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Abstract
Introduction  African Americans are at increased risk for type 2 diabetes.
Objectives  This work aimed to examine metabolomic signature of glucose homeostasis in African Americans.
Methods  We used an untargeted liquid chromatography-mass spectrometry metabolomic approach to comprehensively 
profile 727 plasma metabolites among 571 African Americans from the Insulin Resistance Atherosclerosis Family Study 
(IRAS-FS) and investigate the associations between these metabolites and both the dynamic (SI, insulin sensitivity; AIR, 
acute insulin response; DI, disposition index; and SG, glucose effectiveness) and basal (HOMA-IR and HOMA-B) measures 
of glucose homeostasis using univariate and regularized regression models. We also compared the results with our previous 
findings in the IRAS-FS Mexican Americans.
Results  We confirmed increased plasma metabolite levels of branched-chain amino acids and their metabolic derivatives, 
2-aminoadipate, 2-hydroxybutyrate, glutamate, arginine and its metabolic derivatives, carbohydrate metabolites, and medium- 
and long-chain fatty acids were associated with insulin resistance, while increased plasma metabolite levels in the glycine, 
serine and threonine metabolic pathway were associated with insulin sensitivity. We also observed a differential ancestral 
effect of glutamate on glucose homeostasis with significantly stronger effects observed in African Americans than those 
previously observed in Mexican Americans.
Conclusion  We extended the observations that metabolites are useful biomarkers in the identification of prediabetes in indi-
viduals at risk of type 2 diabetes in African Americans. We revealed, for the first time, differential ancestral effect of certain 
metabolites (i.e., glutamate) on glucose homeostasis traits. Our study highlights the need for additional comprehensive 
metabolomic studies in well-characterized multiethnic cohorts.
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1  Introduction

Metabolomics, the comprehensive profiling of small mol-
ecule metabolites in biological systems, has proven to be a 
powerful tool for understanding biochemical pathways and 
disease mechanisms (Newgard, 2017). High-throughput 
metabolomic profiling technologies using mass spectrom-
etry and nuclear magnetic resonance can identify thou-
sands of metabolites simultaneously. These technological 
advances have led to the successful application of metabo-
lomics to identify new biomarkers for cardiometabolic dis-
eases and improve our mechanistic understanding of these 
diseases and related traits (Newgard, 2017).

Type 2 diabetes is often preceded by a long period 
of prediabetes, characterized by insulin resistance and 
impaired insulin secretion. Previous studies have demon-
strated associations between a wide-range of circulating 
metabolites and insulin resistance, insulin secretion and 
type 2 diabetes risk primarily in populations of European 
ancestry (Guasch-Ferre et  al., 2016; Newgard, 2017). 
Increased levels of branched-chain amino acids (BCAA: 
leucine, isoleucine and valine), aromatic amino acids 
(phenylalanine and tyrosine), glutamate, lysine and their 
metabolites, but reduced levels of glutamine and glycine 
are associated with insulin resistance, impaired insulin 
secretion and/or type 2 diabetes risk (Cheng et al., 2012; 
Davalli et al., 2012; Ferrannini et al., 2013; Floegel et al., 
2013; Gall et al., 2010; Guasch-Ferre et al., 2016; Huffman 
et al., 2009; Liu et al., 2019; Menni et al., 2013; Newgard, 
2017; Newgard et al., 2009; Shah et al., 2012; Stancakova 
et al., 2012; Thalacker-Mercer et al., 2014; Vangipurapu 
et al., 2019; Walford et al., 2016; Wang et al., 2011, 2013; 
Wurtz et al., 2012a, 2012b, 2013). Several carbohydrate 
metabolites, including glucose, fructose and inositol, are 
hallmarks for type 2 diabetes (Drogan et al., 2015; Floegel 
et al., 2013; Guasch-Ferre et al., 2016; Padberg et al. 2014; 
Wurtz et al., 2012a, 2012b). In addition, lipid subclasses 
such as phospholipids, sphingomyelins and triglycerides, 
are associated with risk of prediabetes and type 2 diabetes 
(Ferrannini et al., 2013; Floegel et al., 2013; Guasch-Ferre 
et al., 2016; Rhee et al., 2011; Wang-Sattler et al., 2012). 
Few studies including non-European and/or multi-ethnic 
populations have been reported. Many of the amino acids 
are replicated for association with insulin resistance and 
type 2 diabetes risk in Asians (Chen et al., 2016, 2019; 
Tai et al., 2010). Similarly, several amino acids, lipids 
and carbohydrate metabolites are associated with insu-
lin resistance, incident and prevalent type 2 diabetes in 
African Americans, Mexican Americans and multi-ethnic 
populations(Chen et al., 2022; Lee et al., 2016; Palmer 
et al., 2015, 2018; Rebholz et al., 2018). Large-scale multi-
ethnic studies such as The Consortium of Metabolomics 

Studies (COMETS) are ongoing with available fasting glu-
cose and insulin levels (Yu et al., 2019).

African Americans are at increased risk of obesity, type 
2 diabetes and other cardiometabolic diseases. However, 
few large-scale metabolomic studies have examined glucose 
homeostasis in this population, particularly for the sophisti-
cated dynamic measures. In this study, we used an untargeted 
liquid chromatography-mass spectrometry (MS) metabolomic 
approach to examine plasma metabolites among 571 African 
Americans from the Insulin Resistance Atherosclerosis Fam-
ily Study (IRAS-FS) and investigate the associations between 
these metabolites and both the basal and dynamic measures 
of glucose homeostasis traits. We also compared our results 
in African Americans with our previous results in IRAS-FS 
Mexican Americans (Palmer et al., 2018).

