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Summary

Liver and biliary diseases affect more than a billion people worldwide, with high associated 

morbidity and mortality. The impact of the intestinal bacterial microbiome on liver diseases has 

been well established. However, the fungal microbiome, or mycobiome, has been overlooked 

for a long time. Recently, several studies have shed light on the role of the mycobiome in the 

development and progression of hepatobiliary diseases. In particular, the fungal genus Candida has 

been found to be involved in the pathogenesis of multiple hepatobiliary conditions. Herein, we 

compare colonisation and infection, describe mycobiome findings in the healthy state and across 

the various hepatobiliary conditions, and point toward communalities. We detail how quantitation 

of immune responses to fungal antigens can be employed to predict disease severity, e.g. using 

antibodies to Saccharomyces cerevisiae or specific anti-Candida albicans antibodies. We also 

show how fungal products (e.g. beta-glucans, candidalysin) activate the host’s immune system 

to exacerbate liver and biliary diseases. Finally, we describe how the gut mycobiome can be 

modulated to ameliorate hepatobiliary conditions.
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Introduction

In 2017, 1.5 billion people had cirrhosis and other chronic liver diseases globally, most 

commonly due to non-alcoholic fatty liver disease (NAFLD, 59%) and hepatitis B virus 

(HBV, 29%), but also hepatitis C virus (HCV, 9%), alcohol-associated liver disease (ALD, 

2%), and others (1%) [1]. Cirrhosis is currently the eleventh most common cause of death 
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globally, accounting for two million deaths per year and an estimated 3.5% of global 

mortality [2–4]. 30,600 persons had gallbladder and other biliary diseases in 2017 [1]. 

803,000 persons had liver cancer, and the annual incidence of liver cancer was 953,000 

persons in 2017 (HBV 42%, HCV 27%, alcohol use 15%, NAFLD 8%, others 8%) [1].

Hepatobiliary diseases are associated with intestinal bacterial dysbiosis [5], which is defined 

as an imbalance of bacterial subpopulations and the associated deleterious effects on the 

colonised host [6, 7]. There are 1011 bacterial cells per gram of faeces [8], compared with up 

to 105-106 fungal cells [9–12], 109-1010 virus-like particles[13], or 108-1010 archaeal cells 

per gram of faeces [14, 15]. Similar to bacteria, fungi are present at their highest density 

in the (distal) colon in mice [16] and humans [17]. There are approximately 38×1012 total 

bacterial cells in the human body, which are outnumbered 10-fold by viruses (380×1012 in 

the human body) [18, 19], while there are nearly ~2×108 fungal cells, extrapolated from 

fungal stool estimates [9–11] (Fig. 1A). Further, there are many more bacterial genes in 

the human gut (at over 22 million [20]) than there are host genes in the entire human 

body (an estimated 63,000 genes of which 20,000 are protein coding [21]). The exact total 

number of fungal genes in the gut microbiome is unknown; but we can assume that the 

total number of fungal genes in the human gut equals at least that of host genes, since 

important fungal species, such as Saccharomyces cerevisiae (S. cerevisiae) [22] and Candida 
albicans (C. albicans) [23], have at least 6,000 genes each, with others possessing more than 

20,000 genes each [24]. Although fungi account for a relatively small proportion of the cell 

counts and gene numbers of the microbiome, they play a major role in health and disease. 

The fungal kingdom comprises as many as 6 million species [25], of which approximately 

625 have been reported to infect vertebrates and 200 can be human-associated, either as 

commensals and members of the microbiome or as pathogens that cause infectious diseases 

[26–28]. Some fungi (such as C. albicans, Blastomyces dermatitidis, or Histoplasma 
capsulatum) can be dimorphic, i.e. they can switch from the unicellular non-invasive yeast 

morphotype to the multicellular more pathogenic and invasive hyphal morphotype (known 

as phase transition) [29–32]. Fungi are also able to form biofilms, which might make them 

resistant to antimicrobial agents and difficult to eradicate, e.g. in the setting of indwelling 

medical devices [33]. Fungi are often 100 times larger and 10 times longer than bacteria [9, 

10], typically averaging 2–25 μm in length [34, 35] vs. 2–3 μm for bacteria [36], 20–200 

nm for viruses [36], 1–5 μm for archaea [37, 38], and 10–30 μm for human cells [36] (Fig. 

1B). This size difference indicates the relatively large biomass that fungi contribute to the 

gut microbiome despite being present at lower cell counts than bacteria [28].

Culture-based methods are good at detecting the dominant fungal species but neglect 

fungal communities that are less abundant and cannot be cultured. Culture-independent 

approaches are used to determine fungal diversity including high-throughput sequencing 

methods targeting 18S, internal transcribed spacer (ITS) 1, ITS2, and 26S/28S of fungal 

ribosomal RNA (rRNA), as well as whole-genome shotgun sequencing [39, 40]. It has been 

reported that ITS target regions outperform 18S and 26S rRNA regions, and ITS2-based 

sequencing outperforms ITS1-based sequencing by more accurately identifying key fungal 

taxa [40]. However, all current methods have some bias in their detection, e.g. ITS1 primers 

favour amplification of basidiomycetes and ITS2 primers are biased toward ascomycetes 

[41]. Hence, to reduce this bias, it has been suggested to use combinations of different 
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primer pairs or to analyse different parts of the ITS region in parallel (e.g. with ITS1, ITS2, 

ITS3, ITS4 primers) [41]. The findings could further be confirmed by quantitative PCR 

(qPCR) or culture in the appropriate context. Nevertheless, most studies rely on only one 

methodology at a time.

This review will compare colonisation and infection, describe changes of the mycobiome 

in patients with liver and biliary diseases, and will detail mechanisms by which fungi can 

contribute to hepatobiliary diseases.

The mycobiome in healthy individuals

The Human Microbiome Project demonstrated that fungal diversity is significantly lower 

than bacterial diversity in the human gut and that the human mycobiome exhibits high 

inter- and intraindividual variability [42]. Nevertheless, a core gut mycobiota has been found 

comprising Candida (especially C. albicans), Saccharomyces (in particular S. cerevisiae), 

Penicillium, Aspergillus, Cryptococcus, Malassezia (particularly Malassezia restricta), 

Cladosporium, Galactomyces, Debaryomyces and Trichosporon [9, 43]. Of note, only a 

small number of fungi are able to colonise the gut (including Candida and Galactomyces); 

however, other fungi derived from dietary (such as S. cerevisiae) or environmental 

(Aspergillus species) sources are detectable and are likely to impact gut ecology [44]. Gut 

mycobiota are established via mother-to-offspring transfer in early life [45]; transfer can 

also occur via vaginal delivery (e.g. C. albicans) [46] or via saliva or skin contact (e.g. 

Malassezia) [47]. There is strong evidence that the gut mycobiome is dynamically shaped 

by nutrition. A vegetarian diet is associated with a significantly increased relative faecal 

abundance of Candida spp. in humans, whereas an animal-based diet is associated with 

significantly increased Penicillium and decreased Debaryomyces and Candida spp. [48]. 

