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Abstract

Purpose: Both monogenic pathogenic variant cataloging, and clinical patient diagnosis start with 

variant-level evidence retrieval followed by expert evidence integration in search of diagnostic 

variants and genes. Here, we try to accelerate pathogenic variant evidence retrieval by an 

automatic approach.

Methods: AVADA (Automatic Variant evidence DAtabase) is a novel machine learning tool that 

uses natural language processing to automatically identify pathogenic genetic variant evidence in 

full text primary literature about monogenic disease and convert them to genomic coordinates.

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
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Results: AVADA automatically retrieved almost 60% of likely disease-causing variants deposited 

in HGMD, a 4.4x-fold improvement over the current best open source automated variant extractor. 

AVADA contains over 60,000 likely disease-causing variants that are in HGMD, but not in 

ClinVar. AVADA also highlights the challenges of automated variant mapping and pathogenicity 

curation. However, when combined with manual validation, on 245 diagnosed patients, AVADA 

provides valuable evidence for an additional 18 diagnostic variants, on top of ClinVar’s 21, vs. 

only 2 using the best current automated approach.

Conclusion: AVADA advances automated retrieval of pathogenic monogenic variant evidence 

from full-text literature. Far from perfect, but much faster than PubMed/Google Scholar search, 

careful curation of AVADA-retrieved evidence can aid both database curation and patient 

diagnosis.

Keywords

automatic variant retrieval; machine learning; natural language processing; full-text extraction; 
variants database

Introduction

Exome or genome sequencing is entering clinical practice in aid of the identification of 

molecular causes of highly penetrant genetic diseases, particularly Mendelian disorders, 

where typically one or two of the patient’s genetic variants in a single gene are causative 

(diagnostic) of the patient’s disease. After variant filtering, a typical singleton patient exome 

contains 200–500 rare variants1,2. Identifying causative variants is therefore time-

consuming, as investigating each variant can take up to an hour3. Various approaches strive 

to accelerate this process4–6. Identifying diagnostic variants can be greatly accelerated if the 

patient’s genome contains a previously reported disease-causing variant that partly or fully 

explains their phenotype. The American College of Medical Genetics (ACMG) guidelines 

for the interpretation of sequence variants recommend variant annotation using databases of 

reported pathogenic variants7.

Variant curation from the literature includes (a) retrieval of variant evidence from the 

literature and (b) variant evaluation, which assesses the validity and power of every piece of 

evidence, and combines all (possibly conflicting) evidence together to make variant- and 

gene-level diagnostic assertions. The rapidly growing literature on human genetic diseases8, 

the costly process of manual variant curation9, and improved computational access to the 

full text of primary literature10 serve to incentivize automating parts of the variant curation 

pipeline. Here, we focus on automating the process of variant evidence retrieval from the 

primary literature about Mendelian diseases without attempting to automate variant 

evaluation. Automatic pathogenic variant evidence retrieval from the primary literature 

involves finding papers about Mendelian diseases that include variant descriptions (such as 

“c.123A>G”), linking them to a transcript of the correct gene, and converting these to 

genomic coordinates for ease of downstream use. Previous work on automatic variant 

evidence retrieval from the literature has largely focused on finding variant descriptions in 

article titles and abstracts without converting the discovered variants to genomic 

coordinates11–14 or only to dbSNP15 variant identifiers (rsIDs). Mapping textual variant 
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descriptions directly to reference genome coordinates requires significant effort, and has 

thus far largely been left to manually curated databases such as HGMD16 and ClinVar17, 

which devote many worker-hours to the task.