2 � Methods

2.1 � Study participants

Study participants were recruited from the Insulin Resist-
ance Atherosclerosis Family Study (IRAS-FS) (Henkin et al., 
2003; Palmer et al., 2018). This study included 42 African 
American families from Los Angeles, CA. These families were 
recruited based on large family size, irrespective of disease 
status. A total of 572 African Americans without diabetes were 
examined for association between metabolites and glucose 
homeostasis traits. A similar metabolomics study in Mexican 
Americans from the IRAS-FS has been previously reported 
(Palmer et al., 2018). The study protocol was approved by the 
institutional review board of the clinical and analysis sites. All 
participants provided their written informed consent.

2.2 � Glucose homeostasis measurements

Insulin sensitivity index (SI) and glucose effectiveness (SG) 
were calculated from the frequently sampled intravenous glu-
cose tolerance test (FSIGT) using mathematical modeling 
method (MINMOD version 3.0; Harms Software, CA) (Pacini 
& Bergman, 1986). MINMOD uses FSIGT glucose and insu-
lin data to fit two mathematical models for glucose disappear-
ance and insulin kinetics, respectively.

Glucose disappearance is calculated as:

Insulin kinetics is calculated as:

(1)
dG

dt
= −

(
p1 + X(t)

)
⋅ G(t) + p1 ⋅ Gb, G(0) = G0

(2)
dX

dt
= −p2 ⋅ X(t) + p3 ⋅

(
I(t) − Ib

)
, X(0) = 0
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G(t) and I(t) represent the time courses of glucose and 
insulin in plasma following glucose injection. Gb and Ib are 
basal values. X(t) describes the insulin effect on net glucose 
disappearance and p1, p2, p3, G0, n, γ, h and I0 are param-
eters. Parameter p1 represents SG which is the effect of glu-
cose per se at basal insulin to normalize glucose concentra-
tion within the extracellular glucose pool. The ratio between 
p3 and p2 represents SI which is the insulin dependent 
increase in the net glucose disappearance rate. Acute insulin 
response to glucose (AIR) was calculated as the increase in 
insulin concentrations at 2 to 8 min above the basal (fasting) 
insulin level after a bolus glucose injection at 0 to 1 min. 
AIR is a measure of pancreatic function and insulin release. 
Disposition index (DI) was calculated as AIR multiplied by 
SI, which reflects the ability of the body to compensate for 
changes in either β-cell function or peripheral insulin action. 
Basal measures included the updated homeostatic model 
assessment of insulin resistance (HOMA-IR) and beta cell 
function (HOMA-B) (Levy et al., 1998).

2.3 � Metabolite measurements

Metabolite profiling was performed on stored (at -80 °C) 
fasting plasma samples collected at the 1999–2002 baseline 
survey. Metabolite detection and quantification was con-
ducted by Metabolon, Inc. (Durham, North Carolina) using 
untargeted liquid chromatography-mass spectroscopy (MS) 
(DiscoveryHD4 panel). Samples were prepared using the 
automated MicroLab STAR system (Hamilton Company, 
Salt Lake City, UT). A methanol extraction was used to 
remove protein, dissociate small molecules bound to protein 
or trapped in the precipitated protein matrix, and to recover 
chemically diverse metabolites. The resulting extract was 
divided into five fractions: two for analysis by two separate 
reverse phase/ultra-performance liquid chromatography-MS/
MS methods with positive ion mode electrospray ionization 
(ESI), one for analysis by reverse phase/ultra-performance 
liquid chromatography-MS/MS with negative ion mode ESI, 
one for analysis by hydrophilic interaction liquid chroma-
tography/ultra-performance liquid chromatography-MS/MS 
with negative ion mode ESI and one sample was reserved for 
backup. All methods utilized a Waters ACQUITY ultra-per-
formance liquid chromatography (UPLC) and a Thermo Sci-
entific Q-Exactive high resolution/accurate mass spectrom-
eter interfaced with a heated electrospray ionization source 
and Orbitrap mass analyzer operated at 35,000 mass resolu-
tion. Raw data were extracted, peak-identified and quality 
control processed using Metabolon’s hardware and software. 
Compounds were identified by comparison to library entries 
of purified standards or recurrent unknown entities. Peaks 

(3)
dI

dt
= −n ⋅ I(t) + � ⋅ (G(t) − h) ⋅ t, I(0) = I0

were quantified using area under the curve. Several types of 
controls were analyzed in addition to experimental samples: 
a technical replicate, pooled matrix sample generated from a 
small volume of each experimental sample; process blanks, 
extracted water samples; and QC standards, a cocktail of 
QC standards chosen not to interfere with the measurement 
of endogenous compounds were spiked into every analyzed 
sample, allowed instrument performance monitoring and 
aided chromatographic alignment. This panel identified 
and provided relative quantification of known chemical 
compounds among amino acid, carbohydrate, energy, lipid, 
nucleotide, and peptide super pathways. In addition to indi-
vidual named biochemicals; super- and sub-pathways were 
annotated based on a combination of pathway and chemi-
cal structure similarities to serve as a guide for interpreta-
tion. Prior to return, data were block corrected for a run day, 
normalized by batch, and volume extracted. Missing data 
for metabolites were imputed to the minimum value for the 
respective metabolite. Each metabolite in original scale was 
rescaled to set the median equal to one. Since the metabolite 
distributions were highly skewed, metabolite values were 
winsorized at 1% and 99% to reduce the impact of outliers 
on parameter estimation. Among 572 African Americans, 
one individual had 132 metabolite outliers (± 4 SD) and was 
excluded from downstream analyses. In addition, six metab-
olites with > 50% missing values were excluded. A total of 
727 out of 733 metabolites passed the quality control and 
were retained for the final analyses (Supplementary Table 1).

