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Joint Power Management and Adaptive Modulation
and Coding for Wireless Communications Systems
With Unreliable Buffering Memories

Muhammad S. Khairy, Member, IEEE, Amin Khajeh, Member, IEEE, Ahmed M. Eltawil, Member, IEEE, and
Fadi J. Kurdahi, Fellow, I[EEE

Abstract—To guard against process variability in advanced
semiconductor nodes, especially for high-density memories, de-
signers resort to overdesigning policies resulting in increased
power consumption. A promising approach to save power is
to utilize Voltage over-Scaling (VoS). However VoS results into
unreliable buffering memories where a predictable statistically
amount of errors are introduced to memories. The goal is to trade
off channel dependent SNR slack versus hardware induced errors,
to achieve predetermined quality metrics, at reduced power con-
sumption. By design, modern communication systems attempt to
minimize channel-dependent SNR slack via adaptive modulation
and coding (AMC) schemes, thus reducing the gains of on-chip
power management. This paper investigates the interaction be-
tween on-chip power management via VoS on embedded memories
versus network based AMC techniques. A novel mathematical
approach that analytically describes the system packet error rate
(PER) performance under the VoS induced noise is presented.
Based on this model, different AMC and power management
algorithms are presented that utilize the received SNR estimates
to find the best AMC mode and memory voltage that achieves
performance goals at reduced power consumption. Simulation
results show that the proposed algorithms can achieve up to
58% energy efficiency for the memory-subsystems compared to
conventional AMC algorithm with perfect memories.

Index Terms—Adaptive modulation and coding, dynamic power
management, embedded memories, energy efficient systems, low
power, voltage over scaling.

I. INTRODUCTION

DVANCES IN scaling CMOS components facilitated the

integration of large embedded buffering memories into
system on chip (SoC). Furthermore, the trend to integrate as
many processing layers as possible on one SoC led to an ex-
plosion in embedded storage capacity as reported by the Inter-
national Technology Roadmap for Semiconductors (ITRS) re-
port [1]. With the growing share of emebedded memories in
terms of both area and power metrics, managing their power
consumption will have a direct and significant impact on the
overall efficiency of the system. However, system designers tra-
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ditionally refrain from applying conventional power manage-
ment schemes to embedded memory due to the inherent suscep-
tibility to noise and the possibility of introducing errors to the
data flow. In other words, designers are forced to treat memo-
ries differently than logic and usually provide a separate higher
(than logic) voltage rail. While maintaining perfectly functional
memories under all anticipated operating conditions, was both
acceptable and achievable in older technologies, it is now be-
coming excessively difficult and expensive due to process vari-
ations which lead to excessive design margining.

Recently, aggressive voltage over scaling (VoS) [2]-[4] has
been proposed as an effective technique to significantly reduce
both the dynamic and leakage components of power con-
sumption for buffering memories, and thus achieving energy
efficient systems [5], [6]. However, reducing the supply voltage
of buffering memories via VoS results in spatially uniform
random errors [7]-[9]. The amount and rate of these errors
are controlled by the reduction of the supply voltage. Thus,
when the wireless receiver experiences a high signal to noise
(SNR) channel, a power management unit can trade off hard-
ware errors (noise) versus channel SNR, to minimize power
consumption [10], [11]. On the other hand, in most current
wireless communication systems such as LTE and 802.11ac,
adaptive modulation and coding (AMC) is employed in which
the suitable channel code and modulation are chosen based on
the channel conditions to maximize the system throughput [12],
[13] and minimize SNR slack. Thus both loops are competing
for the same resource, namely SNR slack. The outer loop
(AMC loop) utilizes SNR slack to increase throughput, while
the inner loop (on-chip power management) utilizes slack to
reduce power.

This paper presents novel algorithms that jointly handle the
selection of the AMC modes and the on-chip power manage-
ment of VoS buffering memories. The statistical correlation of
the Rayleigh fading channel is exploited to model the system
as a Markov decision process (MDP) with the objective of
finding the appropriate AMC mode and suitable supply voltage
for the buffering memories such that the required packet error
rate (PER) performance is guaranteed, while maximizing the
power savings. To achieve these goals, 1) an equivalent model
of a VoS memory (composed of an error-free memory followed
by a statistical additive error injector) is utilized to develop a
mathematical model that combines the channel noise and the
buffering memory errors into an equivalent error distribution;
2) The proposed framework is used to analytically model the
PER of the system with the VoS memory for the different mod-
ulation and coding modes and all VoS levels of the buffering
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memory; 3) Three novel power management techniques that
control the supply voltage of the buffering memory and the
selection of the AMC mode based on the proposed framework
are presented.