The gut mycobiome is also affected by drug therapy, geographical location, oral hygiene 

[49], ethnicity, urbanisation, and lifestyles [50]. Short-chain fatty acids have been found to 

inhibit the growth of C. albicans through the stimulation of intestinal mucosal immunity 

[50]; Aspergillus also correlates negatively with short-chain fatty acid content in the diet 

[51]. Notably, fungi are able to synthesise B vitamins and vitamin D and can thereby impact 

and shape the host’s immune system [49].

Colonisation vs. infection

Colonisation occurs when the presence and multiplication of a microbial agent on a body 

surface does not cause a specific immune response or infection in the host [52, 53]. 

That said, healthy humans are known to produce antibodies against various colonising 

microbes including C. albicans [54–56], so the aforementioned definition might have to 

be adapted to include the term ‘clinically apparent immune response’. However, when the 

relationship between the agent and the host changes, e.g. when the normal microbiota of 

the gastrointestinal tract enters the bloodstream in the setting of microbial translocation, 

infection can result [52]. Infection refers hereby to invasion of the body tissue by harmful/

pathogenic microorganisms resulting in disease [57]. Clinically, an infection is often 

associated with fever, tachycardia, leucocytosis, increased inflammatory markers (e.g. C-

reactive protein or procalcitonin) and/or a positive blood culture [58], which can further help 
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to delineate it from colonisation. A fungal infection can also be asymptomatic, particularly 

when it is superficial.

Fungal infections are common with around 1 billion people estimated to have skin, 

nail, and hair fungal infections worldwide (primarily Trichophyton rubrum [T. rubrum], 

T. interdigitale [mentagrophytes var. interdigitale], Microsporum canis [M. canis], M. 
audouinii, T. tonsurans and T. verrucosum [59]), while around 134 million females have 

recurrent vulvovaginal candidiasis globally [60], although these infections are usually 

not associated with mortality. Mortality due to fungal infections occurs mostly in 

immunocompromised patients and roughly 90% of deaths related to fungal infections 

are due to species of Aspergillus, Cryptococcus, Candida, or Pneumocystis, as well 

as Coccidioides and Histoplasma, which can infect even immunocompetent hosts in 

endemic regions [26]. The World Health Organization recently published a list of 19 

fungal pathogens, its first fungal priority pathogens list, for which major treatment and 

management challenges exist, such as drug resistance [61]. The critical priority group of the 

fungal priority pathogens list includes Cryptococcus neoformans, Candida auris, Aspergillus 
fumigatus, and C. albicans [61].

Some fungal populations (including C. albicans) can be commensals during health but 

can invade and infect the host when gut barrier function is disrupted and/or the host 

becomes immunocompromised [43]. Fungal virulence factors promoting an infection vs. 

sole colonisation can include a yeast-to-hypha dimorphic transition with a hyphae-associated 

genetic programme, which enables adhesion, active invasion, micronutrient acquisition 

(including thiamine, pyridoxine, and nicotinic acid), direct host cell damage, biofilm 

formation, and various types of immune evasion [62]. Secretion of certain molecules (such 

as proteases, phospholipases, and lipases) advances fungal adhesion and invasion [62, 63]. 

Further, a capsule can decrease host immune responses by downregulating inflammatory 

cytokines, depleting complement components, and inhibiting the antigen-presenting capacity 

of monocytes, preventing phagocytosis and facilitating infection [64]. Another virulence 

factor is production of pigments, e.g. melanin, to protect the fungus against oxidative stress 

[65]. Moreover, fungal high-frequency antigenic variation provides a way for a number of 

fungi, including Pneumocystis, to survive an attack by the adaptive immune system [66]. 

Interestingly, some fungi (e.g. Rhizopus oryzae, the most common cause of mucormycosis) 

can invade blood vessels and use haemoglobin as an iron source [67].

Inter-kingdom relationship between fungi and bacteria

Antibiotics can alter the gut mycobiome [68, 69] and conversely, antifungals can alter the 

bacterial microbiome [70, 71]. Fungi and bacteria interact with each other. The persistent 

biological interactions, or symbiosis, between fungi and bacteria encompass mutualism, 

neutralism, competition, commensalism, and parasitism [72]. Mutualism refers to a state 

where both microorganisms derive a benefit from their relationship, neutralism where there 

is no effect on both microorganisms, competition where both derive a harm, commensalism 

where one microorganism derives a benefit with no effect on the other, and parasitism where 

one derives a benefit at the cost of another microorganism [9]. An apparent mutualism 

is present between Candida tropicalis and the bacterial species Serratia marcescens and 
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Escherichia coli in Crohn’s disease, where the three species appear to interact in a biofilm, 

which is thicker than the ones produced by the species separately [73]. Competition has 

been shown in a study in which the nematode Caenorhabditis elegans was co-infected with 

C. albicans and Acinetobacter baumanii (A. baumannii), where A. baumannii inhibited 

filamentation and attenuated the virulence of C. albicans. However, C. albicans itself 

also inhibited growth of A. baumannii via the quorum-sensing molecule farnesol [74]. 

Commensalism is exemplified by Helicobacter pylori that can enter and survive in C. 
albicans vacuoles in the stomach without an apparent benefit for C. albicans [75]. Parasitism 

can be observed between C. albicans and Clostridium difficile (C. difficile), where the 

presence of C. albicans allows C. difficile to grow under (normally toxic) aerobic conditions, 

whereas C. difficile via its fermentation product p-cresol inhibits hypha and biofilm 

formation and virulence of C. albicans [76]. This multitude of interactions underlines the 

complex interactions between fungi and bacteria.

Faecal mycobiome in liver and biliary diseases

Changes in the mycobiome have been observed in essentially all hepatobiliary diseases, 

often associated with an increased abundance of the genus Candida and the species C. 
albicans.

Primary sclerosing cholangitis

The mycobiome in primary sclerosing cholangitis (PSC) is characterised by altered 

composition and increased alpha diversity [77], with a decrease in S. cerevisiae and an 

increase in the genera Exophiala [77], Candida, Humicola, and the species Humicola 
griseum [78] (Table 1, Fig. 2). S. cerevisiae has anti-inflammatory properties and was shown 

to be reduced in patients with inflammatory bowel disease flares [79]. Patients with PSC 

and biliary Candida infection (most commonly C. albicans) have more severe cholangitis 

with higher C-reactive protein and serum bilirubin levels compared to those without Candida 
infection [80]. Further, biliary Candida infection (detectable in five out of 55 patients) was 

associated with reduced survival in patients with PSC, whereas bacterial infections of the 

biliary system (present in 41 out of 55 patients) did not affect survival [81]. This indicates 

that biliary Candida infection is associated with poor prognosis and that these patients might 

be considered for liver transplantation [81]. In particular, patients with PSC and persistent 

biliary candidiasis show significantly reduced transplantation-free survival and elevated 

cholangiocarcinoma incidence, whereas survival of patients with transient biliary candidiasis 

is comparable to that of candidiasis-free patients [82].