2.4 � Univariate metabolite analysis

Phenotype variables were transformed to approximate nor-
mal distributions as follows: SI, HOMA-IR and HOMA-B 
were natural log transformed; AIR and DI were square-root 
transformed but retained the mathematical sign of the origi-
nal value; SG was not transformed. General linear mixed 
model was used to test for the association between each 
metabolite and glucose homeostasis traits after adjusting 
for age, sex, BMI and pedigree structure in IRAS-FS. The 
restricted maximum likelihood method in PROC MIXED 
in SAS was used to fit for each glucose homeostasis trait. 
The proportion of variance (R2

adj) explained by significantly 
associated metabolites from univariate metabolite models 
for a given glucose homeostasis trait was estimated using 
residual values of mixed model fitting after conditioning on 
covariates. To control for multiple tests, the Bonferroni-cor-
rected P value of 6.8 × 10–5 (0.05/727 annotated metabolites) 
was used as the threshold for statistical significance.

2.5 � Metabolite selection model

The metabolite levels within each metabolic pathway 
(Supplementary Table 1) are potentially correlated with 
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each other. We used the scaled elastic net regularized 
regression method to disentangle the linear dependency of 
correlated metabolites in the prediction of glucose homeo-
stasis traits. In the scaled elastic net regression model, 
the LASSO penalty function (L1) and ridge penalty func-
tion (L2) shrink the estimates of the regression coefficients 
towards zero relative to the maximum likelihood estimates. 
This shrinkage prevents overfitting arose from either col-
linearity of the metabolites or high-dimensionality of data 
when p >  > n (where p is the number of metabolites, and n 
is the number of individuals). In the procedure of regulari-
zation with an elastic net, the coefficient of ridge regres-
sion is estimated, then a LASSO algorithm is performed 
on the ridge regression coefficient to shrink the coefficient. 
The ridge regression penalty function (L2) penalizes the 
square of the regression coefficients for the predictors, 
shrinking coefficients from correlated predictors propor-
tionally toward zero. The LASSO penalty (L1) imposes a 
penalty on the absolute value of the coefficients, shrinking 
coefficients by a constant factor, and can select a subset of 
predictors by shrinking coefficients for the least predictive 
predictors exactly to zero. The scaled elastic net uses these 
penalties to minimize the objective function in Eq. 4.

where n is the number of observations (i = 1, 2, …, n), y∗
i
 is 

the n × 1 vector of residual values of glucose homeostasis 
traits after adjusting for age, sex, BMI and pedigree struc-
ture with the mixed model, p (j = 1, 2, …, p) is the number 
of metabolites, β0 and β = (β1, β2,….., βp)T are the fitting 
parameters for intercept (known as bias) and metabolites, 
Xij is the n x p matrix standardized metabolites, 0 ≤ α ≤ 1 
is the tuning parameter that controls the balance between 
the LASSO (α = 1) and ridge (α = 0) penalties, λ ≥ 0 is posi-
tive regularization (or penalty) parameter with the degree 
of shrinkage increasing as λ increases for a given α value 
(Goeman et al. 2014). The adjusted R2 given in Eq. (2) was 
used as the stopping criteria.

where i is equal to 1 if there is an intercept and 0 other-
wise, n is the number of observations used to fit the model, 
and p is the number of parameters needed to be estimated 
in the model.

For the internal validation of the scaled elastic net 
model, 2000 bootstrapping were conducted by using 
the model-average approach. As the initial round of 
model average approach using bootstrapping contains 
many effects, we used the refit option to obtain a more 

(4)

argmin
�0,�j

[

∑n
i=1

(

y∗i − �0 −
∑p

j=1
�jXij

)2
+ �

∑p
j=1

( 1 − �
2

�2j + �|�j|
)

]

(5)R
2

= 1 −
(n − i)

(
1 − R2

)

n − p

parsimonious model for better generalization. Thus, for 
each data sample in the refit, a least squares model was 
fit with no effect selection (only intercept in the model). 
After 2000 bootstrapping of which 90% of each sample is 
used as training data, the number of non-zero, non-zero 
percentage and estimated quantiles (25%, 50% and 75%) 
information for intercept and parameter estimates were 
used. Metabolites that were selected for more than 20% 
of samples after 2000 bootstrapping were reported for the 
metabolite selection model. Before running model-aver-
age, a log scale grid search algorithm was used to specify 
the optimal ridge regression parameter, L2 for the scaled 
elastic net. The predicted values ŷ(i) for average model i 
are given by

where X is the design matrix of the data to be scored. Aver-
ages are obtained as:

where parameter j, �(∗)
j

=
1

N

∑N

i=1
�
(i)

j
(SAS Inst., 2021). All 

statistical analyses were performed using SAS (SAS Inst, 
2016) and the statistical R package, version 3.3.3 (http://​
www.r-​proje​ct.​org/).

2.6 � Metabolite effect size comparisons for glucose 
homeostasis traits between African Americans 
and Mexican Americans

Identical analytical protocols were implemented for data pro-
cessing in both African Americans and Mexican Americans 
in IRAS-FS, i.e., metabolite data quality control, outcome 
transformation and covariate adjustments. The difference in 
metabolite effect sizes between African Americans and Mexi-
can Americans were tested using the Z statistic. To control for 
multiple tests, the Bonferroni corrected P value of 6.8 × 10–5 
(0.05/727 annotated metabolites) was used as the threshold for 
statistical significance. The metabolites that showed significant 
associations with glucose homeostasis traits in both popula-
tions were further characterized.

3 � Results

3.1 � Characteristics of IRAS‑FS

This study included 571 IRAS-FS African Americans with 
a mean (± SD) age of 42.3 ± 13.7 years (Table 1). Over-
all, study subjects comprised of more women (59.2%) and 
were, on average, overweight (BMI = 30.0 ± 6.8 kg/m2). 