Some relevant work in literature [14], [15] considered energy
efficient multimedia wireless communications. However, the
adopted power management is a system level power man-
agement which employs either simple on/off management for
blocks or applying dynamic voltage and frequency scaling
(DVFS) to a processor unit. To the authors’ knowledge, this
work is the first to jointly address embedded memory VoS
reliability versus network level AMC selection to enable higher
energy efficiency.

The remainder of the paper is organized as follows: Section 11
illustrates the system model where a mathematical formula of
the system performance in terms of bit error rate (BER) and
packet error rate (PER) under VoS buffering memories are de-
rived. The problem formulation and the proposed power man-
agement policies are presented in Section III and the simulation
results are discussed in Section IV. Discussions and comparison
of the performance of the proposed algorithms are presented in
Section V. Finally, conclusions are drawn in Section VI.

Fig. 1. System block diagram.

II. SYSTEM MODEL

A typical OFDM system is shown in Fig. 1 in which a large
buffering memory is used to buffer several OFDM symbols. The
wireless channel is assumed to be Rayleigh fading and is mod-
eled as a finite state Markov channel (FSMC). At the receiver
side, a power manager tracks the received SNR to opportunis-
tically reduce the power consumption of the system by aggres-
sively scaling down the supply voltage of the buffering memory
when the receiver experiences a high SNR channel. Meanwhile
based on the channel conditions, the AMC unit will select an ap-
propriate channel code and modulation scheme and feed it back
to the transmitter.

A. FSMC for the Wireless Fading Channel

The received signal in a rich multipath wireless fading
channel is commonly modeled as a Rayleigh distribution.
For such Rayleigh channel with slow variation, finite state
Markov channel (FSMC) is a very useful and popular model
that considers the correlation of the fading between the
channel samples [16], [17]. In FSMC, the range of the channel
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MEMORY ERROR RATES AND POWER SAVINGS FOR DIFFERENT VOS LEVELS
Memory Voltage 1.00 v 085V 075V 065V
)
Memory Power
Consumption 100% 78% 62% 48%
PMem(vj)
P.(v) 1.69x 10715 " | 512x10712 | 18x107® | 2.7x 1073

" extrapolated

signal-to-noise (SNR) is portioned into K non-overlapping
intervals denoted by [['x['s41), & = 0,1,..., K — 1, where
F[) = 0,F]{+1 = oo0. Let H = {H(],Hl .. ‘HKfl} denote
the state space of the FSMC, then the channel is said to be in
state H}, if the received SNR is in the interval [['xI'y41). The
channel SNR is assumed to be the same for the whole packet
duration, but it varies from one packet to another based on a
time-correlated process. The received SNR has an exponential
distribution as described in (1) where ¥ represents the average
received SNR. In this work, data aided (DA) techniques based
on the known preamble samples are used to estimate the CSI
and hence the SNR [18]-[20].

1 _
P(y) = gef”//w >0 (1

B. Unreliable Embedded Buffering Memory

The buffering memory state is defined by the value of its
supply voltage. We define V = {v1,vs,...,v,} as the set of
memory states, where n represents the number of different
states of the memory or equivalently the number of the different
supply voltages. In our model, we assumed that the memory
can operate at four different distinct voltages. Accordingly,
the memory has four different states corresponding to the four
values of the supply voltage. Embedded buffering memories
under supply voltage scaling introduce errors in the stored
words in the form of spatially random uniform bit flips. The
rate of these bit flips P,(Vz4)is characterized by the memory
supply voltage [8]. Table I shows the buffering memory voltage
states, the corresponding error rate in the memory and the
normalized power consumption based on 6T SRAM in 65 nm
process technology [21].

An equivalent model of the faulty memory is shown in
Fig. 2, where the faulty memory is replaced by an ideal
error-free memory followed by a virtual error injector. Hence,



2458

0.45.
X Faulty Y
. — > o 04
—»| Buffering H
Memory gn.as
§ 0.3
frd
$ 0.25
2
E 0.2
z:; 0.15
X Faulty A Y 2.
—»{ Buffering 5
Memory MIL048
. [T TN
% s - I T
error Error Magnitude

Fig. 2. Equivalent model of faulty buffering memory.

the word ¥ read from memory could be expressed as a function
of the stored word X as:

Y = X + err(FP.(v;)) )

We assume that data is stored in memory as standard two’s
complement binary numbers which are composed of N bits,
with d and 7 representing the decimal and fractional parts of the
word respectively, such that N = d + r bits. Since the bit flips
are spatially independent, a retrieved data word from memory
could be either error free or erroneous, as shown in (3).

