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Abstract

The Effects of Rotation on Stratified Turbulence

by

Dante Buhl

Recent interest in the dynamics of stratified turbulence has led to the development of new

models for quantifying vertical transport of momentum and buoyancy (Chini et al 2022, Shah et

al 2024). These models are still incomplete as they do not yet include all the relevant dynamics

often present in real physical settings such as rotation and magnetic fields. Here we expand

on prior work by adding rotation. Variation of the Rossby number affects the mean flow and

perturbation dynamics independently. We conduct 3D direct numerical simulations of rotating,

stochastically forced, strongly stratified turbulence (Fr ≪ 1), and vary the Rossby number.

We find that rotation gradually suppresses small-scale dynamics and, therefore, inhibits vertical

transport as Ro decreases towards Fr. The effect is particularly pronounced within the cores of

emergent cyclonic vortices. For sufficiently strong rotation, vertical motions are suppressed.
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1 Introduction

Stratified Turbulence is a terminology introduced by D. K. Lilly to describe flows that exhibit

three-dimensional anisotropic turbulence where vertical motions are limited due to stratification

(Lilly, 1983). Stratification is defined to be the presence of a stable density profile ρ̄(z) whereby

the density increases with depth (dρ̄/dz < 0). Displaced fluid parcels feel a restoring buoyancy

force, which pulls them back toward equilibrium. The strength of the stratification is measured

by its buoyancy frequency N =
√
−gd ln(ρ̄)/dz where g is the local gravity. Many geophysical

and astrophysical systems have stratified regions, including the Earth’s oceans and atmosphere

and the radiative zones of stars and planets. The source of the stratification can either be

temperature or composition (e.g. salinity in the oceans, helium content in stars).

Understanding stratified turbulence is vital to creating accurate models of the Earth’s climate

and of stellar interior dynamics, as it provides a mechanism for vertical mixing in an otherwise

stable flow. In particular, purely diffusive dynamics are unable to explain the vertical transport

of heat or momentum that is required to balance the global meridional overturning circulations

in the oceans and atmosphere (Munk, 1966; Haynes et al., 1991). Similarly in stars, strati-

fied turbulence is required to explain a large number of observations of chemical and angular

momentum transport (Pinsonneault, 1997; Aerts et al., 2019).

Crucially, all of the aforementioned stratified turbulent flows take place in rotating bodies.

The relevance of rotation for a given flow is described by the Rossby number Ro, commonly

defined as

Ro =
U

2ΩL
, (1.1)

where U is the characteristic velocity of the flow, Ω is the angular velocity, and L is the char-

acteristic length scale of the flow. On Earth, the rotation rate is roughly 7.3 · 10−5s−1 and

common oceanic flows such as the Gulf Stream, which has a typical velocity of order 1m/s

and a length scale on the order of 100km would have Rossby number Ro = O(0.1). The Jet

Stream on Earth has characteristic lengthscales of thousands of kilometers and a typical velocity

of roughly 100m/s implying that the Rossby number is Ro = O(0.01). The Solar Tachcoline,

a strongly stratified layer beneath the solar convective zone, has an estimated Rossby num-

ber Ro = O(0.1) (Thompson et al., 1996). The effect of rotation becomes important as the
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Rossby number decreases below O(1) and so it is clear that many of these flows are rotationally

influenced in addition to being stably stratified.

Recent theoretical work on the subject of stratified turbulence has improved our under-

standing of vertical mixing through the use of asymptotic analysis of governing equations (Chini

et al., 2022; Shah et al., 2023) and high-resolution direct numerical simulations (Cope et al.,

2020; Garaud, 2020; Garaud et al., 2024). The results of these studies have provided predictions

for the various proxies for vertical transport. In particular, the vertical lengthscale of the turbu-

lence is found to scale as U/N , which matches previously hypothesized scaling laws evinced by

laboratory experiments (Park et al., 1994; Holford & Linden, 1999; Billant & Chomaz, 2000).

These results, however, have ignored the influence of rotation on stratified turbulence. Lab-

oratory experiments of rotating stratified turbulence have demonstrated the importance of Ω/N

as a control parameter. Praud et al. (2006) conducted experiments of decaying rotating strat-

ified turbulence and showed that the eddies are elongated and vertically invariant when Ω/N

is greater than 1. This suggests that U/N is no longer the relevant parameter in the limit of

rapid rotation. Similarly, Aubert et al. (2012) showed that the aspect ratio for isolated vortices

in rotating stratified flows depends on Ω/N .