ŷ(i) = X� (i)

(6)ŷ(∗) = X

(
1

N

N∑

i=1

𝛽(i)

)
= X𝛽(∗)

http://www.r-project.org/
http://www.r-project.org/
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Participants had a mean SI of 1.64 ± 1.17 × 10–4 min/μU/
mL, mean AIR of 1013 ± 830 μU/mL/min, and a resulting 
mean DI of 1436 ± 1269. In comparison with IRAS-FS 
Mexican Americans (Supplementary Table 2) (Palmer 
et al., 2018), African Americans were more insulin resist-
ant based on the dynamic glucose homeostasis measures 
(i.e., reduced SI); however, African Americans had reduced 
levels of both HOMA-IR and HOMA-B when compared 
with Mexican Americans (Supplementary Table 2). Most 
pairwise correlations (except between DI and HOMA-
B) among the six glucose homeostasis traits in African 
Americans were significant with absolute correlation coef-
ficients ranging from 0.16 to 0.84. AIR was more corre-
lated with DI and SG (rS = 0.62 and 0.30, respectively) in 
IRAS-FS African Americans than in IRAS-FS Mexican 
Americans (rS = 0.50 and 0.20, respectively); however, 
AIR is less correlated with SI and HOMA-B (rS = -0.16 
and 0.18, respectively) in IRAS-FS African Americans 
than in IRAS-FS Mexican Americans (rS = -0.27 and 0.35, 
respectively; Supplementary Table 3).

3.2 � Associated metabolites in univariate models

The associations between 727 metabolites and glucose 
homeostasis traits were assessed using the general linear 
mixed model with adjustment for age, sex, BMI and pedi-
gree structure. There were 79, 2, 58, 40, 45 and 19 metabo-
lites significantly associated with SI, AIR, DI, SG, HOMA-IR 
and HOMA-B, respectively (P < 6.8 × 10–5, See Table 2 and 
Supplementary Tables 4a-f for each glucose homeostasis 
trait).

Association analyses revealed that 19 amino acid, 3 car-
bohydrate, 1 cofactors and vitamins, 48 lipid, 2 nucleotide 
and 6 peptide metabolites were significantly associated with 
SI (Table 2 and Supplementary Table 4a). Except for aspar-
agine and three metabolites from glycine-serine-threonine 
metabolism (glycine, N-acetylglycine and serine), all other 
metabolites from the amino acid group were negatively 
associated with SI, including eight BCAA amino acid (4.7
5 × 10–13 < P < 3.76 × 10–5) and one lysine (2-aminoadipate, 
P = 2.02 × 10–12) metabolites (Supplementary Table 4a). 
The metabolites glycine and glutamate were most signifi-
cantly positively (β = 0.54, P = 6.49 × 10–17) and negatively 
(β = -0.35 and P = 6.54 × 10–16) associated with SI, respec-
tively. Nine lipid metabolites were positively associated with 
SI but the remaining 39 lipid metabolites were negatively 
associated with SI (Supplementary Table 4a). Most signifi-
cantly associated metabolites in diacylglycerol, long chain 
fatty acid, phospholipid, polyunsaturated fatty acid, and 
sphingolipid metabolism were negatively associated with 
SI (Supplementary Table 4a).

Examination of AIR revealed significant association with 
two metabolites (Table 2 and Supplementary Table 4b). The 
most prominent metabolite associated with AIR was glucose 
(β = -36.59, P = 1.90 × 10–14).

Of the 58 metabolites associated with DI, two metabolites 
(glycine and 1,2-dilinoleoyl-GPC (18:2/18:2)) were posi-
tively associated with DI but the remaining 56 metabolites 
were negatively associated with DI (Table 2 and Supple-
mentary Table 4c). Twelve amino acid and 37 lipid metabo-
lites were predominantly associated with DI. Seven of the 
24 BCAA metabolites analyzed were negatively associated 
with DI (7.53 × 10–7 < P < 5.82 × 10–5). For the lipid group, 
13 metabolites in long chain fatty acid, 5 metabolites in dia-
cylglycerol, 6 metabolites in phospholipid, 6 metabolites in 
polyunsaturated and 3 metabolites in sphingolipid sub-path-
ways were associated with DI (Supplementary Table 4c). 
As observed for AIR, glucose was most negatively associ-
ated with DI (β = -51.03, P = 1.32 × 10–16) (Supplementary 
Table 4c). Given that DI is calculated as the product of SI 
and AIR, a remarkable number of metabolites overlapped 
between SI and DI, i.e., 34 of the 58 metabolites associated 
with DI were shared with SI. Most of these shared metabo-
lites were less significantly associated with DI than SI. Three 
metabolites in the long chain fatty acid sub-pathway (marga-
rate (17:0), palmitate (16:0), and stearate (18:0)) are, how-
ever, more significantly negatively associated with DI than 
SI. Moreover, 10 of the 24 metabolites that were unique to 
DI were from the long chain fatty acid sub-pathway (Sup-
plementary Table 4c).