{ 0, No bit flip
CIT =
Ck,

k bit flips (1 < k < N)
In case of one bit flip at any bit location 2 where 0 < 7 <
N — 1, the magnitude of the error e; could be expressed as

)

e =427, 0<i<N-1 4)

In the case of two simultaneous bit flips, the error magnitude
e is similarly expressed as

ey = +(27T 42077 5)

where 0 <: < N -1;:4+1<j3< N -1
In general, the error magnitude e;due to & simultaneous bit
flips is given by
e = (207" £207 £ £ 207 £ 90T (6)

where0 <¢: < N—-1;¢+1 <3< N—-1;...;g+41 <I<N-1

Hence, assuming that each bit has equal probability of being
one or zero, the probability of having Asimultaneously bit flips
resulting into error magnitudeey, is given by:

Ple) = e Po) (1= P )

By assuming a 1% error rate or less, and ignoring high order
bit flips (more than 1 flip per word), the error probability mass
function (PMF) could be approximated as follows:

(1- P.(o)™ |
1 N
SP(0) (1= Pelo)™ e =ey

err =0

®)

S (err) =

This approximation is even more valid for more aggressive
memory error rates of 10% or less, since the contribution of
higher order bit flips to the error PMF is extremely small. For
example, the probability to have 2 or more bits flip under 10%
memory error rate is less than 0.13% which is extremely small
and can be ignored.
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Because of the symmetry of the error distribution around
zero, it has a zero mean, while the variance is expressed as:

o2(v;) = Z err? X fep(err) 9)

Using the approximate distribution of the error given in (8), the
variance could be written as:

0'3(7)‘1‘) = Z (3% Pe('Uj) (1 _ PE(Y)J-))N*l

2

(10)

oV (1— Plu¥-1 N1
ol(v;) = Felog) 1 2Pe(l")) x > (27T (1)
i=0
Finally,
N N W1
o2(v;) = (4% = 1) x P(v) (1 — Pe(v;)) (12)

(4—1) x 22 +1

C. Error Propagation Through the FFT Stage

Fast Fourier transform (FFT) is a fundamental block in all or-
thogonal frequency division multiplexing (OFDM) based sys-
tems. Based on the equivalent model of VoS memories pre-
sented in the previous subsection, the erroneous retrieved data
from the memory is expressed as the sum of the original data
plus the error as in (2). Since the FFT is a linear operation, the
output of the FFT could be expressed as:

FFT(x + err) = FFT(z) + FFT(err) (13)

Then, the error after the FFT is expressed as:

1 Nrpr—1

vV NFFT

2akn )

(e (k) + jes(k))e  Fows

(14)

Based on the central limit theory [22], the addition of a
large number of random variables, approaches an asymptotic
Gaussian distribution. Therefore, the distribution of the error
after the FFT can be modeled as a Gaussian. In [23], a detailed
derivation of the mean and variance of the resulting Gaussian
distribution has been proposed. Based on the fact that the
error distribution before the FFT has zero mean, the real and
imaginary parts of the error after the FFT are approximated as
Gaussian with mean and variance as shown in (15) [23].

E,vrr ~ N (OaUZ(‘Uj)) Eivrr ~ N (0702(11]'))

FTT(err) =
k=0

(15)

D. Equivalent Gaussian (Channel Noise and Memory Error)

The received signal for subcarrier k£ in a Rayleigh fading
channel is expressed as:

(16)

where 7. is the complex Gaussian noise of zero mean and vari-
ance azy and E'ppT 1 1s the complex memory error after the FFT
which is approximated as a complex Gaussian of zero mean and

variance o2 = 20%(v;). Since the channel Gaussian noise and

2 =
the Gaussian memory errors are independent, we can combine
them into an equivalent Gaussian iy, = ng + Erpr i of zero

mean and variance Errr 4 given by:

ye = hesy + ne + Errr e

o?(v)) = 0% + 2(1;)

(17)
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E. Least Square Equalization (Zero Forcing)

Based on the combined equivalent noise (7iz), the received
signal for each subcarrier after the FFT can be expressed as:

(18)

Any channel equalization technique such as ZF or MMSE
equalizer can be used within the framework of the proposed
powermanagementalgorithm to populate look-up tables. The ob-
jective is to find the impact of voltage scaling on the system BER
performance either in a derived closed form or numerically based
on simulations. Least square equalizer is used in this section to
derive a closed-formula of BER for different voltage levels. The
same analysis presented here can be extended to other equaliza-
tion methods such as the MMSE [29]. While ZF results in noise
amplification at low SNR, it achieves very close performance to
the MMSE equalizer at higher SNR, which is the region of op-
eration of the proposed algorithms. Thus assuming least squares
equalization, one can express the equalized signal . as:

Y = hesk + g

U = s + g/ ha (19)

The expression for the BER of a square MQAM with Gray
bit mapping as a function of received SNR -y and constellation
size M is expressed in (20) [24]

1 ‘ 1.5v
(20)

Hence, the average BER given the channel state H and the
buffering memory supply voltage v; can be expressed by (21).