In this thesis, we therefore attempt to understand the effect of rotation on previously de-

veloped models of stratified turbulence. In section 2, we present the model considered and

governing equations. In section 3, we review the multiscale theory presented by Chini et al.

(2022), and Shah et al. (2023), and DNS presented by Cope et al. (2020), Garaud (2020), and

Garaud et al. (2024). In section 4, we run direct numerical simulations of stably stratified tur-

bulence forced using stochastic Gaussian processes similar to the forcing mechanism used by

Waite & Bartello (2004) and Waite & Bartello (2006) and compare it to the DNS in Garaud

(2020) and Garaud et al. (2024). Finally, in section 5, we investigate the effect of rotation. We

conduct DNS of rotating stratified turbulence in order to understand at what critical Rossby

number the previously developed models become ineffective at describing the flow. In addition,

we study the flow structures and mixing present when the flow becomes strongly influenced by

rotation. Finally, we attempt to explain the DNS results by including rotation in the multiscale

theory.
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2 Model

2.1 Governing Equations

We begin with the Boussinesq equations for fluid motion in the presence of a stably strati-

fied temperature field (with background temperature gradient dT̄ /dz) in a rotating coordinate

system. The governing equations are

∂u

∂t
+ u · ∇u+ 2Ω× u = − 1

ρm
∇p̃+ αT gT̃ez +

1

ρm
F + ν∇2u, Momentum Equation (2.1)

∂T̃

∂t
+ u · ∇T̃ +

dT̄

dz
w = κ∇2T̃ , Temperature Equation (2.2)

∇ · u = 0, Continuity Equation (2.3)

where F is a horizontal body force applied to drive the flow, and Ω is the rotation rate, which is

assumed to be aligned with the direction of gravity g = −gez. We denote the fluid velocity as

u = ⟨u, v, w⟩ and perturbations in pressure and temperature away from an assumed hydrostatic

equilibrium as p̃, T̃ respectively. Other important quantities that arise here are the kinematic

viscosity ν, the thermal diffusivity κ, the thermal expansion coefficient αT , and the mean density

ρm. These are assumed to be constants by the Boussinesq approximation.

Note the presence of the Coriolis force 2Ω × u. This term is the essential distinguishing

factor from prior work on this subject. Generally, Ω is not aligned with gravity, and the angle

between the rotation axis and gravity depends on the latitude. In order to reduce the complexity

of the problem, in this thesis the effect of rotation will be studied only near the poles of rotating

bodies where eΩ ≈ ez.

Non-Dimensionalization

We non-dimensionalize the system using the following substitutions:

u = U û, ∇ =
1

L
∇̂,

T̃ = L
dT̄

dz
T̂ , t =

L

U
t̂, p̃ =

U2

ρm
p̂,

3



where the unit velocity U is a characteristic horizontal velocity of the large-scale flow field, and

the unit length L is a characteristic length scale of the horizontal forcing. The unit temperature

is chosen to be the background temperature gradient multiplied by the length scale of the system.

Finally, a unit timescale is obtained by the quotient of the unit length and velocity of the system.

This quantity is effectively the turnover time of the large-scale horizontal eddies. Substituting

these non-dimensional quantities into the governing equations we obtain:

∂û

∂t̂
+ û · ∇̂û+

1

Ro
(eΩ × û) = −∇̂p̂+

1

Fr2
T̂ez + F̂ +

1

Re
∇̂2û, (2.4)

∂T̂

∂t̂
+ û · ∇̂T̂ + ŵ =

1

Pe
∇̂2T̂ , (2.5)

∇̂ · û = 0, (2.6)

where F = (U2ρm/L)F̂ and the standard Rossby, Reynolds, Péclet and Froude numbers have

appeared:

Ro =
U

2ΩL
, Re =

UL

ν
, Pe =

UL

κ
,

Fr =
U

NL
=

U√
αT gdT̄ /dzL

.

These dimensionless quantities are indicators of the relevant dynamics of the flow. The Rossby

number compares the rotation period of the flow to the large-scale horizontal eddy turnover

time. The Reynolds number is the ratio of the viscous dissipation timescale across the eddy to

the eddy turnover timescale. The Péclet number is the ratio of the thermal dissipation timescale

across the eddy to the eddy turnover timescale. Finally, the Froude number is the ratio of the

fastest gravity wave oscillation timescale to the large-scale eddy turnover timescale.