The associated metabolites for SG were mainly clustered 
into two groups: amino acid (4 metabolites) and lipid (35 
metabolites) (Table 2 and Supplementary Table 4d). All 4 
amino acid metabolites were negatively associated with SG 

Table 1   Clinical characteristics of the IRAS-FS African American 
cohort (Nmax = 571)

IRAS-FS Insulin Resistance Atherosclerosis Family Study, SI insulin 
sensitivity, SG glucose effectiveness, AIR acute insulin response to 
glucose, DI disposition index, HOMA-IR homeostatic model assess-
ment of insulin resistance, HOMA-B homeostatic model assessment 
of beta-cell function

Demographics Mean ± SD Interquartile range

Age, year 42.3 ± 13.7 (31.4–51.9)
Women, % 59.2
BMI, kg/m2 30.0 ± 6.8 (25.1–34.7)
Dynamic measures
SI, × 10–4 min/μU/mL 1.64 ± 1.17 (0.8–2.31)
SG, per min 0.021 ± 0.008 (0.016–0.025)
AIR, μU/mL/min 1013 ± 830 (427–1326)
DI 1436 ± 1269 (533–1943)
Basal measures
HOMA-IR 1.62 ± 0.96 (0.90–2.10)
HOMA-B 116.2 ± 45.1 (85.7–142.6)
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(1.30 × 10–5 < P < 6.29 × 10–5). Except for three metabolites 
(propionylglycine, 1-linoleoyl-2-linolenoyl-GPC (18:2/18:3) 
and 1,2-dilinoleoyl-GPC (18:2/18:2)) in the lipid group, all 
other metabolites (including 10 fatty acid derivatives, 12 
long chain fatty acids, 3 phospholipids, 5 polyunsaturated 
fatty acids, 2 sphingolipid metabolites, etc.) were negatively 
associated with SG (Supplementary Table 4d).

Metabolite associations for SI, DI and SG generally 
showed a similar pattern: the metabolites from amino acid 
and lipid groups were predominantly negatively associated 
with these three dynamic measures of glucose homeostasis 
traits. Sixteen metabolites overlapped between SI and SG 
with 11 metabolites from the lipid super-pathway group, 
whereas 26 metabolites overlapped between DI and SG with 
22 metabolites from the lipid super-pathway group.

Association analyses revealed that 21 amino acid, 3 car-
bohydrate, 1 cofactors and vitamins, 16 lipid and 4 peptide 
metabolites were significantly associated with HOMA-IR 
(Table 2 and Supplementary Table 4e). Except for cysteine-
glutathione disulfide and three metabolites from glycine-
serine-threonine metabolism (glycine, N-acetylglycine and 
serine), all metabolites from the amino acid group were 
positively associated with HOMA-IR, including glutamate, 
five BCAA metabolites (8.95 × 10–9 < P < 3.31 × 10–5), one 
lysine metabolite (2-aminoadipate), five metabolites (2.68 × 
10–6 < P < 6.51 × 10–5) in phenylalanine and tyrosine metab-
olism, and three metabolites (1.13 × 10–11 < P < 4.29 × 10–8) 
in the sub-pathway of urea cycle, arginine and proline 
metabolism (Supplementary Table 4e). Except two metabo-
lites in plasmalogen sub-pathway, all other lipid metabolites 
were positively associated with HOMA-IR, including 4 from 
diacylglycerol, 1 from lysolipid, 7 from phospholipid, and 2 Ta

bl
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Fig. 1   Overlap of significant metabolites between dynamic and basal 
measures of glucose homeostasis in African Americans. AIR acute 
insulin response, HOMA-B homeostatic model assessment of beta 
cell function, HOMA-IR homeostatic model assessment of insulin 
resistance, SI insulin sensitivity
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from plasmalogen metabolism sub-pathways (Supplemen-
tary Table 4e). Overall, 31 metabolites were significant asso-
ciated with both HOMA-IR and SI (Fig. 1).

The metabolites associated with HOMA-B were mainly 
clustered into two groups: the amino acid (9 metabo-
lites) and lipid (8 metabolites) (Table 2 and Supplemen-
tary Table  4f). Three metabolites (glycine, β = -0.27, 
P = 2.6 × 10–5; N-acetylglycine, β = -0.13, P = 6.1 × 10–7; 
and serine, β = -0.40, P = 9.3 × 10–6) in the sub-pathway of 
glycine-serine-threonine metabolism were negatively asso-
ciated with HOMA-B, but three metabolites (2.42 × 10–9 
< P < 1.64 × 10–7) in the sub-pathway of urea cycle, argi-
nine and proline metabolism were positively associated with 
HOMA-B. Except for 2-aminooctanoate, all other metab-
olites in the lipid group were positively associated with 
HOMA-B, including two diacylglycerol, four phospholipid, 
and one plasmalogen metabolites (Supplementary Table 4f). 
Overall, no metabolites were observed to overlap between 
HOMA-B and AIR (Fig. 1).

3.3 � Associated metabolites in regularized 
regression models

Overall, a smaller number of metabolites were selected by 
regularized regression models when compared with uni-
variate models due to correlation among metabolites (Sup-
plementary Table 4a-f and 5). The largest difference in the 
number of selected metabolites between the two models was 
observed for SI (Supplementary Table 4a). The pairwise 
correlation heat map for metabolites associated with SI in 
univariate models shows that metabolites within each of the 
sub-pathways (BCAA, diacylglycerol, long-chain fatty acid, 
lysolipid, phospholipid, sphingolipid, and gamma-glutamyl 
amino acid metabolisms) were positively correlated with 
each other (Supplementary Fig. 1). All the 15 metabolites 
associated with SI in the regularized model overlapped those 
selected by univariate models (Supplementary Table 4a) and 
the metabolite glycine accounted for 11.4% of SI residual 
variance. Two (glucose and 1-docosapentaenoyl-GPC 

(22:5n3)) of the 7 metabolites associated with AIR in the 
regularized model overlapped those associated in the univar-
iate model (Supplementary Table 4b) and glucose accounted 
for 9.4% of AIR residual variance. Ten of the 12 metabo-
lites associated with DI in the regularized model overlapped 
those associated in the univariate model (Supplementary 
Table 4c) and the top three metabolites (glucose, palmitate 
and leucine) accounted for 19.2% of DI residual variance. 
Four of the 6 metabolites associated with SG in the regu-
larized model overlapped those associated in the univariate 
model (Supplementary Table 4d), and the metabolite palmi-
tate accounted for 6.0% of SG residual variance. Ten of the 
11 metabolites associated with HOMA-IR in the regularized 
model overlapped those associated in the univariate model 
(Supplementary Table 4e), and the metabolite 2-oxoargi-
nine accounted for 8.1% of HOMA-IR residual variance. 
Eight of the 10 metabolites associated with HOMA-B in 
the regularized model overlapped those associated in the 
univariate model (Supplementary Table 4f), and the metabo-
lite 2-oxoarginine accounted for 5.9% of HOMA-B residual 
variance.

