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Abstract
Advancements in genome assembly and sequencing technology have made whole
genome sequence (WGS) data and reference genomes accessible to study polyploid
species. Compared to popular reduced‐representation sequencing approaches, the
genome‐wide coverage and greater marker density provided by WGS data can greatly
improve our understanding of polyploid species and polyploid biology. However,
biological features that make polyploid species interesting also pose challenges in read
mapping, variant identification, and genotype estimation. Accounting for character-
istics in variant calling like allelic dosage uncertainty, homology between subgenomes,
and variance in chromosome inheritance mode can reduce errors. Here, I discuss the
challenges of variant calling in polyploid WGS data and discuss where potential
solutions can be integrated into a standard variant calling pipeline.
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Recent progress in genome assembly and sequencing technol-
ogy has increased accessibility to study the genomics of
polyploids, or organisms that have experienced whole genome
duplication and have more than two sets of chromosomes
(Formenti et al., 2022; Gladman et al., 2023). Notably,
improvements in long‐read sequencing and the accuracy of
scaffolding technology have enabled the assembly of highly
heterozygous and polyploid reference genomes at a chromo-
some scale (Kyriakidou et al., 2018; Hotaling et al., 2023). In
parallel, the cost of short‐read sequencing has continued to
decline, causing whole genome resequencing of polyploid
populations to become increasingly feasible (Fuentes‐Pardo
and Ruzzante, 2017). As polyploidy is a critical characteristic of
cancer cells; is common in fish, amphibians, and insects; and is
ubiquitous in the plant kingdom, including many economically
important crops, the extension of modern genomics technol-
ogies to polyploid systems is important for our broader
understanding of medicine, biodiversity, and agriculture (Udall
and Wendel, 2006; Wood et al., 2009; Zack et al., 2013; One
Thousand Plant Transcriptomes Initiative, 2019; Román‐
Palacios et al., 2021; David, 2022). These advances have already

begun to improve our understanding of the origins of polyploid
species (Bertioli et al., 2019; Edger et al., 2019; Goeckeritz
et al., 2023), genome reorganization and stabilization after
polyploidization (Chen et al., 2020; Bohutínská et al., 2021;
Wang et al., 2022; Session and Rokhsar, 2023), and the role of
polyploidy in adaptation of wild and domesticated species
(Hollister et al., 2012; Chen et al., 2021; Lovell et al., 2021; Ebadi
et al., 2023; Hämälä et al., 2023). Nevertheless, these studies have
only scratched the surface of polyploid biology.

Population and quantitative genetics particularly benefit
from the availability of reference genomes and whole
genome sequence (WGS) data. Both of these fields use
variable loci (i.e., loci with two or more alleles segregating in
a population) to study how the genetic composition
of populations and complex traits respond over space and
time to selection, genetic drift, mutation, and migration.
WGS data in combination with a reference genome offers
genome‐wide coverage and the ability to identify variable
loci, also referred to as variants, at a higher density than
reduced representation sequencing (RRS) approaches. RRS
approaches, such as genotype‐by‐sequencing (GBS) and
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restriction site–associated DNA sequencing (RADseq), are
currently used in the majority of polyploid population and
quantitative genetics studies due to their comparatively
low cost and the growing number of user‐friendly
software packages for analysis (Poland and Rife, 2012).
RRS approaches are useful for sampling a portion of the
genome to characterize population structure or complete
quantitative trait locus (QTL) analysis, for one example;
however, they do not have a high enough marker density for
the genome‐wide analyses central to studying patterns of
selection, identifying the genetic basis of adaptive traits,
and genomic prediction (Tiffin and Ross‐Ibarra, 2014;
Lowry et al., 2017; but see de Bem Oliveira et al., 2020).
Additionally, WGS data improve the detection of structural
variants (SVs) and transposable elements (TEs), although
both are still challenging even in diploid systems
(Ewing, 2015; Baduel et al., 2019; Mahmoud et al., 2019;
Cooke et al., 2022; Ramakrishnan et al., 2022). The
detection and inclusion of SVs and TEs are important
because they affect gene expression and function and are
signatures of the stabilization and reorganization of the
genome post‐polyploidization (Lisch, 2013; Kosugi
et al., 2019).

The improvement in variant detection offered by WGS
data is useful only when variants can be confidently called
and genotypes accurately estimated. Typical sources of
error in diploid variant calling include sequencing errors,
misalignment of reads to the reference genome, misassem-
bly of the reference genome, and natural structural
variation (Li, 2014; Mahmoud et al., 2019; Lou and
Therkildsen, 2022). Polyploidy exacerbates these sources
of error and introduces additional challenges due to the
associated characteristics like large haploid genome sizes,
homology between subgenomes, genome fractionation, and
elevated polymorphism (Bennett and Leitch, 2011; Page and
Udall, 2015; Blischak et al., 2018). As a result, there may be
higher variant calling errors in polyploids. Errors in the
variant calling pipeline will subsequently be carried into all
downstream analyses, leading to the misestimation of
metrics like allele frequencies, heterozygosity, and linkage.