The ClinGen9 project has proposed to “develop machine-learning algorithms to improve the 

throughput of variant interpretation” and notes that a rate-limiting factor for clinical use of 

variant information is the lack of openly accessible knowledgebases capturing known 

genetic variants. AVADA (Automatic VAriant evidence DAtabase) is trained on a sample of 

manually curated variants (from ClinVar and HGMD), and then applied to the entire body of 

PubMed indexed literature for automatic retrieval of published variants in papers about 

Mendelian disease. We show that AVADA improves on the state of the art in automated 

variant retrieval by comparing it to tmVar 2.0, a best-in-class tool18 used to harvest variants 

from PubMed abstracts.

To show the amount of valuable evidence retrieved by AVADA, we also compare variants 

collected by our approach to the fully curated HGMD and ClinVar databases. We also show, 

on 245 real patients, that when AVADA is coupled with manual curation, it can aid 

diagnosis.

We note that the creators of HGMD, Drs. Stenson and Cooper, are co-authors of this study. 

They provided HGMD data and advised on validating and curating AVADA literature-

extracted variant evidence and the comparison of AVADA to HGMD.

Materials and Methods

Identification of relevant literature

PubMed is a database containing titles and abstracts of biomedical articles, only a subset of 

which contain descriptions of variants that cause human genetic disease. A document 

classifier is a machine learning classifier that takes as input arbitrary text and classifies it as 

“positive” (here, an article about genetic disease) or “negative” (otherwise). We trained a 

scikit-learn19 LogisticRegression20 classifier to identify relevant documents using positive 

input texts (titles and abstracts of articles cited in “Allelic Variants” sections of OMIM21, 

and all of HGMD16 which curates germline disease-causing and disease-associated variants) 

and negative input texts (random PubMed titles and abstracts). Input texts were converted 

into a feature vector based on the frequency of words in input documents by means of a 

scikit-learn CountVectorizer followed by a Term Frequency-Inverse Document Frequency20 

(TF-IDF) transformer. After training the title/abstract document classifier, we applied it to 

all 25,793,020 titles and abstracts in PubMed to identify articles that might be relevant to the 

diagnosis of genetic diseases (if the title/abstract classifier returned a score of at least 0.5). 

Full text PDFs of potentially relevant articles were downloaded, converted to text using 

pdftotext22 version 0.26.5, and evaluated for full-text relevance using a TF-IDF transformer, 

a full-text scikit-learn LogisticRegression classifier, and a threshold of 0.5 on the full text 

relevance scores.
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A total of 133,410 articles were downloaded and subsequently classified as relevant to the 

diagnosis of human genetic diseases based on the articles’ full text (Supplementary 

Methods). We refer to this set of articles as the “AVADA full-text articles” (Figure 1).

To estimate recall (the fraction of relevant articles that are contained in the AVADA full-text 

article set) of our pipeline, we took the set of 27,361 articles associated with “likely/

pathogenic” variants in ClinVar. Of these, 24,724 (90%) were classified relevant by the title/

abstract classifier, 23,978 (88%) were downloaded in full text, and 20,014 (73%) were 

finally classified relevant by the full-text classifier. To determine the precision (fraction of 

relevant articles among all AVADA full-text articles) of our pipeline, we randomly selected 

200 articles from the set of AVADA full-text articles and manually assessed their relevance. 

An article was considered relevant if it discussed a Mendelian disease and its causative gene. 

99 (49.5%) articles were determined to be relevant (Supplementary Table S1).

Variant and gene mention detection

In order to retrieve genetic variants from full-text articles about human genetic disease and 

convert them to genomic coordinates, it is necessary to detect both mentions of genes and 

variant descriptions in articles about genetic disease. This is because variant descriptions in 

HGVS-like notation, such as “c.123A>G”, often do not contain the identity of the specific 

transcript or gene they reside in (Table 1).

AVADA extracts gene mentions from articles’ full text using a custom-built database of gene 

and protein name entries from the HUGO Gene Nomenclature Committee (HGNC) and 

UniProt databases. These were matched case-insensitive to word groups of length 1–8 in the 

document. To identify variant mentions, we manually developed 47 regular expressions 

based on commonly observed HGVS-like variant notations in articles about human genetic 

disease (Supplementary Methods, Supplementary Table S2 and Figure 2A). At this step, we 

refer to every string that matches one of the 47 regular expressions as a “variant 

description”. In the AVADA full-text articles, variant descriptions were identified in 92,436 

articles, with a mean of 11.1 variant descriptions per article (Figure 1).