The regularized models including a smaller set of metab-
olites for SI, AIR, DI, SG, and HOMA-B explained a similar 
proportion of residual variance (R2

adj = 0.31, 0.20, 0.23, 0.14 
and 0.21, respectively) compared with the univariate mod-
els including all associated metabolites (R2

adj = 0.33, 0.16, 
0.26, 0.18 and 0.17, respectively) except for HOMA-IR 
(R2

adj = 0.22 for regularized model; R2
adj = 0.41 for univari-

ate model) (Supplementary Table 5).

3.4 � Comparison of metabolite associations 
with glucose homeostasis traits 
between African Americans and Mexican 
Americans

African Americans were more insulin resistant (low SI) but 
had better first phase insulin response (AIR) than Mexi-
can Americans in the IRAS-FS (Supplementary Table 2). 
We explored whether there were any metabolites that were 

Table 3   Differential glutamate 
associations with glucose 
homeostasis traits between 
African Americans and 
Mexican Americans

The association results for IRAF-FS Mexican Americans were published previously (Palmer et al., 2018)

Glucose 
homeostasis 
traits

African Americans (AA, N = 571) Mexican Americans (MA, 
N = 1,111)

P value 
between AA 
and MA

Beta Stderr P value Beta Stderr P value

SI − 0.352 0.045 6.54E-14 − 0.117 0.024 7.85E-07 4.55E-06
AIR 2.093 1.520 1.69E-01 2.303 0.590 1.04E-04 8.98E-01
DI − 8.498 1.937 1.44E-05 − 0.356 0.853 6.77E-01 1.20E-04
SG − 0.003 0.0009 1.40E-03 0.0001 0.0005 8.00E-01 2.88E-03
HOMA-IR 0.423 0.065 2.28E-10 0.195 0.026 1.96E-13 1.17E-03
HOMA-B 0.172 0.047 2.44E-04 0.090 0.019 1.54E-06 1.02E-01
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differentially associated with these six glucose homeosta-
sis traits between these two populations. For most of the 
metabolites analyzed, no significant differences in associa-
tions with these glucose homeostasis traits were observed 
(Supplementary Table 6). However, the effect sizes of glu-
tamate on SI was significantly different for SI (β = − 0.35 
and -0.12 in African Americans and Mexican Americans, 
respectively; P = 4.5 × 10–6, Table 3 and Supplementary 
Table 6). Glutamate was also differentially associated with 
DI, SG and HOMA-IR at nominal significance with larger 
effects observed in African Americans than in Mexican 
Americans (Table 3 and Supplementary Table 6).

4 � Discussion

We performed a comprehensive assessment of the signa-
ture of metabolomics associated with dynamic and basal 
measures of glucose homeostasis traits in 571 non-diabetic 
African Americans. We applied both univariate and regu-
larized regression models to identify metabolites that were 
significantly associated with six glucose homeostasis traits 
(SI, AIR, DI, SG, HOMA-IR and HOMA-B). The univariate 
models identified multiple significantly correlated metabo-
lites within the same sub-pathway; however, the regularized 
regression models identified the most important metabolites 
within each sub-pathway. Overall, the metabolites involved 
in amino acid metabolism (BCAA metabolism; glycine, ser-
ine and threonine metabolism; lysine metabolism; methio-
nine, cysteine, SAM and taurine metabolism; glutamate 
metabolism; urea cycle, arginine and proline metabolism), 
carbohydrate metabolism (glycolysis, gluconeogenesis, and 
pyruvate metabolism) and lipid metabolism (diacylglycerol 
and phospholipid metabolism) were associated with both 
basal and dynamic measures of glucose homeostasis traits. 
In addition, we observed that glutamate affects glucose 
homeostasis traits more strongly in African Americans than 
in Mexican Americans.

Decades of epidemiology studies have established that 
elevated levels of circulating BCAAs and their metabolites 
are associated with insulin resistance and type 2 diabetes 
risk in populations of European ancestry (Felig et al., 1969; 
Gall et al., 2010; Guasch-Ferre et al., 2016; Huffman et al., 
2009; Menni et al., 2013; Newgard et al., 2009; Shah et al., 
2012; Stancakova et al., 2012; Tillin et al., 2015; Wang 
et al., 2011; Wurtz et al., 2012a, 2012b, 2013). These asso-
ciations were recently confirmed in populations of Asian 
(Arany & Neinast, 2018; Chen et al., 2016, 2019; Tai et al., 
2010; Takashina et al., 2016; Tillin et al., 2015), African 
(Chen et al., 2022) and Mexican (Lee et al., 2016; Palmer 
et al., 2015, 2018) ancestries. In this study, we observed 
in African Americans that increased levels of BCAA-
related metabolites (isoleucine, 3-methyl-2-oxovalerate 

and 3-hydroxy-2-ethylpropionate in isoleucine metabolism; 
leucine, 4-methyl-2-oxopentanoate and isovalerylcarnitine 
in leucine metabolism; valine, 3-methyl-2-oxobutyrate and 
3-hydroxyisobutyrate in valine metabolism; Supplementary 
Table 4a-f) were positively associated with basal measures 
of HOMA-IR but negatively associated with dynamic meas-
ures of SI, DI and SG. Isoleucine and valine were recently 
demonstrated to be involved in reprograming liver and adi-
pose metabolism to reduce hepatic insulin sensitivity and 
ketogenesis and energy expenditure and mediate the adverse 
metabolic effects of BCAAs (Yu et al., 2021).

