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Chemical and genetic perturbations reveal wiring of the protein homeostasis 

network in prostate cancer  

Arielle Shkedi 

 
Abstract 

 
The protein homeostasis (proteostasis) network is composed of multiple components 

and pathways that work together to govern protein production, folding, stability and 

degradation. Cancer cells are especially dependent on the proteostasis network, due to 

their high protein load, genomic instability, and oncogenic signaling pathways. For this 

reason, inhibitors of the proteostasis network have been developed as anti-cancer 

therapies, with varying success. In this dissertation, I will discuss two adjacent 

strategies we employed to better understand wiring of the proteostasis network in 

cancer cells. In this first approach, we used existing chemical inhibitors of various 

proteostasis targets, such as molecular chaperones and the proteasome, and tested 

them in combination to reveal patterns of synergy and antagonism. In the second 

approach, we used a functional genomics shRNA screening approach to probe at 

genetic vulnerabilities in the proteostasis network and identify new targets. In both these 

studies, we focused our work on prostate cancer, due to it’s established dependence on 

molecular chaperones. Through these approaches we were able to identify both 

synergistic drug combinations and new proteostasis targets that can be further explored 

as anti-cancer therapeutic strategies. Furthermore, we gained a better understanding of 

proteostasis network wiring in prostate cancer cells, which provides broader insights 

into how to can be therapeutically targeted in cancer.  
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Introduction 

The proteostasis network is a highly conserved set of pathways that balances the 

synthesis, folding, activation, and degradation of the proteome (1). There are hundreds 

of components dedicated to this network, including molecular chaperones (e.g. heat 

shock proteins), co-chaperones, the translation machinery, the ubiquitin-proteasome 

system and autophagy-lysosome pathway (2, 3). This network is characterized by major 

“nodes” that are connected, often through direct protein-protein interactions, with the 

other components (4). Importantly, flux of proteins through the network is tightly 

regulated by stress signaling, including the unfolded protein response (UPR), the 

integrated stress response (ISR), the heat shock response (HSR) and others (5-8). 

Specifically, stress signaling elevates the levels of proteostasis factors, such as some 

chaperones, as well as tuning the rates of protein synthesis and turnover, allowing cells 

to adapt to changing conditions. Thus, the proteostasis network is both interconnected 

and responsive, likely allowing different subnetworks to play dominant roles in response 

to specific perturbations (9). 

Cancer cells have been found to be particularly reliant on specific components of the 

proteostasis network, likely because of the rapid growth, high frequency of translation 

errors and genomic instability of these cells(10, 11). For example, major nodes of the 

proteostasis network, such as Hsp70, Hsp90 and HSF1, are important for maintaining 

tumorigenesis (7, 12, 13). In contrast, normal, untransformed cells seem to be less 

reliant on these same proteostasis factors, perhaps because their networks are more 

robust to the loss of an individual component. The mechanistic reasons for differential 

vulnerability are often not clear, but recent studies have started to provide insights. For 
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example, Hsp90 binds to a distinct set of co-chaperones in cancer cells vs. non-

transformed cells(14),(15), suggesting that the same node can be “wired” differentially 

following tumorigenesis. 

These observations, and others, have led to the hypothesis that nodes of the 

proteostasis network are promising drug targets, which could be exploited for anti-

cancer therapy (16-19). Accordingly, substantial efforts have been mobilized to create 

chemical inhibitors of proteostasis targets (20-22). Although this remains an active 

research area, a subset of these molecules have advanced to the clinical setting, with 

varying levels of success. For example, proteasome inhibitors are approved and widely 

used in treating multiple myeloma(23). However, inhibitors of other proteostasis targets 

have been less successful(24-26), often due to lack of efficacy, rapid onset of 

resistance and/or unacceptable toxicity. Moreover, even proteasome inhibitors are 

ineffective at treating other cancer subtypes, such as solid tumors, for reasons that 

remain uncertain (27).  

 

The success of proteasome inhibitors shows that targeting the proteostasis network is a 

viable option for anti-cancer therapy, but many questions still remain. In this thesis, I will 

describe two studies performed to better understand cancer cell dependence and wiring 

on the proteostasis network. The first study involved probing the network with well-

established proteostasis inhibitors in combination, to understand how cancer cells 

responded to dual-proteostasis inhibition. This is especially important because as 

described, the network is highly dynamic and readily able to compensate for loss of 

function at specific nodes. Through these studies, we were able to identify synergistic 
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and antagonistic combinations of proteostasis inhibitors that have larger implications for 

potential therapeutic strategies. In the second study, we genetically perturbed the 

proteostasis inhibitor using a functional genomics shRNA screen, to identify 

weaknesses. Through this work, we identified a new target, the mitochondrial 

chaperone Hsp60, that shows promise as an anti-cancer target in prostate cancer cells. 

Together, these two chapters show the important role that the proteostasis network has 

in cancer cell growth and survival, and highlights how we can use chemical and genetic 

tools to disrupt the network to find new targets and improve our use of existing 

inhibitors.  
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Abstract 

The protein homeostasis (proteostasis) network is composed of multiple components 

and pathways that work together to balance protein production, folding, stability and 

turnover. Cancer cells are particularly reliant on this network, which has led to inhibitors 

of proteostasis targets being pursued as anti-cancer therapies. However, the 

proteostasis network is highly inter-connected, and it is hypothesized that inhibition of 

one node might lead to compensation by other parts of the network. To better 

understand the implications of these connections on potential treatment strategies, we 

dosed 22Rv1 prostate cancer cells with inhibitors of four major proteostasis targets 

(Hsp70, Hsp90, proteasome and p97), either alone or in binary combinations, and 

measured effects on cell growth. The results reveal a series of additive, synergistic and 

antagonistic relationships, including strong synergy between inhibitors of p97 and the 

proteasome, and striking antagonism between inhibitors of Hsp90 and the proteasome. 

Based on RNA-seq, these relationships are associated, in part, with activation of stress 

pathways. To probe the generality of these findings in prostate cancer, we repeated the 

inhibitor screens in three additional cell lines, revealing that some relationships, such as 

the Hsp90-proteasome antagonism, are common to all the cells, while others are cell-

line specific. Together, these results suggest that cocktails of proteostasis inhibitors 

might be a powerful way of treating some cancers, although antagonism that blunts the 

efficacy of both molecules is also possible.  
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Introduction 

As discussed, the proteostasis network has many roles in tumorigenesis, and has been 

shown to be a viable target for anti-cancer therapeutics. However, in the clinic, 

proteostasis inhibitors have had mixed results. One hypothesis to explain the uneven 

and sometimes confounding clinical results is that the interconnected nature of the 

proteostasis network might create opportunities for compensation by stress responses 

(1). For example, it is well established that treatment with Hsp90 inhibitors, at least 

those that bind the N-terminal domain, leads to elevated expression of Hsp70 and other 

chaperones (2). Similarly, proteasome inhibitors induce autophagy (3), and inhibition of 

p97 activates the UPR (4). Mounting evidence suggests that these compound-induced 

stress responses might directly contribute to inhibitor resistance. For example, 

activation of autophagy and other stress pathways (1), makes certain cancer cells 

relatively resistant to Hsp70 inhibition (5). Additionally, activation of the HSR has been 

linked to bortezomib resistance in multiple myeloma (6),(7). Thus, cancer cells seem to 

activate stress pathways in response to proteostasis inhibitors, which can, in some 

cases, provide them with partial protection. 

 

Because the nodes of the proteostasis network are inter-connected and subject to 

regulation by stress responses, combinations of proteostasis inhibitors might, in some 

cases, be strongly synergistic (8). Specifically, inhibition of two proteostasis targets 

simultaneously might limit the ability of cancer cells to circumvent loss of one target 

during single-agent treatments. However, while some promising combinations have 

been proposed (9-11), this possibility has not been systematically explored. Here, we 



	11 

tested four proteostasis inhibitors by themselves and in binary combinations to reveal 

additive, synergistic and antagonistic relationships. We chose to perform these screens 

in 22Rv1 prostate cancer cells, given the known reliance of these cells on the 

proteostasis network (12, 13). As test compounds, we selected four well-known 

inhibitors that target major nodes in the proteostasis network: Hsp70, Hsp90, the 26S 

proteasome and VCP/p97. Briefly, Hsp70 and Hsp90 are molecular chaperones 

involved in protein folding and activation (14). VCP/p97 is a AAA+ ATPase which plays 

multiple roles in protein trafficking and quality control (15), and the 26S proteasome is 

responsible for degrading ubiquitinated proteins (16). Beyond their individual functions, 

these nodes also have well-known functional relationships within a shared sub-network 

(Figure 2.1a). For example, Hsp70 delivers unfolded proteins to Hsp90 through a 

shared co-chaperone, Hop (17, 18). Moreover, p97 collaborates with Hsp70 and the 

proteasome during ER-associated degradation (ERAD) (19, 20) and both Hsp70 and 

Hsp90 are involved in delivering proteins to the proteasome for degradation (21, 22). 

Thus, we were interested in whether inhibitors of one node in this particular sub-network 

might create synergy with inhibitors of others.  

 

To target these four nodes, we selected well-characterized chemical inhibitors: JG-98 

(Hsp70 inhibitor) (23), 17-DMAG (Hsp90 inhibitor) (24), bortezomib (proteasome 

inhibitor) (25) and CB-5083 (p97 inhibitor) (4) (Figure 2.1b). These compounds were 

selected because three of them have been explored in clinical trials, while the fourth, 

JG-98, is a close analog of a molecule, MKT-077, tested in Phase I (26). Using a high 

throughput, 384-well growth assay, we tested binary combinations of the compounds on 
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growth of 22Rv1 prostate cancer cells, revealing examples of both synergy (Hsp70-

Hsp90, p97-Hsp90, p97-proteasome) and antagonism (Hsp70-proteasome, Hsp90-

proteasome). Transcriptome studies on cells treated with select combinations revealed 

differences in the cellular stress response(s) compared to the single agent treatments, 

perhaps underlying the observed synergy/antagonism. Also, repeating these screens in 

three additional prostate cancer cell lines, C4-2, LNCaP and PC3, identified both shared 

and cell-type specific relationships, suggesting that the “wiring” of the proteostasis 

network can partially differ across cell lines. Together, these studies show that testing 

proteostasis inhibitor combinations in cultured cells reveals patterns of additivity, 

synergy and antagonism, which could aid in the design (or avoidance) of therapeutic 

combinations for use in the clinic. 

 

Results  

Proteostasis inhibitors reduce cell viability in 22Rv1 prostate cancer cells, as 

single agents. To provide a baseline for combination studies, we first confirmed the 

effects of the four proteostasis inhibitors: JG-98 (Hsp70 inhibitor), 17-DMAG (Hsp90 

inhibitor), bortezomib (proteasome inhibitor) and CB-5083 (p97 inhibitor) on growth of 

22Rv1 cells as single agents. After a 72-hour treatment, each of the inhibitors, but not 

the DMSO control, reduced growth of 22Rv1 cells, with IC50 values varying from 0.02 to 

3.3 µM (Figure 2.1b). Consistent with literature observations, inhibitors of Hsp70, p97, 

and the proteasome reduced cell viability to nearly baseline at the highest doses, while 

Hsp90 inhibition produced a ~50% reduction, even at the highest concentrations.  
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Combination treatments reveal patterns of additivity, synergy and antagonism 

upon proteostasis disruption. Based on the calculated IC50 values, we then choose 

compound concentration ranges for use in the combination screens (see Methods). 