The identification of universal solutions to reduce errors
in variant calling is challenging as polyploids are not a
uniform group. Polyploids are generally categorized as
allopolyploids, which form through hybridization of two or
more species, or autopolyploids, which derive from genome
doubling of a single species. Furthermore, they can be
described by their chromosome inheritance patterns.
Allopolyploids display disomic inheritance, for example,
in diploids where chiasma only form between homologous
chromosomes, whereas autopolyploids display polysomic
chromosome inheritance, where there is no preferential
pairing among chromosomes and chiasmata may form
between more than two homologous chromosomes (Stift
et al., 2008). However, the rate of preferential pairing and
the mode of chromosome inheritance may vary across the
genome in both allo‐ and autopolyploids depending on the
level of relatedness among subgenomes and the length of

time since polyploidization (Stebbins, 1947; Mason and
Wendel, 2020). This distinction between inheritance modes
is important because even low rates of recombination
between subgenomes can bias allele frequencies to be
more homozygous than expected (Meirmans and Van
Tienderen, 2013). Polyploids may also vary in haploid
genome size, mating system, repeat content, and degree of
diploidization, all of which may impact variant calling and
genotype estimation.

In this review, I identify significant challenges of variant
calling in polyploid WGS data and, where available, propose
potential solutions that can be integrated into standard
variant calling pipelines (Figure 1; Appendix S1, see
Supporting Information with this article; reviewed in Van
der Auwera et al., 2013; De Summa et al., 2017; Fuentes‐
Pardo and Ruzzante, 2017; Therkildsen and Palumbi, 2017;
O'Leary et al., 2018; Lou et al., 2021). The scope of this
discussion is limited to WGS data aligned to the study
species’ reference genome, although aspects of this discus-
sion may apply to RRS and reference‐free approaches.
Additionally, I focus on the identification of single
nucleotide variants (SNVs) as well as small SVs (<50 bp)
that can be identified by some polyploid variant calling
software (Cooke et al., 2022). As the genomics of polyploids
is a rapidly growing area of research, established best
practices are limited. By highlighting barriers in variant
calling, I aim to raise readers’ awareness of potential sources
of error and motivate the innovation of new and effective
solutions.

CHALLENGES TO VARIANT
CALLING IN POLYPLOID SYSTEMS

Resource requirements scale with genome size

The foremost barrier to polyploid genomics remains the cost
of sequencing and high‐performance computing (HPC)
resources for analysis. Sequencing cost increases with both
haploid genome size and ploidy level, while computational
costs primarily scale with haploid genome size. Sequencing
large genomes is expensive as more sequencing runs are
required to reach a target coverage, where coverage is defined
as the genome‐wide average number of reads sequenced for a
given site. For example, Chen et al. (2024) have found that
the current cost of sequencing the allohexaploid bread wheat
genome to 5× coverage is 473 times that of diploid rice and
21 times that of maize, a diploidized paleotetraploid (Gaut
and Doebley, 1997). This disparity in sequencing cost at low
coverage is increased by the many existing polyploid
genotyping algorithms requiring high coverage to overcome
allelic dosage uncertainty, which is the ambiguity in the
number of alternate allele copies in polyploid genotypes
(Gerard et al., 2018; Clark et al., 2019; Cooke et al., 2022).
The minimum coverage requirement to obtain high‐
confidence genotypes may range from 10× to over 50×
depending on the ploidy level and genotyping software,

2 of 13 | VARIANT CALLING IN POLYPLOIDS



F IGURE 1 (See caption on next page).
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whereas diploids need only 8× coverage (Cooke et al., 2022;
Jighly, 2022). After sequencing has been accomplished, access
to HPC is needed for data storage and analysis because the
size of sequence alignment files (e.g., binary alignment maps
[BAMs]) and variant call files (VCFs) produced in the variant
calling pipeline scale with genome size and sample size
(Muir et al., 2016; Weiß et al., 2018). Failing to sequence to
sufficient coverage or limiting the sample size to meet budget
constraints may result in insufficient sampling of alleles and
rare variants, the misestimation of allele frequencies, and low
power in analyses like admixture analysis and genome‐wide
association (Jighly, 2022).

