocity,  and  acceleration  time  
histories of strong near-fault ground motions. Such approximations capture many of the 
characteristics of the corresponding ground motions and allow for parametric numerical studies 
of structures where the relationship between the structural period and the pulse period can be 
explored.  

This study reported herein uses the close-form representation of near-fault ground motions as 
described by Makris [38]. Figure 1(a) shows the displacement, velocity, and acceleration 
histories of three close-form pulses. Pulses A and B are described by a one-sine and one-cosine 
acceleration time history, respectively. Pulses A and B have a duration equal to their period, Tp, 
while  the  duration  of  Pulse  C  is  equal  to  1.43Tp.  Figure  1(b)  and  (c)  depict  the  elastic  single  
degree of freedom (SDOF) oscillator acceleration and displacement response spectra, 
respectively, of the pulses for viscous damping ratio  = 2%. The spectra are presented in terms 
of T /  Tp, where T is the period of the oscillator. Spectral acceleration Sa is normalized by the 
peak pulse acceleration amplitude, ap, while the spectral relative displacement Sd is normalized 
by 2

p pa T . 
Figure 2(a) depicts the ground acceleration time histories of three strong near-fault ground 

motions. The RRS228 and JFA292 records are from the Mw 6.7 1994 Northridge earthquake, 
and the PCD164 record is from the Mw 6.6 1971 San Fernando earthquake. Figure 2(b) shows 
the velocity time histories of the ground motions, and Figure 2(c) plots the absolute acceleration 
response spectra for  = 2%. Pulses A, B, and C approximate distinct pulses observed in the time 
histories of the RRS228, JFA292, and PCD164 records, respectively. The pulse parameters were 
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selected to provide a fit of the strong pulses recorded in the velocity time histories. The velocity 
pulse amplitudes, vp, used to represent the RRS228, JFA292, and PCD164 records are 1.66, 0.73, 
and 0.82 m/sec, respectively, while the corresponding values of Tp are equal to 0.78, 0.99, and 
1.24 sec. For the JFA292 record, pulse B was used to approximate only the first of the two 
distinct pulses contained in the velocity record. 

Figure 2(c) depicts the elastic acceleration response spectra of the close-form pulses. For the 
RRS228 record, the pulse approximation resulted in a fair estimation of the spectral acceleration. 
Underestimation of the spectral acceleration is observed for T smaller than 1.6 sec. For the 
JFA292 record, the pulse approximation did not adequately estimate spectral accelerations, 
especially in the period range between T = 1 to 2.5 sec. This is due to the lack of representation 
of the second distinct pulse observed in the velocity and acceleration time histories of the 
JFA292 record. For the PCD164 record, the close-form pulse estimated spectral accelerations 
with high accuracy for cases where T was longer than 0.8 sec and shorter than 4.0 sec. Pulse C in 
this case could not estimate spectral accelerations when T was less than 0.8 sec. This is because 
the spectral acceleration in this period range was due to the strong high-frequency spikes 
observed in the time, t, history after t = 4 sec. 

Figure 3 compares the response spectra for the considered RRS228, JFA292 and PCD164 
recorded ground motions to the design base earthquake (DBE) and maximum considered 
earthquake (MCE) spectra, based on ASCE-7 [14], for the corresponding station locations, where 
the motions were recorded. For all the three ground motions considered the spectral accelerations 
around the predominant period, Tp, as defined above, significantly exceed the spectral 
accelerations of the MCE spectra. For the JFA292 this is true in the period range of the second 
distinct velocity pulse with Tp of about 1.58 sec that exists in this record and is not approximated 
in this study. The spectral accelerations at Tp are 1.76, 1.63, and 1.60 times the MCE spectral 
acceleration for the RRS228, JFA292 and PCD164 records, respectively.  

 

 
Figure 1. (a) Acceleration, velocity, and displacement time histories; (b) absolute acceleration; 

and (c) relative displacement response spectra of the three close-form pulses considered,  = 2%. 
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Figure 2. (a) Acceleration; (b) velocity time histories of ground motions considered and their 

close-form pulse approximation; and (c) elastic SDOF absolute acceleration response spectra of 
ground motions and their close-form pulse representation,  = 2%. 

 
 

 
Figure 3. Response spectra for the considered ground motions compared to DBE and MCE 

spectra, based on ASCE-7, at the station locations of the records. 
 

 
NUMERICAL ANALYSES RESULTS 

 
The results of numerical analyses of the 10-, 20-, and 40-story buildings are presented next. First, 
modal analysis of the buildings is performed and then, NDRHA of the buildings subjected to the 
near-fault ground motions and to their pulse approximations, described above, is conducted. 
Finally, the results of the parametric NDRHA study of the buildings subjected to the three close-
form pulses of various amplitudes ap and periods Tp are presented, and the efficiency of MRSA 
is evaluated.  
 
 
 
 
 

RRS228 – Pulse A JFA292 – Pulse B PCD164 – Pulse C
(a)

(b)

(c)

Tp = 0.78 sec

ap = 0.68 g

Tp = 0.99 sec

ap = 0.47 g

Tp = 1.24 sec

ap = 0.35 g

vp = 1.66 m/sec vp = 0.73 m/sec vp = 0.82 m/sec
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Buildings description and modeling 
 
Reinforced concrete core-walls provide all the lateral force resistance for these buildings. Figure 
4 shows the floor, core wall, and gravity column dimensions and layout for the three buildings. 
Table 1 lists the main characteristics of these buildings, including the floor height h, the building 
height H, the seismic weight per floor w, the axial load per floor PW and PC acting on the wall 
and the gravity columns, respectively, as well as the main characteristics of the core-wall and 
gravity columns. Pbw and Pbc are the axial loads at the base of the core walls and gravity columns 
with the highest axial load, respectively. The nominal compressive strength of concrete is '

cf = 
41.4 MPa for the 10-story building, and  '

cf  = 55.2 MPa for the 20- and 40-story buildings. 
The buildings are designed to allow the formation of a single flexural plastic hinge extending 

over the bottom 10% of the building height (see Figure 5(a)). The design of the buildings based 
on ASCE-7 [14] is discussed in the section Design of Buildings. The reinforcing steel ratio in the 
plastic hinge region l,b is equal to  1.27%, 1.32%, and 0.81% for the 10-, 20-, and 40-story 
buildings, respectively. The remaining portion of the wall is considered essentially elastic, 
assuming adequate amount of longitudinal reinforcement is provided. Expected flexural 
strengths, Mb,y, and the corresponding yield curvatures, y, were calculated by moment-curvature 
analysis using the provided reinforcement and axial loads, see Table 1. The total seismic weight 
of the building is Wt. 

 

 
Figure 4. Floor plan-view of the 10-, 20-, and 40-story buildings. 