2
BER(y, v;) = Tog, M (1 -
2

Iegs

1
BER(H,vj) = — BER(y,v;) x P(y)dy
Pr
Iy

ey

where pj, representing the steady state probability of being in a
state k is given by (22).
I

Iy D

Ply)dyv=e¢ 7 —e 77

Pr = (22)

Iy
Therefore, based on the BER expression in (20) and the expo-
nential distribution of the channel SNR in (1), the average BER
in (21) could be derived in a similar way to [17] and can be ex-
pressed as

BER(Hp, v,) = 15— J4+1 (23)

Pk
where

Iy
fr = an x crfe ( /b

Yo erfe 'VoFk
o /by + Yo o2 /brr + Yo

2 (LY, 15
T g, M ) M T M

x e TR/

—ay

and
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F. Relationship Between Decoder Output PER and
Decoder-Input Uncoded BER

The mapping between the decoder output PER and decoder-
input BER depends mainly on the coding rate [25]. Consid-
ering rate (1/2) and rate (3/4) convolutional codes with a gen-
erating polynomial [131, 171], Fig. 3 shows the relationship
between the decoder-input BER and the decoder-output PER
for different modulation schemes. It is clear from the plot that
we can express the decoder-output PER as a function of de-
coder-input BER and code rate independent of the modulation
schemes without any loss of accuracy [25]. To characterize this
relationship, a curve-fitting approach is employed to obtain the
decoder output PER as a function of the decoder-input BER as
shown in (24). The coefficients a, b and ¢ depend on the coding
rate. Fig. 4 shows the close match between the curve-fitting
model and the simulation results.

(24

PER = a x crfc (%)

[

III. PROBLEM FORMULATION

A. Independent DPM and AMC

The objective of the AMC is to utilize the knowledge of the
channel state information to maximize the data rate by adapting
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Algorithm 1: Independent AMC and DPM
Inputs: Py, AMC modes, and PER (y)
Obtain SNR thresholds {I}, }¥_, to achieve the target
PER P,.
Inputs: A, Py (v), PER (v,v), {I} }}_, and AMC
modes
1. Define the MDP:
a) Define the State space S = H x V x AMC
and actions space A = 4,
b) Formulate the cost function c*(s,a) ,
se€Sanda €A
¢) Evaluate the state transition probability
2. Solve the MDP using dynamic programming (value
iteration) and store the policy actions for each state
a= n*(s) in LUT.
Inputs: {I} }¥_o, v, m°(s) and y;, v;, AMC; at time
instant i.
1. Obtain the current system state s; = (y;, v;, AMC;)
2. LUT the policy action a; = v = 1w (sy).

AMC

OFFLINE

DPM

DPM

ONLINE

Inputs: v, {1} i
AMC mode n is selected if y € [I},, [;,41)

AMC

the transmission modulation and coding scheme such that a cer-
tain packet error rate performance () is achieved. In the first
power management algorithm (Algorithm 1), we consider inde-
pendent on-chip dynamic power management (DPM) and AMC
loops. The SNR range is divided into N + 1 non-overlapping
intervals where N denotes the number of AMC modes. The
SNR thresholds {I';}_, are obtained by solving (25) itera-
tively such that the target packet error rate for each AMC mode
is set to Py [26].

Chta

S 1
PER,, = — PER(v)dy = Py,n=1,2,....N
DPr

Ly

(25)

Then, based on the received SNR, an AMC mode 72 is chosen
when v € [I",, T, 41). It is worth mentioning that since the se-
lection of the AMC mode and buffering memory power man-
agement are independent, the choice of the SNR thresholds are
obtained assuming perfect buffering memories (i.e., operating
at the nominal supply voltages).

The problem of buffering memory DPM is modeled as uncon-
strained Markov decision process (MDP) with the composite
states space S = H x V x AMC and actions space A = A,.
The objective is to find the optimal policy 7* that minimizes the
average cost function given by (26).