Mentioned genes form gene-variant candidate mappings with all plausible mentioned 
variant descriptions

Variant descriptions and their host gene mentions do not necessarily occur in the same 

sentence or even the same paragraph or page. To identify which variant description maps to 

which mentioned gene in the article, AVADA first forms so-called gene-variant candidate 
mappings between each variant description and each mentioned gene if the variant matches 

at least one RefSeq23 transcript of the gene. For example, the variant description 

“c.123A>G” forms gene-variant candidate mappings with all mentioned genes that have an 

“A” at coding position 123 in at least one transcript (Supplementary Methods and Figure 

2B). A variant description can form gene-variant candidate mappings with multiple genes, 

which are filtered in the next step. Gene-variant candidate mappings are converted to 

genomic coordinates in the GRCh37/hg19 reference assembly and initially result in a mean 

of 4.6 different genomic coordinates per extracted variant description (Figure 1).
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Machine learning classifier selects the correct gene-variant mapping candidate

AVADA uses a scikit-learn GradientBoostingClassifier24 to decide which gene-variant 

candidate mappings are likely to be correct. The training set comprised positive gene-variant 

mappings extracted from the literature that were referenced in all ClinVar entries, and a set 

of negative gene-variant mappings created by assigning variants from the positive training 

set to other genes mentioned in the article. For classification, each gene-variant mapping was 

converted to a feature vector, including the Euclidean distance between the 2D coordinates 

(consisting of page number, x and y coordinates of a mention) of the closest mentions of the 

variant and the gene in the PDF, the number of words between variant and gene mentions, 

and a number of other textual features containing information about the relationship between 

gene and variant mentions (Supplementary Methods and Figure 2C). Using a threshold of 

0.9 (justified below), the gene-variant candidate classifier successfully reduced 4.6 candidate 

gene-variant mappings per variant description to a mean of 1.2 genomic coordinates 

(chromosome, position, reference, and alternative allele) in the final set of AVADA full-text 

articles (Supplementary Methods and Figures 1, 2D).

Results

AVADA retrieved 203,536 variants in 5,827 genes from 61,116 articles

A total of 61,116 articles made it into the final AVADA database, with a mean of 8.8 

identified variant descriptions per article. From these articles, 203,536 distinct variants 

(GRCh37/hg19 chromosome, position, reference allele, and alternative allele) in 5,827 genes 

were automatically retrieved (Figure 1). The distribution of types of rare variants (<= 3% 

variant frequency in the healthy population2) in AVADA is strikingly similar to that of 

manually curated HGMD and ClinVar: for each of 6 variant categories (stoploss, 

nonframeshift indel, splicing, stopgain, frameshift, missense), the fraction of rare variants in 

AVADA are between the fraction of the respective category of rare variants in all of HGMD 

and ClinVar ±1% (Table 2). The articles used to construct AVADA are from a variety of 

journals, which are similar to the journals targeted by all of HGMD to curate its variants (9 

out of the top 10 journals being the same between AVADA and all of HGMD; Figure 3A,B).

Each variant in AVADA is annotated with the PubMed ID(s) of publications where this 

variant was retrieved from, a HGNC25 gene symbol, an Ensembl ID26 and Entrez ID27, the 

transcript RefSeq ID (e.g., NM_005101.3), and the exact variant description from the 

original article (e.g., “c.163C.T”). The latter allows AVADA users to later rapidly locate 

mentions of the variant within the body of the article.