 
All floors had identical lumped mass, m, see Figure 5(b). One-component Giberson beam 

elements  [45]  were  used  to  model  the  walls.  One  such  beam  element  represents  a  core-wall  
segment between two consecutive floors. The plastic hinge length at each end was assumed to be 
half the element length. The moment-curvature hysteretic response in the plastic hinges was 
represented by the Clough [45] hysteretic rule, see Figure 5(c). Using expected yield flexural 
strength My and the yield curvature y, the effective flexural rigidity of the beam element was 
given by EIe = My / y. A post-yield flexural rigidity ratio r equal to 0.02 was computed from 
moment-curvature analysis. The elastic portions of the walls were modeled with elastic elements, 
with EIe =  0.4EIg, where Ig is the gross-section moment of inertia and E the initial concrete 



8 
 

modulus. The effect of EIe value was investigated below, considering also the cases of EIe equal 
to 0.2EIg and 0.6EIg. In this model, the flexural rigidity ignored completely the tension stiffening 
effect.  Tension  stiffening  affects  the  initial  period  of  the  buildings  and  can  also  affect  the  
response,  especially  in  cases  of  limited  nonlinear  response  or  lightly  reinforced  walls.  The  
stiffness and strength of the gravity load system was not considered, and all walls were fixed at 
their base. The cumulative flexural strength of the gravity columns at their base was calculated to 
be less than 9% of the corresponding strength of the core walls for all three buildings, see Table 
1.  The  longitudinal  steel  ratio  of  the  gravity  columns  was  gc = 1.5%. This study ignored the 
effect of shear deformations. The lumped-plasticity model used did not consider the effect of 
axial force–bending moment–shear force interaction in the nonlinear hysteretic behavior of the 
walls. The computer program Ruaumoko [45] was used to perform the NDRHA, and large 
displacement theory was selected for the analyses. Caughey constant 2% viscous damping ratio 
was used in all the modes [45, 46]. The effect of the damping model is investigated in the Effect 
of Damping Model section.  
 
 

Table 1. Building characteristics. 
Building 10-story 20-story  40-story  
Floor height,  h (m) 3.35 3.35 3.35 
Building height,  H (m) 33.5 67.1 134 
Seismic weight / floor,  w (kN) 4827 6829 19195 
Axial load / floor in core wall,  PW (kN) 1813 2754 8135 
Axial load / floor in gravity columns,  PC (kN) 3014 4075 11060 
Length of core wall,  Lw (m) 4.5 8 15 
Core wall thickness,  tw (m) 0.3 0.3 0.75 

Core wall base axial load ratio Pbw / ( '
cf Agw) 0.09 0.11 0.14 

Longitudinal reinforcement steel ratio at core wall’s base,  l,b (%)  1.27 1.32 0.81 
Base expected yield flexural strength of core wall,  Mb,y (kN·m) 94582 405030 3305770 
Base expected yield curvature of core wall,  y (Rad/m) 7.49E-4 4.50E-4 2.36E-4 
EIe / EIg for plastic hinge region of core wall 0.31 0.36 0.35 
Design Shear Stress of Core Walls based on 1.25Mb,y (MPa) 1.59 2.31 2.33 
Curvature Ductility at 5% tensile strain of steel,  µ ,5% 16.3 14.8 15.2 
Side dimension of square gravity columns (m) 0.50 0.75 1.0 

Gravity columns base axial load ratio,  Pbc / (
'

cf Agc)  0.24 0.22 0.20 
Sum of expected flexural strength of gravity columns / Mb,y 0.086 0.082 0.078 
Normalized design base moment,  Mu / WtH 0.042 0.027 0.0237 
Normalized design base shear corresponding to Mu,  Vu / Wt 0.088 0.074 0.074 
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Figure 5. (a) Flexural plastic hinge definition; (b) mass distribution of the lumped-mass Euler-

Bernoulli cantilevers; and (c) idealized moment-curvature hysteretic response.  
 
    
Design of Buildings 

 
   The buildings were designed according to the ASCE 7 [14] seismic design requirements for a 
site in downtown Pasadena, CA, for soil type C, corresponding to very dense soil and soft rock. 
Figure  6  depicts  the  DBE  and  MCE  acceleration  and  displacement  spectra  for  the  site  
considered. For the specific site SS = 2.53 g, S1 = 0.87 g, SDS = 1.68 g, and SD1 = 0.75.  

 

 
Figure 6. Acceleration and displacement design spectra for a site in downtown Pasadena, CA. 

 
   
   Modal response spectrum analysis (MRSA), based on the requirements of ASCE-7, with a 
response modification factor of R = 5 was used to obtain design forces.  The design bending 
moment, Mu, and shear force, Vu, envelopes are shown in Figure 7 and are also reported in Table 
1. An effective section moment of inertia Ie = 0.5Ig was used for the core-walls along their entire 
height  elements  for  the  MRSA.  In  Figure  7,  the  MRSA  bending  moment  and  shear  force  
envelopes for this design model are labeled MRSA. Based on section 12.9.4 of ASCE-7 the 
design base shear force can’t be less than 85% of the base shear force, Vb,ELFP, required based on 
the equivalent lateral force procedure (ELFP). This requirement controlled the design shear 
forces for the 20-, and 40-story buildings. The envelopes, termed MRSAVELFP in Figure 7, are the 

MRSA envelopes scaled up by ,

,
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V
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MRSA. The MRSAMb,o envelopes,  shown  also  in  Figure  7,  are  the  MRSA envelopes scaled by 
,

,

1.25 b y

b MRSA

M
M

, where 1.25 is the base flexural overstrength factor, and Mb,MRSA is the MRSA base 

bending moment.  

My

My

y

EIe

rEIe

Curvature, 

Bending Moment, M

EIe

EIe

rEIe

(a) (c)

H

Flexural 
Plastic 

Hinge
0.1·H

(b)

m

h

H

hi

hj,i

i

j

n



10 
 

 
Figure 7. Design bending moment and shear force envelopes based on MRSA. 

 
 
Modal analysis 
 
Figure 8 and Table 2 present the main modal characteristics of the first three modes of the 
buildings considered. The buildings termed 10-, 20-, and 40-story are these with EIe =0.4EIg for 
the elastic parts of the walls. Figure 8 also includes the modal characteristics of the 20-story 
building using the reduced flexural rigidity (RFR), rEIe, defined in Figure 5(c), for the plastic 
hinge elements. The modal characteristics of the 20-story building with EIe = 0.2 EIg used for the 
elastic portions of the wall, termed 20-story-0.2EIg, are also presented in Figure 8.  