J(m; A) = limsup % ; E [c(s:,7(s:))] (26)

n—0oC

At each time step ¢, the power manager observes the channel
state, the AMC mode and the buffering memory supply voltage.
Then, based on that composite state, it chooses a control action
a; = w(s;) which incurs the cost of

c(si,m(s;)) = P (s, 7(s8:)) + A x PER (54, 7(s;))  (27)

where the power cost P(s;, m(s;)) represents the sum of the
memory power consumption and the memory switching power
which is given by (28). The share of the switching power can
be considered negligible since the switching frequency of the
supply voltage is relatively small [27].

P(Si7 71'(81‘)) = Pl\,{em(ﬂ'(si)) + Pswitching (fuiﬂ—(si)) (28)

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 61, NO. 8, AUGUST 2014

Solving the unconstrained MDP is equivalent to solving the
dynamic programming (DP) equation in (29) either by value
iteration or policy iteration [28].

Jw*)‘(.s)
= 173161(]% [c (s,7(s)) + Z P (S/|S,7T(S)) X J”x’)‘(s,)} , Vs
s'es
(29)

In this model of the MDP, the state transition probability can
be expressed:

P <5'|s,7r(s)) = P(h'|h) x P(AMC'|h) x P (vl|fu, n(s))
(30)

where

P v, 7(s)) = { L, v =m(s)

0, otherwise
and

! 1, S Fn,r77,
PAMC = nlh) = { 0, Zthe[I'WiSG )

Based on the first order FSMC where channel state transition
occurs only between consecutive states [16], the channel transi-
tion probability is given by (31).

N(Tq1) x Thke

PHk‘?HAHFIZ or ,kZO,l,...,Kfl
N({Tp_1) x T,
PHﬁHkA:%,k:l,z,...,K (31)

where T}k is the packet time in second and N (T'y) is the level
cross rate which can be written as in (32) given the Doppler
frequency fp [16].

Pyl r
—fpe (32)

N(y) =

0

The details of the algorithm are summarized in Algorithm 1
where the algorithm is divided into two parts; offline and on-
line parts. All the computations of both the buffering memory
power management and the AMC algorithms are performed of-
fline. Look-up tables (LUTs) are used to store power policy
a* = 7w*(s;) which is the solution of the DPM problem, as
well as the SNR thresholds. During the online phase of the algo-
rithm, the LUT is accessed with the current system state index
$; = (hy, v;, AMC,;) to find the optimal action which is the next
buffering memory supply voltage.

B. Joint DPM and AMC

In this section, we present a novel AMC algorithm which is
aware of both the wireless channel conditions and the buffering
memory status. The details of the proposed algorithm are
presented in Algorithm 2. The conventional AMC chooses the
AMC mode based only on the wireless channel. However, the
proposed algorithm finds the appropriate AMC mode based
on the combined effect of the wireless channel and hardware
errors. Fig. 5 illustrates this idea where the effective SNR is
based on the combination of the wireless channel and the VoS
buffering memory.



KHAIRY et al.: JOINT POWER MANAGEMENT AND ADAPTIVE MODULATION AND CODING

Modulation and Coding
Mode selection

Buffering Memory
Power Manager

System QoS

Next AMC mode Effective Memory PER (V,SNR)

and Wireless Channel SNR

VMEM
Wireless
Channel l Vo§
Buffering
(H) M
i emory
Y020

Fig. 5. Joint wireless channel and buffering memory.

In the previous section, an equivalent Gaussian noise model
was derived which combined both the channel noise and
hardware errors. This model enabled the system designer to
mathematically characterize the packet error performance of
the system under different supply voltages of the buffering
memory. Thus, given a certain supply voltage (v;) and a target
PER (P,), the SNR thresholds {T'(v;)}2_, can be derived in
a similar fashion such that a packet error rate of P is achieved
for each AMC model. In this scenario, different sets of SNR
thresholds are defined such that each set corresponds to a
certain supply voltage. The SNR threshold sets are obtained
during the offline portion of the AMC algorithm. Based on
these SNR thresholds, the joint optimization of the AMC and
buffering memory power management is similarly modeled
as an unconstrained MDP with the composite states space
S = H x v x AMC and action space A = A,. The main
difference in this scenario is the formulation of the state tran-
sition probability (33) in which the choice rule of the AMC
is dependent on the both the channel state and the buffering
memory supply voltage

P (s’ s, a) =P (h’\h> x P (AMC!V?., v) x P <U,|’U,(L)

(33)
where

b _ L ) € Th(w)Ths(v)
P (AMC o n|h,71> o {()7 otherwise

Similarly, the results of the MDP problem are stored in
LUTs which are accessed online to find the proper action
of the buffering memory supply voltage (steps 1-2 in the
online part of the algorithm). Based on the received channel
SNR and the next supply voltage of buffering memory
(vi+1), an AMC mode n is chosen when the effective SNR
¥(v) € [Cr(vit1) Tnyr1(vig1)).