Genome‐wide redundancy and elevated
polymorphism increase errors in read mapping

Aligning reads to polyploid genomes is challenging
because polyploids have an elevated level of polymorphism
and multiple occurrences of related sequences (Otto and
Whitton, 2000; Page and Udall, 2015). Both of these
biological features violate assumptions of read mapping
algorithms that assume divergence among loci is larger
than divergence among alleles at a single locus (Musich
et al., 2021); polymorphism creates an excess of divergence
while repeated sequences are too similar. Violation of this
assumption results in the incorrect and failed mapping of
reads. I will briefly describe how these two biological
features may create genotyping errors.

As the density of SNVs and SVs in a locus increases,
sequence similarity among alleles declines and reads
containing alternate alleles are less likely to align (Nielsen
et al., 2011; Brandt et al., 2015). This is an issue in
polyploids as they are expected to have higher diversity
than their diploid progenitors due to functional redun-
dancy between subgenomes enabling the accumulation of
mutations. Additionally, the post‐polyploidization process
of fractionation, which is gene loss leading to stabilization
of the polyploid genome or diploidization, increases
structural variation (Haldane, 1933; Otto and
Whitton, 2000; Ma and Gustafson, 2005; Emery et al., 2018;
Beric et al., 2021). An example of this can be seen in the
1000 Genomes Project (Homo sapiens), where 18.6% of
SNV calls in highly polymorphic HLA genes were

incorrect due to failed mapping of the alternate allele
creating bias towards the reference allele, known as allele
bias (Brandt et al., 2015). Alternate reads may also fail to
align to inversions due to disagreement at the inversion
boundaries, and reads mapping to presence–absence
variants will fail to align if the reference contains the
“absence” variant (Sun et al., 2018; Gui et al., 2022). As a
result, the reference genotype selected for read mapping
and the length of time since whole genome duplication
will determine the extent of allele bias and the variants
detected. Allele bias will be highest in autopolyploids,
where reads are aligned to only one copy of the duplicated
genome (see below, under “Allele dosage cannot be
determined if ploidy and inheritance mode are unknown”).
Allele bias is likely an issue across the genome, although the
effect of increased polymorphism on read mapping has yet to
be quantified in a polyploid system.

Analogously, genomic features such as loci of
common ancestry, repetitive elements, and copy number
variants (CNVs) promote mismapping because there
are multiple occurrences of similar sequences across the
genome. In autopolyploids, whole genome duplication
produces duplicate loci between subgenomes that are
indistinguishable immediately after duplication, whereas
in allopolyploids, loci of common ancestry are brought
back together by hybridization. Both diploids and
polyploids contain repeat‐dense regions and CNVs
caused by small‐scale duplications and retrotransposons
(Brandt et al., 2015). As a result, reads may have equal
similarities to multiple positions in the reference genome,
causing reads to map equally to multiple loci (i.e.,
multiply mapping reads) or improperly align to a closely
related locus (Li et al., 2008). The extent of error in read
mapping due to these redundant genomic features is
dependent on the divergence among the loci of common
ancestry (i.e., homologous loci), the age of the poly-
ploidization event, the divergence between parental
genomes, the mutation rate, and the strength of selection
on a given locus. Given these factors, read mapping will
be most challenging where loci of common ancestry have
not accumulated mutations, such as immediately after
whole genome duplication or in genes under purifying
selection. Additionally, read mapping may be challenging
in recently formed polyploids if purifying selection is

F IGURE 1 A standard variant calling pipeline (blue) can be adapted for polyploid systems (modifications in green). (A) Before beginning variant
calling, raw sequence data may need trimming to remove adapters and low‐quality bases. An effort should be made to determine the ploidy and
chromosome inheritance mode of the sequenced genotypes, as this information will be incorporated later in the pipeline. Multiple approaches can be used to
determine ploidy and inheritance mode depending on the researcher's skill set. (B) Reads are mapped to the reference genome using an aligner. Binary
alignment maps (BAMs) are output from the aligners and processed by adding read groups, removing duplicate reads, and then sorting. Sequencing and
alignment quality are assessed so low‐quality samples may be identified and removed before variant calling. Samples should be split by ploidy and regions by
inheritance mode, if necessary, at this stage. (C) Variants are called and then (D) genotype likelihoods and genotypes are estimated. Variant calling and
genotyping are often completed using the same software but can be run separately. Genotype calling can be skipped if genotype likelihoods will be used
downstream. A variant call file (VCF) is output if invariant sites are discarded; otherwise, the output is a genomic variant call file (GVCF). (E) Variants are
filtered first by removing low‐quality sites (i.e., hard filtering). Then, variants are filtered to prioritize variants specific to downstream analyses (i.e., soft
filtering). A more detailed description of the standard pipeline, including useful polyploid aligners and genotype calling software, is provided in
Appendix S1.
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relaxed across the genome post‐polyploidization, allow-
ing rapid TE expansion (McClintock, 1984).