AVADA is 61% precise at mapping gene-variant pairs to genomic coordinates
—To estimate the precision of AVADA at extracting gene-variant candidate mappings in 

articles into genomic coordinates, 200 distinct random variants in AVADA were manually 

examined. For each of these variants, we selected the article associated with the 

(alphanumerically sorted) first PubMed ID in AVADA, and let 2 reviewers determine if the 

gene-variant candidate mapping from the article was correctly extracted to genomic 

coordinates using all lines of evidence in the article such as Sanger sequencing reads, UCSC 
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genome browser shots etc. 122 (61%) random variants were correctly extracted by AVADA 

(Supplementary Table S3).

AVADA recovers nearly 60% of disease-causing HGMD variants directly from 
the primary literature—We compared AVADA to HGMD and ClinVar versions with 

synchronized time stamps (Supplementary Methods). In this section, we subset HGMD to 

“DM” (disease-causing) variants and ClinVar to variants marked as “likely/pathogenic”. 

85,888 variants in AVADA coincided with variants marked as disease-causing (“DM”) in 

HGMD, corresponding to 61% of all disease-causing variants in HGMD. We selected 200 

distinct random variants from this set for verification by 2 reviewers. A variant was counted 

as correct and likely disease-causing if the reviewers came to a consensus that the original 

gene-variant candidate mapping was converted to the variant’s genomic coordinates 

correctly in at least one of its associated articles, and the variant was described as likely 

disease-causing in the article. This was the case in 96.5% of the 200 variants 

(Supplementary Table S4). Thus, we infer that AVADA contains 58% of all disease-causing 

variants identified by HGMD.

We compared AVADA’s performance to the best previously published automatic variant 

retrieval tool, tmVar 2.018, which attempts to map variant mentions in all PubMed abstracts 

to dbSNP identifiers (rsIDs). We converted rsIDs in tmVar 2.0 to genomic coordinates using 

mappings provided by dbSNP. tmVar retrieved only 19,481 (14%) disease-causing (“DM”) 

HGMD variants (Supplementary Figure 1 and Figure 3C).

Considering only single nucleotide variants (SNVs), the largest class of known disease-

causing variants, AVADA contains 70% of all “DM” SNVs in HGMD. Similarly, AVADA 

contains 26,033 (55%) of all “likely/pathogenic” variants in ClinVar and 62% of all “likely/

pathogenic” SNVs in ClinVar. tmVar 2.0 retrieved only 14,841, or 31%, of pathogenic or 

likely pathogenic variants in ClinVar. Strikingly, AVADA contains 62,180 variants noted to 

be disease-causing in HGMD (“DM”) but not in ClinVar (“likely/pathogenic”).

2 reviewers evaluated a subset containing 200 distinct random variants of the remaining 

115,323 variants that were retrieved by AVADA, but not reported as disease-causing in either 

HGMD (“DM”) or ClinVar (“likely/pathogenic”). 68 (34%) of the 200 variants were 

correctly converted to genomic coordinates. 8 variants (4%) were further reported to be 

likely disease-causing (Supplementary Table S5). 7 of these 8 are contained in later versions 

of HGMD (“DM”), suggesting AVADA could both help curators accelerate variant retrieval 

as well as unearth a modest amount of undocumented likely disease-causing variants still 

hidden in the literature.

Diagnosis of patients with Mendelian diseases using AVADA

We analyzed the utility of known variant databases using 260 diagnostic (i.e., causative) 

variants from 245 patients with developmental disorders, diagnosed in Supplementary Table 

4 of the Deciphering Developmental Disorders (DDD) study28, obtained from EGA29 study 

number EGAS00001000775 (Supplementary Methods).
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Accuracy of variant annotation using AVADA, tmVar, HGMD and ClinVar—The 

more complete a variant database is, the higher its sensitivity when annotating patient 

genomes and the higher the likelihood of finding a diagnostic variant in the patient’s 

genome. We determined how many of the 260 reported diagnostic DDD variants were found 

in AVADA, tmVar, HGMD (“DM” variants only), and ClinVar (“likely/pathogenic” variants 

only). The more disease-causing variants are contained in a database, the more rapidly some 

patients can be diagnosed. For this comparison, we subset AVADA and tmVar 2.0 to articles 

published until 2014 (before DDD publication), used only disease-causing “DM” variants 

entered until 2014 in HGMD, and used only likely/pathogenic variants from ClinVar version 

20141202.