Circulating levels of glycine were lower in obese (Felig 
et al., 1969; Okekunle et al., 2017; Takashina et al., 2016; 
Yan et al., 2012) and insulin-resistant individuals (Ejaz et al., 
2016; Gall et al., 2010; Newgard et al., 2009; Takashina 
et al., 2016) as compared to healthy individuals in popula-
tions of European and East Asian ancestries. Plasma glycine 
levels were also negatively associated with fasting glucose 
levels and type 2 diabetes risk (Chen et al., 2022; Ferrannini 
et al., 2013; Floegel et al., 2013; Guasch-Ferre et al., 2016; 
Newgard et al., 2009; Palmer et al., 2015; Svingen et al., 
2016; Vangipurapu et al., 2019; Walford et al., 2016; Wang-
Sattler et al., 2012). In concordance with the previous find-
ings, we observed that the metabolites (glycine, N-acetylg-
lycine or serine; Supplementary Table 4a-f) in the glycine, 
serine and threonine metabolism sub-pathway were posi-
tively associated with dynamic measures of SI and DI but 
negatively associated with basal measures of HOMA-IR and 
HOMA-B in IRAS-FS African Americans. The metabolite 
glycine also explained the largest residual variance (11.4%) 
of SI in IRAS-FS African Americans. Glycine plasma con-
centration is tightly regulated by glucagon, which is a major 
regulator of hepatic glycine metabolism. Elevated plasma 
glucagon levels could drive increased glycine degradation 
in insulin resistant states (Alves et al., 2019). In addition, 
impaired hepatic BCAA metabolism in obesity was shown 
to contribute to the decrease in glycine circulating concen-
tration; however, the underlying cellular mechanisms still 
remain to be fully elucidated (Alves et al., 2019).

Lysine and its metabolite 2-aminoadipate were associated 
with increased type 2 diabetes risk in populations of both 
European and Asian ancestries (Chen et al., 2019; Takashina 
et al., 2016; Wang et al., 2013). The metabolite 2-aminoa-
dipate was negatively associated with dynamic measures of 
SI and DI but positively associated with basal measures of 
HOMA-IR in IRAS-FS African Americans (Supplementary 
Table 4a-f). The in vitro studies suggest that 2-aminoadi-
pate had an effect on insulin secretion in pancreatic β-cells 
and isolated islets (Wang et al., 2013) and the positive asso-
ciations between 2-aminoadipate levels and type 2 diabetes 
risk in human may be due to the development of insulin 
resistance secondary to chronic hyperinsulinemia (Newgard, 
2017; Wang et al., 2013).
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The metabolite 2-hydroxybutyrate in the sub-pathway of 
methionine, cysteine, SAM and taurine metabolism was an 
early biomarker of insulin resistance and glucose intoler-
ance in a nondiabetic population of European ancestry (Gall 
et al., 2010) and its levels was elevated in type 2 diabetes 
patients compared with healthy controls in populations of 
Asian ancestry (Li et al., 2009). Consistent with our pre-
vious findings in IRAS-FS Mexican Americans (Palmer 
et al., 2018), this metabolite was negatively associated with 
dynamic measures of SI, DI and SG in IRAS-FS African 
Americans (Supplementary Table 4a-f). The metabolite 
2-hydroxybutyrate is converted from alpha-ketobutyrate 
when the NADH/NAD+ ratio is elevated in high lipid oxi-
dations of insulin resistant states (Gall et al., 2010). The 
NMD supplementation is recently proven to be effective in 
recovering insulin sensitivity in prediabetic women (Yoshino 
et al., 2021).

Plasma glutamate levels were differentially associated 
with glucose homeostasis traits between African Ameri-
cans and Mexican Americans in IRAS-FS with larger effects 
(negatively associated with dynamic measures of SI, DI and 
SG but positively associated with measures of HOMA-IR) 
observed in African Americans than in Mexican Americans. 
Oral glutamate supplementation was previously shown to 
impair insulin sensitivity in a short-term dietary interven-
tion (Chevassus et al., 2002). Increased circulating levels 
of glutamate were previously associated with insulin resist-
ance (Chen et al., 2022; Cheng et al., 2012; Newgard et al., 
2009; Vangipurapu et al., 2019) and type 2 diabetes risk in 
populations of European (Chen et al., 2019; Cheng et al., 
2012; Ferrannini et al., 2013; Liu et al., 2019; Stancakova 
et al., 2012; Vangipurapu et al., 2019), Asian (Chen et al., 
2019; Takashina et al., 2016) and African (Chen et al., 
2022). ancestries. Glutamate stimulated glucagon release 
from pancreatic α-cells (Adrover et al., 2015) and increased 
transamination of pyruvate to alanine, a strong promoter of 
gluconeogenesis (Newgard et al., 2009). These mechanisms 
may partially explain the increased type 2 diabetes risk 
associated with circulating glutamate levels. Populations of 
African ancestry are generally more susceptible to insulin 
resistance than populations of other ancestries (Meigs et al., 
2014); however, the underlying physiological mechanisms 
of increased glutamate sensitivity on glucose homeostasis 
traits in African Americans merits further investigations.