First, 22Rv1 cells were plated in 384-well plates, and, on the following day, compounds 

were added using standard laboratory automation. Treatments were performed in 

quadruplicate (4 wells per treatment) and each compound was tested in 8 

concentrations (DMSO control, plus 7 doses in 2-fold dilutions; Figure 2.2). After 3 days 

of treatment, cell viability was quantified using Cell Titer Glo. From the resulting data, all 

of the values in the 8x8 treatment matrix were used to calculate synergy values using 

the ZIP synergy model (27) (Figure 2.2). There are multiple methods for estimating 

potential synergy or antagonism between compounds (28, 29) and consensus in which 

approach to select has been elusive (30, 31). In this case, we chose to use ZIP synergy 

because it utilizes the entire dose-response landscape (Figure 2.2, Figure 2.3), 

ensuring that all of the doses are represented when determining the numerical synergy 

value. This feature was especially important here because the Hsp90 inhibitor 17-

DMAG did not reduce viability to baseline, which could create misleading synergy 

values if other approaches were employed. In this study, we considered scores to be 

additive if they were between the values of +1.5 and -1.5, while scores greater than 

+1.5 were categorized as synergistic and those less than -1.5 were antagonistic. We 

arrived at these arbitrary cutoff values by comparing the variance of the ZIP synergy 

scores across replicates and by manually examining the dose-response curves (see 

below). Importantly, this protocol and analysis pipeline was reproducible, with 

independent replicates on different days showing high correlation (Figure 2.4). 
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From the combination screens in 22Rv1 cells, we observed clear patterns of additivity, 

synergy and antagonism between the proteostasis inhibitors. For example, the 

combination of Hsp70 and p97 inhibitors was additive (ZIP score ~ 1.2), as co-treatment 

with the p97 inhibitor did not significantly impact the apparent IC50 of the Hsp70 inhibitor 

(Figure 2.3). However, other combinations, such as Hsp90-p97, Hsp90-Hsp70 and 

proteasome-p97, were synergistic. The combinations of Hsp90-p97 and Hsp70-Hsp90 

were modestly synergistic (ZIP scores between +2.4 and +2.8), while the combination of 

p97 and proteasome inhibitor (compounds bortezomib and CB-5083) was the most 

synergistic, with a ZIP score of +9.1. This relationship is illustrated by examining a 

subset of the dose response curves, in which bortezomib alone is able to decrease cell 

viability (Figure 2.3; black curve), but the apparent IC50 is strongly enhanced when CB-

5083 is added (Figure 2.3; blue curves). These findings of strong synergy confirm the 

long-standing idea that targeting two proteostasis nodes might, in some cases, enhance 

cancer cell death. 

 

In addition to synergistic combinations, we were surprised to observe combinations that 

were strongly antagonistic. For example, the Hsp70-proteasome combination was 

antagonistic (ZIP score -5.5). This effect seemed most prominent at the higher doses of 

Hsp70 inhibitor, as is clear from examination of a subset of dose-response curves that 

show that the proteasome inhibitor (Figure 2.3; black curves) becomes less effective 

when the cells are also dosed with an Hsp70 inhibitor (Figure 2.3; blue curves). More 

strikingly, we found that the combination of Hsp90 and proteasome inhibitors was 
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strongly antagonistic (ZIP score -19.9). In a representative series of results, addition of 

17-DMAG (Figure 2.3; blue curves) clearly suppresses the anti-proliferative activity of 

bortezomib compared to this compound alone (Figure 2.3; black curve). Indeed, at the 

higher doses of the Hsp90 inhibitor, the anti-proliferative effects of the proteasome 

inhibitor are nearly abolished. Thus, some proteostasis combinations can be strongly 

antagonistic.  

 

To provide additional insight, we repeated a subset of the combination treatments, 

replacing 17-DMAG for an alternative Hsp90 inhibitor, AUY-922. In those studies, we 

observed effects consistent with those obtained using 17-DMAG (Figure 2.5a), 

suggesting that anti-proliferative activities are, at least in part, a product of target biology 

and not specific to the compound. Next, we repeated the screens using a non-

tumorigenic prostate cell line RWPE-1 and found no strong synergy between any drug 

combination (Figure 2.5b). Thus, the combinations did not seem to generally increase 

toxicity to cells, but rather, to enhance selectivity for 22Rv1 cancer cells over the non-

tumorigenic cells. Finally, we wanted to ensure that the handling steps do not contribute 

to the observed synergy values, so we repeated the combinations by testing 

compounds against themselves. In those studies, we found no synergy or antagonism 

(Figure 2.5c), giving additional confidence in the screening platform.  

 

Androgen receptor (AR) stability may explain some, but not all, drug synergies. 

We next wanted to explore possible mechanisms of synergy and/or antagonism in 

22Rv1 cells. 22Rv1 cells are a prostate cancer cell line that is reliant on the androgen 
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receptor (AR) signaling (32). However, these cells are relatively resistant to anti-

androgen therapy because they express both full length (FL) AR and splicing variants 

(ARv) associated with severe disease (33). AR and its variants are established clients of 

Hsp70 and Hsp90 (12) and inhibitors of these chaperones have been shown to promote 

degradation of AR and ARv (12, 34). Indeed, we confirmed that treatment with 

combinations of JG-98 and 17-DMAG leads to loss of FL and ARv in 22Rv1 cells 

(Figure 2.6a), reducing AR to ~10% of total and ARv to ~60% of total. Consistent with 

previous reports (12), the single agent treatments show that Hsp70 inhibition has a 

more dramatic effect on ARv, while Hsp90 inhibition preferentially destabilizes FL AR. 

Thus, Hsp70 and Hsp90 inhibitors may be synergistic because their co-treatment leads 

to lower levels of both AR and ARv, interrupting the AR signaling required for growth of 

these cells. However, AR stability did not explain all of the synergies. For example, 

treatment with the synergistic combination, p97-proteasome, did not alter either AR or 

ARv levels under the same conditions (Figure 2.6b). Likewise, AR stability did not 

correlate with synergy or antagonism after co-treatment with inhibitors of p97-Hsp70, 

Hsp70-proteasome, or Hsp90-proteasome, with no substantial differences between 

single-agents and combination treatments (Figure 2.7). Together, these results suggest 

that AR stability can be important, but that different mechanism(s) may be underlying 

drug synergy and antagonism in response to most of the combinations. 

 

RNASeq experiments reveal downstream signaling differences between inhibitor 

combinations. To examine the downstream effects of proteostasis inhibition in an 

unbiased way, RNA-seq was used to identify transcriptional differences in the response 
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of 22Rv1 cells to compounds and their combinations. Based on the growth assays, we 

focused these studies on 9 treatment conditions: a DMSO control, Hsp70, Hsp90, p97, 

or proteasome inhibition alone, and the Hsp70-Hsp90, p97-proteasome, and Hsp90-

proteasome combinations. These combinations were selected to sample both 

synergistic (Hsp70-Hsp90 and p97-proteasome) and antagonistic (Hsp90-proteasome) 

examples. In the RNASeq studies, compounds were tested at a single concentration, 

selected by considering both the IC50 values (see Figure 2.1) and the results from the 

ZIP synergy analysis (see Methods). 

 

22Rv1 cells were treated for 6 hours with the indicated compounds in triplicate, after 

which RNA was extracted and RNA-seq was performed (see Methods). Read count 

data was analyzed by DeSeq2 and the top 100 variably expressed genes were 

hierarchically clustered and visualized (Figure 2.8). First, we noted that almost all of the 

biological replicates clustered together, suggesting a reproducible and specific 

transcriptional response to each treatment. The only outlier was the JG-98 and 17-

DMAG combination, where one of the three replicates did not co-cluster. Then, we 

further subdivided the top 100 variably expressed genes across all the treatments into 5 

clusters (Cluster 1-5) and examined them via gene ontology (GO) analysis (Figure 

2.9a). Cluster 1 contains stress response genes, such as DDIT4 and SESN2, as well as 

ER stress response genes linked to the UPR, including HSPA5 (BiP, an ER Hsp70) and 

DDIT3 (CHOP). Cluster 2 contains many heat shock proteins and co-chaperones, 

including multiple Hsp70s (HSPA1B, HSPA1A, HSPB1, HSPH1, HSPA8), Hsp90s 

(HSP9-AA1, HSP90AB1), Hsp70 co-chaperones (DNAJA1 and BAG3), and ubiquitin 
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(UBB). These genes are known to be upregulated following Hsp90 inhibition, but we 

additionally found that this effect is exacerbated with combined Hsp90-proteasome 

inhibition (Figure 2.8). Qualitatively, this group of genes includes many hallmarks of the 

HSR(35). Thus, the Hsp90-proteasome combination might be antagonistic because the 

HSR pathway, induced by both Hsp90 and proteasome inhibition, may combine to 

suppress activity of both compounds. 

 

Clusters 3 and 5 produced less well-defined GO terms, and their relevance will require 

additional study. However, we were interested to find that Cluster 4 contains exclusively 

mitochondrially expressed genes (Figure 2.8). The mitochondrial genome contains 37 

genes, and we observed up-regulation of a significant portion following treatment with 

either JG-98 alone or the JG-98 and 17-DMAG combination. JG-98 has been shown to 

target mitochondrial Hsp70(23, 36), and it seems likely that, in these cells, it impacts 

mitochondrial proteostasis.  

 

Immunoblotting validates RNA-seq results and highlights differences in stress 

response to proteostasis inhibition. To validate a subset of these RNASeq findings, 

we examined the protein levels of representative stress response effectors, BiP (marker 

of the UPR) and Hsp72 (marker of the HSR), following proteostasis inhibition in the 

treated 22Rv1 cells (Figure 2.9b). We also monitored the levels of Hsc70/HSPA8, 

which is typically more mildly upregulated in stress responses. After 24 hours of 

compound treatment, we observe BiP upregulation following inhibition of the 

proteasome or p97 and after treatment with the p97 inhibitor or the combinations of p97-
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proteasome or Hsp90-proteasome inhibitors, which is consistent with the transcriptional 

response. In multiple myeloma cells, inhibitors of p97 have also been shown to activate 

the UPR, leading to elevated BiP levels(4). Additionally, we observed that Hsp72 is 

elevated following treatment with either the Hsp90 inhibitor, the proteasome inhibitor or 

the Hsp90-proteasome inhibitor combination (Figure 2.9b). Interestingly, the response 

to the combination was generally stronger than Hsp90 or proteasome inhibition alone, 

consistent with the RNASeq. Thus, one mechanism driving antagonism between Hsp90 

and proteasome inhibitors may be the strong up-regulation of HSR genes, which might 

blunt the activity of both compounds. 

 

Additional prostate cancer cell lines have both similar and distinct patterns of 

proteostasis inhibitor sensitivity. Lastly, we probed how these patterns of drug 

synergy/antagonism might compare across other prostate cancer cell lines. To 

complement the studies in 22Rv1 cells, we repeated the combination screens in three 

additional cell lines: LNCaP, C4-2, and PC-3. Briefly, LNCaP cells are an androgen-

sensitive prostate cell line, and C4-2 cells are an androgen insensitive cell line derived 

from LNCaPs. Like 22Rv1 cells, both LNCaPs and C4-2 express and are driven by AR 

signaling. PC-3 cells are a prostate line that are androgen-insensitive and do not 

express AR. We chose to screen these cell lines in addition to the androgen-insensitive 

22Rv1 cells to get a broader picture of proteostasis combination synergies across a 

range of prostate cancer cell types with different origins, AR status and compound 

sensitivities. 
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We treated the three cell lines with an 8x8 matrix of compounds and summarized the 

resulting additivity, synergy and antagonism through calculation of ZIP synergy scores. 