Of 260 different diagnostic variants reported by the DDD study, a total of 45 had evidence in 

AVADA from the scientific literature. Because AVADA retrieves variant evidence without 

validating it, all AVADA evidence needs to be manually assessed. Each patient variant found 

in AVADA was counted as correct if our 2 reviewers agreed that AVADA cited at least one 

article from which the variant was correctly mapped to genomic coordinates and the variant 

was reported as likely disease-causing in this article. 35 of the 45 variants found by AVADA 

fulfilled these criteria (Supplementary Table S6). Only 21 DDD diagnostic variants were 

listed in ClinVar and ascribed a pathogenicity level of “likely/pathogenic”. Combining the 

free variant databases yielded 39 variants, almost as many as the 43 variants listed in HGMD 

(“DM”). Combining all three databases yielded 48 variants (Figure 3D). tmVar 2.0 contained 

only 13 diagnostic variants (Supplementary Table S7), all of which were in AVADA as well 

(Figure 3D).

We defined patient variants to be “candidate causative variants” if they were non-silent 

exonic or core splice-site mutations and occurred at an allele frequency of at most 0.5% in 

large databases of healthy controls2,30,31 (Supplementary Methods). The 245 patients’ data 

contained a mean of 435 non-diagnostic candidate variants each. To determine the variant 

annotation precision of AVADA, HGMD, ClinVar, and tmVar 2.0, we divided the number of 

distinct annotated diagnostic variants by the number of distinct annotated candidate variants 

across the 245 patients. A mean of 6.7 variants per patient were found in AVADA (2.8% 

precision), 3.5 in HGMD (“DM”) (6.2% precision), 1.6 in ClinVar (clinical significance 4 or 

5) (7.2% precision) in accordance with previous observations2, and 3.4 in tmVar 2.0 (2.2% 

precision). Therefore, AVADA was less precise than the manually curated databases, but 

more precise than the previously best-in-class automatic variant retrieval tool tmVar 2.0.

Gene-variant pairing prediction classifier is robust to changes in training data

To examine how robust the gene-variant candidate pairing prediction classifier is to changes 

in training data, we first trained it on HGMD (“DM”) instead of ClinVar data. The resulting 

variant set is highly similar to the original, having almost (−0.6%) the same size and 97% of 

it identical to the original (Supplementary Figure 2).

Next, we re-trained the gene-variant candidate classifier on 3 different subsets of the original 

ClinVar-based training data, each containing a random half of the articles in the original 

training data (Supplementary Methods). Again, after running variant extraction on the 

original set of AVADA articles, the variants returned from each re-training was highly 
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similar to the original AVADA variants, (+2.7%−0.6% bigger in size and containing 98% of 

the original set; see Supplementary Figure 3).

Picking the gene-variant candidate classifier threshold

To set the gene-variant classifier threshold at 0.9, we evaluated potential thresholds between 

0.5 and 0.99 (Supplementary Figure 4). Including all gene-variant candidate mapping with a 

gene-variant candidate classifier score of at least 0.5 increased the number of distinct genetic 

variants to 291,281 (+43% compared to the original AVADA database). Since we previously 

selected 200 distinct variants to estimate AVADA precision (Supplementary Table S3), we 

now selected a proportional 87 distinct random variants between confidence levels 0.5 and 

0.9 that were not already in the original AVADA variant set to manually determine database 

precision at lower gene-variant candidate classifier score levels. Again, 2 reviewers 

independently evaluated each variant.