Primary biliary cholangitis

Although various studies demonstrate bacterial microbiome changes in primary biliary 

cholangitis (PBC), including increased relative abundance of Streptococcus [83–85], 

Veillonella [83, 84, 86], and decreased Faecalibacterium [84, 85], no faecal mycobiome 

studies have been carried out in patients with PBC to date. There are case series in which 

patients with PBC succumbed to fungal infections (Pneumocystis spp., mucormycosis [87], 

or urosepsis related to Candida spp. [88]). However, there is no evidence yet that the fungal 

microbiome is involved in the pathogenesis of PBC.
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Gallbladder disease

Several reports have shown that Candida spp. (especially C. albicans) could be cultured 

from bile or from gallbladder tissue from patients with cholecystitis or common bile duct 

obstruction [89]. This likely reflects a fungal infection, as there is no evidence in the 

literature to show fungal colonisation of biliary tissue in healthy individuals. Candida spp. 

and C. albicans-positive bile cultures have a negative prognostic value in multiple diseases 

affecting the biliary system; in particular, a Candida-positive acute acalculous cholecystitis 

(five out of five infected patients in intensive care died) and malignant biliary obstruction 

(five out of 12 patients died) are associated with high mortality [90]. In another study, the 

bile of 36 patients with moderate and severe acute cholecystitis was analysed and the bile 

from 31 of these patients contained bacteria and/or fungi, as determined by ITS2 sequencing 

(six samples contained fungi, including three cases of C. albicans, one of C. humilis, and 

two of S. cerevisiae, of which only one case of C. albicans was detected by culture) [91]. 

Culture identified only 40 (38%) of the 106 microbes identified by sequencing [91]. It is 

known that patients are at increased risk of postoperative gastrointestinal comorbidities, 

such as colorectal cancer, following cholecystectomy [92, 93]. It was speculated that 

cholecystectomy may have an impact on intestinal microbial homeostasis, which may 

facilitate colorectal carcinogenesis and progression [94]. And, indeed, increased relative 

faecal abundance of C. glabrata and unassigned Aspergillus, and decreased C. albicans have 

been observed in patients following cholecystectomy (compared to controls) [92]. Of note, 

patients who underwent cholecystectomy and had pre-cancerous colonic lesions (low- and 

high-grade intraepithelial neoplasia) or colorectal cancer had higher levels of C. glabrata 
than patients who underwent cholecystectomy but had no (pre-)cancerous lesions [92]. 

Interestingly, when gallstones were analysed after cholecystectomy, no fungal DNA was 

detected in pigmented and cholesterol gallstones [95].

Alcohol-associated liver disease

Candida spp. and C. albicans are increased in all mycobiome studies investigating patients 

with alcohol-associated liver disease (ALD) [55, 96–98]. Two studies in ALD used ITS1-

sequencing: one found that patients with alcohol-associated hepatitis (AH) and alcohol 

use disorder (AUD) had increased faecal proportions of the genus Candida and decreased 

Penicillium, Saccharomyces, and Debaryomyces in relation to controls [96], whereas the 

other study demonstrated that a group of patients with AUD, AH, and alcohol-associated 

cirrhosis had high faecal proportions of Candida and low concentrations of Epicoccum and 

Debaryomyces compared with controls [97]. Another study employed qPCR and culture 

methods and demonstrated that patients with AH had a significantly higher faecal fungal 

load and C. albicans abundance than controls and patients with AUD [98]. Patients with 

AUD have increased faecal proportions of the genera Candida, Debaryomyces, Pichia, 

Kluyveromyces, Issatchenkia, Scopulariopsis and species C. albicans, C. zeylanoides, 

Issatchenkia orientalis, Scopulariopsis cordiae, and a decrease in the relative abundance 

of Aspergillus spp. and Kazachstania humilis per ITS2-sequencing [55]. Interestingly, 

the presence [99] and higher relative faecal abundance of Malassezia restricta [55] was 

associated with more severe liver disease in patients with AUD. Only two weeks of 

abstinence was sufficient for the improvement of liver cell necrosis and apoptosis marker 

caspase-cleaved and intact cytokeratin 18 (CK18-M65) levels and controlled attenuation 
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parameter (CAP) per fibroscan [55]. This was associated with significantly reduced 

proportions of the genera Candida, Malassezia, Pichia, Kluyveromyces, Issatchenkia, 

Claviceps, Cyberlindnera, and Hanseniaspora and lower proportions of the species C. 
albicans, C. zeylanoides, Malassezia restricta, Issatchenkia orientalis, and Cyberlindnera 
jadinii compared with the period prior to abstinence [55]. These findings indicate that fungal 

dysbiosis is at least partially reversible after abstinence. Patients with AUD had significantly 

increased serum anti-C. albicans IgG and IgM titres compared to controls, and anti-C. 
albicans IgG titres decreased after abstinence [55].

Non-alcoholic fatty liver disease

ITS2-sequencing showed that the more severe forms of non-alcoholic fatty liver disease 

(NAFLD), namely non-alcoholic steatohepatitis (NASH) and NAFLD with more advanced 

fibrosis stages (F2-F4), are associated with high faecal amounts of C. albicans, Pichia 
barkeri, Mucor spp., and Cyberlindneria jadinii compared with non-alcoholic fatty liver 

(simple steatosis) and NAFLD with no/mild fibrosis (F0-F1) [56]. These advanced 

forms also have higher faecal log ratios of Mucor spp./S. cerevisiae and Babjeviella 
inositovora/S. cerevisiae compared with controls [56]. It is important to note that the 

majority of the differences in the mycobiome between early and advanced NAFLD were 

observed in lean rather than obese individuals, as no significant differences between 

early and advanced NAFLD were noticed when only obese subgroups were compared 

[56]. You et al. found that the relative faecal abundances of the genera Talaromyces, 

Paraphaeosphaeria, Lycoperdon, Curvularia, Phialemoniopsis, Paraboeremia, Sarcinomyces, 

Cladophialophora, and Sordaria were higher, whereas the relative abundances of the genera 

Leptosphaeria, Pseudopithomyces, and Fusicolla were decreased in patients with NAFLD 

relative to controls [100]. The same study found that the genera Paramycosphaerella, 

Fusicolla, Arthrinium, Triparticalcar, Trichoderma, and Cladosporium are increased in 

patients with NASH vs. non-alcoholic fatty liver; and Cladosporium, Staphylotrichum, 

Paecilomyces, and Thermomyces were increased in patients with NAFLD F2-F4 vs. 

NAFLD F0-F1 [100]. When the faecal mycobiome of advanced fibrosis stages between 

NAFLD and ALD are compared, patients with NAFLD F3-F4 have significantly higher 

faecal proportions of Mucor spp. and lower proportions of Candida spp., C. albicans, 

Debaryomyces spp., and Blumeria spp. than patients with ALD F3-F4 [56]. Besides other 

metabolic conditions, type 2 diabetes mellitus (T2DM) is associated with NAFLD [7]. In 

patients with NAFLD and T2DM, the proportion of C. albicans, Pichia barkeri, Malassezia 
spp. was increased while that of Kazachstania spp. and Blumeria spp. was reduced in 

comparison to patients with NAFLD without T2DM [56]. Patients with T2DM were 

found to have higher faecal proportions of the genera Candida [101, 102], Cladosporium, 

Kodamaea, Meyerozyma, Mortierella [102], and Malessezia furfur [103], and depleted 

faecal Issatchenkia, Macrophomina, Marasmius, Gymnopilus, Saccharomyces, Trichoderma, 

Cochliobolus, Psathyrella, and Clavispora compared to controls [102].