In Figure 2.10, we also repeat the 22Rv1 results for clarity and comparison. Together, 

the results revealed that there are some similarities across the prostate cancer cell 

lines, but that none of them respond exactly the same way (Figure 2.10a). Among the 

similarities, the combination of Hsp70-p97 inhibitors tended to be synergistic (ZIP 

values+1.2 to 3.2) and the combination of Hsp90-proteasome inhibitors was always 

antagonistic (ZIP synergy between -6.9 and -19.9). The shared, antagonistic response 

to combinations of Hsp90 and proteasome inhibitors was especially intriguing. 

Examination of a subset of the dose response curves from this series confirmed that 

proteasome inhibitor (bortezomib) was toxic to all the cells, but that addition of Hsp90 

inhibitor (17-DMAG) could make the compound less effective (Figure 2.10b), although 

this effect was more modest in the PC-3 cells. To explore whether this antagonism 

might be linked to up-regulation of Hsp72, we performed western blots on the treated 

lysates. As we observed in the 22Rv1 cells, addition of an Hsp90 inhibitor to the 

proteasome inhibitor strongly up-regulates Hsp72 at 24 hours in each cell line (Figure 

2.10c) and the level of elevation was greater than with either compound alone. In 

addition to these similarities across the four cell lines, we also noted that some 

relationships depend on the cell type. For example, the combination of Hsp70-Hsp90 

inhibitors was only synergistic (ZIP score +2.4) in the 22Rv1 cells (Figure 2.10a) and 

was generally antagonistic in the other cell lines (ZIP score between -4.4 and -4.9). 

22Rv1s are the only cell line tested here that expresses both AR and ARv, so this could 
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be one contributing factor (see Figure 2.4). These results highlight the importance of 

characterizing the wiring of the proteostasis network in each cell line or tumor model. 

 

Discussion 

The proteostasis network holds great promise as a source of drug targets for anti-

cancer treatment(37, 38). However, this concept has met with both successes and 

failures in the clinic, perhaps requiring a re-examination of the treatment strategies. One 

logical approach is to use inhibitor combinations, which might limit the ability of cancer 

proteostasis networks to compensate for loss of one pathway. Although it had been 

hypothesized that combinations of proteostasis inhibitors might have additivity or even 

synergy in cancer cells, this possibility had not been systematically quantified. Using a 

high throughput platform, we revealed clear and reproducible patterns of additivity, 

synergy and antagonism between inhibitors of four major proteostasis nodes in four 

different prostate cancer cell lines. We observed that p97 and proteasome inhibitors 

were especially synergistic in 22Rv1 cells (ZIP score 9.1), a model of castration-

resistant prostate cancer (CRPC). Thus, this combination might be used to reduce the 

dose of both compounds, potentially improving potency while reducing toxicity. In 

support of this idea, the p97-proteasome inhibitor combination did not produce 

enhanced cell growth inhibition in non-tumorigenic RWPE-1 cells (see Supplemental 

Figure 2B). However, it is also important to note that synergy for this combination was 

not observed in the other three prostate cancer lines, where this combination was 

modestly antagonistic. Thus, a tailored therapeutic strategy might be required, such as 

screening primary cells against combinations ex vivo to identify synergistic 
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relationships. Future work will be required to understand whether expression and 

stability of AR and ARv (see Figure 4A) is predictive of this synergy, as the 22Rv1 cells 

are the only line tested that expresses both.  

 

We were initially surprised to find drug combinations, exemplified by the Hsp90 and 

proteasome inhibitor pair, that showed striking antagonism. Within the chosen sub-

network (see Figure 1A), we hypothesized that synergy might predominate because of 

the collaboration between these factors. However, recent studies have introduced the 

idea of “single-agent dominance” in two-drug combinations(39). In this paradigm, 

molecules that produce a faster onset of cell death can dominate the co-treatment 

because of cross-talk between cell death pathways. Inhibition of Hsp70, for example, 

has been shown to induce both apoptosis and necroptosis(40), so a deeper exploration 

of the role of cell death pathways and their kinetics will need to be explored for 

proteostasis inhibitors and their combinations. Another possibility, potentially supported 

by our RNA-Seq and western blot findings and not mutually exclusive of “single-agent 

dominance”, is that the stress responses might be partially responsible for the 

antagonism of Hsp90 and proteasome inhibitors. Here, the model is that the prostate 

cancer cells activate this stress signaling program to compensate for loss of function of 

either Hsp90 or the proteasome. Thus, the combination produces a more robust 

activation (see Figure 7C) and, accordingly, the potential for increased resistance. 

Some evidence suggests that this model could be relevant in other cancers. For 

example, in multiple myeloma cells, treatment with a combinations of Hsp90 and 

proteasome inhibitors has been suggested to be potentially synergistic based on pre-



	23 

clinical studies(41) and a clinical trial was conducted in multiple myeloma patients(42). 

However, modest clinical benefit was observed. While there are many possible reasons 

for this outcome, it is interesting to note that the preclinical studies had shown that the 

combination strongly increased Hsp70 expression. While our studies were in prostate 

cancer cells, and not multiple myeloma, it seems possible that this stress response 

might have limited potency of the combination. 

 

Together, these results suggest that a more comprehensive understanding of which 

stress pathways are activated by proteostasis inhibitors is likely needed to better track 

and, ultimately, predict synergy/antagonism, with the goal of designing more effective 

treatment strategies. One major goal of those efforts could be to profile which stress 

response pathways are activated by inhibitors to potentially develop predictive 

biomarkers(43, 44). It is starting to become clear that this framework could be more 

broadly important outside proteostasis targets, as well. For example, treatment with 

other chemotherapeutics and radiation are capable of eliciting stress responses(45, 46), 

which might likewise blunt their efficacy. 

 

Methods 

Cell lines. 22Rv1, LNCaP, C4-2, and PC-3 cells were purchased from ATCC and 

grown in RPMI 1640 medium supplemented with 10% non heat-inactivated FBS (Gibco 

16000044) and 1% penicillin/streptomycin. RWPE-1 cells were purchased from ATCC 

and grown in K-SFM supplemented with bovine pituitary extract and human 

recombinant EGF. All cells were grown at 37 °C and 5% CO2. Cells were regularly 
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tested for mycobacterial contamination (every 6 months), and maintained at a low 

passage number. 

 

Inhibitors. JG-98 was prepared, as described(23). 17-DMAG was purchased from 

Cayman Chemical (item #11036). CB-5083 was purchased from Fisher Scientific 

(catalog #50-115-2549). Bortezomib was purchased from Millipore Sigma (CAS 

179324-69-7). AUY-922 was purchased from Fisher Scientific (CAS #747412-49-3). 

Compounds were used without further purification.  

 

Drug combinations and synergy. All tested compounds were prepared as 10 mM 

stocks in DMSO and stored in aliquots at -20 °C. For treatments, compounds were then 

serially diluted in 2-fold increments in RPMI (final DMSO ~ 0.02%). These solutions 

were then aliquoted to 96-well plates in an 8x8 matrix format for each combination. 

Concentrations were chosen based on the EC50 value of each compound in the cell 

lines tested, to center the dilution series on the half-maximal value. Specifically, the 

following final concentrations were used: 

Table 2.1. List of compounds and concentration ranges used in proteostasis inhibitor 
combination screen. 

Compound Concentration range (7 doses, 2 fold 
dilutions, plus DMSO control) 

JG-98 0.16 – 10 µM 

17-DMAG 0.016 – 1 µM 

CB-5083 0.078 – 5 µM 

Bortezomib 0.0015 - 0.1 µM 
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Cells were grown in tissue-culture treated, 384-well plates (Corning). After 24 hours of 

cell growth, an Agilent robot was used to transfer compound from the 96-well plates to 

these 384-well test plates. Cells were returned to 37 °C and 5% CO2 and grown for 

three days (doubling time 30-50 hours depending on the cell line). Cell viability was 

measured using Cell Titer Glo (Promega) according to the manufacturer’s instructions 

and luminescence was measured with a SpectraMax M5 plate reader (Molecular 

Devices). Cell viability was normalized per plate to the untreated, DMSO control. 

Synergy was determined using SynergyFinger (http://www.synergyfinderplus.org/). All 

drug combinations were performed twice per cell line (in technical quadruplicates), and 

the average mean synergy score for the entire dataset was reported.  

 

Immunoblotting. Cells were plated in 6-well or 12-well plates at 80-100% confluency 

for 24 hours, after which the medium was replaced with fresh medium containing 

indicated compounds at 1% DMSO. Compounds were left on cells for the indicated time 

period (6-24 hours), and cells were incubated at 37 °C and 5% CO2. Cell lysate was 

then harvested with M-PER supplemented with protease inhibitor. For measuring 

phospho-proteins, M-PER was additionally supplemented with phosphatase inhibitor. 

Lysate was then run on 4-15% gradient SDS polyacrylamide gels at 5-10 µg of total 

protein per sample. Proteins levels were detected either with Licor florescent secondary 

antibodies and detected with a Licor machine, or HRP-conjugated secondary antibodies 

and imaged with BioRad. The following antibodies were used: 
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Antibodies 

The following antibodies and dilutions were used: 

Table 2.2: List of antibodies and dilutions used for Western blot studies 

Target Company/Cat # Dilution used Host 
AR Abcam (ab133273) 1:2000 Rabbit 
BiP CST (#3177) 1:2000 Rabbit 
Hsc70 Enzo (ADI-SPA-

816-F) 
1:2000 Rabbit 

Hsp72 Enzo (ADI-SPA-
811-F) 

1:2000 Rabbit 

Actin Sigma (A2228) 1:5000 Mouse 
 

RNAseq and Western blot validation 

The following concentrations of compounds was used for the RNA-seq studies and 

subsequent Western blotting: 

Table 2.3. List of compounds 
and concentrations 
used in RNAseq and 
Western blot validation 
studies. 
 

 

 

 

 

Concentrations were chosen based on dose-response and drug synergy landscape 

data, to best capture combinations of compounds that were either synergistic or 

antagonistic. 

 

For RNA-seq studies, 22Rv1 cells were plated at 80% confluency in 12-well plates. 

After 24 hours, cells were dosed with compounds at indicated concentrations and 

Compound Concentration 

JG-98 0.625 µM 

17-DMAG 0.25 µM 

CB-5083 0.625 µM 
Bortezomib 0.025 µM 
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incubated at 37 °C and 5% CO2. After 6-hour treatment, RNA was extracted using Zymo 

Quick-RNA miniprep kit (Catalog #R1054). RNA from all samples were diluted to 

20ng/uL in 10 uL for input into TECAN Universal plus mRNA-seq library preparation. 