If the errors in read mapping discussed here are not
resolved, failed alignment of reads may lead to the
undercalling of variants, overestimation of homozygosity,
and underestimation of alternative allele frequencies. The
mismapping of reads further exacerbates these issues in
addition to creating false variants, which could create false
signals of allele sharing and alter patterns of genome‐wide
heterozygosity. This can significantly increase downstream
errors in the estimation of population divergence, gene flow,
genome‐wide diversity, and identification of causal variants
in genome‐wide association studies and selection scans.

Incomplete or misassembled polyploid
reference genomes increase genotyping error

Undetected errors in the assembly of polyploid genomes
create genotyping errors similar to homologous loci and
SVs. For instance, chimeric subgenome assemblies, in
which scaffolds from one subgenome are misassembled
into another subgenome, cause reads to fail to map at
misassembled scaffold junctions. This leads to genotyping
errors at scaffold junctions and incorrect variant positions
that impact analyses using linkage information, such as
genome scan approaches and estimating runs of homo-
zygosity. In an incomplete reference genome, reads
belonging to missing regions will either not align or map
to homologous loci (Figure 2). Reads that successfully map
to a homolog are likely to be biased toward the reference
allele. However, if reads with the alternative allele do align
to a homolog, false heterozygotes may be called (Figure 2).
Comprehensively addressing the challenge of poor read

mapping caused by low reference genome quality will
require continued improvement of the reference genome.
As comprehensive reviews on genome assembly are
available elsewhere (Zhang et al., 2019; Zhou et al., 2022;
Gladman et al., 2023), I will discuss practical solutions
to mitigate these issues and enhance the accuracy of
genotyping when using existing genome assemblies (see
“Proposed solutions to incorporate polyploid complexity
in variant calling”).

Allele dosage cannot be determined if ploidy
and inheritance mode are unknown

Determining the allele dosage (i.e., the number of reference
and alternate alleles present at each sequenced site for a
given individual) is imperative for accurate genotyping. In
diploids, the reference genome is ideally phased, meaning
the maternal and paternal copy of each chromosome is
assembled so each chromosome in the assembly has two
“haplotypes” (Gladman et al., 2023). All reads are aligned to
only one of the two haplotypes and, as a result, the possible
genotype values at a site are 0, 1, and 2, corresponding to the
number of alternate alleles. The range of potential genotypes
for a polyploid is less clear as there are multiple factors to
consider: ploidy level, chromosome inheritance mode, and
the reference genome quality. This is because autopolyploids
and allopolyploids have distinct reference genome structures
(Kihara and Ono, 1926; Kyriakidou et al., 2018; Zhang
et al., 2019). Ideally, autopolyploid assemblies are phased so
all copies (i.e., haplotypes) of the genome are assembled.
Assuming the autopolyploid has no preferential pairing
among chromosomes (i.e., complete polysomic inheritance),
all reads should be aligned to only one haplotype, similar to

F IGURE 2 A syntenic block between subgenome A and subgenome B in an allotetraploid is depicted. This region in subgenome A contains three genes
(light gray) while subgenome B (dark gray) contains two. The genes contain one or two segregating sites, with alleles depicted as yellow, pink, and blue. The
assembly of subgenome A is incomplete, missing the farthest right gene (dashed line). Reads that should have aligned to the missing gene (red reads) instead
may (I) align to a homolog in subgenome B resulting in a false heterozygote call, (II) map equally to other homologs within or across subgenomes, or (III)
fail to align. This figure was created with BioRender.com.
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diploids, and the maximum allele dosage would be equal to
the ploidy (Figure 3B). In allopolyploids, the paternal and
maternal haplotypes of each ancestral subgenome are
assembled and reads are aligned to one haplotype of each
subgenome simultaneously (Figure 3A). Here, the maxi-
mum allele dosage would be the ploidy divided by the
number of subgenomes. As an example, consider the
allotetraploid switchgrass (Panicum virgatum L.) reference
genome, which contains two phased subgenomes (Napier
et al., 2022). Switchgrass is a mixed‐ploidy species composed
of tetraploids (2n = 4x) and octoploids (2n = 8x). As both
subgenomes were successfully assembled, Napier et al.
(2022) concurrently aligned reads to one haplotype of each
subgenome and called genotypes for the tetraploid and
octoploid samples as diploid (0, 1, 2) and tetraploid (0, 1, 2,
3, 4) genotype values, respectively. If the switchgrass
reference genome was not phased, the ploidy of each sample
was unknown, or if it was unclear whether the species is
allo‐ or autopolyploid, the correct allele dosage could not be
determined. Unknown or incorrect allele dosage can result
in the misestimation of allele frequencies and heterozygosity,
similar to co‐dominant markers like amplified fragment
length polymorphisms (Dufresne et al., 2014).