Viral hepatitis

HBV- and HCV-infected patients exhibit increased translocation of fungal products into the 

serum, as demonstrated by elevated fungal beta-glucan serum levels compared with controls 

[104, 105]. Patients with chronic HBV-hepatitis or with HBV-cirrhosis are more likely to 
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test positive for C. parapsilosis, C. glabrata, C. krusei, C. tropicalis, and S. cerevisiae in 

their stool, and they also have higher faecal DNA levels of C. albicans, C. parapsilosis, C. 
krusei, and S. cerevisiae compared with controls [106]. Chen et al. found that patients with 

HBV infection and HBV-related liver disease more frequently test positive for Aspergillus 
spp. (including A. versicolor), Candida spp. (including C. albicans and C. tropicalis), 

Saccharomyces spp. (including S. cerevisiae), and Simplicillium spp. in their faeces than 

controls [107]. Using culture methods, more colony-forming units of faecal Saccharomyces 
were detected in stool from patients with chronic hepatitis B, including those with related 

cirrhosis, compared to controls [108]. Patients with chronic HCV infection, including those 

with cirrhosis, have a significantly higher faecal fungal load and test positive for Candida 
spp. more frequently than controls [109].

Cirrhosis

It is well known that patients with cirrhosis have a profoundly dysbiotic bacterial 

microbiome [6, 110]. Patients with cirrhosis secondary to diverse aetiologies have low 

faecal bacterial and fungal Shannon diversity indices compared with controls, and those 

indices correlate indirectly with model for end-stage liver disease (MELD) scores [111]. 

Those patients with cirrhosis requiring hospital admission also have higher relative faecal 

abundance of Candida than outpatients with cirrhosis or controls [111]. Another study used 

qPCR and culturing techniques and showed higher detection of Candida in duodenal fluid 

samples from patients with cirrhosis compared with controls (qPCR 81.5% vs. 61.5%, 

culture 66.7% vs. 46.2%), although this did not reach statistical significance [112]. Mucosal 

infection with Candida occurs in cirrhosis and correlates with disease severity: oesophageal 

candidiasis was diagnosed in 100 of 2,762 patients with cirrhosis, and patients with 

oesophageal candidiasis had higher MELD scores (12.4 vs. 11.2, p = 0.007) and were more 

likely to develop acute-on-chronic liver failure (26% vs. 10%, p = 0.003) than patients with 

cirrhosis without oesophageal candidiasis [113]. Fungal infections in patients with cirrhosis, 

mainly caused by Candida spp., are often associated with delayed diagnosis, higher rates 

of acute-on-chronic liver failure, inpatient stay, intensive care unit admissions, and worse 

30-day survival than no infection or bacterial infections [114, 115]. The case fatality 

rate was 30% with most fungal infections but >50% for fungemia and fungal peritonitis 

[115]. Similarly, bacterial and fungal infections related to liver transplantation are common, 

occurring in more than half of patients, mainly due to the complex surgical procedures 

[116]; in this context invasive fungal infections are associated with high mortality rates 

ranging from 25% to 67% [117].

Hepatocellular carcinoma

Aflatoxins, food contaminants produced by the Aspergillus spp. including Aspergillus flavus 
and Aspergillus parasiticus, are known human carcinogens that have been shown to be 

causative agents in the pathogenesis of hepatocellular carcinoma (HCC) [118]. Aflatoxin 

B1 (AFB1) is the most potent known hepatocarcinogen [118]. In a case-control study with 

348 Chinese patients with newly diagnosed HCC and 597 controls without liver disease, 

patients with HCC had higher AFB1 exposure than the control group (odds ratios [OR] 

= 6.49 and 6.75 for exposure years and exposure levels, respectively) [119]. AFB1-related 

HCC is primarily found in Southeast Asia and Sub-Saharan Africa [120], although elevated 
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AFB1 DNA adducts were also occasionally detected in patients with HCC in the Southern 

United States [121]. Further, genetic susceptibility may also play a role in AFB1-related 

HCC. Individuals with rs#7003908 G alleles in the X-ray repair cross-complementing group 

7 (XRCC7) gene (XRCC7-TG/-GG) were at significantly higher risk of AFB1-related HCC 

(OR 3.45 and 5.04) than rs#7003908 T homozygotes (XRCC7-TT) [119].

Although patients with cirrhosis already have elevated faecal levels of Candida [111], 

patients with HCC were found to have even higher faecal proportions of Candida and C. 
albicans than patients with cirrhosis, but lower proportions of the genera Kazachstania, 

Debaryomyces, Xeromyces, Amorphotheca, and Blastobotrys [122]. In a mouse model 

of HCC, gavage with C. albicans resulted in exacerbated HCC volume, which was 

dependent on the nucleotide-binding oligomerization domain-like receptor family pyrin 

domain-containing 6 (NLRP6) inflammasome [123]. Moreover, development of HCC in a 

patient with cirrhosis increases their risk of oesophageal candidiasis (OR 10.04) [113].

Immune response to fungal antigens in hepatobiliary diseases

- Antibodies to S. cerevisiae—Antibodies to S. cerevisiae (ASCA) detect S. cerevisiae 
mannan, a cell wall carbohydrate that is common to most fungi [124]. ASCA also 

cross-react with mannan from other fungal species including S. boulardii, S. pastorianus, 

Schizosaccharomyces pombe, Yarrowia lipolytica, and C. albicans [125]. In particular, C. 
albicans is known to be a strong immunogen for ASCA formation [126]. Patients with 

PSC, and those with anti-mitochondrial antibody-negative or -positive PBC show higher 

ASCA prevalence (44%, 53%, and 18%, respectively) than blood donors (5%), although the 

presence of ASCA was not associated with any clinical or biochemical parameters [127]. 

Both ASCA IgA and IgG positivity were higher in these conditions than in controls [127, 

128]. In PBC, ASCA titres correlate with elevated levels of circulating IgA, which may be 

an indirect sign of enhanced mucosal immunity [127]. Serum ASCA-IgG titres are higher 

in patients with alcohol-associated cirrhosis vs. controls and vs. patients with HBV-cirrhosis 

[97]. Higher ASCA-IgG titres are associated with decreased 5-year survival of patients with 

alcohol-associated cirrhosis [97]. Serum ASCA-IgG levels are also higher in patients with 

AH than in those with AUD or controls [96]. Moreover, increased ASCA-IgG titres predict 

worse 90-day and worse 180-day survival in patients with AH [96]. A model consisting of 

the ASCA-IgG titre and MELD score has a significantly better diagnostic performance for 

mortality than the MELD score alone [96].

- Specific anti-C. albicans antibodies—Specific serum anti-C. albicans IgG and IgM 

titres are increased in patients with AUD vs. controls, and interestingly, the anti-C. albicans 
IgG titre (but not the IgM titre) decreases significantly in patients after abstinence [55]. 