RNA-seq libraries were prepared using the manufacture’s protocol. RNA-seq libraries 

were sequenced for quality control on an Illumina MiniSeq and pooled according to 

protein coding read counts to obtain uniform protein coding read depth. The final pools 

were sequenced using single end 50bp reads on an Illumina HiSeq 4000 at the Center 

for Advanced Technology (www.cat.ucsf.edu). Sequencing reads were aligned to the 

Human reference genome (Build HG38) and the Ensembl gene annotation (version 95) 

using STAR (v2.7.2b; PMID: 23104886). Read counts per gene as output by STAR 

were collapsed into a read counts matrix and were used as input to DESeq2 (v1.24.0; 

PMID: 25516281) to test for differential gene expression between conditions using a 

Wald test. Genes passing a multiple testing correct p-value of 0.1 (FDR method) were 

considered significant. 

 

For western blot validation of RNA-seq, 22Rv1 cells were plated and dosed at the same 

conditions. Following drug-treatment, immunoblotting was performed as described 

above.  
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Figures 

Figure 2.1. Proteostasis inhibitors, targeting multiple nodes of the proteostasis network, 
have anti-proliferative effects in 22Rv1 prostate cancer cells. A. A subset of the 
proteostasis network is shown, highlighting the connections between the major nodes: 
Hsp70, Hsp90, p97, and the proteasome. Together, these factors guide protein folding 
and turnover, working together to mediate client “hand-off”. B. Inhibitors of proteostasis 
nodes limit growth of 22Rv1 cells. In this study, four inhibitors were used: JG-98 (Hsp70 
inhibitor), 17-DMAG (Hsp90 inhibitor), bortezomib (proteasome inhibitor) and CB-5083 
(p97 inhibitor). Cells were incubated with the indicated compound for 72 hours, and 
viability measured via Cell Titer Glo (see Methods). Results are the average of 
experiments performed in quadruplicate and the error bars represent SD. Some error 
bars are smaller than symbols. 

0.001 0.01 0.1 1 10 100
0

50

100

150

[JG-98]

%
 V

ia
bi

lit
y

22Rv1 JG-98 Dose Response

0.0001 0.001 0.01 0.1 1 10
0

50

100

150

[17-DMAG]

%
 V

ia
bi

lit
y

22Rv1 17-DMAG Dose Response

0.001 0.01 0.1 1 10
0

50

100

150

[CB-5083]

%
 V

ia
bi

lit
y

22Rv1 CB-5083 Dose Response

0.00001 0.0001 0.001 0.01 0.1 1
0

50

100

150

[Bortezomib]

%
 V

ia
bi

lit
y

22Rv1 Bortezomib Dose Response
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Figure 1. Proteostasis inhibitors, targeting multiple nodes of the proteostasis network, have 
anti-proliferative effects in 22Rv1 prostate cancer cells. A. A subset of the proteostasis network 
is shown, highlighting the connections between the major nodes: Hsp70, Hsp90, p97, and the 
proteasome. Together, these factors guide protein folding and turnover, working together to 
mediate client “hand-off”. B. Inhibitors of proteostasis nodes limit growth of 22Rv1 cells. In this 
study, four inhibitors were used: JG-98 (Hsp70 inhibitor), 17-DMAG (Hsp90 inhibitor), 
bortezomib (proteasome inhibitor) and CB-5083 (p97 inhibitor). Cells were incubated with the 
indicated compound for 72 hours, and viability measured via Cell Titer Glo (see Methods). 
Results are the average of experiments performed in quadruplicate and the error bars represent 
SD. Some error bars are smaller than symbols. 
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Figure 2.2. Workflow for the measurement of additivity, synergy or antagonism amongst 
proteostasis inhibitors.  Briefly, cells are aliquoted to 384-well plates and allowed to 
adhere for one day. Then, two drugs (A and B) are added in an 8x8 matrix format, with 
7 doses per compound, using 2-fold dilutions (see Methods for tested concentrations) 
and a DMSO solvent control. Treatments were performed in quadruplicate, with 4 wells 
per each dose combination (grey squares). After 72-hours of treatment, cell viability was 
measured using Cell Titer Glo, and synergy determined through the ZIP synergy model. 
Drug-combination screens were performed twice per cell line, and ZIP synergy score 
was averaged between replicates. Under this model, addition of Drug B reducing the 
potency of Drug A (blue lines) would be considered synergy. ZIP scores around zero 
(between 1.5 and -1.5) were considered additive, while scores above 1.5 were 
considered synergistic and those below -1.5 were considered antagonistic. To map 
these relationships onto the proteostasis subnetwork (see Fig 1A), we plotted the nodes 
and created lines between them to indicate whether the ZIP synergy score was additive, 
synergistic or antagonistic for each tested cell line (termed a Synergy Map). 
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Figure 2. Workflow for the measurement of additivity, synergy or antagonism amongst proteostasis 
inhibitors.  Briefly, cells are aliquoted to 384-well plates and allowed to adhere for one day. Then, two 
drugs (A and B) are added in an 8x8 matrix format, with 7 doses per compound, using 2-fold 
dilutions (see Methods for tested concentrations) and a DMSO solvent control. Treatments were 
performed in quadruplicate, with 4 wells per each dose combination (grey squares). After 72-hours 
of treatment, cell viability was measured using Cell Titer Glo, and synergy determined through the 
ZIP synergy model. Drug-combination screens were performed twice per cell line, and ZIP synergy 
score was averaged between replicates. Under this model, addition of Drug B reducing the potency 
of Drug A (blue lines) would be considered synergy. ZIP scores around zero (between 1.5 and -1.5) 
were considered additive, while scores above 1.5 were considered synergistic and those below -1.5 
were considered antagonistic. To map these relationships onto the proteostasis subnetwork (see Fig 
1A), we plotted the nodes and created lines between them to indicate whether the ZIP synergy score 
was additive, synergistic or antagonistic for each tested cell line (termed a Synergy Map). 
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Figure 2.3. Combinations were either additive, synergistic or antagonistic in 22Rv1 
cells. A. For each combination, a black line and bolded text indicates the tested nodes 
on the Synergy Map in the highlighted adjacent dose-response panel. B. Dose-
response curves from each combination are used to highlight additivity, synergy or 
antagonism. In each graph, the single-agent (black) and combination treatments (blue 
curves) are shown. Curves are arranged from top to bottom from the most synergistic to 
the most antagonistic, with the average ZIP synergy scores shown. For the full matrix 
landscape of the cell viability and synergy results, see Figure 2.4. 
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full matrix landscape of 
the cell viability and 
synergy results, see 
Supplemental Figure 1. 
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Figure 2.4. Strong reproducibility was observed in 22Rv1 cells treated with proteostasis 
inhibitor combinations. A. Cell viability results of 22Rv1 treated with indicated 
proteostasis inhibitor combinations. Viability was measured via Cell Titer Glo following 
72 hours of compound treatment, performed in quadruplicate (see Methods). Viability 
results are reproducible between replicates, and vary depending on the combination of 
compounds. B. ZIP synergy output of the proteostasis inhibitor combinations. High 
reproducibility is observed between replicates, with similar patterns of synergy and 
antagonism across the plate landscape.  
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Supplemental Figure 1. Strong reproducibility was observed in 22Rv1 cells treated with proteostasis 
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Figure 2.5. Various control studies were performed with the proteostasis inhibitors A. 
AUY-922, an alternative Hsp90 inhibitor, was tested in combination with the other 
proteostasis inhibitors, and produced similar results to 17-DMAG. B. Inhibitor 
combinations were tested in RWPE-1 cells, a non-tumorigenic prostate cell line, and did 
not produce any strong synergies. C. Each inhibitor was tested against itself and did not 
produce strong synergy across the tested landscape. 
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Figure 2.6. Some combinations reduce androgen receptor levels, but others do not. 
Effects of proteostasis inhibitor combinations on AR levels in 22Rv1 cells following 6-
hour treatment. A. Treatment with the Hsp90 inhibitor 17-DMAG reduces the levels of 
full length AR, and Hsp70 inhibitor JG-98 treatment reduces levels of both AR and ARv 
in 22Rv1 cells after 6 hours. The combination was effective at reducing both proteins. B. 
Neither the p97 nor proteasome inhibitor, or their combination, had an effect on AR or 
ARv levels at 6 hours. Western blots are representative of experiments performed in 
triplicate. The blots were quantified in NIH Image J and the average density adjusted to 
the loading control and DMSO treatment was plotted on the right. Error bars represent 
SD. 
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6 hours. Western blots are representative of experiments performed in triplicate. 
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Figure 2.7. Effects of additional proteostasis inhibitor combinations on AR levels in 
22Rv1 cells. Three additional inhibitor combinations were tested, p97-Hsp70, Hsp70-
proteasome, and Hsp90-proteasome. No observable differences were seen between 
single-agent treatment and combinations. Western blots are representative of 
experiments performed in duplicate. 
 

37

37

37

100
75

100
75

100
75

-     +     -     -      -      -      -     +     +    +     +     + 
-      -      

12.5 nM Bortezomib 
0.31-5 µM JG-98

Hsp70i Hsp70i + proteasome-i

AR

ARv

GAPDH

AR

ARv

Actin

-     +    -      -      -      -      -      +     +     +     +     + 
-       -      

0.625 µM JG-98 
0.155-2.5 µM CB-5083

p97i p97i + Hsp70i

AR

ARv

Actin

-     +     -      -      -      -       -     +     +     +     +     + 
-      -      

12.5 nM Bortezomib 
30-500 nM 17-DMAG

Hsp90i Hsp90i + proteasome-i

Supplemental Figure 3. Effects of additional proteostasis inhibitor 
combinations on AR levels in 22Rv1 cells. Three additional inhibitor 
combinations were tested, p97-Hsp70, Hsp70-proteasome, and Hsp90-
proteasome. No observable differences were seen between single-agent 
treatment and combinations. Western blots are representative of experiments 
performed in duplicate. 

mw



	35 

 
Figure 2.8. RNA-seq data highlights differences in gene expression following single-
agent and combination proteostasis inhibitor treatment. 22Rv1 cells were treated with 
indicated compounds for 6 hours, after which RNA-seq was performed. The top 100 
variably expressed genes across all conditions were clustered and further analyzed.  