The normalized modal characteristics presented are: (a) modal lateral force; (b) modal 
bending moment; and (c) modal shear force diagrams for the first three modes. The normalized 
modal lateral force of mode q at floor i, rF,q,i = Fq,i / (m·Aq), is equal to the ratio of lateral force 
due to mode q, Fq,i, to the product of the modal acceleration, Aq, and the floor seismic mass, m 
[46]. Equation 1 relates Fq,i to the product of q q,i, where q is the modal participation factor 
and q,i is the value of the modal vector of mode q at floor i. The normalized modal shear force, 
rV,q,i = Vq,i / (mt·Aq), is equal to the ratio of the shear force at floor i due to mode q, Vq,i, to the 
product of the total seismic mass, mt, times Aq. Vq,i is calculated using Equation 2. The 
normalized modal base shear force is equal to the effective modal mass mq [46] normalized by 
mt. The normalized modal bending moment, rM,q,i = Mq,i /  (mt·H·Aq),  is  equal to the ratio of the 
bending moment at floor i due to mode q, Mq,i, to mt times the height, H, of the building times Aq.  
Mq,i  is calculated using Equation 3. The term hj,i is defined in Figure 5(b).  
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, , ,

n

q i q q j j i q
j i

M m h A       (3) 

 
 

The normalized modal characteristics of the 10-, 20- and 40- story buildings, with EIe = 0.4 
EIg for the walls’ regions above the base plastic hinge, were practically identical, indicating 
insensitivity to the number of floors. For these three buildings, the peak normalized first and 
second mode bending moment occurred at their base. The absolute value of the second mode 
bending moment at mid-height was close to the corresponding value at the base of the wall. The 
values of the normalized third mode bending moment along the building heights were small. 
Same sign of first and second mode accelerations resulted in modal bending moments and shear 
forces at the base of same sign, while they resulted in mid-height modal bending moments of 
different sign. Reduction of flexural rigidity at the base (see Figure 8 for the 20-story-RFR 
building) resulted in a straighter first-mode lateral force diagram without any significant change 
in its value at the top of the building, resulting in an increase of the normalized effective first 
modal mass.  

 

 
Figure 8. Normalized modal characteristics of the buildings. 

 
 
Table 2 summarizes the main modal characteristics of four of the buildings considered. For 

the buildings with EIe = 0.4EIg, the ratios T1 / T2 and T1 / T3 of the first modal period T1 to the 
second and third mode, respectively, were essentially insensitive to the number of stories. The 
absolute values of the normalized second mode base bending moment were less than one tenth of 
the corresponding first-mode values for all buildings studied. Thus, inelastic response at the base 
of the walls should be expected to reduce the first mode of response more than the second. The 
reduction of flexural rigidity at the base affected mainly the first modal period, elongating it 8.8 
times, while the second-mode period was elongated only 1.5 times. The cumulative normalized 
effective modal mass of the first three modes increased from 0.89 for the 20-story building to 
0.97 for the 20-story-RFR building. The 20-story-RFR building had a nearly zero normalized 
second-mode base bending moment. In this case, base inelasticity is expected to have a limited 
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effect in reducing the second mode of response.  Changing EIe / EIg from 0.2 to 0.4 caused only 
minor changes of the normalized modal characteristics.  

We investigated the effect of the gravity system on the stiffness of the buildings. The 
columns, and the slabs were modeled using Euler-Bernoulli beam elements with effective 
flexural rigidities at yield, EIe, based on moment-curvature analysis. The full width of the slabs 
and the framing between the core walls, the slabs, and the gravity columns were considered. This 
reduced the first mode period by less than 9% for all three buildings. The corresponding 
reduction of the second mode period was less than 2%.  
 

Table 2. Main modal characteristics of the buildings. 
Mode  Building 10-story 20-story 20-story-RFR 40-story 
1 

Modal period Tq (sec) 
2.2 4.0 35 6.6 

2 0.3 0.6 0.9 1.0 
3 0.1 0.2 0.3 0.4 
2 

Modal period ratio T1 / Tq  
6.5 6.4 41 6.5 

3 18 18 110 18 
1 Normalized modal base shear force 

(equal to normalized effective 
modal mass) rV,q,b =mq / mt 

0.66 0.63 0.73 0.63 
2 0.19 0.20 0.17 0.19 
3 0.07 0.06 0.07 0.06 
1 

Normalized modal base moment 
rM,q,b=Mq,b / (mt·H·Aq) 

0.497 0.470 0.511 0.459 
2 0.039 0.040 0.010 0.039 
3 0.008 0.008 0.003 0.008 
1 Normalized modal mid-height 

moment rM,q,0.5H = Mq,0.5H / 
(mt·H·Aq) 

0.181 0.166 0.170 0.159 
2 -0.032 -0.030 -0.038 -0.029 
3 -5.8E-4 -2.7E-4 0.005 1.8E-5 

 
 
Building response to near-fault ground motions and their pulse approximations 

 
Figure  9  presents  the  NDRHA  results  for  the  three  buildings,  each  subjected  to  one  of  the  

near-fault ground motions and its pulse approximation as described above. The base bending 
moment, Mb, mid-height bending moment, M0.5H, base shear force, Vb, and roof absolute 
acceleration, Ar, response histories are presented. The response quantities are normalized by the 
maximum of the peak values computed using the near-fault record and its pulse representation. 
The 10-, 20-, and 40-story buildings were subjected to the JFA292, RRS228, and PCD164 
records, respectively. The base curvature ductility, , calculated as the peak curvature in the 
first-story inelastic beam element divided by the yield curvature, y, for the 10-, 20-, and 40-
story buildings computed equal to 8.1, 14.1, and 11.6, respectively, indicated highly nonlinear 
response. Table 1 lists the curvature ductility ,5% at a tensile strain s =  5%  of  the  extreme  
section  fiber  at  the  base  of  the  wall  sections.  For  all  case  studies  for  the  duration  of  the  pulse  
approximation, the computed response using the pulse approximation satisfactorily matched 
those computed using the near-fault ground motions, except in the case of the base shear force 
for the 10-story building. For the 20-story building subjected to the RRS228 record, Pulse A 
provided a satisfactory estimation of peak response quantities. For the 10-story building 
subjected to the JFA292 record, Pulse B computed satisfactorily the bending moment and roof 
acceleration response quantities up to the end of the close-form pulse. For the 40-story building 
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subjected to the PCD164 record, Pulse C computed quite well the different response quantities, 
even after the end of the close-form pulse and up to t = 6 sec. After t = 6 sec, the response to the 
near-fault record was dominated by the strong high-frequency excitation, which is not 
represented by the close-form pulse. 

 

 
Figure 9. Comparison of the NDRHA results using near-fault ground motions and their close-
form pulse approximations. Time histories of (a) ground acceleration, (b) mid-height bending 
moment, (c) base bending moment, (d) base shear force, and (e) roof absolute acceleration. 
 