In this scenario, because of the extra knowledge of the
buffering memory status, it is expected that the system will
satisfy the target PER requirement of the system at the cost
of slight throughput degradation while achieving considerable
amount of power savings. Simulations results in the next section
illustrate the trade-off between different power management
policies in achieving such joint optimization.

C. Aggressive DPM and AMC

The objective of buffering memory power management is to
minimize power consumption by utilizing the available SNR
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Algorithm 2: Joint DPM and AMC
Inputs: Py, AMC modes,{v;}{_,,and PER (y,v;)
for each supply voltage v;
Obtain SNR thresholds {I;, (v;)}}_, to achieve
the target PER P,.
end
Inputs: A, Py (V). PER (y,v), {Il;; (W)}, and
AMC modes
1. Define the MDP
a) Define the State space S = H XV x AMC
and actions space A = 4,
b) Formulate the cost function c*(s,a) ,
s€Sanda € A
¢) Evaluate the state transition probability
2. Solve the MDP using dynamic programming
(value iteration) and store the policy actions for each
state a = m*(s) in LUT.
Inputs: {I}, (v)}_o, v, T*(s) and y;, v;, AMC; at time
instant i.
1. Obtain the current system state s; = (y;, v;, AMC;)

AMC

OFFLINE

DPM

2. LUT the policy action @; = v, = 7 (s;).
3. AMC mode n is selected if : y(v;41) €
[LWis), Gy Wis1))

ONLINE
Joint DPM and
AMC

Algorithm 3: Aggressive DPM and AMC

Inputs: Py, Vg4, AMC modes, and PER (¥, V444)
Obtain SNR thresholds {I}, }¥_, to achieve the target
PER P,
Inputs: A, Py (v), PER (y,v), {I} }}—, and AMC
modes
1. Define the MDP:

a) Define the State space S = H X V x AMC

and actions space A = A4,
b) Formulate the cost function c*(s,a),
seSanda €A

¢) Evaluate the state transition probability
2. Solve the MDP using dynamic programming
(value iteration) and store the policy actions for each
state a = 7*(s) in LUT.
Inputs: {I},}¥_,. v, m*(s) and y;, v;, AMC; at time
instant i.
1. Obtain the current system state s; = (y;, v;, AMC;)
2. LUT the policy action a; = v;,, = 7°(s;)
3. AMC mode n is selected if y(Vyq4) € [F Fiv1)

AMC

OFFLINE

DPM

ONLINE

Aggressive

DPM and
AMC

slack to aggressively reduce the supply voltage. However, in
the presence of SNR slack, the AMC technique at the trans-
mitter adapts to support a higher modulation and coding scheme
leading to a conflict with the on-chip power manager. In this
approach, we aim to jointly optimize for maximizing the power
savings with the minimum degradation in system throughput.
The main idea is to artificially control the AMC loop via re-
porting a lower AMC mode, even if the receiver is experiencing
a good channel. This is achieved by combining the wireless
channel and buffering memory in a similar way to the joint
PM and AMC explained in Fig. 5. However, in this case, the
effective SNR is calculated always based on the worst case
supply voltage of the buffering memory v,g,. This will result
into lower reported SNR and accordingly, the base station will
lower the modulation and a high SNR slack will be available at
the receiver. The power manager can utilize this slack to aggres-
sively reduce the supply voltages of the buffering memories. In
other words, the available slack becomes part of the optimiza-
tion problem. The details of the algorithm are described in Al-
gorithm 3.

The main difference in the calculation of the SNR thresh-
olds {I';. }27_, is the assumption of the most aggressive memory
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supply voltage which will result into only one set of SNR thresh-
olds. The buffering memory power management problem is for-
mulated in a similar fashion to the joint DPM and AMC as
an unconstrained MDP with the composite states space S =
H x V x AMC and action space A = A,,. The state transition
probability can be written as

P (s’|s7 a) =P (h!|h) x P (AAMC/V),) x P (1;/|1;., a)
(34)

where

P (AMC’ = n|h) = { L, W(Wagg) € [Fn I‘n+1)

0, otherwise

After solving the MDP problem, results are stored into LUTs
and then utilized in the online part of the algorithm. The choice
of the AMC mode for the next packet is based on the effec-
tive SNR (2.4, ) where an AMC mode n is chosen when the
channel SNR y(vq44) € [I'nI'n+1). This problem formulation
will force the transmitter to utilize a lower AMC mode, thus
creating a higher SNR slack at the receiver side, allowing the
power manager to choose the appropriate supply voltage for the
buffering memory.