Gene Expression (VST) of Top 100 Variable Genes

X8_17Bort_2

X8_17Bort_3

X8_17Bort_1

X4_Bortez_2

X2_JG
98_3

X4_Bortez_1

X6_JG
17_3

X4_Bortez_3

X6_JG
17_2

X2_JG
98_2

X2_JG
98_1

X5_CB5083_2

X5_CB5083_1

X3_17DM
AG

_3

X7_CBBort_1

X7_CBBort_3

X7_CBBort_2

X1_DM
SO

_1

X1_DM
SO

_2

X1_DM
SO

_3

X6_JG
17_1

X3_17DM
AG

_1

X5_CB5083_3

X3_17DM
AG

_2

MT−ND6
MTND6P4
HSPA5
HERPUD1
AP003392.3
DDIT3
JUN
CHRNE
ATF3
RHOB
AC027243.1
EPHA1
ARHGEF2
ABI2
AC008581.1
EGR1
CHAC1
PCAT1
DDIT4
TRIB3
AC006030.1
MARS
DDIT4−AS1
SLC7A11−AS1
UBC
GDF15
CEBPB−AS1
SESN2
AC073130.3
C7orf49
AL136131.3
HSPA1B
HSPA1A
HSPB1
HSPH1
HSP90AA1
HSPA8
AC090607.4
BAG3
AC093484.4
AC132938.4
AP000648.3
DNAJA1
ITFG2−AS1
UBB
HSP90AB1
PARD6G
SLC26A10
AC243965.2
ADGRA2
MRNIP
TECR
HMOX1
FAM129A
AC007182.1
SLC7A11
THBS1
PEX5L−AS1
GNPTG
CARS−AS1
AC137932.1
TMEM234
ANKRD11
AC008011.2
CSPG4P10
MT−RNR1
MT−CYB
MT−TT
MT−TH
MTND4P12
MT−TS2
MT−ND2
MT−ND1
MT−ATP6
MT−CO3
MT−TQ
MT−TL2
MT−ND4
MT−ATP8
MTATP6P1
MT−ND4L
MT−ND5
MT−ND3
PDIA4
TECPR1
CYP1A1
LINGO3
AC087289.5
U62317.3
AC129492.7
TP53I13
TBPL1
WDR24
APLN
HOXA10−AS
RPS25
RPS24
RNA5SP216
MT1G
AC025259.3

condition
replicate replicate

1
2
3

condition
17Bort
17DMAG
Bortez
CB5083
CBBort
DMSO
JG17
JG98

−1

−0.5

0

0.5

1

1.5

Gene Expression (VST) of Top 100 Variable Genes

X8_17Bort_2

X8_17Bort_3

X8_17Bort_1

X4_Bortez_2

X2_JG
98_3

X4_Bortez_1

X6_JG
17_3

X4_Bortez_3

X6_JG
17_2

X2_JG
98_2

X2_JG
98_1

X5_CB5083_2

X5_CB5083_1

X3_17DM
AG

_3

X7_CBBort_1

X7_CBBort_3

X7_CBBort_2

X1_DM
SO

_1

X1_DM
SO

_2

X1_DM
SO

_3

X6_JG
17_1

X3_17DM
AG

_1

X5_CB5083_3

X3_17DM
AG

_2

MT−ND6
MTND6P4
HSPA5
HERPUD1
AP003392.3
DDIT3
JUN
CHRNE
ATF3
RHOB
AC027243.1
EPHA1
ARHGEF2
ABI2
AC008581.1
EGR1
CHAC1
PCAT1
DDIT4
TRIB3
AC006030.1
MARS
DDIT4−AS1
SLC7A11−AS1
UBC
GDF15
CEBPB−AS1
SESN2
AC073130.3
C7orf49
AL136131.3
HSPA1B
HSPA1A
HSPB1
HSPH1
HSP90AA1
HSPA8
AC090607.4
BAG3
AC093484.4
AC132938.4
AP000648.3
DNAJA1
ITFG2−AS1
UBB
HSP90AB1
PARD6G
SLC26A10
AC243965.2
ADGRA2
MRNIP
TECR
HMOX1
FAM129A
AC007182.1
SLC7A11
THBS1
PEX5L−AS1
GNPTG
CARS−AS1
AC137932.1
TMEM234
ANKRD11
AC008011.2
CSPG4P10
MT−RNR1
MT−CYB
MT−TT
MT−TH
MTND4P12
MT−TS2
MT−ND2
MT−ND1
MT−ATP6
MT−CO3
MT−TQ
MT−TL2
MT−ND4
MT−ATP8
MTATP6P1
MT−ND4L
MT−ND5
MT−ND3
PDIA4
TECPR1
CYP1A1
LINGO3
AC087289.5
U62317.3
AC129492.7
TP53I13
TBPL1
WDR24
APLN
HOXA10−AS
RPS25
RPS24
RNA5SP216
MT1G
AC025259.3

condition
replicate replicate

1
2
3

condition
17Bort
17DMAG
Bortez
CB5083
CBBort
DMSO
JG17
JG98

−1

−0.5

0

0.5

1

1.5

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Compounds Targets
17-DMAG  +
Bortezomib

Hsp90 + 
Proteasome

Bortezomib Proteasome

JG-98 + 
17-DMAG

Hsp70 + 
Hsp90

JG-98 Hsp70

CB-5083 p97
CB-5083 + 
Bortezomib

p97 + 
Proteasome

DMSO -

17-DMAG Hsp90

G
ene Expression (VST) of Top 100 Variable G

enes

X8_17Bort_2

X8_17Bort_3

X8_17Bort_1

X4_Bortez_2

X2_JG98_3

X4_Bortez_1

X6_JG17_3

X4_Bortez_3

X6_JG17_2

X2_JG98_2

X2_JG98_1

X5_CB5083_2

X5_CB5083_1

X3_17DMAG_3

X7_CBBort_1

X7_CBBort_3

X7_CBBort_2

X1_DMSO_1

X1_DMSO_2

X1_DMSO_3

X6_JG17_1

X3_17DMAG_1

X5_CB5083_3

X3_17DMAG_2

M
T−ND6

M
TND6P4

HSPA5
HERPUD1
AP003392.3
DDIT3
JUN
CHRNE
ATF3
RHO

B
AC027243.1
EPHA1
ARHG

EF2
ABI2
AC008581.1
EG

R1
CHAC1
PCAT1
DDIT4
TRIB3
AC006030.1
M
ARS

DDIT4−AS1
SLC7A11−AS1
UBC
G
DF15

CEBPB−AS1
SESN2
AC073130.3
C7orf49
AL136131.3
HSPA1B
HSPA1A
HSPB1
HSPH1
HSP90AA1
HSPA8
AC090607.4
BAG

3
AC093484.4
AC132938.4
AP000648.3
DNAJA1
ITFG

2−AS1
UBB
HSP90AB1
PARD6G
SLC26A10
AC243965.2
ADG

RA2
M
RNIP

TECR
HM

OX1
FAM

129A
AC007182.1
SLC7A11
THBS1
PEX5L−AS1
G
NPTG

CARS−AS1
AC137932.1
TM

EM
234

ANKRD11
AC008011.2
CSPG

4P10
M
T−RNR1

M
T−CYB

M
T−TT

M
T−TH

M
TND4P12

M
T−TS2

M
T−ND2

M
T−ND1

M
T−ATP6

M
T−CO

3
M
T−TQ

M
T−TL2

M
T−ND4

M
T−ATP8

M
TATP6P1

M
T−ND4L

M
T−ND5

M
T−ND3

PDIA4
TECPR1
CYP1A1
LING

O
3

AC087289.5
U62317.3
AC129492.7
TP53I13
TBPL1
W
DR24

APLN
HOXA10−AS
RPS25
RPS24
RNA5SP216
M
T1G

AC025259.3

condition
replicate

replicate
123

condition
17Bort
17DM

AG
Bortez
CB5083
CBBort
DM

SO
JG

17
JG

98

−1 −0.5

0 0.5

1 1.5-1   -0.5   0   0.5   1   1.5

Figure 5. RNA-seq data highlights differences in gene expression following single-agent and 
combination proteostasis inhibitor treatment. 22Rv1 cells were treated with indicated 
compounds for 6 hours, after which RNA-seq was performed (see Methods). The top 100 
variably expressed genes across all conditions were clustered and further analyzed. 
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Figure 2.9. RNA-seq studies and protein level validation highlight differences in 
activation of stress response pathways between single-agent and combination 
proteostasis inhibitor treatments. A. Gene ontology (GO) analysis of clusters 1 and 2 
from top variably expressed genes (see Figure 2.8). Top 8 most significantly enriched 
GO terms are shown. B. BiP, Hsc70, and Hsp72 levels were probed via Western blot 
following 24 hours of compound treatment (see Methods for concentrations used). 
Protein levels at 24 hours closely match transcriptomic data and are differentially 
expressed across single-agent and combination proteostasis inhibition. Results are 
representative of experiments performed in triplicate. 
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Figure 2.10. Expanded screens in additional prostate cancer cell lines reveals both 
similarities and differences in their responses to combinations of proteostasis inhibitor 
treatment. A. Synergy maps depicting the relationship between proteostasis nodes from 
the drug-combination screens. Synergy is blue, antagonism is orange, and additivity is 
gray. Cutoffs defined in Figure 2.2 were applied here. Screens were performed as 
described in Figure 2.2, with each dose-combination performed in quadruplicate. Each 
screen was performed twice per cell line, and synergy scores were averaged. B. 
Representative dose-response curves from the antagonistic combination of 
proteasome-Hsp90 inhibitors. In each example, the proteasome inhibitor (bortezomib) 
alone is shown in black, while the combinations with the Hsp90 inhibitor 17-DMAG are 
shown with blue lines. Results are the average of quadruplicate and error bars are SD. 
Some error bars are smaller than the symbols. C. Hsp72 is upregulated following Hsp90 
and proteasome inhibition in all of the cell lines tested, by Western blot. Results are 
representative of experiments performed in triplicate.  
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Genetic perturbations reveal selective vulnerabilities in the proteostasis network 

of Castration-Resistant Prostate Cancer (CRPC)  
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Abstract 

Castration-resistant prostate cancer (CRPC) is associated with an increased reliance on 

protein homeostasis (aka proteostasis) factors, such as heat shock protein 70 (Hsp70), 

but it is not clear what other factors might be involved. To address this question, we 

performed functional and synthetic lethal screens in four prostate cancer cell lines. 

These screens confirmed key roles for Hsp70, Hsp90 and their co-chaperones, but also 

suggested that the mitochondrial chaperone, Hsp60/HSPD1 is selectively required in 

CRPC cell lines. Knockdown of Hsp60 did not impact the stability of androgen receptor 

(AR) or its variants; rather, it was associated with loss of mitochondrial spare respiratory 

capacity, partly due to increased proton leakage. Finally, transcriptional data revealed a 

correlation between Hsp60 levels and poor survival of prostate cancer patients. These 

findings suggest that re-wiring of the proteostasis network is associated with CRPC, 

creating selective vulnerabilities that might be targeted to treat the disease.  

 

Introduction 

Protein homeostasis (proteostasis) is achieved when the overall rates of protein folding, 

trafficking, and degradation are balanced (1). This balance is maintained by the 

proteostasis network, a collection of interconnected pathways, which include molecular 

chaperones, stress response signaling factors and protein quality control systems. In 

cancer cells, unique demands are placed on the proteostasis network, owing to their 

rapid growth rates, unusual metabolic requirements, and high mutational loads (2-5). 

This dependence has been described as a “non-oncogene addiction” (6, 7) and 

individual components of the proteostasis network have been pursued as attractive anti-
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cancer targets. In the clinic, such attempts have yielded both dramatic successes and 

confounding failures (8). One potential reason for this uneven level of success is that 

the field is only beginning to probe how proteostasis networks are functionally different 

in cancer cells vs. normal cells or between different stages of cancer (9-12).  

 

Prostate cancer (PCa) is an especially interesting system for probing these questions.  

PCa cells typically rely on transcriptional programs driven by the androgen receptor 

(AR), and many prostate tumors therefore initially respond well to androgen depravation 

therapy (ADT). However, following ADT, the disease invariably progresses to castration-

resistant prostate cancer (CRPC) (13-15). In CRPC cells, AR activity is usually able to 

persist through amplification, mutations, and constituitively-active splice variants of AR 

(ARv) (16-20) and compensation by other steroid hormone receptors (SHRs), such as 

the glucocorticoid receptor (21, 22). Additionally, the conversion from PCa to CRPC is 

associated with metabolic reprogramming (23). Thus, it seems likely that, to account for 

these molecular and metabolic changes, the proteostasis networks of PCa and CRPC 

cells might need to be distinct. For example, like other SHRs, AR is known to require an 

elaborate set of chaperones, including heat shock protein 70 (Hsp70), heat shock 

protein 90 (Hsp90) and their co-chaperones, for its folding, activation and degradation 

(24-27). Accordingly, chemical inhibitors of Hsp90 are known to promote degradation of 

AR in PCa cells (28) and these inhibitors show synergy with ADT (29). Similar findings 

have been observed when targeting essential Hsp90 co-chaperones (30). However, 

Hsp90 inhibitors are less effective in cellular models of CRPC, such as 22Rv1, which 

are driven by ARv signaling. Instead, inhibitors of Hsp70 have been shown to decrease 
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the stability of ARvs and have anti-proliferative activity in these cells (28). This 

difference in chaperone inhibitor sensitivity between PCa and CRPC cells might be 

partially explained by molecular differences in recognition of AR and its variants. 