Hereafter, the hats are dropped for ease of notation.

2.2 Domain

In all that follows, we shall solve the governing equations inside of a tripply periodic domain

with dimensions Lx × Ly × Lz = 4π × 4π × π. The domain can be seen in Figure 1. This

domain has a square horizontal cross-section so that the flow obtained and the forcing used

may be horizontally isotropic. It is shorter in the vertical to save computational time with the
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Figure 1: Schematic of the Domain

expectation that the vertical turbulent length scales are much shorter than the horizontal ones.

We will also define a volume average operator ⟨·⟩:

⟨q⟩ (t) = 1

LxLyLz

∫
D

q(x, t)dV . (2.7)

2.3 Energetics

Over long timescales, forced stratified turbulence reaches a stationary state where energy input

by the body force balances viscous and thermal dissipation by the turbulent flow. To show this,

we derive an energy equation by taking the dot product of the momentum equation (2.4) with

u, and multiplying the temperature equation (2.5) with T :

u · ∂u
∂t

+ u · (u · ∇u) + u · 1

Ro
(ez × u) = −u · ∇p+

w

Fr2
T + u · F + u · 1

Re
∇2u, (2.8)

T
∂T

∂t
+ Tu · ∇T + Tw =

1

Pe
T∇2T . (2.9)

We can simplify these equations by using the continuity equation to write them in conservative

form

∂E

∂t
+∇ ·

(
uE + up− 1

Re
∇E

)
=

w

Fr2
T + u · F − 1

Re
|∇u|2, (2.10)

∂P

∂t
+∇ ·

(
uP − 1

Pe
∇P

)
= −Tw − 1

Pe
|∇T |2, (2.11)

5



where E = u2/2 and P = T 2/2. We then take the volume average of equations (2.10) and (2.11).

Note that the divergence terms on the left-hand side integrate to zero in a triply periodic domain.

Assuming the flow is in a statistically stationary state, i.e. ∂⟨q⟩
∂t = 0, then:

0 =

〈
w

Fr2
T + u · F − 1

Re
|∇u|2

〉
, (2.12)

0 =

〈
−Tw − 1

Pe
|∇T |2

〉
. (2.13)

We leverage the fact that the volume average is a linear operator and find that for the total

energy to be conserved in a statistically steady state, the following balances must hold:

⟨u · F ⟩ = χ

Fr2
+ ϵu, (2.14)

B = −χ, (2.15)

where B is the temperature flux, χ is the thermal dissipation rate and ϵu is the viscous dissipation

rate, defined as

B = ⟨wT ⟩, χ =
⟨|∇T |2⟩

Pe
, ϵu =

⟨|∇u|2⟩
Re

. (2.16)

Both terms on the right-hand side of (2.14) act as a net sink in the energy equation since χ, ϵu > 0

by definition. The power input ⟨u · F ⟩ is therefore needed to balance the energy dissipation in

the domain.

An important diagnostic quantity for vertical transport and mixing is the mixing efficiency

η which we define here as:

η =
χ/Fr2

χ/Fr2 + ϵu
=

χ/Fr2

⟨u · F ⟩
. (2.17)

This can be interpreted as the fraction of the kinetic energy input into the system that is

irreversibly transferred into potential energy, and then lost via thermal dissipation.

2.4 Forcing Mechanism

Various studies of stratified turbulence have relied on several different forcing mechanisms. Some

examples of forcing mechanisms are the sinusoidal shear forcing (Cope et al., 2020; Garaud
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et al., 2024), vertical and streamwise shear forcings (Yi & Koseff, 2023), “vortical mode” forcing

(Herring & Metais, 1989; Waite & Bartello, 2004, 2006; Brethouwer et al., 2007; Maffioli et al.,

2016; Howland et al., 2020), and mean-relaxation forcing (Smith et al., 2021) among others.

It has been shown by Howland et al. (2020) and Yi & Koseff (2023) that flows with different

forcing mechanisms have different scaling laws for the mixing efficiency as a function of the input

parameters. This is likely due to the fact that different types of instabilities are triggered in

each case, which drive turbulent motions with different mixing properties.