The size of the LUT required to store the policy actions of
any of the previous algorithms depends mainly on the number of
the states in the space .S and the possible values of the received
SNRs where there exists a policy for each SNR. Generally, con-
sidering N AMC modes, K channel states and 7 voltage states,
the size of the state S will be m x K x N. Thus, considering
Np;es for quantizing the received SNR, the number of entries of
the LUT is 2™¥eitsm x K x N where each entry requires log, m
bits to stores the policy action. Therefore, as an example of 4
AMC modes, 5 channel states, 4 supply voltages states and 10
bits quantization of the SNR, the size of the required LUT is 20
Kbytes.

IV. SIMULATION RESULTS

To justify the benefits and compare the performance of the
proposed algorithms 1) Independent DPM and AMC 2) Joint
DPM and AMC and 3) Aggressive DPM and AMC discussed
in Section III, a simulation framework based on Fig. 1 was setup
in a WI-FI environment. The AMC modes of the OFDM system
are chosen to be BPSK, QPSK, 16 QAM and 64 QAM modula-
tion with rate 1/2 convolutional codes and a constraint length of
7. The OFDM symbol has 128 subcarriers and the packet size is
set to 1500 Bytes. The wireless channel is based on a Rayleigh
channel model with a maximum Doppler frequency fp of 100
Hz. The average received SNR is setto 15 dB (¥ = 15 dB). The
memory supply voltage can take one value of the four discrete
levels shown in Table I.

A. Independent DPM and AMC

In this scenario whenever a slack in the SNR exists, the AMC
algorithm selects the appropriate modulation scheme of the next
transmitted packet such that 10% PER is statistically achieved
with the correlated Rayleigh fading channel. Thus, the objective
of the power manager is to utilize the residual slack in SNR to
save power consumption by lowering the supply voltage of the
buffering memory. In order not to drastically degrade system

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 61, NO. 8, AUGUST 2014

Uncoded BER

ion %

Lagrangian Multiplier

T -
1 IRNR] (AN
11111 RN ey

I | |

|

|
| |
LI | |
TITI T T TITITI |
Il |
1 L

Power

(I
NN

Average TI

Lagrangian Multiplier &
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Fig. 7. Trade-off between PER, system throughput and power consumption for
independent AMC and DPM.

performance, the power manager should be conservative in se-
lecting the buffering memory supply voltage. Thus, it is ex-
pected that power savings will not be substantial. In reality, the
value of the Lagrangian multiplier in the cost function in (27)
controls the trade-off between system throughput and power
consumption. Fig. 6 illustrates simulation results of the uncoded
BER, normalized power consumption and system throughput
(Mbps) for different values of the Lagrangian multiplier. As ex-
pected, a large values of A results in optimizing system perfor-
mance (PER) at the expense of no power savings, while a low
value of A results in a more aggressive power reduction strategy
(at the expense of higher BER and/or degraded throughput). As
shown in Fig. 6, one can find two separate ranges of A that result
into considerable power savings at the cost of slight throughput
degradation. For instance, setting A = 100 will create a power
policy which results into almost 20% power savings without
noticeable performance degradation (less than 1% degradation)
since the amount of introduced errors are extremely small P, ~
1.69 x 1071% —5.21 x 1072, A more aggressive power policy
(A = 2) will result into higher power savings 35% at the cost
of degraded PER performance and 20% lower throughput. The
trade-off between system throughput and PER versus power
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Fig. 9. Trade-off between PER, system throughput and power consumption for
joint AMC and DPM.

consumption is illustrated in Fig. 7 where each point represents
the performance metrics of the power management policy for a
given value of A.

B. Joint DPM and AMC

In this scenario, the required packet error rate is achieved by
adapting the AMC mode according to the joint effect of wire-
less channel and the status of the buffering memory. As com-
pared to the independent AMC and DMP, a higher power sav-
ings can be achieved with an improved system performance.
Fig. 8 shows the performance metrics (BER and throughput)
and the average power consumption for different values of A.
As expected, the system achieves a constant bit error rate in-
dependent of the value of A. Very high values of A guarantees
achieving the highest throughput without any power savings.
However, as the value of ) is reduced, more power savings are
achieved at the cost of lower AMC modes which in turns re-
duces the system throughput.

It is very important to point that for extreme small value of
A, the system can still function and achieve some throughput
while for the independent AMC and DPM the system is starving
with 100% PER and no throughput. The trends of the PER and
throughput versus the power consumption for different power
policies are shown in Fig. 9.
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for aggressive DPM and AMC.