Existing tools cannot account for further
biological complexity

The reach of polyploid population and quantitative genetics
is limited by further biological complexities. Commonly,

populations may be mixed ploidy, meaning they contain
genotypes of varying ploidy levels (Kolář et al., 2017).
Additionally, inheritance mode may vary along the genome
(Allendorf et al., 2015). Variance in inheritance mode
occurs because it is likely that all homologs pair together
following whole genome duplication, and thus experience
polysomic inheritance. However, over time, sequence
divergence among homologous chromosomes may lead to
preferential pairing and allow the return of disomic
inheritance in some regions of the genome (Allendorf
et al., 2015). In addition to mixed ploidy and inheritance
mode, polyploid species may have multiple origins
(Holloway et al., 2006; Soltis et al., 2009) and often
hybridize (Alix et al., 2017), which makes population and
quantitative genetics challenging. It is difficult to develop a
variant calling pipeline that considers this complexity in a
meaningful way while also producing genotypes that can be
used in existing downstream tools. For example, existing
software packages that estimate genotypes for mixed‐ploidy
populations require separate estimations for each ploidy
(Blischak et al., 2018; Gerard et al., 2018; Clark et al., 2019;
Van der Auwera and O'Connor, 2020; Cooke et al., 2021).
In multi‐sample variant calling, which incorporates infor-
mation from multiple samples to improve genotype
estimates, the separation of samples by ploidy reduces
the utility and power of this approach (Liu et al., 2013). The
mismapping of reads further exacerbates these issues in
addition to creating false variants, which could create false
signals of allele sharing and alter patterns of genome‐wide
heterozygosity. Alternative approaches, such as estimating

F IGURE 3 Read mapping and the called allele dosage in allo‐ and autopolyploids differ due to the structure of the reference genome. Reads (gray) are
shown aligning the reference genome (black), with alleles for the focal variant in pink or yellow. (A) In an allotetraploid with two subgenomes (subgenome K
in light gray and subgenome N in dark gray), reads are mapped to one haplotype of each parental subgenome, and diploid genotypes are called. (B) In an
autotetraploid with no preferential pairing, all reads are mapped to a single haplotype. Here, reads are aligned to a haplotype carrying the yellow A allele at
the focal variant.
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genotypes at the same allele dosage for all cytotypes, will
result in underestimating heterozygous genotypes for higher
ploidy levels and inaccurate allele frequency estimations.

PROPOSED SOLUTIONS TO
INCORPORATE POLYPLOID
COMPLEXITY IN VARIANT CALLING

Balancing sequencing depth and precision may
reduce sequencing costs

Careful experimental design, consideration of downstream
analysis, and alternative genotyping approaches can be
leveraged to reduce the cost of working with polyploid
WGS data. Although a certain level of sequencing coverage is
required to overcome allelic dosage uncertainty, high
sequencing depth is not required for all analyses. Jighly
(2022) argues that sequencing depth should be selected
depending on the research question and analysis plan, in
conjunction with the ploidy level, as sequencing depth has
diminishing returns. Analyses that require the detection of
low‐frequency and rare variants, such as inferring novel
alleles, will require a higher sequencing depth. In contrast,
studies examining population structure and differentiation,
which rely on common alleles to differentiate groups, may
accommodate a lower sequencing depth. Therefore, consider-
ing the research question and analysis plan when determining
the target coverage will prevent over‐sequencing and extend
the available budget.

The increased allele dosage uncertainty that results from
low sequencing depth (<10×) can be partially mitigated by
using genotype likelihoods (GLs) or continuous genotypes in
place of categorical genotypes. A GL is the probability of the
observed sequencing data (i.e., the sequenced reads) at a site
in the genome given the possible genotypes. GLs can be
directly used in some software or they can be used to infer
genotypes. Polyploid‐capable software such as GATK, EBG,
Updog, and polyRAD (Blischak et al., 2018; Gerard et al., 2018;
Clark et al., 2019; Van der Auwera and O'Connor, 2020) infer
categorical genotypes from GLs. Updog and polyRAD can
also estimate continuous genotypes, which are continuous
values of the likely allele count (Gerard et al., 2018; Clark
et al., 2019; Njuguna et al., 2023). The combination of low‐
coverage data and GLs or continuous genotypes is becoming
increasingly popular in large‐scale studies due to its
affordability (Korneliussen et al., 2014; Grandke et al., 2016;
Batista et al., 2022). Furthermore, GLs and continuous
genotypes reduce allelic dosage uncertainty by incorporating
genotyping certainty and may be beneficial in moderate or
high‐coverage sequence data. These alternative genotypes
have been shown to provide more accurate estimates than
categorical genotypes in numerous population and quantita-
tive genetics analyses (Korneliussen et al., 2014; Grandke
et al., 2016; Shastry et al., 2021; Gerard, 2021b; Batista
et al., 2022; Rasmussen et al., 2024). Continuous genotypes
can be easily integrated into existing software, whereas

software for downstream population and quantitative genetic
analysis using polyploid GLs is still limited.