These changes parallel elevated faecal proportions of C. albicans in patients with AUD 

(vs. controls), which decrease after abstinence [55]. Similarly, plasma anti-C. albicans IgG 

titres are increased in patients with NAFLD and advanced fibrosis (F3-F4) vs. patients 

with NAFLD and no/early fibrosis (F0-F2) and vs. controls, and anti-C. albicans IgG titres 

correlate with the faecal C. albicans/S. cerevisiae log ratio [56]. Anti-C. albicans IgG 

titres hence correlate with disease activity in ALD [55] and NAFLD [56], indicating more 

systemic exposure to C. albicans in more severe liver disease.
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- Immune response to candidalysin—Candidalysin is a secreted cytolytic peptide 

toxin from C. albicans that directly damages epithelial membranes, triggers a danger 

response signalling pathway and activates epithelial immunity [129]. C. albicans strains 

lacking this toxin do not activate or damage epithelial cells and are avirulent in animal 

models of mucosal infection [129]. The extent of cell elongation 1 (ECE1) gene encoding 

candidalysin was more frequently present in the stool of patients with AH than AUD [98]. 

Further, mice gavaged with wild-type ECE1-positive C. albicans had significantly higher 

serum alanine aminotransferase (ALT) levels, hepatic triglycerides and inflammation than 

mice gavaged with ECE1-negative C. albicans in a 2-week ethanol binge model, supporting 

the notion that ECE1-positive C. albicans exacerbates ethanol-induced steatohepatitis in 

mice [98]. Similarly, ECE1/candidalysin-positive patients with AH have significantly higher 

MELD scores and 90-day mortality rates than ECE1-negative patients [98]. Secretory IgA 

plays an important role in gut barrier protection and C. albicans-induced secretory IgA 

preferentially binds C. albicans hyphae (fungal morphotype associated with virulence) 

over its yeast morphotype [130]. Secretory IgA also binds ECE1-derived candidalysin, 

though this binding is reduced in patients with Crohn’s, indicating fungi-related immune 

dysregulation [130]. It is possible that this aberrant immune response also plays a role in 

ALD.

Mechanisms by which fungi contribute to hepatobiliary disease

Antifungal treatment improves liver disease in various mouse models, including ethanol- 

and western diet-induced steatohepatitis [56, 97, 131]. Further, colonisation with C. albicans 
[98, 123] or Malassezia restricta [99] exacerbates liver disease. Therefore, fungi and their 

products contribute to liver disease. In the following sections, we will discuss possible 

mechanisms by which fungi could contribute to the development and progression of liver 

disease.

Pathways by which the immune system recognises fungi and mounts an immune response

Pattern recognition receptors on immune cells can sense pathogen-associated molecular 

patterns on fungi [132] and initiate an immune response. The receptor groups include 

C-type lectin receptors, including the mannose receptor, CLEC7a (=Dectin-1), CLEC4n 

(=Dectin-2), Mincle, DC-SIGN; Toll-like receptors (TLRs), including TLR2, TLR3, TLR4, 

TLR6, TLR7, TLR9; nucleotide-binding oligomerization domain-like receptors (NLRs), 

including NLRP3, NLRP4, NLRP6, NLRP10, nucleotide-binding oligomerization domain-

containing protein 1 and 2; and galectin 3 [132, 133]. Once these receptors recognise 

a fungus, they trigger signalling cascades (such as the SYK-CARD9, RAF, MYD99, 

TRIF pathways) to produce cytokines, e.g. interleukin 1β (IL-1β), IL-6, IL-12, IL-23, 

transforming growth factor-β and interferon-γ, which induce IL-17A-producing T helper 

(Th)17 and Th1 cells [9]. This inflammatory response can contribute to hepatobiliary 

disease.

Beta-glucans

Chronic alcohol administration increases mycobial populations and the translocation of 

fungal beta-glucan into the systemic circulation in mice [97, 131]. Oral administration of the 
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antifungal amphotericin B reduces faecal fungal overgrowth and beta-glucan translocation 

[97]. Antifungal treatment with oral amphotericin B or caspofungin prevents ethanol-

induced liver disease in mice without changing plasma bacterial lipopolysaccharide levels 

[97, 131]. Similarly, the faecal abundance of bacterial subpopulations does not change 

after treatment with antifungals in mouse models of ethanol-induced [97] and western 

diet-induced steatohepatitis [56]. Beta-glucan induces liver inflammation via CLEC7a on 

Kupffer cells, as shown in experiments employing bone marrow chimeric mice [97]. 

CLEC7a-dependent activation of caspase-1 via NLRP3 [134, 135] leads to increased 

inflammatory IL-1β expression and secretion, which subsequently contributes to hepatocyte 

damage and ethanol-induced liver disease [97]. CLEC7a also plays a role in diet-induced 

steatohepatitis, since its hepatic expression is significantly increased in patients with NASH 

and mice on a high-fat diet, whereas Clec7a-deficient mice and mice treated with a Clec7a-

antagonist are protected from diet-induced steatohepatitis and fibrosis [136].

Candidalysin

Rats infected with C. albicans by intraperitoneal injection develop hepatic steatosis, 

increased serum ALT levels, inflammatory markers, and pronounced lipid peroxidation 

[137]. This raises the question of how C. albicans causes liver disease. One effector could 

be its secreted cytolytic toxin candidalysin. Candidalysin exacerbates ethanol-induced liver 

disease and is associated with increased mortality in mice [98]. Candidalysin does this 

independently of Clec7a on bone marrow-derived cells, since mice that were transplanted 

with bone marrow-derived cells from Clec7a-deficient mice and subsequently gavaged with 

wild-type candidalysin-positive C. albicans had significantly higher serum ALT levels, 

hepatic triglycerides and inflammation than the same chimeric mice that were gavaged with 

candidalysin-negative C. albicans [98]. Candidalysin can damage primary hepatocytes in a 

dose-dependent manner in vitro and is associated with liver disease severity and mortality in 

patients with AH [98]. C. albicans is the major fungal inducer of human Th17 cell antifungal 

responses [138]. Th17 cells appear to play a role in PSC, as stimulation of peripheral 

blood mononuclear cells (PBMCs) with C. albicans results in significantly higher rates of 

Th17 cells in PSC-PBMCs than in PBMCs from healthy controls [139]. C. albicans strains 

with high immune-cell-damaging capacity (HD strains) were discovered in patients with 

ulcerative colitis and these HD strains aggravated intestinal inflammation in vivo through 

IL-1β-dependent mechanisms [140]. Th17 cell antifungal responses by HD strains in the 

gut were dependent on candidalysin [140]. It is possible that a similar mechanism might 

also contribute to liver disease, although candidalysin did not alter gut barrier function in 

the aforementioned murine ethanol-induced liver disease model [98]. Candidalysin activates 

the NLRP3 inflammasome [141]. The NLRP3 inflammasome is known to play a central 

role in the development of NAFLD/NASH [142–144]. It is hence reasonable to hypothesise 

that Candidalysin also contributes to the pathogenesis of NAFLD/NASH. Similarly, the 

C. albicans-induced exacerbation of HCC in a mouse model was shown to be NLRP6 

inflammasome-dependent [123].