 
For the 20- and 40-story buildings considered, the close-form pulse period was closer to the 

second modal period of the buildings than to the first-mode period. The T1 / Tp ratios for the 10-, 
20-, and 40- story building case studies are 2.3, 5.1, and 5.3, respectively. The corresponding T2 / 
Tp ratios are 0.4, 0.8, and 0.8. Since the pulse period is close to the second modal period of the 
buildings, significant contribution of the second mode of response is expected, especially for the 
20- and 40-story buildings, as shown in Figure 10 for the bending moment, shear force, and 
acceleration response envelopes computed with NDRHA. The significant effect of the higher 
modes, especially the second mode, can be seen in all the response quantities for all motions. 
The peak bending moment around mid-height approached or even exceeded the peak base 
bending moment for all buildings. The effect of the second mode of response is seen in the shear 
force envelopes as well, where a local peak was observed close to 80% of the height. This local 
peak characterizes the normalized second mode shear force diagram, as shown in Figure 8. 
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Figure 10. Response envelopes of NDRHA, MRSA, and MMRSA using the near-fault ground 

motions, and of NDRHA using close-form pulse representations. 
 
The response envelopes computed using the close-form pulses are comparable to those 

computed with the near-fault records, indicating that the distinct pulses contained in the ground 
motions determined the response to a large extent. The bending moment and shear force 
response envelopes computed with the close-form pulses adequately represent those of the near-
fault ground motions for the three buildings. Relatively good agreement was also observed in the 
computed acceleration response for the 20-story building. The largest differences between the 
responses computed with the near-fault records and their pulse representation is seen in the floor 
acceleration response, especially for the 40-story building. For this case, floor acceleration 
response was greatly affected by the higher frequency excitation observed beyond t = 6 sec in the 
PCD164 record after the end of the approximated pulse (see Figure 9). For this record, a local 
peak was observed in the shear force envelope around the mid-height of the 40-story building. 
Here, the high-frequency excitation observed after t = 6 sec significantly excited the third mode 
of response. Shown in Figure 8, the third mode shear force diagram has a local peak around mid-
height. The acceleration spikes of the PCD164 record after t = 6 sec, see Figure 2(a), resulted in 
significant spectral accelerations at T = 0.4 sec, see Figure 2(c), which was equal to the third 
modal  period  of  the  building.  The  following  section  presents  a  parametric  study  of  the  three  
buildings subjected to the three pulses, for the amplitude and periods of various pulses.  
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Building response to close-form pulses and comparison of NDRHA and MRSA  
 
Results of the NDRHA of the three buildings subjected to the close-form Pulses A, B, and C are 
presented below. Pulse periods Tp corresponding to T1 / Tp ratios 0.25, 0.50, 0.75, and 1.0 
through 20.0, with a step of 1.0, are considered to cover a range extending from low- to high-
frequency of excitation. To investigate different levels of inelasticity on the response, different 
amplitudes ap for each pulse of period Tp were investigated. For each Tp, the amplitude ap was 
determined from the MRSA considering the first four modes. Once the modal characteristics of 
the buildings were determined, the SRSS combination method was used and a uniform reduction 
factor R was applied to all modes. By setting the moment demand at the base of the wall equal to 
the yield base moment strength Mb,y, the required pulse amplitude was calculated as: 
 

                        

4

b,y
p

2

t M,q,b q
q=1

R M
a =

m H r

     (4) 

 
where rM,q,b is the normalized base modal bending moment, see Table 2, and q = Sa(Tq) / ap, see 
Figure 1(b), where Sa(Tq) is the qth mode elastic SDOF spectral acceleration. The cumulative 
normalized effective modal mass of the first four modes considered was more than 0.9 for all 
buildings. 

Figure 11 plots the calculated values of ap for the three buildings versus T1 / Tp for Pulses A, 
B, and C; values of ap are  normalized  by  R times the acceleration of gravity g. The secondary 
(top) x-axis shows also the points that correspond to T2 / Tp and T3 /  Tp ratios equal to one.  In 
general, ap increased with increasing T1 / Tp ratio for all three pulses. For the specific buildings 
considered in this study for a given T1 / Tp and R, the required ap decreased with an increase in 
the building height. For the 20-story building with T1 = 4.0 sec for T1 / Tp = 5 and pulse A, ap / R 
= 0.28g. In this case, Tp = 0.8 sec and R = 2.4, ap = 0.68g. This might represent the case of the 
20-story building subjected to the pulse approximation of the RRS228 record with ap = 0.68g 
and Tp = 0.78 sec (see Figure 2). For the three buildings, high values of T1 / Tp and R resulted in 
very large values of ap, which are not found in existing near-fault records. That said, these cases 
are still worth considering for exploring the effect of decrease of Tp (increase of T1 / Tp) and the 
effect of increase of ap.  

 

 
Figure 11. Acceleration amplitude ap of close-form Pulses A, B, and C versus T1 / Tp computed 
with MRSA and a uniform R to all modes, resulting in a base bending moment equal to Mb,y. 
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Figures 12 to 14 compare the DBE and MCE design spectra to the spectra of pulses A, B, and 
C, with ap computed based on Equation 4, for three values of R and  three  values  of  Tp. The 
design spectra are compared to the pulse excitation spectra for the 10-story building in Figure 12. 
The corresponding comparisons for the 20-, and 40-story buildings are depicted in Figures 13 
and 14, respectively. For the 10-story building, Tp = T2, and R = 2, the spectral accelerations are 
close to the corresponding values of the MCE spectrum in the constant acceleration region. For 
Tp = T2, and R equal to 4 and 6, the spectral accelerations for the pulse motion far exceed the 
corresponding values of the MCE spectrum in the constant acceleration region. For Tp = T2, all R 
values, and T larger than 1.0 sec, the spectral accelerations of the pulse motions are smaller than 
the corresponding magnitude of the MCE spectra, except for pulse A and R = 6. For Tp = 0.5T1, 
R = 2, the pulse spectral accelerations are below the MCE for all pulses and periods, except pulse 
C around T = Tp =  1.1  sec.  For  Tp =  0.5T1 and R = 4 the spectral acceleration for the pulse 
motions exceed the corresponding MCE values for pulses B and C, and T between 0.7 and 2 sec. 
The same is true for Tp = 0.5T1 and R = 6 for all pulses and T between 0.7 and 2.5 sec. For Tp = 
T1, R equal to 2 and 4, the spectral accelerations for all pulses are lower than the corresponding 
MCE values. For Tp = T1, and R = 6, the spectral accelerations for all the pulse motions exceed 
the corresponding MCE values for T around Tp = 2.2 sec. Observations similar to those for the 
10-story building, can be made for the 20-, and 40-story buildings, with noticeable differences 
due to the increase of T1 and T2 with number of building stories.  

 

 
Figure 12. ASCE design basis and maximum considered earthquake and pulse response spectra 

for the 10-story building. 
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Figure 13. ASCE design basis and maximum considered earthquake and pulse response spectra 

for the 20-story building. 
 

 
Figure 14. ASCE design basis and maximum considered earthquake and pulse response spectra 

for the 40-story building. 
 