Specifically, Hsp70, but not Hsp90, binds to the N-terminal motif that remains in the ARv 

found in 22Rv1 cells (31, 32). Thus, CRPC is an interesting model for studying the role 

of proteostasis networks, given the reliance of these cells on Hsp70, Hsp90, AR and its 

variants. 

 

While there is growing evidence for the roles of Hsp70 and Hsp90 in PCa and CRPC, it 

is not yet clear whether the broader proteostasis network might be “re-wired” to 

accommodate the demands of CRPC. Here, we used functional genomics screening to 

identify selective vulnerabilities in PCa and CRPC cell lines. In that effort, we deployed 

a focused shRNA collection, termed the Proteostasis Library (33), that allows 

knockdown of ~140 molecular chaperones, co-chaperones and related factors. In 

addition, we searched for synthetic lethality by repeating the screens in the presence of 

chemical inhibitors of Hsp70 and Hsp90. The results identified factors that are required 

in all of the cells (e.g. shared vulnerabilities), but also ones that are unique to PCa or 

CRPC cell lines. One of the most striking findings was that the mitochondrial chaperone, 

Hsp60 (gene name HSPD1) is required for growth of CRPC cells, but not PCa cells. 

Knockdown studies suggest that, unlike Hsp70 and Hsp90, this chaperone is not 

involved in AR or ARv stability; rather, decreases in Hsp60 levels in 22Rv1 cells were 

associated with loss of mitochondrial spare respiratory capacity. The relationship 

between Hsp60 and CRPC was further validated by analysis of transcriptional data from 
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PCa and ADT-treated patient samples, which showed a strong correlation between 

Hsp60 transcript levels and poor disease outcomes. Together, these results identify a 

potential drug target for the treatment of CRPC, as well as more broadly suggesting 

how proteostasis networks are adapted to provide drug resistance in prostate cancer.  

 

Results: 

Design of the Proteostasis Library. To explore the chaperone dependences of PCa 

and CRPC cell lines, we used a focused shRNA library, termed the Proteostasis Library, 

that targets 139 genes encoding chaperones and related factors (Figure 3.1a). This 

library is composed of 25 targeting sequences per gene, plus an additional 500 control, 

non-targeting sequences. These shRNA sequences are cloned into a lentiviral vector 

and used in a pooled screen format, as previously described (33-35). The genes 

selected for inclusion in this library include examples of the major chaperone families, 

such as Hsp70s, Hsp90s, chaperonins (TRiC/CCT) and small heat shock proteins 

(sHsps) (Figure 3.1a). It also includes the major co-chaperones for Hsp70s, such as J-

domain proteins (JDPs, also called Hsp40s), tetratricopeptide repeat (TPR) domain 

proteins and nucleotide-exchange factors (NEFs), and the major co-chaperones for 

Hsp90, such as CDC37, AHA1 and PTGE53 (also called p23). Beyond chaperones and 

co-chaperones, the library includes other protein folding and maintenance enzymes, 

such as protein disulfide isomerases (PDIs), peptidyl prolyl isomerases (PPIases), and 

factors required for proteasome assembly (e.g. PSMG1) and protein trafficking (e.g. 

VCP/97, Sec63). Finally, the library covers a subset of targets that are involved in stress 

signaling pathways, including HSF1/2, ATF6 and XBP1. It is worth noting that, although 
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CRISPR/Cas9-based methods are also a powerful, alternative way to perform screens, 

we favored the shRNA approach in this case because it can be used in multiple cell 

lines without the requirement for stable expression of Cas9/dCas9. Together, this 

shRNA library provides broad coverage of the major functional and regulatory 

components of the proteostasis network, allowing potential identification of cancer 

sensitivities across various functions.  

 

In assembling the Proteostasis Library, we favored groups of targets that are known to 

physically bind to each other (bold and dotted lines in Figure 3.1a). One of the defining 

features of the proteostasis network is that many of the components engage in protein-

protein interactions (PPIs), both with each other and with their client proteins (36). 

Another feature of this network is that there is potential redundancy built into it. For 

example, in human cells there are genes for ~13 Hsp70s, ~50 JDPs, and 6 Hsp90s (37-

39). To illustrate this design feature in Figure 2.1a, we clustered the genes in functional 

families and depict them as a schematic map that highlights the PPIs. For each class, 

there are members that are localized to specific sub-cellular locations; for example, the 

major Hsp70s of the cytosol are Hsp72 (HSP1A1) and Hsc70 (HSPA8), while 

BiP/HSPA5 and mortalin/HSPA9 are found in the ER and mitochondria, respectively 

(40).  

 

Functional genomics screen to identify shared and unique vulnerabilities in PCa 

and CRPC cell lines. Using the Proteostasis Library, we conducted a functional 

genomics screen by transducing cells with the pooled shRNAs, growing them for 10 
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doubling times, and then deep sequencing at the initial (T0) and final (Tfinal) time points 

(Figure 3.1b). Results on the individual shRNA level showed that the screens produced 

viable results and the negative controls behaved as expected (Figure 3.2). From these 

results, we determined the phenotype and p-value of each gene knockdown,as 

described (35). Here, phenotype is calculated by comparing the shRNA frequencies at 

the T0 and Tfinal time points, along with the cell growth rate, and the Mann-Whitney P-

value is calculated by comparing the results of the 25 shRNAs per gene to the negative 

control shRNAs.  

 

These screens were conducted in four different cell lines. Two of these lines (22Rv1 

and C-42) are androgen-insensitive CRPC cells. The 22Rv1 cells express both full-

length AR and the truncated form (ARv7), whereas the C4-2 cells express only full-

length AR. As controls, we performed the screens in two additional PCa cell lines: an 

AR positive, androgen-sensitive cell line (LNCaP), and an AR-negative cell line (PC3) 

(Figure 3.1c). For each of the four cell lines, the screens identified proteostasis factors 

important for growth (Figure 3.3a). One of the first observations was that only a small 

subset of proteostasis factors (~10%) was identified as “hits” in any of the cell lines. This 

limited sensitivity was most dramatic for the PC3 cell line, where only 4/139 (3%) genes 

were considered “hits” (P-value < .01; Figure 3.3a). This finding suggests that PC3 

cells, and to a lesser extent the other cell lines, can tolerate partial loss of many/most 

proteostasis factors; however, because this is a pooled screen, it also remains likely 

that there are also false negatives. Regardless, the low percentage of “hits” allowed us 

to rapidly focus on the most sensitive factors. 
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To explore the similarities and differences between the cell lines in more detail, we 

established a cut-off of P-value < .01 (–log10(P-value) > 2) and then combined the 

vulnerabilities from the CRPC (22Rv1 and C4-2) cell lines and compared them to the 

LNCaP cell lines. At this point, the PC3 data was excluded due to the low hit rate. This 

comparative analysis identified 17 “hits” that are largely shared across the cell lines 

(e.g. shared vulnerabilities), as well as 3 unique vulnerabilities for the LNCaP cells and 

11 hits unique to CRPC (Figure 3.3b). The shared vulnerabilities included a subset of 

Hsp70s and Hsp40/JDPs, as well as TriC/CCT, Hsp10 (gene name HSPE1) and 

VCP/p97 (Figure 3.3b). This result was satisfying because, as mentioned above, 

Hsp70s, Hsp90s, and JDPs, have a well-characterized role in AR processing (24-26). 

Interestingly, these AR processing factors were not identified in the PC3 cell line, which 

does not express AR or ARv, but were shared in the LNCaP, 22Rv1 and C4-2 cell lines 

which do (see Fig 1C). It seems likely that some of the other shared factors are involved 

in general cancer cell growth and survival, and indeed, VCP/p97, has been previously 

identified as being broadly important in prostate cancer (41).  

 

Next, to better visualize the selective vulnerabilities, we plotted the –log10P for each 

gene in the LNCaP experiments vs. each of the two CRPC cell lines (Figure 3.3c). We 

also plotted the sensitivities onto the shRNA library maps to look for physical/functional 

relationships (Figure 3.4). Through this analysis, we observed that the LNCaP cells 

appear to have a reliance on HSPA4 (an Hsp70 isoform) and PTGE53 (p23), the latter 

of which has been associated with both Hsp90-dependent and independent roles in 
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transcription (42, 43). Next, we turned our attention to the factors that were identified as 

selective vulnerabilities in the CRPC cells. Most strikingly, this analysis showed that 

22Rv1 and C4-2 cells depend on the mitochondrial chaperone, Hsp60. Hsp60 is known 

to form a complex in the mitochondria with Hsp10/HSPE1, which is a shared hit among 

all 4 tested cell lines. The C4-2 cells also depended on GrpEL1, another mitochondria-

localized chaperone that is thought to be involved in mitochondrial protein folding and 

import. Together, these results suggested that CRPC cells have selective vulnerabilities 

in the proteostasis network and that a number of these cluster to the mitochondrial sub-

network.  

 

Synthetic lethality screens with Hsp70 and Hsp90 inhibitors highlight Hsp60 as an 

important selective vulnerability in CRPC cells. Because Hsp70 and Hsp90 are 

known to be involved in AR processing, we wondered whether repeating the shRNA 

screens in the presence of chemical inhibitors of these chaperones might reveal 

synthetic lethalities. First, we characterized the effects of these inhibitors on AR and 

ARv in our hands. Consistent with the literature (28), we found that treatment with AUY-

922 (an inhibitor of Hsp90; Figure 3.5a) leads to loss of full length (FL) AR in 22Rv1, 

LNCaP, and C4-2 after 6 hours (Figure 3.5b). We also confirmed that AUY922 was 

unable to affect the variant AR (ARv) in 22Rv1 cells. On the other hand, treatment with 

JG-231 (an inhibitor of Hsp70) only mildly reduced FL AR, but was effective in reducing 

ARv in the 22Rv1 cells (Figure 3.5b).  
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Guided by these results, we repeated the shRNA screen in the 22Rv1, C4-2 and 

LNCaP cell lines in the presence of JG-231 or AUY-922. Cells were treated three times 

throughout the growth period with either JG-231 or AUY-922, at established 

concentrations that were found to have anti-proliferative effects while still allowing cells 

to recover and continue growing (see Methods). Through the calculations described 

earlier, we determined the phenotype and P value of genetic knockdown in each of 

these conditions. We found that the main “hits” from these chemical-genetic screens 

could be binned into 3 categories – shared, cell-line specific, and drug-treatment 

specific. Among the shared and cell-line specific hits, we found that the vulnerabilities 

were largely similar between the initial screen and the chemical-genetic screen. For 

example, Hsp70 isoforms (gene name HSPA8, HSPA9, HSPA14), the JDPs (DNAJA3, 

DNAJC8), and the TRiC complex (CCT4, CCT7, CCT8) remain essential in the 

presence of either inhibitor (Figure 3.5c). Consistent with this idea, hierarchical 

clustering revealed overall, similar patterns of genetic vulnerabilities (Figure 3.6). 