Prostaglandins

Prostaglandins are known to play a role in liver disease. In particular, prostaglandin E2 

(PGE2), plays a pivotal role during inflammatory processes [145]. Expression of the key 
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enzymes of PGE2 synthesis, cyclooxygenase 2 and microsomal PGE synthase 1, are 

increased in human NASH livers compared with controls and correlate with the NAFLD 

activity score [145]. PGE2 drives immunosuppression in patients with acute decompensation 

of cirrhosis and end-stage liver disease, partially by suppressing macrophage cytokine 

secretion and bacterial killing, worsening outcomes [146]. Fungi were found to participate 

in that pathogenic process. The PGE2-producing fungus Meyerozyma guilliermondii was 

increased in mice with ethanol-induced steatohepatitis [131]. Further, supplementation 

with Meyerozyma guilliermondii worsens ethanol-induced liver disease in amphotericin-

treated mice, by increasing production of PGE2; liver disease was reduced by concurrent 

administration of the cyclooxygenase 2-inhibitor indomethacin in this mouse model [131]. 

Concurrent administration of an antifungal also abrogates PGE2 formation and ethanol-

induced liver disease [131]. Moreover, C. albicans is a potent inducer of the Th17 response 

via PGE2; PGE2 is induced by the C. albicans components mannan and β-glucan that 

are recognised by the mannose receptor and the Clec7a/Tlr2 pathway, respectively [147, 

148]. Th17 cells are known to worsen liver disease by inducing inflammation and fibrosis 

via Kupffer cells and hepatic stellate cells, respectively, and injure hepatocytes via IL-17 

[149]. Th17 cells also worsen biliary inflammation in PBC [150, 151]. Further, C. albicans 
has evolved the capacity to produce PGE2 from arachidonic acid to promote its own 

colonisation in the host gut [152–154]. C. albicans mutants lacking PGE2 production 

(genetically missing ole2, a fatty acid desaturase) are unable to colonise the murine 

gastrointestinal tract, which is improved by PGE2 supplementation [152]. However, the 

C. albicans mutant did not affect survival in a murine model of systemic candidiasis nor did 

it change infection of the tongue or vaginal tissue in mouse models of oropharyngeal and 

vulvovaginal candidiasis [152].

Aflatoxins

Aflatoxins, produced mainly by Aspergillus spp., give rise to the development of HCC 

by inducing DNA strand breaks, oxidative stress, adduct formation, and gene mutations 

[118]. AFB1 induces persistent single- and double-strand DNA breaks [155, 156]. It 

induces oxidative stress and lipid peroxidation [157–159]. AFB1 interacts with DNA and 

forms DNA adducts, such as 2,3-dihydro-2-(N7-guanyl)-3-hydroxy-aflatoxin B1 [160, 161]. 

AFB1-DNA adducts negatively correlate with expression and polymorphisms of ADAMTS5 

(ADAM metallopeptidase with thrombospondin type 1 motif 5) [162], which is a tumour 

suppressor gene that inhibits tumour angiogenesis and metastasis [163]. Lost expression of 

ADAMTS5 protein is associated with progression of HCC and poor prognosis [164]. The 

metabolically active form of AFB1 can cause gene mutations with a preference for GC 

to TA transversions [165]. Similarly, it is well known that AFB1 induces the transversion 

of G->T in the codon 249 of the p53 tumour suppressor gene, which has been referred 

to as a molecular marker for HCC due to AFB1 [166–170]. AFB1 also contributes to 

HCC formation by activating oncogenes including N-ras, c-Ha-ras, and c-Myc [170–173]. 

There is a synergistic effect of HBV and AFB1 exposure on the development of HCC. The 

relative risk of HCC development for HBV infection alone was 7.3, for AFB1 exposure 

alone 3.4, and for HBV and AFB1 combined 59.4 [174]. There are several explanations for 

this: chronic HBV infection induces cytochrome P450s that metabolise inactive AFB1 to 

the mutagenic AFB1–8,9-epoxide; chronic HBV induces hepatocyte necrosis and increases 
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reactive oxygen and nitrogen species levels, increasing the likelihood of AFB1-induced 

p53 249ser mutations; and nuclear excision repair to remove AFB1-DNA adducts is 

inhibited by HBV X protein [175]. Another naturally occurring mycotoxin is fumonisin 

B1 produced by Fusarium verticillioides, which has been shown to induce hepatocellular 

and cholangiocellular tumours with malignant potential [176].

Therapeutic modulation of the mycobiome in hepatobiliary disease

Manipulation of the gut mycobiome has shown promise in various experimental models 

of hepatobiliary disease. Although antifungal treatment itself can cause significant 

hepatotoxicity and even death [177, 178], various rodent studies have demonstrated that 

oral administration of the antifungals amphotericin and caspofungin can improve ethanol-

induced liver disease [97, 131] or diet-induced steatohepatitis [56]. Whereas gavage with 

C. albicans [98] or Meyerozyma guilliermondii [131] exacerbates experimental ethanol-

induced liver injury, gavage with other fungi improves various experimental liver diseases. 

S. boulardii is the most studied yeast probiotic [179]. Supplementation with S. boulardii 
can ameliorate forms of experimental acute liver injury: it attenuates clarithromycin- and 

methotrexate-induced hepatic lipid peroxidation and depletion of the antioxidant glutathione 

[180]. S. boulardii also improves D-galactosamine-induced liver injury in mice, lowering 

liver transaminase levels and alleviating hepatocyte necrosis, haemorrhage and inflammatory 

infiltration on histology [181]. Supplementation with S. boulardii further ameliorates 

experimental metabolic liver disease: it attenuates hepatic steatosis, inflammation, and 

fat mass in db/db mice [182]; hyperglycaemia, dyslipidaemia, and liver inflammation 

in streptozotocin-diabetic mice [183]; as well as liver injury, inflammation, steatosis, 

and fibrosis in mice with methionine-choline-deficient diet-induced steatohepatitis [184]. 

Moreover, S. boulardii improved liver fibrosis, inflammation, injury (per transaminase 

levels), lipid peroxidation, intestinal permeability and plasma lipopolysaccharide levels in 

an experimental model of carbon tetrachloride-induced liver fibrosis in rats [185]. Even in 

an obstructive jaundice model (bile duct ligation) in rats, S. boulardii was found to decrease 

bacterial translocation into blood, mesenteric lymph nodes, liver and spleen, although it 

did not improve biochemical cholestasis and liver injury markers [186]. However, in a 

small trial involving 18 patients with cirrhosis, oral supplementation with 1×109 cells 

of S. boulardii three times daily over 30 days did not ameliorate intestinal permeability 

[187]. Administration of S. cerevisiae attenuates AFB1 liver toxicity in piglets, leading to 

significantly lower liver transaminases and hepatic AFB1 concentrations, and preventing 

histological features of aflatoxicosis [188]. Nevertheless, one must also consider the risks 

of fungal probiotic administration, since it can be associated with significant mortality and 

morbidity, in particular in immunosuppressed or critically ill patients, as indicated by a case 

series of iatrogenic S. cerevisiae fungemia [189]. Although fungal probiotic administration 

has been shown to be beneficial in multiple clinical trials in intestinal diseases, such as 

irritable bowel syndrome [190] or inflammatory bowel disease [191, 192], clinical evidence 

in hepatobiliary disease is largely lacking despite promising pre-clinical data. More human 

trials are hence warranted to evaluate the value of fungal probiotics in hepatobiliary 

conditions.
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Conclusions

Mycobiome changes have now been established in essentially all hepatobiliary conditions. 