Overall, these 87 variants were less than 21% correctly mapped to genomic coordinates 

(Supplementary Table S8), compared to 61% correct mapping in the original set. Inversely, 

if we subset the previously verified 200 AVADA variants (Supplementary Table S3) to 

variants arising from gene-variant mappings scored only above 0.95 and 0.99, respectively, 

variant extraction precision would modestly increase to 63.5%−68.5% (from 61%), but the 

fraction of recovered HGMD variants would decrease by 2.4%−15.1% (Supplementary 

Figure 4). Based on this search, we chose a gene-variant candidate classifier score threshold 

of 0.9 that balances precision and recall (Supplementary Figure 4).

Discussion

We studied the potential and challenges of creating an end-to-end machine learning tool for 

the automatic retrieval of variant evidence directly from full text literature about Mendelian 

disease. AVADA automatically retrieved nearly a hundred thousand disease-causing variants 

from tens of thousands of downloaded and parsed full-text articles. All AVADA variants are 

stored in a Variant Call Format32 (VCF) file that includes the chromosome, position, 

reference and alternative alleles, variant descriptions as reported in the original article, and 

PubMed IDs of the original articles mentioning the variants.

AVADA makes a special effort not to curate just any variant mention, but rather to process 

only abstracts, and later full text papers that appear to our classifiers to describe pathogenic 

variants in the context of Mendelian diseases. While this undoubtedly removes a great 

number of false positive human variant mentions, AVADA’s estimated 73% recall and 

49.5% precision over relevant papers suggests that more can be done to optimize this 

process. AVADA also takes full advantage of recent success in allowing computerized access 

to the scientific literature. Its large gains over abstract-based tmVar 2.0 justify the 

engineering feat. However, the length and complexity of biomedical texts also result in 

AVADA’s 61% precision in mapping mentioned variants to their correct genomic 

coordinates (currently not including mitochondrial variants). Clearly computational effort 

should continue to bring precision up. It is also worthwhile noting that while we wrote 47 

regular expressions to capture most common variant mentions, HGVS formalism does 

request that variant mentions be preceded with an accepted reference sequence (e.g., 
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NP_003995.2 for the GJB2 variant in Figure 2C). The more journals enforce and the more 

papers are written in strict HGVS notation, the easier the computerized coordinate 

conversion task becomes.

AVADA currently only tackles the first step in variant curation, that of evidence collection. 

Assessing the validity and power of individual papers, combining evidence from multiple, 

potentially conflicting papers, to arrive at variant and gene level assertions are even more 

challenging tasks. In this sense, AVADA can be thought of as a much quicker (and more hit-

or-miss) means of evidence hunting than PubMed or Google Scholar. In order to assess the 

validity of AVADA’s evidence we used the HGMD and ClinVar human curated databases of 

pathogenic variants. Neither of these is entirely accurate. For example, the ExAC paper2 

highlights 68 HGMD “DM” variants (55 of which are also in AVADA) that appear in >1% 

of at least one of its populations, requiring re-evaluation of HGMD’s linked-papers based 

conclusions. With these caveats in mind, we estimate roughly 44% of AVADA collected 

variants as pathogenic Mendelian ones.

Despite these limitations, AVADA does recover nearly 60% of all disease-causing (“DM”) 

variants deposited in HGMD at a fraction of the cost of constructing a manually curated 

database9, and over 4 times as many as the abstract - rsID based tmVar 2.0. AVADA offers 

an approximate 64,617 (= 96.5% * 61,180 + 4% * 115,323; Figure 3C) disease-causing 

variants not present in ClinVar (136% increase over ClinVar alone), at the cost of nearly 

twice as many (112,886; complement of the above) additional benign or incorrectly 

extracted variants. In patient context if one is willing to manually validate AVADA evidence 

(as one is obliged to do with any compelling HGMD or ClinVar evidence as well), over the 

DDD example, ClinVar had evidence for 21 pathogenic variants. AVADA offers unvalidated 

evidence for an additional 27 variants, of which 18 were manually validated to be correctly 

mapped to genomic coordinates and correctly reported as disease-causing, essentially 

doubling ClinVar’s reach.