C. Aggressive PM With AMC

This mode is very efficient when it is more important to save
power while maintaining a reasonable throughput. Simulations
results are depicted in Figs. 10 and 11 in which the BER, PER,
average power consumption and throughput for different values
of A are shown.

In this algorithm, the choice of SNR thresholds is based on the
most aggressive supply voltage. Thus, for very small values of
A where most aggressive VoS is applied, the target PER (10%)
is achieved. Higher values of A will result in a better BER and
PER performance. However, the improvement of the PER from
10% to 0.1% will only lead into slight throughput enhancement
0f9.9%. Thus, in this mode, it is very efficient to set A to a small
value to maximize the power savings at the cost of negligible
throughput degradation.

V. DISCUSSION

In this section, we compare the three proposed algorithms in
Section III in terms of throughput and power consumption for
different values of SNRs. Although, the proposed joint AMC
and PM algorithms save a considerable amount of power at the
receiver side, it comes at the cost of throughput degradation.
For a fair comparison between these algorithms, we introduce
a figure of merit (FoM) that links both quantities. This metric
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Fig. 12. Comparing the proposed algorithms in terms of normalized power
consumption and average throughput at different SNRs.

is defined in (35) as the ratio of the average throughput per the
normalized power consumption of the buffering memory. High
values of this metric reflect an energy efficient system that can
achieve good performance (throughput) with lower power con-
sumption.

T = /P, (35)

Fig. 12 depicts the simulation results of the average
throughput and the normalized power consumption of
buffering memories at different SNR. The proposed algo-
rithms in Section III are compared to the ideal case of AMC
with perfect memory, which achieves the best performance at
the cost of highest power consumption. At low SNRs, all the
proposed algorithms are operated at the lowest voltage level
(most aggressive VoS level). This is due to the fact that the
introduced errors in the memory are much lower in power
as compared to the channel noise power. Thus, large power
savings could be achieved. However, with the increase of the
SNR, the effect of the introduced hardware noise due to VoS
becomes comparable to the channel noise. Thus, the buffering
memories supply voltage is increased with the SNR.

For the independent AMC and PM, two different scenarios
are considered: a conservative and a moderate power savings
approach. In the conservative mode, a considerable amount of
power savings is achieved with almost negligible throughput
degradation while the moderate mode delivers a higher amount
of power savings at the cost of slight throughput degradation.
Both scenarios are illustrated in Fig. 12. The joint AMC and PM
algorithm has the same behavior of the independent approach
with moderate A in terms of normalized power consumption but
outperforms significantly in terms of average throughput since
it considers the lumped effect of both channel noise and hard-
ware errors. At high SNR, the proposed joint algorithm delivers
higher throughput than the independent approach with the con-
servative A. The aggressive DPM with AMC always delivers the
highest power savings since the buffering memory is always op-
erated at the lowest supply voltage. As a result, it has the lowest
throughput among the proposed algorithms.

Finally, Fig. 13 shows a comparison of the FoM of the
proposed algorithms versus the AMC with perfect buffering
memory. As expected the joint AMC with PM outperforms
all the other algorithms up to an SNR of 23 dB (based on the
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system setup and parameters presented in Section IV). Beyond
this value, a large slack in the SNR exists, which in turn can
be utilized by aggressively reducing the supply voltage of the
buffering memory to maximize the power savings and achieve
a better energy efficient system. In other words, at very high
SNR, it is more efficient to utilize the aggressive PM approach
than the joint one.

The proposed joint PM and AMC achieves up to 32% and
58% improvement in energy efficiency as compared to the in-
dependent AMC and DPM and the conventional AMC with per-
fect memory respectively. Furthermore, the independent AMC
and PM approach outperforms the conventional AMC algorithm
with perfect buffering memories and delivers up to 26% en-
hancement in energy efficiency.

It is important to note that although the proposed PM algo-
rithm enhances the receiver energy-efficiency, it comes at the
cost of lower energy-efficiency at the transmitter side. The eval-
uation of the overall system energy-efficiency is a future re-
search direction where network level simulation will be utilized
to quantify the system energy efficiency.

VI. CONCLUSION

In this paper, a novel mathematical model that characterizes
system performance in terms of PER under unreliable VoS
buffering memories has been derived. Based on that model,
three different algorithms that control the buffering memory
supply voltage for communication systems with adaptive mod-
ulation and coding have been proposed. Simulations results
showed that by jointly adapting the AMC mode and the supply
voltage of the unreliable buffering memory, 58% and 32% per-
formance gain is achieved as compared to AMC with perfect
buffering memories and the independent AMC and buffering
memory power management.
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