 

Figure  15  presents  the  results  of  the  NDRHA  for  the  three  buildings  in  terms  of  base  
curvature ductility ,b calculated  as  the  peak  curvature  computed  at  the  base  of  the  buildings  
divided by the yield curvature, y,  to Pulses A, B, and C for R = 2, 4, and 6 versus T1 / Tp. The 
response parameter ,b indicates the level of inelastic response. As expected for all pulses and 
buildings, ,b generally increased with increasing R. For T1 / Tp smaller than 1.0, ,b increased 
very rapidly with a corresponding decrease of T1 / Tp. For T1 / Tp equal to 0.25 or 0.5, the 
computed values of ,b were virtually unattainable. For T1 / Tp ratios higher than 1, curvature 
ductility demands of up to 45 were computed. Excessive and practically unattainable levels of 
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inelastic response computed for some T  /  Tp ratios,  especially  for  R  =  4  and  6,  are  worth  
exploring theoretically. Interestingly, ,b attains a local maximum for T1 / Tp = 4, corresponding 
to T2 / Tp = 0.6, for both R = 4 and 6. 
 

 
Figure 15. Peak base curvature ductility ,b computed with NDRHA. 

 
 
 Figures 16 to 18 present the results of the NDRHA in terms of the mid-height bending 

moment M0.5H, base shear force Vb, and roof absolute acceleration Ar for the three buildings to 
Pulses A, B, and C, for R = 2, 4, and 6, and for the twenty-three distinct ratios of T1 / Tp. These 
response quantities are normalized by those computed by MRSA using a uniform R factor in the 
four modes.  

Figure 16 plots the computed mid-height bending moment in terms of the ratio M,0.5H = 
M0.5H,NDRHA / M0.5H,MRSA, where M0.5H,NDRHA  and M0.5H,MRSA are the peak mid-height bending 
moments computed by NDRHA and MRSA, respectively. For T1 / Tp lower than one, 
corresponding to low-frequency excitation and R equal to 4 and 6, M,0.5H was much higher than 
one due to the excessive post-yield section hardening at the base of the walls. Section hardening 
is not accounted for in MRSA, see Equation 4. For T1 / Tp higher than one, MRSA significantly 
underestimated M0.5H for all buildings, all pulses, and all R factors. For all pulses and all R 
factors, M,0.5H was more or less independent of the building height and was dependent only on 
the ratio of T1 / Tp. For R equal to 4 and 6 and for T1 / Tp ratios higher than one, maximum values 
of M,0.5H occurred at T1 / Tp = 4 for all pulses, except for the 40-story building for Pulse B. For 
T1 / Tp = 4, corresponding to T2 / Tp = 0.6, significant excitation of the second mode of response 
occurred. For all the three pulses and for R equal to 4 and 6, M,0.5H increased rapidly for T1 / Tp, 
increasing between 1 and 4. For T1 / Tp larger than 4, values of M0.5H were high and of the order 
of 2 R3 . For R = 2, M,0.5H was nearly uniform and equal to R.  

The computed ratio V,b = Vb,NDRHA /  Vb,MRSA, where Vb,NDRHA and Vb,MRSA are the peak base 
shear forces computed by NDRHA and MRSA with a uniform R factor  in  all  the  modes,  
respectively, is shown in Figure 17. The variation of V,b with T1 / Tp—similar to that of 
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M,0.5H—was essentially independent of the number of stories, depending mainly on the R factor 
with a minor sensitivity to the pulse type. For T1 / Tp lower than one and R equal to 4 and 6, V,b 
was much higher than one due to the excessive post-yield base section hardening as explained 
above. For R equal to 4 and 6, V,b increased rapidly for T1 / Tp between 1 and 3 or 4. For R = 4 
and 6, and T1 / Tp larger than one, V,b attained a maximum value at T1 / Tp equal to 3 or 4. For R 
equal to 4 and 6 and for T1 / Tp larger than 3, V,b was larger than 0.4R. For R equal to 2, V,b 
was nearly constant and equal to R.  

 

 
Figure 16. Ratio of peak mid-height bending moments computed with NDRHA and MRSA. 
 

 
Figure 17. Ratio of peak base shear forces computed with NDRHA and MRSA. 
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The ratio A,r = Ar,NDRHA / Ar,MRSA, where Ar,NDRHA and Ar,MRSA are the peak roof absolute 
accelerations computed using NDRHA and MRSA with a uniform R factor  in  all  the  modes,  
respectively, is shown in Figure 18. For T1 / Tp lower than one, A,r  shows similar behavior for 
the same reasons to that of M,0.5H and V,b. In general, A,r increased with R and an increase of 
T1 / Tp. For R equal  to  2,  A,r was nearly constant and equal to R. Because the normalized 
NDRHA to the MRSA response was found to be more or less insensitive to the number of 
stories, only the results for the 20-story building are discussed further.  

 
 

 
Figure 18. Ratio of peak roof accelerations computed with NDRHA and MRSA. 

 
 
Figure 19 plots the bending moment envelopes computed by MRSA and NDRHA for R equal 

to 2 and 6, for four values of T1 / Tp. The bending moment at floor i, Mi, was normalized by Mb,y. 
The envelope computed with MRSA is independent of the value of R since the relative 
contribution of the modes is independent of R.  Values  of  Mi / Mb,y at the base computed with 
NDRHA were larger than one due to post-yield base section hardening. Compared to NDRHA, 
MRSA significantly underestimated the bending moment demands in the upper part of the wall. 
The level of underestimation increased with increasing R.  

The amplitude of peak normalized bending moment and the height at which this occurs 
strongly depends on T / Tp. For values of T1 / Tp equal to and larger than 3, the bending moment 
on the upper part of the wall reaches or exceeds the base bending moment yield capacity Mb,y in 
all cases, see Figure 19. For example, for T1 / Tp = 6, Pulse A, and for R = 2 and 6, the bending 
moment at 40% of the height is 1.4 and 3.4 times Mb,y, respectively, which causes a practical 
difficulty when trying to ensure elastic response of these regions. If this wall were required to 
remain  elastic,  the  required  longitudinal  reinforcement  ratio  at  the  eighth  story  (40%  of  the  
height)  for  Pulse  A,  T1 / Tp = 6 and R = 2 would be 2.8%, an excessively large value. In 
comparison to the base, the larger bending moment combined with the reduction of axial force 
resulted in a significant increase in the required longitudinal reinforcement. For T1 / Tp =  20,  



21 
 

corresponding to T3 / Tp = 1.1, the peak moment based on NDRHA occurred close to 75% of the 
height, indicating significant contribution of the third mode of response.  

 

 
Figure 19. Bending moment envelopes for the 20-story building subjected to pulses A, B, and C 

for four T1 / Tp ratios computed with (a) MRSA and NDRHA; (b) R = 2; and (c) R = 6. 
 