However, they are still a kind of dark matter, as we often do not know their true identity and 

characteristics, since we cannot culture many of them. Moreover, current methods often have 

some bias toward the most prevalent fungal populations or certain subpopulations, which 

might impede direct comparisons of studies that rely on different methodologies. Further, 

they do not colonise mice easily, so we do not have good mouse models. Nevertheless, we 

know that some fungi are hepatotoxic themselves and not just bystanders – for example, 

rodents colonised with C. albicans develop liver disease without additional stimuli. Fungi 

might hence possibly exacerbate liver disease in a two-hit model, one hit being alcohol, 

western diet, or a toxin, and another hit being the presence and deleterious impact of fungi. 

We are learning more and more about the mechanisms by which fungi contribute to liver 

disease, be it via fungal cell wall components or secreted toxins, such as beta-glucans or 

candidalysin, or fungal metabolites including prostaglandins. This knowledge will help us to 

develop innovative and personalised therapies to better treat these diseases in the future.
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Abbreviations

AFB1 aflatoxin B1

AH alcohol-associated hepatitis

ALD alcohol-associated liver disease

ALT alanine aminotransferase

ASCA anti-Saccharomyces cerevisiae antibodies

AUD alcohol use disorder

C. Candida

ECE1 extent of cell elongation 1
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HBV hepatitis B virus

HCC hepatocellular carcinoma

HCV hepatitis C virus

IL- interleukin-

ITS internal transcribed spacer

MELD model for end-stage liver disease

NAFLD non-alcoholic fatty liver disease

NASH non-alcoholic steatohepatitis

NLRP3/6 nucleotide-binding oligomerization domain-like receptor family 

pyrin domain-containing 3/6

OR odds ratio

PBC primary biliary cholangitis

PGE2 prostaglandin E2

PSC primary sclerosing cholangitis

qPCR quantitative PCR

S. Saccharomyces

T2DM type 2 diabetes mellitus

Th T helper

TLRs Toll-like receptors
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Key points:

• Despite a relatively small number of fungal cells in the human body, fungi are 

involved in the development of liver and biliary diseases.

• Various rodent models of fungal microbiome (mycobiome) modulation, 

including increasing the fungal burden (e.g. colonisation with fungi) or 

decreasing the fungal burden (i.e. via antifungals), have demonstrated the 

impact of the mycobiome on hepatobiliary conditions.

• Fungal products including toxins and metabolites can exacerbate liver and 

biliary diseases.

• In particular, the genus Candida and the species Candida albicans play 

a central role in the pathogenesis and progression of essentially all 

hepatobiliary conditions.

• Serum antibodies against fungal populations have predictive value with regard 

to disease severity and survival in hepatobiliary diseases.

• Development of mycobiome-based therapeutics will allow for innovative and 

personalised approaches to better treat these diseases.
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Fig. 1. The fungal microbiome in numbers and how it compares to other microbiome 
populations.
(A) Estimated total microbes in and on the human body. There are 10-fold more viruses 

(380×1012) than bacteria (38×1012), which are themselves likely ~200,000-fold more 

numerous than fungi (~2×108, based on fungal stool estimates [9–11]). Due to this very 

small number compared with viruses (blue) and bacteria (green), the fungal subpopulation 

(black) is hence not visible in this figure. (B) Typical lengths of bacteria, fungi, viruses, 

and archaea. Fungi are typically larger (~10 times longer, 2–25 μm) than bacteria (2–3 μm) 

and archaea (1–5 μm), which are much larger than viruses (20–200 nm). Created with R 

statistical software, R version 2022.02.3 for Mac, 2022, the R Foundation for Statistical 

Computing, and with a license from Biorender.com.
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Fig. 2. Common fungal microbiome changes in hepatobiliary diseases.
Increases in the abundance of the genus Candida and its species Candida albicans have 

been associated essentially with all liver and biliary diseases. HBV, hepatitis B virus; HCV, 

hepatitis C virus. Created with a license from Biorender.com.
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Fig. 3. Mechanisms by which fungi contribute to hepatobiliary diseases.
Fungal PAMPs such as beta-glucans and mannans induce antigen-presenting cells via 

various receptors, including C-type lectin receptors, Toll-like receptors, NLRs, or galectin 3. 

This triggers signalling cascades (such as SYK-CARD9, RAF, MYD99, TRIF pathways) to 

produce cytokines, e.g. IL-1β, IL-6, and IL-23, which activate IL-17A-producing Th17 cells. 

Fungal PAMPs also induce mononuclear cells to produce prostaglandin E2, which various 

fungi including Candida albicans can produce themselves as well. Prostaglandin E2 activates 

Th17 cells, which promote a fibrogenic, inflammatory, and cell death response by hepatic 

stellate cells, Kupffer cells, and hepatocytes, respectively. It also induces cholangiocytes 

to mount an inflammatory response and to produce chemokines and cytokines to maintain 

and mature Th17 cells. The toxin candidalysin, secreted by Candida, activates Th17 cells, 

damages hepatocytes, and amplifies the NLRP3 inflammasome promoting inflammation. 

Beta-glucans also induce inflammation via C-type lectin-like receptor Clec7a (=Dectin-1) on 
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Kupffer cells and macrophages. Candida activates NLRP6, exacerbating the development of 

HCC. Aflatoxins such as aflatoxin B1, secreted by Aspergillus spp., cause HCC by inducing 

DNA strand breaks, oxidative stress, adduct formation, and gene mutations. Created with 

a license from Biorender.com. HCC, hepatocellular carcinoma; NLRs, nucleotide-binding 

oligomerization domain-like receptors; NLRP3/6, NLR family pyrin domain-containing 3/6; 

PAMPs, pathogen-associated molecular patterns; Th, T helper.
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Table 1.

Mycobiome changes in liver and biliary diseases.