However, novel hits emerged as well. For example, we found that two cytosolic Hsp90 

genes (HSP90AA1 and HSP90AB1) are essential in the presence of the Hsp90 inhibitor 

(AUY-922) in all three cell lines. Moreover, HSP90AB1 was also essential in 22Rv1 

cells after Hsp70 inhibition. These strong interactions suggested, perhaps not 

surprisingly, that the proteostasis network becomes more reliant on Hsp90s when this 

chaperone is partially inhibited. Interestingly, the co-chaperone HOP/STIP1, which is 

known to bind both Hsp70 and Hsp90 (44, 45), was also only required in the presence 

of AUY-922. This result suggests that the communication between these chaperones 

might become more important upon Hsp90 inhibition. Another striking finding from this 
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synthetic lethal screen was that Hsp60/HSPD1 was again found to be a strong 

vulnerability only in the 22Rv1 and C4-2 cells, but not the LNCaP (Figure 3.5c). Overall, 

these results validated our previous observations and suggested that Hsp60 could be 

an interesting target in CRPC cells.  

 

Hsp60 is a selective vulnerability in CRPC cells. Hsp60 is a mitochondrial 

chaperonin, homologous to the bacterial GroEL, which is involved in mitochondrial 

protein folding (46, 47). To validate the Hsp60 result from the screen, we transduced 

22Rv1, C4-2, LNCaP and PC3 cells with 2 different RFP-labeled shRNAs or a 

scrambled negative control, and selected with puromycin. In 22Rv1 cells, knockdown 

was >90% for both shRNA sequences, but not the control (Figure 3.7a). The cells were 

then maintained for 3 weeks and the percentage of RFP-positive cells was monitored 

during every passage by flow cytometry (Figure 3.8). From these studies, we observed 

depletion of the RFP-positive population in the 22Rv1 (Figure 3.7b) and C4-2 cells, but 

not LNCaP or PC-3 cells (Figure 3.7c). To understand whether this reliance on Hsp60 

was restricted to CRPC cell lines, we knocked it down in multiple other cancer subtypes. 

Here, we focused on breast cancer (MCF7 and MDA-MD-231) and multiple myeloma 

(KMS-11, KMS-34, OPM-2, AMO-1) cell lines, due to their established connection with 

chaperones and proteostasis (Figure 3.8) (48, 49). We found that 4/6 cell lines did not 

rely on Hsp60/HSPD1 for growth (Figure 3.7c). In 2/6 cell lines (MCF-7 and KMS-34), 

only a partial decrease (about 50% depletion compared to the control) in the RFP 

population was observed. Thus, the CRPC cell lines had an unusual, but not entirely 

exclusive, reliance on Hsp60/HSPD1.  
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Hsp60 knockdown does not affect AR levels. While Hsp70 and Hsp90 directly 

regulate AR stability (see Fig 3B), we considered it unlikely that Hsp60 would operate 

through a similar mechanism due to it’s mitochondrial localization. However, the 

expression of AR and ARv7 is known to be sensitive to manipulation of metabolic 

pathways, such as inhibition of fatty acid metabolism (50, 51), so it seemed possible 

that Hsp60 could regulate AR stability through indirect mechanisms. Thus, we examined 

whether Hsp60 knockdown reduced AR levels in the dox-inducible 22Rv1 cells. These 

cells were treated with dox for 96 hours, which produced a robust knockdown of Hsp60 

without any impact on AR or ARv (Figure 3.9a). These results suggest that Hsp60 is 

involved in survival of CRPC cells through a mechanism that is independent of AR 

stability.  

 

Metabolic effects of Hsp60 KD. Another possibility is that Hsp60 could be important 

for metabolic reprogramming in CRPC cell lines. To test this idea, we monitored the 

impact of Hsp60 loss on mitochondrial respiration in 22Rv1 cells using the Mito Stress 

Test (Agilent). In this assay, oligomycin, trifluoromethoxy carbonylcyanide 

phenylhydrazone (FCCP), and Rotenone/Antimycin A are sequentially added to cultured 

cells to calculate mitochondrial activity and capacity (Figure 3.9b). Upon 5-day 

treatment with dox, Hsp60-knockdown suppressed numerous aspects of mitochondrial 

respiration. In general, Hsp60 loss resulted in lower basal oxygen consumption; 

however, this effect was relatively minor compared to the decrease in the maximal 

oxygen consumption rate (OCR; Figure 3.9c). Loss of Hsp60 consistently reduced the 
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spare respiratory capacity (maximal OCR – basal OCR) of 22Rv1 cells and was 

generally accompanied by an increase in proton leakage, an indication that the integrity 

of the electron transport chain (ETC) and/or the inner membrane are disrupted (Figures 

3.9e and 3.9f). These effects were often accompanied by variable impacts on basal 

respiration and glycolytic response, indicating that Hsp60 is more important in 

maintaining mitochondrial plasticity than it is in maintaining basal respiration in 22Rv1 

cells (Figure 3.9d).  

 

Clinical significance of Hsp60 in CRPC. Lastly, we wanted to examine if Hsp60 

expression had a clinical correlation to patient outcomes in prostate cancer, and 

especially in those individuals who had been previously treated with ADT. Towards that 

goal, we analyzed metastasis-free survival in ADT-treated (n=243) and non-ADT treated 

(n=476) patients by comparing based on Hsp60/HSPD1 gene transcript levels. Here, 

high Hsp60 expression was defined as greater than the median of all patients. 

Strikingly, ADT-treated patients with high Hsp60 expression had significantly worse 

outcomes (Figure 3.10, HR=1.95, p = 0.00024). In the patients who had not received 

ADT (no-ADT), those with high Hsp60 expression have slightly worse metastasis-free 

survival outcomes (HR=1.4), but this finding was not statistically significant. These 

findings suggest that high Hsp60 levels correlate with worse metastasis-free survival in 

prostate cancer patients, especially in those patients previously treated with ADT.  
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Discussion 

Given the established dependence of prostate cancer cells on AR, the proteostasis 

network has been suggested to contain putative drug targets (52). Here, we used 

focused shRNA screens to identify factors that might be required for cell growth and 

survival in CRPC and PCa cell lines. Through these studies, we discovered “hits” that 

are shared amongst all the cell lines, such as the TriC/CCT complex, VCP/p97, and 

Hsp10. Both TriC/CCT and VCP/p97 have been broadly implicated in tumorigenesis 

(53, 54), so this shared dependence was consistent with probable roles in sustaining 

general cancer phenotypes, such as rapid growth and proliferation. Here, we were more 

interested in those factors that were selective for growth of individual cell lines. Among 

all of the findings, we became most interested in Hsp60/HSPD1, which was only 

identified as a strong hit in the CRPC cell lines (22Rv1 and C4-2). This chaperone had 

previously been linked to clinical prostate cancer (55, 56), so this finding seemed most 

promising. 

 

Hsp60 is known to be involved in mitochondrial protein folding and translocation (46, 

47). It has been shown to have various roles in cancer, such as glioblastoma (57, 58), 

but its exact function has not been determined. Proteomics studies have identified a 

number of substrates of Hsp60, including malate dehydrogenase and other TCA cycle-

related proteins (59). We found that knockdown of Hsp60/HSPD1 does not affect AR 

levels, but rather has a strong effect on mitochondrial spare respiratory capacity (Figure 

3.9d). Spare respiratory capacity is a strong predictor of metastatic potential, given that 

it is related to a cell’s ability to respond to diverse stress stimuli (60). As cancer cells 
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escape their tissue of origin, they encounter environments that differ substantially from 

the nutritional characteristics to which they are accustomed.  Spare respiratory capacity 

likely plays an important role in supporting foreign cells’ ability to thrive in such 

environments thereby promoting prostate cancer ability to escape it’s natural 

environment and thrive in foreign nutrient environments. Our results support a model in 

which prostate cancer becomes increasingly reliant on Hsp60 as it deviates from 

androgen-dependent growth and escapes the prostate. By promoting the activity of 

components of the ETC, Hsp60 helps CRPC cells weather the stress related to 

metastatic growth. This relationship appears to be important in patients, as we observed 

in clinical data that Hsp60 expression significantly correlates with metastasis-free 

survival in prostate tumors from patients treated with ADT. Moreover, Hsp60 is 

upregulated after 8 weeks in a mouse model of CRPC development (61). These 

findings generally agree with our in vitro observations that Hsp60 plays a special role in 

CRPC cell lines, but not LNCaP or PC3. Hsp60 (and its prokaryotic ortholog, GroEL, 

has been the target of multiple drug discovery and chemical biology campaigns (57, 62-

65). The present study suggests that CRPC might be a promising disease target for 

these emerging inhibitors.  

 

More broadly, it seems likely that the proteostasis networks of prostate cancer cells are 

re-programmed during disease progression and the onset of ADT resistance. Thus, 

whether an inhibitor of proteostasis works for a specific prostate cancer stage might 

depend on multiple factors, including the prior treatment regime. Functional genetic 

tools such as the Proteostasis Library, plus other biochemical technologies (9, 66, 67), 
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may begin to unravel these selective vulnerabilities for prostate cancer and other 

indications. 

 

Methods 

Cell lines 

PC3, LNCaP, C4-2, and 22Rv1 cells were purchased from ATCC and grown in RPMI 

1640 medium supplemented with 10% non heat-inactivated fetal bovine serum (Gibco 

16000044) and 1% penicillin/streptomycin. All cell lines were maintained in regular 

tissue culture-treated flasks, with the exception of the low-adherent LNCaPs, which 

were kept in carboxyl-coated flasks (Corning 354778). All cells were grown at 37 °C and 

5% CO2. 

Reagents 

JG-231 was prepared in house, as described (68). AUY-922 was purchased from 

Advanced ChemBlocks Inc. (cat # 10274). The chaperone shRNA library was prepared 

as previously described (33). Briefly, sequences were cloned into the lentiviral 

backbone plasmid, pMK1275. For verification, individual shRNAs were cloned into 

either the dox-inducible backbone, pMK1201 (derived from pINDUCER10 of the Elledge 

Lab) or pMK1200. 

 

Lentiviral production and transduction 

All lentiviruses were prepared by transfection into HEK293T cells using Lipofectamine 

2000 and packaging plasmids pMol, pRSV, and pVSV-g. Viral particles were allowed to 

form for 48 hours post transfection, and then the viral supernatant was collected, 



	60 

passed through a 0.45 µm filter, and stored at 4 °C for no longer than one week prior to 

use. Viral supernatant was added to suspended cells immediately following 

trypsinization, along with 8 µg/mL polybrene (Santa Cruz sc-134220). The cells were 

allowed to adhere to the flasks, then the medium was replaced with regular growth 

medium after 6-8 hours. After 48 hours, the cells successfully infected with the lentiviral 

plasmids were selected with 1 µg/mL puromycin (Gibco A11138-03) for an additional 48 

hours. Flow cytometry was used to determine infection and selection efficiency via the 

expression of fluorescent markers encoded by the lentiviral vectors (generally BFP for 

pooled shRNA screens, and mCherry or TurboRFP for individual shRNA constructs). 