 
Next we investigated the effect of EIe, used to model the elastic wall regions on the computed 

ratios M,0.5H, V,b, and A,r for  the  20-story  building  subjected  to  Pulse  B.  Two values  of  the  
yield reduction factor, R = 2 and R =  6,  and  three  values  of  EIe / EIg = 0.2, 0.4 and 0.6 were 
considered. For each value of T1 / Tp, ap was recomputed using Equation 4 and accounting for the 
change in modal characteristics with the corresponding change of EIe. Figure 20 shows that 

M,0.5H, V,b, and A,r are practically independent of the EIe considered.   
The ratio of peak mid-height bending moment M0.5H,max to yield base bending moment Mb,y 

was also investigated (see Figure 21) for EIe / EIg equal to 0.2, 0.4, and 0.6, for the 20-story 
building subjected to Pulse B. For T1 / Tp lower than one, and R =4 and 6,  the ratio M0.5H,max / 
Mb,y was much higher than one because of the excessive post-yield hardening of the base 
sections. The ratio M0.5H,max / Mb,y increased rapidly for values of T1 / Tp between 1 and 4, 
reaching a peak at T1 / Tp between 4 and 8, a period range with significant contribution of the 
second mode to response. For T1 / Tp larger than 4, M0.5H,max / Mb,y increased with increasing R 
and increasing EIe. For EIe = 0.4EIg, the peak M0.5H,max / Mb,y was 1.4, 2.3, and 3.4 for R equal to 
2, 4, and 6, respectively.  

Finally,  the  effect  of  T1 / Tp on the shear force that developed on the upper part of the 
buildings was explored. Figure 22 shows the ratio of the peak shear force at three quarters of the 
wall height, V0.75H,max, to the peak base shear force, Vb,max. Results for the 20-story building for R 
= 2, 4, and 6 and for all pulses A, B, and C are presented. Small sensitivity of V0.75H,max / Vb,max to 
the pulse type was observed. At T1 / Tp = 3 corresponding to T2 / Tp = 0.5 for all R and pulses, the 
ratio V0.75H,max / Vb,max reached its peak value. For all cases except for R = 4 and Pulse A, this 
peak value was very close or exceeded one. The results presented in Figure 22 indicate that the 
design shear force at three quarters of the wall height should be at least half of the corresponding 
value at its base independent of pulse period and R factor. 
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Figure 20. Effect of effective flexural rigidity value on the ratio of responses computed with 

NDRHA and MRSA for the 20-story building and Pulse B. 
 
 

 
Figure 21. Effect of effective flexural rigidity value, on the ratio of peak mid-height to yield base 

bending moment computed with NDRHA for the 20-story building subjected to Pulse B. 
 
  

 
Figure 22. Peak shear force at 75% of the 20-story building’s height computed with NDRHA. 
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Effect of Damping Model 
 
The sensitivity of the building models to the choice of damping model was studied for the 20-

story building. Caughey 2% constant damping in modes 1 through 6 was compared to Rayleigh 
2% damping in modes 1 and 2, and in modes 1 and 4. Figure 23 and Table 3 show how the 
Caughey and Rayleigh damping ratio values compare for the first four modes. In comparison 
with the Caughey damping model the Rayleigh 2% in modes 1 and 2 model results in at least 2.5 
times larger damping ratios in modes three and above. In comparison with the Caughey damping 
model the Rayleigh damping model with 2% damping ratio in modes 1 and 4 results in 3.1 and 
1.8 times lower damping ratio in modes 2, and 3, respectively.  

 

 
Figure 23. Caughey and Rayleigh damping comparison for the 20-story building. 

 
Figure 24 compares the computed response in terms of four different response parameters (Vb, 

Ar, M0.5H, and ,b) for the three damping models for pulse B and R = 4. The larger damping 
ratios of the Rayleigh damping model with 2% damping ratio in modes 1 and 2, in comparison 
with the other two models, result in reduction of the different response quantities and especially 
base curvature ductility, base shear force, and roof acceleration. The effect of the damping model 
is less pronounced for the mid-height bending moment.  The Rayleigh damping model with 2% 
damping ratio in modes 1 and 4 results in almost the same response with the Caughey damping 
model for all the T1 / Tp values and all response parameters.  

 
Table 3. Caughey and Rayleigh damping comparison. 

Mode Mode 1 
damping (%) 

Mode 2 
damping (%) 

Mode 3 
damping (%) 

Mode 4 
damping (%) 

Caughey 2% in 
modes 1 
through 6 

2.00 2.00 2.00 2.00 

Rayleigh 2% in 
modes 1 and 2 2.00 2.00 4.98 9.65 

Rayleigh 2% in 
modes 1 and 4 2.00 0.65 1.10 2.00 
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Figure 24. Damping sensitivity study for the 20-story building for pulse B and R = 4. 

 
 

A MODIFIED MODAL RESPONSE SPECTRUM ANALYSIS METHOD FOR RC 
CANTILEVER WALLS WITH BASE INELASTICITY 

 
Independent of the number of stories for the three pulse types and R values considered, 

MRSA, using effective flexural rigidities, significantly underestimated different response 
quantities, when used a uniform R factor in all the first four modes, and the SRSS combination 
rule. For T1 /  Tp smaller than one corresponding to low-frequency excitation, the response was 
first mode dominated. In this excitation period range, MRSA did not account for the post-yield 
base section hardening of the walls, resulting in an underestimation of the response; in addition 
section hardening was excessive for R =  4  and  6.  For  T1 /  Tp larger  or  equal  than  one,  MRSA 
using the SSRS combination method and a uniform R factor in all the four modes significantly 
underestimated the response for all pulses and R values, because inelastic response at the base of 
cantilever wall buildings does not reduce the second and higher modes as much as the first mode 
of response.  

A modified modal response spectrum analysis (MMRSA) method is presented that considers 
only the first three modes of response and uses a yield reduction factor R1, and RH for the first 
and higher (second and third) modes, respectively. Modal characteristics are computed using 
effective flexural rigidities. In this approach, the elastic response modal parameter Qi (bending 
moment, shear force, floor acceleration) of interest at floor i can be computed as: 

 

 
2 22 i i

2 3i i b,o
1 2

1 H

Q + Q
Q = Q +

R R
 (5) 

where Qq is the mode q elastic contribution to the response parameter considered. The base 
section overstrength factor b,o is the ratio of the peak expected base bending moment Mb,o to 
Mb,y. Having determined the expected flexural yield strength of a wall, Equation 5 can be used to 
calculate floor accelerations and bending moments, above the base of the wall, and shear forces 
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along its entire height. Once Mb,y, and Mb,q are known, factor R1 is computed based on Equation 
6.  
 