AVADA shows the potential to (a) improve the state of the art in machine learning based 

evidence collection of literature-mentioned pathogenic variants and their mapping to 

reference genome coordinates, (b) enable first attempts to automate aspects of variant 

curation, and (c) motivate curation of benign variants as well as variants in other domains 

(such as cancer, mouse models, and other research fields where manually curated data may 

be scarce33). Combining AVADA-based rapid variant retrieval with validation will enable 

the creation and upkeep of cheaper, better, faster updating variant databases, which will 

ultimately empower both rapid diagnosis9 and reanalysis8.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Construction of the automated variant evidence database AVADA. Identification of 
relevant literature:
AVADA discovers potentially relevant articles (about the genetic causes of Mendelian 

diseases) from PubMed, downloads their full text, and again filters potentially relevant 

articles based on the articles’ full text. Variant mapping: Variant descriptions are detected 

in articles using 47 manually built regular expressions. Variant descriptions are then linked 

to mentioned genes to form gene-variant candidate mappings. Gene-variant candidate 

mappings are filtered using a gene-variant candidate classifier and converted to genomic 

coordinates. AVADA ultimately retrieves (unvalidated) evidence about 203,536 distinct 

genetic variants in 5,827 genes from 61,116 articles.
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Figure 2. Automatic conversion of variant mentions to genomic coordinates from full-text 
literature.
(A) AVADA uses a regular expression to detect a variant mention (e.g., p.M34T) in the full 

text of an article. The position of the variant in the transcript (34), reference (M) and 

alternative alleles (T) are parsed using the regular expression. (B) AVADA detects mentioned 

genes in the article using a list of gene names and synonyms, and the help of a classifier that 

decides if recognized words are indeed a gene mention. The variant description detected in 

step A forms gene-variant candidate mappings with those genes that have the reference “M” 

at amino acid number 34. (C) Gene-variant candidate mappings (variant=p.M34T and 

gene=GJB2 in this example, highlighted in green) are associated with 125 numerical 

features based on the relative positions of the closest mention of the candidate gene to the 

variant mention, information about the candidate gene’s importance in the article, and words 

and characters surrounding the gene and variant mentions and nearby gene mentions (the 
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latter highlighted in red; see Supplementary Methods). (D) A machine learning classifier 

(implemented as a Gradient Boosting classifier) takes these 125 features as input and returns 

a score between 0 and 1 indicating the classifier’s assessment of whether the variant actually 

refers to the given candidate gene. If the classifier returns a score greater than 0.9, the gene-

variant candidate mapping is transformed to Variant Call Format (chromosome, position, 

reference and alternative allele) and entered into the AVADA database. In the present 

example, AVADA correctly decides that p.M34T only maps to GJB2 and not connexin 30 

(encoded by the gene GJB6). Example taken from PubMed ID 23808595.
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Figure 3. Automatic variant retrieval results.
(A) Top ten journals in AVADA. AVADA retrieved variants from 3,159 articles in “Human 

Mutation”, 2,330 articles in “American Journal of Human Genetics”, 2,042 articles in 

“Human Molecular Genetics” etc. (B) Top ten journals in all of HGMD. Similar to AVADA, 

the top three journals are “Human Mutation”, the “American Journal of Human Genetics”, 

and “Human Molecular Genetics”. Reassuringly, the two lists share 9 of the top 10 journals 

even though HGMD is manually curated whereas AVADA automatically retrieves variant 

evidence, but does not validate it. (C) (Unvalidated) AVADA variants intersected with all 

curated disease-causing variants in HGMD (“DM” variants only) and ClinVar (“likely/

pathogenic” variants only). AVADA retrieves 85,888 variants also in the HGMD set (subset 

to disease-causing variants) and 26,033 variants also in the ClinVar set (subset to pathogenic 

and likely pathogenic variants). (D) AVADA’s potential value in patient diagnosis. We 

enumerate the number of patient diagnostic variants found in each of four databases, for 245 
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Deciphering Developmental Disorders (DDD) diagnosed patients. Curated HGMD and 