Alternative read alignment approaches,
genotype callers, and variant filters may reduce
errors caused by poor read mapping

Several strategies can be applied to reduce read mapping
errors caused by homology, high polymorphism, or low
reference genome quality throughout the variant calling
pipeline. First, alternative alignment approaches could be
applied to improve read mapping and assignment to
subgenomes. For example, iterative read mapping is a
promising strategy. Here, all reads are mapped to the
reference genome, but only reads that map to exactly one
place in the genome (i.e., uniquely mapped reads) are
retained. Then, a pseudo‐reference genome is generated by
replacing variable sites with the alternate alleles from the
uniquely mapping reads, the reads are re‐mapped to
the pseudo‐reference genome, and, again, only uniquely
mapped reads are retained (Rozowsky et al., 2011; Xu
et al., 2020). When applied to maize whole‐genome bisulfite
sequencing data to reduce mapping bias, this approach was
found to increase the detection of methylated cytosines by
5% (Xu et al., 2020). Alternatively, the software WASP alters
the mapped reads, instead of the reference genome, to have
the opposite allele. The altered reads are remapped and only
kept if they map in the same location (van de Geijn
et al., 2015). Both iterative read mapping approaches are
particularly useful for reducing the number of multiply
mapping reads and reducing false heterozygotes. Other
alternative read mapping solutions have been developed
specifically to identify subgenome differences in allopoly-
ploids by either comparing polymorphisms to modern
diploid progenitors (Mithani et al., 2013; Page et al., 2013;
Peralta et al., 2013; Khan et al., 2016) or competitively
mapping reads between subgenomes (Page and Udall, 2015).
The former approach requires knowledge of the diploid
progenitors and the latter approach has limited benefits if
both subgenomes of the allopolyploid are assembled. As a
result, iterative read mapping is currently the most
promising solution for improving read mapping.

Second, a genotype caller that considers allele bias and
read mapping errors could be used in addition to iterative
read mapping to reduce the extent of false heterozygous or
homozygous calls. The popular polyploid genotype caller
Updog estimates the degree of allele bias simultaneously
with genotype estimation (Gerard et al., 2018). No other
polyploid genotype callers, to my knowledge, account for
allele bias. Emerging solutions to reducing genotyping error
from poor read mapping include the modification of variant
calling algorithms developed for CNVs (Layer et al., 2014;
Prodanov and Bansal, 2022) or ancient DNA (Günther and
Nettelblad, 2019). For example, the ancient DNA software
snpAD (Prüfer, 2018) iteratively estimates genotype proba-
bilities and r (i.e., the frequency at which the sequences are
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sampled from the reference allele at heterozygous sites) to
account for reference bias. Although snpAD is not currently
able to estimate polyploid GLs, algorithms such as this have
the potential to improve uncertainty in polyploid genotyp-
ing caused by poor read mapping.

Third, variant filters may be applied to exclude any
remaining false‐positive variants and genotyping errors
caused by mismapped reads. Filters that have been used for
this purpose discriminate variants by mapping quality,
maximum coverage, and local linkage disequilibrium
(Figure 1E). I will briefly review these filters. To begin,
mapping quality is a commonly applied “hard” filter
(Appendix S1) and is estimated as the Phred‐scaled
probability a read is aligned to the wrong position. It is
determined by the number of mismatches in the alignment
while considering the quality of all other possible align-
ments (Li et al., 2008). Reads that map equally to multiple
homologs (i.e., multiply mapping reads; Figure 2) will have
a mapping quality of zero and be removed in standard
variant filtering pipelines. Typically, a mapping quality filter
is applied to remove reads below a quality of 10 to 40 (Van
der Auwera et al., 2013; Korneliussen et al., 2014; Puritz
et al., 2014), which is equivalent to removing sites with
greater than 0.01–10% probability of alignment error.

The exclusion of mismapped reads could also be
accomplished using a maximum coverage filter. If reads
improperly map to a given site, the site would have higher
coverage than expected given the average genome‐wide
coverage (Figure 2). Applying this logic, maximum depth
filters are commonly used to exclude false heterozygotes in
repetitive regions of the genome (Li, 2014), but these are
generally set too high to exclude reads mismapping in non‐
repetitive regions. In polyploid systems, this approach has
been adopted to set a low per‐site maximum depth
threshold using models of expected read depth (Bohutínská
et al., 2021; Korani et al., 2021; Phillips et al., 2023; Yu
et al., 2023), although the efficacy of this filter and the best
read depth model has not been determined.