References Study participants Biospecimen Method Genus Species

Primary sclerosing cholangitis

Lemoinne et 
al., 2020

Primary sclerosing cholangitis (n = 22) vs. 
controls (n = 30)

Stool ITS2 ↑ Exophiala ↓ Saccharomyces 
cerevisiae

Rühlemann 
et al., 2020

Primary sclerosing cholangitis (n = 33) vs. 
controls (n = 66)

Stool ITS4 ↑ Candida ↑ Humicola griseum

↑ Humicola

Xu et al., 
2022

Post cholecystectomy (n = 52) vs. controls (n 
= 52)

Stool ITS1 ↑ Candida glabrata

↑ Aspergillus 
unassigned

↓ Candida albicans

Alcohol-associated liver disease

Lang et al., 
2020

Alcohol-associated hepatitis (n = 59), alcohol 
use disorder (n = 15) vs. controls (n = 11)

Stool ITS1 ↑ Candida

↓ Penicilllium

↓ Saccharomyces

↓ Debaryomyces

Yang et al., 
2017

Alcohol-associated cirrhosis (n = 4), alcohol-
associated hepatitis (n = 6), alcohol use 
disorder (n = 10) vs. controls (n = 8)

Stool ITS1 ↑ Candida

↓ Epicoccum

↓ Debaryomyces

Chu et al., 
2020

Alcohol-associated hepatitis (n = 91), alcohol 
use disorder (n = 42) vs. controls (n = 11)

Stool qPCR, 
culture

↑ Candida albicans

Hartmann et 
al., 2021

Alcohol use disorder (n = 66) vs. controls (n = 
18)

Stool ITS2 ↑ Candida ↑ Candida albicans

↑ Debaryomyces ↑ Candida 
zeylanoides

↑ Pichia ↑ Issatchenkia 
orientalis

↑ Kluyveromyces ↑ Scopulariopsis 
cordiae

↑ Issatchenkia ↓ Kazachstania 
humilis

↑ Scopulariopsis

↓ Aspergillus

Active alcohol use disorder vs. abstinent 
alcohol use disorder (n = 56, paired)

↑ Candida ↑ Candida albicans

↑ Malassezia ↑ Candida 
zeylanoides
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References Study participants Biospecimen Method Genus Species

↑ Hanseniaspora ↑ Malassezia 
restricta

↑ Kluyveromyces ↑ Cyberlindneria 
jadinii

↑ Cyberlindneria ↑ Issatchenkia 
orientalis

↑ Pichia

↑ Issatchenkia

↑ Claviceps

↓ Trichosporon

Non-alcoholic fatty liver disease

Demir et al., 
2022

Non-alcoholic steatohepatitis (n = 54) vs. non-
alcoholic fatty liver (n = 24)

Stool ITS2 ↑ Candida albicans

↑ Pichia barkeri

↑ Mucor species

↑ Cyberlindneria 
jadinii

↓ Malassezia species

Non-alcoholic steatohepatitis (n = 54) vs. 
control (n = 16)

↑ log 
ratio Babjeviella 
inositovora/ 
Saccharomyces 
cerevisiae

↑ log ratio 
Mucor species/
Saccharomyces 
cerevisiae

Fibrosis stages F2-F4 (n = 38) vs. F0-F1 (n = 
40)

↑ Candida albicans

↑ Pichia barkeri

↑ Mucor species

↑ Cyberlindneria 
jadinii

↓ Penicillium species

↓ Blumeria species

Fibrosis stages F2-F4 (n = 38) vs. control (n = 
16)

↑ log 
ratio Babjeviella 
inositovora/ 
Saccharomyces 
cerevisiae

↑ log ratio 
Mucor species/
Saccharomyces 
cerevisiae

You et al., 2021

Non-alcoholic fatty liver disease (n = 79) vs. 
control (n = 34)

Stool ITS2 ↑ Talaromyces

↑ Paraphaeosphaeria

↑ Lycoperdon

↑ Curvularia

↑ Phialemoniopsis
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References Study participants Biospecimen Method Genus Species

↑ Paraboeremia

↑ Sarcinomyces

↑ Cladophialophora

↑ Sordaria

↓ Leptosphaeria

↓ Pseudopithomyces

↓ Fusicolla

Non-alcoholic steatohepatitis (n = 15) vs. non-
alcoholic fatty liver (n = 17)

↑ Paramycosphaerella

↑ Fusicolla

↑ Arthrinium

↑ Triparticalcar

↑ Trichoderma

↑ Cladosporium

Fibrosis stages F2-F4 (n = 10) vs. F0-F1 (n = 
22)

↑ Cladosporium

↑ Staphylotrichum

↑ Paecilomyces

↑ Thermomyces

↓ Pulvinula

Non-alcoholic fatty liver disease vs. alcohol-associated liver disease

Demir et al., 
2022

Non-alcoholic fatty liver disease with fibrosis 
stages F3-F4 (n = 24) vs. alcohol use disorder 
with F3-F4 (n = 11)

Stool ITS2 ↑ Mucor species

↓ Candida albicans

↓ Candida species

↓ Debaryomyces 
species

↓ Blumeria species

Hepatitis B virus

Guo et al., 
2010

Hepatitis B virus-cirrhosis (n = 80), chronic 
hepatitis B (n = 68), hepatitis B virus carriers 
(n = 66) vs. controls (n = 84)

Stool qPCR ↑ Candida albicans

↑ Candida 
parapsilosis

↑ Candida glabrata

↑ Candida krusei

↑ Candida tropicalis

↑ Saccharomyces 
cerevisiae

Chen et al., 
2011

Hepatitis B virus-cirrhosis (n = 38), chronic 
hepatitis B (n = 35), hepatitis B virus carriers 
(n = 33) vs. controls (n = 55)

Stool qPCR, 
culture

↑ Aspergillus 
versicolor

↑ Aspergillus 
penicillioides

↑ Candida solani

↑ Candida albicans
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References Study participants Biospecimen Method Genus Species

↑ Candida 
austromarina

↑ Candida 
intermedia

↑ Candida milleri

↑ Candida tropicalis

↑ Saccharomyces 
species

↑ Saccharomyces 
cerevisiae

↑ Galactomyces 
geotrichum

↑ Simplicillium 
obclavatum

↑ Simplicillium 
lanosoniveum

↑ Chaetomium 
species

↑ Rhizopus 
microsporus var.

↑ Wallemia muriae

↓ Penicillum freii

↓ Malassezia 
pachydermatis

Mou et al., 
2018

Hepatitis B virus-cirrhosis (n = 52), chronic 
hepatitis B (n = 52) vs. controls (n = 40)

Stool Culture ↑ Saccharomyces

Hepatitis C virus

Mashaly et 
al., 2017

Hepatitis C virus-cirrhosis (n = 26), chronic 
hepatitis C (n = 27) vs. controls (n = 55)

Stool qPCR, 
culture

↑ Candida

Cirrhosis

Bajaj et al., 
2018

Cirrhosis inpatient (n = 66; 16 hepatitis 
C virus, 17 alcohol, 15 hepatitis C 
virus+alcohol, 11 non-alcoholic fatty liver 
disease, 7 others) vs. cirrhosis outpatient (n = 
77; 33 hepatitis C virus, 9 alcohol, 8 hepatitis 
C virus+alcohol, 18 non-alcoholic fatty liver 
disease, 9 others) vs. controls (n = 26)

Stool ITS1 ↑ Candida

Hepatocellular carcinoma

Liu et al., 
2022

Hepatocellular carcinoma (n = 17) vs. 
cirrhosis (n = 11)

Stool ITS1 ↑ Candida ↑ Candida albicans

↓ Kazachstania

↓ Debaryomyces

↓ Xeromyces

↓ Amorphotheca

↓ Blastobotrys

ITS, internal transcribed spacer; qPCR, quantitative PCR.
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