ClinVar (predating the DDD publication) are subset to disease-causing (“DM”), and “likely/

pathogenic”, respectively. For tmVar and AVADA, we manually validated all diagnostic 

evidence shown. AVADA completely subsumes and almost triples abstract-based tmVar. And 

while ClinVar alone implicates 21 diagnostic variants, AVADA offers unvalidated evidence 

for an additional 27 variants, of which 18 are valid, virtually doubling ClinVar’s reach.
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Table 1.
Examples of HGVS or common HGVS-like variant descriptions.

Each row contains examples of a disease-causing variant description in HGVS or a common HGVS-like 

notation. Each of these variant descriptions describes a single genetic event causing a disease, usually by 

giving at least the position of the change in the gene’s transcript, an optional reference sequence and a novel 

alternative (mutated) sequence. All given variants can be described using multiple commonly used notations. 

Examples of alternatives to the notations are shown in the left-hand column. Transcript identifiers for variant 

descriptions, which greatly ease the mapping of variants to reference genome positions, are often omitted by 

article authors and must therefore be inferred by automated methods like AVADA. The more papers are 

written fully adhering to HGVS guidelines, the easier this task will become.

HGVS(-like) variant 
descriptions
(alternatives describing same 
genetic event)

Explanation of HGVS variant description Disease caused by variant
(cited PMIDs’ full text uses all variant 
notations shown in left column)

NM_175073.2
593C>T
(NP_778243.1
p.A198V)

DNA single nucleotide substitution
reference C replaced by alternative T at position 593 in the 
transcript NM_175073.2

Cerebellar ataxia with oculomotor 
apraxia type 1
(14506070, 16159533)

NM_006005.3
460+1G→A
(NM_006005.3
IVS4+1G>A)

Splicing variant
reference G replaced by alternative A at the genomic position 1 
basepairs downstream of the 3’ end of the exon of transcript 
NM_006005.3 that ends at position 460

Wolfram syndrome
(11317350, 12955714)

NP_000518.1
p.Asp221Thrfs*44
(NM_000527.4
c.660delC;
NP_000518.1
p.Pro220Profsx45)

Protein frameshift variant
reference aspartic acid at residue number 221 in transcript 
NP_000518.1 impacted by an indel resulting in an alternative 
threonine, with the rest of the protein being frameshifted, 
introducing a stop codon 44 amino acid residues downstream of 
residue number 221

Familial hypercholesterolaemia
(17539906, 22883975)

Genet Med. Author manuscript; available in PMC 2020 June 18.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Birgmeier et al. Page 18

Table 2.
Percentage of rare variant types in AVADA, HGMD and ClinVar.

The table shows fractions of variant types in roughly synchronized time-wise AVADA, HGMD, and ClinVar, 

each subset to rare variants (<= 3% allele frequency in a large healthy control cohort2) of the shown variant 

types. Despite being based purely on automatic Natural Language Processing methods, AVADA (unvalidated) 

variant type fractions are always within the range between all variants deposited in manually curated HGMD 

and ClinVar at roughly synchronized timestamps ± 1%.

Variant type AVADA HGMD ClinVar

stoploss 0.08% 0.14% 0.10%

nonframeshift indel 1.87% 3.12% 2.62%

splicing 4.05% 7.35% 3.82%

stopgain 12.37% 13.87% 8.58%

frameshift 14.60% 22.16% 11.22%

missense 67.03% 53.36% 73.67%
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