4 2

t M,q,b q
q=1

1
b,y

m H r Sa T
R

M
     (6) 

 
 
As defined above for the three buildings considered, the modal parameters rM,i, rV,i, rA,i and 

thus    
 
i
qQ
 
are  known from modal  analysis  (see  Figure  8).  For  the  analysis  using  the  close-form 

pulses, factor R1 is equal to R used for the MRSA (compare Equations 4 and 6). Also peak values 
of M0.5H, Vb, Ar, and b,o were  computed  with  NDRHA.  Here,  Equation  5  can  be  solved  
separately for the peak values of M0.5H, Vb, Ar, in terms of RH. Figure 25 plots the results of RH 
for the 20-story building with EIe = 0.4EIg for all the three pulses and T1 / Tp between 0.75 and 
20. Figure 25  shows that for all three response quantities, all pulses, and all R factors, RH was 
significantly smaller than R1 and smaller than 2.0, except Pulse C for base shear force and T1 / Tp 
= 8. In some cases, especially for T1 / Tp between 0.75 and 4, values of RH smaller than one are 
computed. In these cases even considering the second and third mode elastic underestimates the 
response. 

 

 
Figure 25. Yield reduction factor RH for higher modes computed based on: (a) mid-height 

bending moment; (b) base shear force; and (c) roof acceleration obtained from NDRHA of the 
20-story building. 

 
Comparison of MRSA and the MMRSA results for the three buildings subjected to near-fault 

records is shown in Figure 10. Results of MRSA with a uniform R factor in the first four modes 
and MMRSA as described in Equations 5 and 6, using RH = 1, are presented. For the JFA292, 
RRS228, and PCD164 records, the R1 = R factors computed using Equation 6 for the 10-, 20-, 
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and 40-story buildings are 5.97, 2.74, and 2.25, respectively. In all three cases, MRSA 
significantly underestimated the three response parameters along the height of the buildings. The 
MMRSA  significantly  improved  the  estimation  of  all  response  envelopes.  The  MMRSA  
significantly underestimated the floor accelerations at the bottom 25% of the height of the 
buildings. The total acceleration computed with modal response spectrum analysis, independent 
of the R values used, results in zero acceleration at the base of the fixed-base buildings.  

 
 

SUMMARY AND CONCLUSIONS 
 
This report investigated the inelastic response of tall cantilever wall buildings subjected to pulse-
type ground motion, emphasizing the relationship between ground motion characteristics and 
higher modes of response, especially the second and third mode. Three 10-, 20-, and 40-story 
high cantilever wall buildings were designed to develop all nonlinear deformations at a flexural 
plastic hinge region located at their base. Nonlinear dynamic response history analyses 
(NDRHA)  of  these  buildings  was  carried  out.  Initially,  each  building  was  subjected  to  both  a  
near-fault record and a representation of this record using a close-form pulse. Then, an extensive 
parametric analytical study was conducted for each building subjected to three close-form pulses. 
Twenty three distinct pulse periods and three pulse amplitudes at each period were considered to 
study different levels of inelastic response. The following conclusions were drawn: 
1. Strong pulse-type ground motions with the predominant pulse period in the range of the 
second structural modal period computed with effective flexural rigidities significantly excited 
the first, and second mode, causing highly inelastic response at the base of the walls for all 
buildings considered. 
2.     Simple close-form pulses provided fair approximations of the distinct pulses contained 
in near-fault records. Using the pulse approximations, the computed response in terms of section 
bending moment, shear force, and floor acceleration were similar to the corresponding response 
computed using near-fault records. 
3. Strong pulse-type motion with a predominant pulse period close to or shorter than the 
second modal period excited significantly the second mode of response and resulted in bending 
moment demands at the intermediate wall height that far exceeded the base bending moment 
yield strength. Designing these regions to remain elastic requires large to excessive amounts of 
longitudinal reinforcement. 
4. For any T1 / Tp greater than one, the peak shear force at 75% of the height of the buildings, 
V0.75H, approached or even exceeded 50% of the peak base shear force. For T1 / Tp = 3,  for all  
three pulses, V0.75H approached or even exceeded the peak base shear force. 
5. Inelastic response at the base of cantilever wall buildings did not reduce the second and 
higher modes as much as the first mode of response. 
6. Using a uniform yield reduction factor R in all the modes and the SRSS combination 
method, modal response spectrum analysis significantly underestimated the bending moments, 
shear forces, and floor accelerations along the height of the buildings for T1 / Tp greater than one. 
7. This underestimation increased with increasing R and with an increase of T1 / Tp between 1 
and 4. The level of underestimation was independent of the number of stories and showed small 
sensitivity to the pulse type and to the response parameter. 
8. Modified modal response spectrum analysis that considered a yield reduction factor RH 
factor in the second and higher modes equal to one (or much smaller than this used for the first 
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mode), significantly improved the estimation of forces and accelerations along the height of 
cantilever wall buildings. 

 
 

REFERENCES 
 

1. Blakeley  RWG,  Cooney  RC,  Megget  LM.  Seismic  shear  loading  at  flexural  capacity  in  
cantilever wall structures. Bulletin New Zealand National Society Earthquake Engineering 
1975; 8: 278–290. 

2. Derecho AT, Iqbal M, Ghosh SK, Fintel M, Corley WG, Scanlon A. Structural Walls in 
Earthquake-Resistant Buildings Dynamic Analysis of Isolated Structural Walls Development 
of Design Procedure – Design Force Levels. Portland Cement Association, 1981.  

3. Eibl J, Keintzel F. Seismic shear forces in RC cantilever shear walls. Proceedings, 9th World 
Conference on Earthquake Engineering, Tokyo/Kyoto, Japan 1988, Report 9-1-1. 

4. Paulay T, Priestley MJN. Seismic Design of Reinforced Concrete and Masonry Buildings. 
Wiley: Hoboken, NJ, 1992. 

5. Eberhard MO, Sozen MA. Member behavior-based method to determine design shear in 
earthquake-resistant walls. Journal of Structural Engineering 1993; 119(2):619–640. 

6. Filiatrault  A,  D’Aronco  D,  Tinawi  R.  Seismic  shear  demand  of  ductile  cantilever  walls:  a  
Canadian code perspective. Canadian Journal of Civil Engineering 1994; 21:363–376. 

7. Panneton  M,  Léger  P,  Tremblay  R.  Inelastic  analysis  of  a  reinforced  concrete  shear  wall  
building according to the National Building Code of Canada 2005. Canadian Journal of Civil 
Engineering 2006; 33:854-871.  

8. Rutenberg A, Nsieri E. The seismic shear demand in ductile cantilever wall systems and the 
EC8 provisions. Bulletin of Earthquake Engineering 2006; 4:1–21. 

9. Moehle JP, Sozen MA. Experiments to study earthquake response of R/C structures with 
stiffness interruptions (4th Ed.). Civil Engineering Studies, Structural Research Studies No.  
482, University of Illinois, Urbana-Champaign, 1980. 

10. Panagiotou, M., Restrepo, J.I., and Conte J.P. Shake Table Test of a 7-Story Full Scale 
Reinforced Concrete Wall Building Slice, Phase I: Rectangular Wall. ASCE Journal of 
Structural Engineering, Vol. 137, No. 6, 2011. 