 

Pooled shRNA screens and individual shRNA validation 

Lentivirus was prepared as described above of the pooled shRNA library and used to 

infect the prostate cancer cell lines. Most cell lines were initially infected at ~50-60% 

efficiency, monitored by BFP intensity, and then were further selected with puromycin to 

~100%. Immediately following the selection T0 samples, of ~4 million cells each, were 

collected and stored at -80 °C until genomic DNA was isolated for sequencing. The cells 

were continually cultured, maintaining at least 4 million cells with each passage, for a 

period of ~10 doublings. For screens with chaperone inhibitors, the cells were dosed 

three times at the concentrations listed in 3. 1, for a duration of 24 hours each time. 

Concentrations were chosen by determining the IC50 per cell line by MTT assay, then 

further optimized by testing multiple concentrations at around the IC50 and observing 

the effects on cells after treatment and multiple days of recovery. Final concentrations 

were chosen as ones that induced cell death for a sizable population, but still allowed to 
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cells to recover and continue growing, to reduce potential bottlenecking. At the end of 

the growth period, samples of ~4 million cells were collected for the Tfinal sample. For 

individual shRNA validation, lentivirus was prepared as  

described, cells were transduced and monitored by RFP intensity. Cells were then 

further selected with puromycin, so the final population was 50-80% RFP-positive. The 

percentage of RFP positive cells was then monitored by flow cytometry over a ~2 week 

period, with cells being split at a 1:4 ratio whenever confluency was reached.  

Table 3.1. Compounds and concentrations used in the shRNA screens. 
 
 

 

 

 

 

Genomic DNA isolation, indexing and PCR purification 

Genomic DNA was extracted using MN NucleoSpin® Blood Kit (Macherey-Nagel 

740951) for ~4-6 million cells per sample. Whole genomic DNA samples were carried 

forward into indexing PCRs using Q5® High-Fidelity polymerase (New England BioLabs 

M0492S). PCR amplified, and indexed, fragments of approximately 280 bp were purified 

by a two-step SPRI bead purification (43), and concentrations were determined on a 

Qubit Fluorometer before pooling for deep sequencing on a HiSeq 4000. 

 

Mito Stress Test 

Stable 22Rv1 cells containing dox inducible-expressing shRNA constructs (shRNA-

	 	 	 	 	

	
		

     Screen 
conditions   

	
	

Cell Line JG231 (uM) AUY (nM) 
	

	
22Rv1 0.75 100 

	
	

PC3 0.5 100 
	

	
LNCaP 1 100 

	
	

C4-2 1 100 
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Hsp60-1 or Hsp60-2) were stimulated with 100 ng/mL doxycycline for 4 days prior to 

seeding 2.0 x 104 cells/well in a 96 well plate. Oxygen consumption (OCR) and 

extracellular acidification rate (ECAR) were monitored with Agilent SeaHorse XFe96 

~18h after seeding with XF DMEM pH 7.4 containing glucose, pyruvate, and glutamine. 

All experiments were normalized by DNA quantification with Cyquant (ThermoFisher) 

and are the result of at least 4 replicates per condition. Spare respiratory capacity 

(maximal OCR – basal OCR) and proton leakage (oligomycin-sensitive OCR – non-

mitochondrial OCR) were calculated using Wave (Agilent).   

 

Data Analysis and Clustering 

Gene were clustered hierarchically by P value in Cluster, as described (69) and 

displayed by Java TreeView (70).  

 

Immunoblotting 

Cells were grown in a 6-well plate to near 100% confluency, after which the medium 

was replaced with fresh medium containing the compounds in 1% DMSO. The 

compound was left on the cells and incubated at 37 °C and 5% CO2 for six hours, 

immediately followed by harvesting and lysing in M-PER supplemented with protease 

inhibitors. Lysate concentrations were quantified by a bicinchoninic acid assay (BCA, 

ThermoFisher 23227) and then run on 4-15% gradient SDS polyacrylamide gels at 5-10  

µg of total protein per sample. All blot quantification was performed in Image Lab™ 

software (BioRad). The following antibodies were used: 
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Table 3.2. List of antibodies and dilutions used for Western blot studies. 

 

Clinical data analysis 

Expression profiles of retrospective radical prostatectomy samples from 719 patients 

(243 with ADT treatment, 476 no treatment) were retrieved from Decipher GRID 

database. Patients cohort was pooled from two matched cohort previously for building 

and validating ADT signature designed as described in (PMID 29760221). Specimen 

selection and processing and data normalization has been described previously (PMID 

29760221). Patients were grouped based on expression of HSP60. High HSP60 was 

defined as higher than median expression.  

  

Target Company/Cat # Dilution used Host 
AR Abcam (ab133273) 1:1000 Rabbit 
Hsc/p70 San Cruz (sc33575) 1:200 Rabbit 
Hsp27 Santa Cruz 

(sc59562) 
1:200 Mouse 

Hsp60 Cell Signaling 
(D6F1) 

1:1000 Rabbit 

Hsp10 Santa Cruz 
(sc376313) 

1:1000 Mouse 

Actin Sigma (A5441) 1:200 Mouse 
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Figures 

 

 

Figure 3.1 Functional genomic screen in PCa cell lines. A. Map of the chaperones and 
other proteostasis targets represented in the shRNA Proteostasis Library. Targets are 
grouped by structural categories (e.g. Hsp70s, sHSPs). The bold lines between the 
categories represent known physical connections (e.g. protein-protein interactions). The 
dotted lines represent connections that are specific to only the indicated members of the 
class. B. Schematic of the workflow for the functional genomics screen. Cells are 
transduced with lentivirus expressing targeting (A, B, etc.) and ~500 non-targeting 
negative control (NC) sequences. After selections performed with or without 
proteostasis stressors, the enrichment or depletion of specific shRNA sequences is 
quantified by deep sequencing and comparison of T0 to Tfinal. C. Four prostate cancer 
cell lines, organized by hormone sensitivity and AR expression status. 
 
 



	65 

 
Figure 3.2. Individual shRNA results of the genetic screen in PCa cells. Barcoded 
shRNAs were deep sequenced at the T0 (initial) and Tfinal points and their frequencies 
were compared to determine phenotype of genetic knockdown. Each dot represents a 
single shRNA or negative control shRNA. 
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Figure 3.3. CRPC cell lines have unique vulnerabilities that are distinct from PCa cells. 
A. Volcano plots, showing the results of the functional genomics screen for each of the 
four cell lines. B. Comparisons between the CRPC cell lines (22Rv1 and C4-2) and the 
PCa cell lines (LNCaP) reveals both shared and distinct subsets of vulnerabilities. All 
genes with -log10(Pvalue) >2 in all 3 cell lines are shown. C. Comparisons between 
LNCaP and the CRPC cell lines. 



	67 

 
Figure 3.4 Gene level results from shRNA screens under the following conditions: 
untreated (A), JG-231 (B), or AUY922 (C). Chaperonins and Hsp70 genes are 
commonly essential. Under Hsp70 inhibition, additional Hsp70, Hsp40 and NEF genes 
are essential. With Hsp90 inhibition, Hsp40, Hsp70, and Hsp90 genes are essential. 
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Figure 3.5. Synthetic lethality studies, using chemical inhibitors of Hsp70 and Hsp90, 
suggest that CRPC cells depend on Hsp60/HSPD1. A. Chemical structure of the 
compounds used in this study. JG-231 and AUY-922 are pan-inhibitors of Hsp70 and 
Hsp90, respectively. B. Treatment with AUY922 leads to degradation of full-length AR 
and treatment with JG-231 leads to degradation of ARv in prostate cancer cell lines. 
Experiments are representative of studies performed in triplicate. C. P-value of selected 
genes show various patterns of knockdown sensitivity across prostate cancer cells. 
Shared and cell line specific "hits" from the untreated condition generally remain hits 
with Hsp70 and Hsp90 inhibition, and some drug-treatment specific sensitivities are 
revealed. 
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Figure 3.6. Hierarchical clustering of the p-value for targeted genes in the 22Rv1, C4-2 
and LNCaP cells. Functionally related genes cluster together and re-capitulate the 
results observed in the untreated shRNA screen. The highligheted regions show the 
shared chaperonin hits (CCT genes), Hsp60 (HSPD1), which is selective for the CRPC 
cells, and Hsp90, which is drug-treatment specific. 
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Figure 3.7. Validation of Hsp60 as a selective vulnerability in CRPC cell lines. A. 22Rv1 
cells were transduced with either a control or Hsp60 targeting shRNA, which induced 
robust knockdown (>90%). B. The shRNA expressing population was monitored via flow 
cytometry through RFP expression. Over time, the population of Hsp60 knockdown cells 
decreased compared to the control shRNA. C. A panel of additional cancer cells were 
transduced with the Hsp60 shRNAs and the RFP-expressing population was monitored 
over time (~2-3 weeks). Hsp60 knockdown was strongly depleted in CRPC cells (22Rv1 
and C4-2), but not in the other tested PCa, breast, or multiple myeloma cells. 
Enrichment was calculated as the ratio of (RFP+)/(1-RFP+) between the initial and final 
time point, relative to a control shRNA. 
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Figure 3.8 Cells from various tissue types (prostate, breast, and multiple myeloma) 
were transduced with either a control or Hsp60 targeting shRNA with an RFP marker. 
The shRNA expressing population was monitored over time (~2-3 weeks) via flow 
cytometry. 
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Figure 3.9. Hsp60 knockdown does not affect AR but Hsp60 promotes mitochondrial 
respiration of 22Rv1 cells. A. Dox-inducible shRNAs of Hsp60 were stably expressed in 
22Rv1 cells. shRNAs reduce Hsp60 levels, but both full-length and ARv levels are 
unaffected after 96 hr dox treatment. B. Model of mitostress assay overlayed on inner 
mitochondrial membrane and ETC. C. Mitostress analysis of 22Rv1 EV or dox-inducible 
shHsp60-2 +/- 5 day treatment with 100 ng/mL doxycycline. D. Energyetic plot of basal 
metabolism of 22Rv1 EV or shHsp60-2 cell with and without doxycycline. E. 
Quantitation of spare respiratory capacity or F. proton leakage of 22Rv1 EV or Hsp60-3 
+/- 5 day treatment with 100 ng/mL doxycycline. 
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A. Dox-inducible shRNAs of Hsp60 were stably expressed in 22Rv1 cells. shRNAs reduce Hsp60 levels, but 
both full-length and ARv levels are unaffected after 96 hr dox treatment. B. Model of mitostress assay 
overlayed on inner mitochondrial membrane and ETC. C. Mitostress analysis of 22Rv1 EV or dox-inducible 
shHsp60-2 +/- 5 day treatment with 100 ng/mL doxycycline. D. Energyetic plot of basal metabolism of 22Rv1 
EV or shHsp60-2 cell with and without doxycycline. E. Quantitation of spare respiratory capacity or F. proton 
leakage of 22Rv1 EV or Hsp60-3 +/- 5 day treatment with 100 ng/mL doxycycline. 
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Figure 3.10: Comparison of metastasis-free survival in patients with high (red, greater 
than median expression) or low (blue, lower than median expression) Hsp60 
expression, with or without ADT treatment. Hsp60 expression significantly correlates 
with worse outcomes in ADT-treated prostate cancer patients. 
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with worse outcomes in ADT-treated prostate cancer patients. 
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