The amino acid sub-pathway of urea cycle, arginine and 
proline metabolism was consistently enriched for dynamic 
measures of SI and basal measures of HOMA-IR and 
HOMA-B in IRAS-FS African Americans (Supplementary 
Table 4a-f). The metabolite 2-oxoarginine in this pathway 
was negatively associated with SI, but most significantly 
positively associated with measures of HOMA-IR and 
HOMA-B levels. It also explained the largest residual vari-
ance of HOMA-IR (8.1%) and HOMA-B (5.9%). Similarly, 

the metabolite arginine in this pathway was negatively asso-
ciated with SI but positively associated with HOMA-IR and 
HOMA-B levels (Supplementary Table 4a-f). Increased 
plasma levels of 2-oxoarginine and arginine were positively 
associated with HOMA-B measures in IRAS-FS Mexican 
Americans (Palmer et al., 2018), and increased circulating 
arginine levels were associated with increased type 2 dia-
betes risk in populations of European (Guasch-Ferre et al., 
2016) and African (Chen et al., 2022) ancestries. The metab-
olite 2-oxoarginine is a guanidino compound metabolite of 
arginine catabolism. Arginine promoted insulin secretion 
(Sener et al., 2000). However, the underlying mechanisms 
of arginine metabolites regulating glucose homeostasis traits 
remains unclear.

The carbohydrate sub-pathway of glycolysis, gluconeo-
genesis, and pyruvate metabolism was consistently enriched 
for dynamic measures of SI, AIR, DI and SG, and basal 
measures of HOMA-IR in IRAS-FS African Americans 
(Supplementary Table 4a-f). Several metabolites (glucose, 
fructose, mannose, lactate, pyruvate, mannose or ribonate) 
were negatively associated with SI, AIR, DI, SG, but posi-
tively associated with HOMA-IR, consistent with reported 
higher levels of these metabolites in individuals with type 2 
diabetes than control subjects of European ancestry (Drogan 
et al., 2015; Floegel et al., 2013; Guasch-Ferre et al., 2016; 
Padberg et al. 2014; Wurtz et al., 2012a, 2012b). The metab-
olite glucose explained the largest residual variance of AIR 
(9.4%) and DI (10.9%) and confirmed its important role of 
regulating these glucose homeostasis traits.

Circulating medium- and long-chain fatty acids were 
elevated in prediabetes and type 2 diabetes patients in 
populations of European and Asian ancestries (Gall et al., 
2010; Li et al., 2009; Menni et al., 2013). Plasma levels 
of long-chain fatty acids were negatively associated with 
dynamic measures of SI, DI and SG in the IRAS-FS Mexican 
Americans (Palmer et al., 2018). We observed a similar pat-
tern of increased levels of palmitate (C16), margarate (C17) 
and stearate (C18) associated with reduced SI in IRAS-FS 
African Americans (Supplementary Table 4a-f). In addition, 
more long-chain fatty acids species (n = 13, Supplementary 
Table 4c) were inversely associated with DI in IRAS-FS 
African Americans. The metabolite palmitate also explained 
a substantial portion of residual variance of DI (5.8%) and 
SG (6.0%). The increased plasma medium- and long-chain 
fatty acid levels may be biomarkers of increased adipose 
fatty acid releases and/or reduced fatty acid oxidations of 
insulin resistant states.

Our study has the following strengths. It included the 
largest sample size of African Americans in a semi-untar-
geted metabolomic study with 727 “known” plasma metabo-
lites assayed. While most studies have fasting glucose and 
insulin measures only (Chen et al., 2022; Rebholz et al., 
2018; Yu et al., 2019), we analyzed both basal and dynamic 
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glucose homeostasis, of which dynamic measures could be 
considered physiologically more proximal to pathogenic 
components of type 2 diabetes and provide discrete insights 
into the pathogenesis of type 2 diabetes (Palmer et al., 2018). 
The comparison of metabolomic profiles between African 
Americans and Mexican Americans in IRAS-FS allows 
identification of differentially associated metabolites, while 
other studies only reported associations adjusted for ancestry 
(Chen et al., 2022; Rebholz et al., 2018). We used regular-
ized models to identify key metabolites associated with these 
glucose homeostasis traits, which could partially overcome 
the bias derived from high correlation of metabolites in the 
same metabolic sub-pathway; and finally, substantial pro-
portions of residual variance in these glucose homeostasis 
traits (ranging from 16 to 41% in univariate models) have 
been explained by these metabolites even after adjustment 
for the effect of BMI (Supplementary Table 5). However, 
the current study is observational in nature, which precludes 
assessment of causality between metabolites and these glu-
cose homeostasis traits, thus unable to determine which par-
ticipants may develop diabetes in the future.

In summary, we confirmed in a representative popula-
tion of African ancestry that increased plasma metabolite 
levels of BCAA and their metabolites, 2-aminoadipate, 
2-hydroxybutyrate, glutamate, arginine and its metabo-
lites, carbohydrate metabolites, and median- and long-
chain fatty acids are associated with insulin resistance, 
while increased plasma metabolite levels in the glycine, 
serine and threonine metabolic sub-pathway were associ-
ated with insulin sensitivity. We also observed a differen-
tial ancestral effect of glutamate on glucose homeostasis 
with much stronger effect observed in African Americans 
than those observed in Mexican Americans. Overall, this 
study suggests that these metabolites may be useful bio-
markers in the identification of prediabetes individuals at 
risk of type 2 diabetes in African Americans, which war-
rant further studies. Our findings also extend the scientific 
literature on the role of these metabolites in the etiology of 
insulin resistance and impaired insulin secretion and high-
light the need for additional comprehensive metabolomic 
studies in well-characterized multiethnic cohorts.
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