A promising novel approach to exclude false‐positive
variants is to leverage the expectation that two true
neighboring variants may have correlated allele frequencies
within a population, known as local linkage disequilibrium
(LD) (Bukowski et al., 2018). Variants in low LD with nearby
variants would be excluded. This approach may also be useful
in resolving the alignment of multiply mapping reads by
measuring local LD at each site the read is aligned to determine
the most likely position, although this is likely computationally
time consuming and is yet to be tested in diploids or
polyploids. LD estimates are biased by genotype uncertainty,
which is exaggerated in polyploid genotypes, but this can be
remedied with the recently developed R package ldsep that
provides computationally efficient methods to estimate LD
from diploid and polyploid GLs (Gerard, 2021a, b).

Other variant filters, such as the removal of loci with
excess heterozygosity or departure from Hardy–Weinberg
equilibrium (HWE), have also been explored for removing
false‐positive variants. If the mismapped reads carry the

alternate allele, these filters may be able to remove false
heterozygous sites (Keller et al., 2013; McKinney et al., 2017;
Ahrens et al., 2020; Clark et al., 2022; Bohutínská et al., 2023).
Researchers should exercise caution in applying filters that
assume populations are at HWE because many biological
factors, such as a non‐panmictic population structure,
small population sizes, and genetic drift, cause deviations
from HWE (Pearman et al., 2022). Polyploidy itself deviates
from diploid HWE; therefore, the methods developed in
Gerard (2022b) and Gerard (2023) should be used to
properly account for unknown rates of double reduction
(Gerard, 2022a).

Information on ploidy, chromosome
inheritance mode, and reference quality can be
integrated to determine allele dosage

Investment in the determination of ploidy level and
inheritance mode of the reference genotype and sequenced
genotypes towards the beginning of an experiment,
although potentially time intensive, is strongly recom-
mended to identify the correct allele dosage. Traditionally,
ploidy and inheritance mode have been determined using
chromosome squashes (Goldblatt and Lowry, 2011), flow
cytometry (Bennett and Leitch, 2011; Pellicer and
Leitch, 2020), and fluorescence in situ hybridization (FISH),
in which fluorescent probes are used to label specific DNA
sequences to identify and track chromosome pairings
(Szadkowski et al., 2010; Chester et al., 2013; Parra‐Nunez
et al., 2020). Unfortunately, these approaches are time
intensive, require specialized equipment, and are an
uncommon skill set. With the advent of next‐generation
sequencing, there has been a large research effort to
determine ploidy from allele frequency distributions
(Margarido and Heckerman, 2015; Augusto Corrêa Dos
Santos et al., 2017; Weiß et al., 2018; Ranallo‐Benavidez
et al., 2020; Soraggi et al., 2022; Sun et al., 2023; Viruel
et al., 2023; Gaynor et al., 2024). Sequence‐based approaches
are also being explored for determining inheritance mode.
One approach proposed by Scott et al. (2023) compares
estimated allelic depth distributions to those expected under
disomic and tetrasomic inheritance, although this approach
is sensitive to demography. Other approaches include
leveraging divergence among genes duplicated during whole
genome duplication to detect windows of disomic or
tetrasomic inheritance along the genome (Campbell
et al., 2019; Scott et al., 2023) and the joint inference of
inheritance mode and demography (Blischak et al., 2023;
Roux et al., 2023) or genotypes (discussed below, under
“Current accepted practices for navigating polyploid data
with additional biological complexity”; Gerard et al., 2018;
Clark et al., 2019). Sequence‐based approaches are excep-
tionally promising for determining ploidy and inheritance
mode in systems where flow cytometry and FISH are
especially difficult or impossible, such as succulents and
herbarium samples.
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In cases where allele dosage cannot be determined
because the ploidy and inheritance mode of the reference
genotype are unknown, the reference scaffolds could be
filtered to only one copy of syntenic scaffolds for read
mapping. If the scaffolds can be assigned into subgenomes,
such as in an allopolyploid, scaffolds would be filtered
within each subgenome. This strategy is applied in many
systems with contig assemblies (Hellsten et al., 2013; Neale
et al., 2022; Phillips et al., 2023). The risk of aligning to only
a subset of scaffolds is that a large proportion of reads may
not align and variants could be underdetected.