11. Panagiotou M. Seismic design, testing, and analysis of reinforced concrete wall buildings. 
Ph.D. Thesis, University of California, San Diego, 2008. 

12. Park R, Paulay T. Reinforced Concrete Structures. John Wiley & Sons, Inc., NJ, 1975. 
13. ACI 318-08. Building Code Requirements for Structural Concrete (ACI 318-08) and 

Commentary. ACI Committee 318, Farmington Hills, 2008. 
14. ASCE 7-05. Minimum Design Loads for Buildings and Other Structures. American Society 

of Civil Engineers, 2006.  
15. CEN EC8: Design of Structures for Earthquake Resistance. European Committee for 

Standardisation: Brussels, Belgium, 2004.  
16. NZS 3101. New Zealand Standard, Part 1- The Design of Concrete Structures, Standards 

New Zealand, Wellington, New Zealand, 2006. 
17. CSA Standard A23.3-04. Design of Concrete Structures. Canadian Standard Association, 

Rexdale, Canada. 2005; 214pp. 
18. Moehle J, Bozorgnia Y, Yang TY. The Tall Buildings Initiative. Proceedings SEAOC 

Convention. 2007; 315-324.  



28 
 

19. Priestley MJN, Calvi GM, Kowalsky MJ. Displacement Based Seismic Design of Structures. 
IUSS Press, Pavia, Italy. 2007. 

20. Panagiotou M, Restrepo JI. Dual-plastic hinge design concept for reducing higher-mode 
effects on high-rise cantilever wall buildings, Vol. 38, Issue 12, pp 1359-1380, 2009. 

21. Sullivan  TJ,  Priestley  MJN,  Calvi  GM,  Estimating  the  Higher-Mode  Response  of  Ductile  
Structures. Journal of Earthquake Engineering, 2008; 12(4):456-472 

22. Rodríguez ME, Restrepo JI, Carr AJ. Earthquake-induced floor horizontal accelerations in 
buildings. Earthquake Engineering and Structural Dynamics 2002; 31:693-718.   

23. Goel  RK,  Chopra  AK.  Role  of  higher-“mode”  pushover  analyses  in  seismic  analysis  of  
buildings. Earthquake Spectra 2005; 21(4):1027-1041. 

24. Chopra AK, Goel RK, Chintanapakdee R. Evaluation of a Modified MPA Procedure 
Assuming Higher Modes as Elastic to Estimate Seismic Demands. Earthquake Spectra 2004; 
20(3):757–778. 

25. Bertero VV, Mahin SA, Herrera RA. Aseismic design implications of San Fernando 
earthquake records. Earthquake Engineering and Structural Dynamics 1978; 6(1):31-42. 

26. Anderson JC, Bertero VV, Uncertainties in Establishing Design Earthquakes. ASCE Journal 
of Structural Engineering 1987; Vol. 113; No. 8; 1709-1724. 

27. Alavi B, Krawinkler H. Behavior of moment-resisting frame structures subjected to near-
fault ground motions. Earthquake Engineering and Structural Dynamics 2004; 33:687–706. 

28. Kalkan E, Kunnath SK. Effects of fling step and forward directivity on seismic response of 
buildings. Earthquake Spectra 2006; 22(2):367-390. 

29. Krishnan S. Case studies of damage to 19-storey irregular steel moment-frame buildings 
under near-source ground motion. Earthquake Engineering and Structural Dynamics 2007; 
36:861–885. 

30. Dicleli  M,  Mehta  A.  Effect  of  near-fault  ground  motion  and  damper  characteristics  on  the  
seismic performance of chevron braced steel frames. Earthquake Engineering and Structural 
Dynamics 2007; 36:927-948. 

31. Hall JF, Heaton TH, Halling MW, Wald DJ. Near source ground motion and its effects on 
flexible buildings. Earthquake Spectra 1995; 11:569–606.  

32. Akkar S, Yazgan U, Gulkan P. Drift estimates in frame buildings subjected to near-fault 
ground motions. Journal of Structural Engineering 2005; 131(7):1014-1024. 

33. Liao W-I, Loh C-H, Wan S. Earthquake responses of RC moment frames subjected to near-
fault ground motions. Structural Design of Tall Buildings 2001; 10:219-229. 

34. Panagiotou  M,  Calugaru  V,  Visnjic  T.  Higher  mode  effects  on  the  seismic  response  of  tall  
cantilever wall buildings subjected to near fault ground motions. Proceedings, Structural 
Engineers Association of California Convention, San Diego, CA 2009; 345–357. 

35. Somerville PG, Smith NF, Graves RW, Abrahamson NA. Modification of empirical strong 
ground motion attenuation relations to include the amplitude and duration effects of rupture 
directivity. Seismological Research Letters 1997; 68:199-222. 

36. Iwan WD, Huang CT, Guyader AC. Evaluation of the effects of near-source ground motions. 
Final Report on Research Conducted under PEER/PGE Research Program, California 
Institute of Technology, 1998. 

37. Sasani  M,  Bertero  VV.  Importance  of  severe  pulse-type  ground  motions  in  performance-
based engineering: historical and critical review. Proceedings, 12th World Conference on 
Earthquake Engineering 2000, Report No. 1302. 



29 
 

38. Makris N,  Black JC. Dimensional analysis of bilinear oscillators under pulse-type 
excitations. Journal of Engineering Mechanics 2004; 130(9): 1019-1031. 

39. Malhotra PK. Response of buildings to near-field pulse-like ground motions. Earthquake 
Engineering and Structural Dynamics 1999; 28:1309-1326. 

40. MacRae  GA,  Morrow  DV,  Roeder  CW.  Near-fault  ground  motion  effects  on  simple  
structures. Journal of Structural Engineering 2001; 127:996–1004. 

41. Cuesta I, Aschheim MA. Isoductile strengths and strength reduction factors of elasto-plastic 
SDOF systems subjected to simple waveforms. Earthquake Engineering and Structural 
Dynamics 2001; 30:1043–1059. 

42. Mylonakis G, Reinhorn AM. Yielding oscillator under triangular ground acceleration pulse. 
Journal of Earthquake Engineering 2001; 5:225–251. 

43. Mavroeidis GP, Papageorgiou AS. A mathematical representation of near-fault ground 
motions. Bulletin of the Seismological Society of America, June 2003; 93(3):1099-1131. 

44. Baker JW. Quantitative classification of near-fault ground motions using wavelet analysis. 
Bulletin of the Seismological Society of America, October 2007; 97(5):1486-1501. 

45. Carr AJ. Ruaumoko – A Program for Inelastic Time-History Analysis. Department of Civil 
Engineering, University of Canterbury, New Zealand, 1998. 

46. Chopra AK. Dynamics of Structures: Theory and Applications to Earthquake Engineering. 
Prentice Hall: Englewood Cliffs, NJ, 2001.  

 
 