Current accepted practices for navigating
polyploid data with additional biological
complexity

Existing tools are limited in their ability to incorporate
complexity such as mixed ploidy and inheritance mode, but
variant calling pipelines have the potential to accommodate
this additional axis of diversity in several ways. For data sets
with mixed ploidy, the current best practice is to call
genotypes separately for each cytotype, if using a joint
genotyping approach (Napier et al., 2022; Bohutínská
et al., 2023; De Luca et al., 2023). In cases where the
secondary cytotype is rare or undersampled, it is advisable
to exclude the minority cytotypes from the study
because variability in downstream analyses attributable to
cytotype differences may not be detectable with small
sample sizes. If multiple cytotypes are included in the study,
it should be noted that polyploid genotypes have inherently
different expected variations in allele frequencies, which can
significantly impact downstream analyses (Faske, 2023).
Similar to mixed‐ploidy analyses, allele dosage should be
specified per‐site in species with mixed inheritance modes.
If the regions of the genome with polysomic inheritance are
known, the per‐site specification can be accomplished with
any polyploid genotype caller, although this has rarely been
applied outside of the salmonids (Campbell et al., 2019).
Alternatively, if polysomic regions are known, sites could be
filtered to include only disomic or polysomic regions
(Bourret et al., 2013). In the majority of cases, the rate of
preferential pairing or the regions undergoing polysomic
inheritance will be unknown. Here, the genotype calling
software Updog (Gerard et al., 2018) and polyRAD (Clark
et al., 2019) may be useful as their approaches determine
inheritance mode during genotype estimation. Updog
accomplishes this by simultaneously estimating genotypes
and the rate of preferential pairing in a population,
assuming bivalent pairing only. Comparatively, polyRAD
determines inheritance mode by estimating genotypes for all
possible user‐specified genotypes and then uses a χ2 statistic
to determine the best genotype at each site. The polyRAD
approach is particularly useful as it allows both ploidy and
inheritance mode to vary among genotypes. There is no
current best practice for mixed inheritance mode among
these approaches, but they should be considered as even low

rates of polysomic inheritance can affect allele frequencies
across subgenomes (Meirmans and Van Tienderen, 2013).
Consequently, careful consideration is required when
analyzing populations with biological complexity beyond
polyploidy.

CONCLUSIONS

Complex polyploid biology may produce errors in read
mapping, variant calling, and genotyping. The extent of
error often depends on the quality of the reference genome
and biological reasons such as the age of the polyploidiza-
tion event, extent of fractionation, divergence between
parental genomes, and strength of selection at a given locus.
Therefore, bioinformatic solutions can be selectively applied
to resolve sources of error prevalent in a given polyploid
system. In Figure 1, I summarize where existing solutions
can be integrated into a standard variant calling pipeline.
The study of polyploid genomes is a rapidly developing field
and, as such, there may be additional solutions in active
development.

Further improvements to variant calling in polyploids will
require focused research in three primary areas: evaluation of
variant filters, development of downstream software that
incorporates genotype uncertainty, and high‐throughput
estimation of ploidy and inheritance mode. First, empirical
studies evaluating the efficacy of variant filters are needed to
understand when their application is appropriate and which
thresholds are effective. It is equally as important to set a
threshold that excludes low‐quality variants while also not
over‐filtering the data, as variant classes that are important in
downstream analyses may be unintentionally excluded (Linck
and Battey, 2019; Pearman et al., 2022). Second, continued
development of population and quantitative genetics software
that utilize GLs is needed (Korneliussen et al., 2014; Grandke
et al., 2016; Shastry et al., 2021; Gerard, 2021b; Batista
et al., 2022; Rasmussen et al., 2024). The adoption of GLs to
reduce sequencing costs is likely to be limited until more
user‐friendly software becomes available. Theory and tools
are also lacking for the analysis of mixed‐ploidy and mixed‐
inheritance mode data sets. Third, continued development of
methods for high‐throughput estimation of ploidy and
inheritance mode is greatly needed. While there has been
substantial development in this area (see under “Information
on ploidy, chromosome inheritance mode, and reference
quality can be integrated to determine allele dosage”), the
majority of approaches still require ample ground truthing
(Gaynor et al., 2024).

Emerging technologies may have the potential to improve
variant detection. Long‐read sequencing data overcome many
read mapping challenges as the extended read length
increases the information available to determine the best
alignment (Chen et al., 2024). Similar to short‐read sequenc-
ing, long‐read sequencing is increasingly cost‐effective and
accurate (De Coster et al., 2021; Kim et al., 2024). Addition-
ally, pangenomic approaches, such as haplotype graphs and
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sequence variation groups, have recently been applied in
polyploid systems to detect a diversity of SVs as well as
multiallelic sites (Gordon et al., 2020; Bayer et al., 2021; Della
Coletta et al., 2021; Lovell et al., 2021; Wang et al., 2022). The
adoption of the variant calling practices reviewed here,
continued investment in the assembly of polyploid reference
genomes, and early adoption of novel genomic tools will
enhance contemporary population and quantitative genetics
studies in polyploids.
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SUPPORTING INFORMATION
Additional supporting information can be found online in
the Supporting Information section at the end of this article.

Appendix S1. A brief overview of variant calling.
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