For this thesis, we have chosen to use a “vortical mode” forcing inspired by Waite & Bartello

(2004). We will force the horizontal vortical modes using horizontally-isotropic and divergence-

free stochastic processes. By doing so, vertical flow and structure will arise indirectly and

spontaneously from the dynamics and instabilities of the flow. We define our forcing as

F = Fxex + Fyey, ∇ · F = 0. (2.18)

As the governing equations will be solved using pseudospectral Direct Numerical Simulations

(DNS), the forcing will be applied in spectral space. Specifically, we express the forcing in

Fourier spectral space

F̂ (k, t) = F̂x(k, t)ex + F̂y(k, t)ey, (2.19)

F̂x =
ky
|kh|

G(k, t), F̂y =
−kx
|kh|

G(k, t), (2.20)

where G(k, t) is a time-dependent Gaussian process and F̂ denotes the Fourier transform of

F . This configuration ensures that k · F̂ = 0. Unlike Alvelius (1999), Lindborg (2006), we use

no amplitude function or adaptive scaling to ensure that the power input is constant at each

timestep. Rather, we rely on the power input being in a statistically stationary state. For the

simulations presented later, we only force horizontal wavenumbers kh ≤
√
2, to ensure that the

largest horizontal scales are O(1) as implied by our non-dimensionalization.

2.5 Gaussian Processes

Gaussian Processes are stochastic processes specified by their mean function µ(t) and covariance

function K(t, t′) (Williams & Rasmussen, 1995). To build a regression G, Gaussian processes
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sample from a joint multivariate Gaussian distribution centered on the training set (t,y)

G ∼ N (µ∗,Σ), (2.21)

where µ∗ is the mean vector of the distribution and Σ is the covariance matrix generated using

the covariance function. There are many valid covariance functions suited for various purposes.

For this thesis, we consider Gaussian processes with mean µ(t) = 0 and covariance function

defined by the exponential squared kernel

K(t, t′) = exp

(
−(t− t′)2

2τ2

)
, (2.22)

where τ is the correlation parameter of the Gaussian process. The correlation parameter affects

the timescale of the regression generated, e.g. τ ≪ 1 would generate a high-frequency regression.

We use τ = 0.2 and a constant timestep of ∆t = 0.05. We define µ∗ and Σ for a sample set t′:

µ∗ = K′TK−1y, (2.23)

Σ = K′′ −K′TK−1K′, (2.24)

where [K]ij := K(ti, tj), [K
′]ij := K(ti, t

′
j), and [K′′]ij := K(t′i, t

′
j). This versatile process can

be applied to any number of training points n with a standard operation cost of O(n3) due to

the matrix inversion K−1.

In practice, the Gaussian Process procedure for generating a time series needs to be modified

to improve the condition number of the matrix K. Indeed, equations (2.23) and (2.24) use the

inverse ofK in order to generate a time series, and this matrix is prone to having a large condition

number. In order to control the conditioning of this matrix and improve the numerical stability

of this process, we employ the pseudo-inverse K−1
p defined as

K−1
p := V pD

−1
p V T

p , (2.25)

Dp := diag(λ1, · · · , λc), |λc| > ϵ|λ1|, (2.26)

V p := [Λ1, · · · ,Λc, ] (2.27)

where (λi,Λi) are corresponding eigenvalue-eigenvector pairs of K such that |λi| ≥ |λi+1|, and

8



λc is the smallest eigenvalue such that |λc| ≥ ϵ|λ1|. Here, ϵ is a controlled tolerance value for

the condition number which we fix to be ϵ = 10−4. The definition of µ∗ and Σ are adjusted to

include the pseudo-inverse of K:

µ∗ = (V T
p K

′)TD−1
p (V T

p y), (2.28)

Σ = K′′ − (V T
p K

′)TD−1
p (V T

p K
′). (2.29)

Finally, since PADDI is implemented in Fortran 90, which lacks an intrinsic multivariate

Gaussian distribution sampling function, we instead use the Box-Muller transform to generate

a multivariate normal distribution of mean µ∗ = 0 and Σ = I. This distribution is linearly

transformed to have the mean and covariance desired. The Gaussian process (2.21) is modified

to become:

G = µ∗ +MN (0, I), (2.30)

where M = V D1/2 and V ,D are produced from the eigendecomposition of Σ. The numerical

implementation of the forcing mechanism presented in §2.4 relies on a linear interpolation of

time series generated by a Gaussian process. This forcing mechanism produces complex-valued

time series as seen in Figure 2, which is then used in (2.20) to produce the desired forcing.

-3

-2

-1

 0

 1

 2

 3

 18  20  22  24  26  28

Time

Real
Imaginary

Figure 2: A portion of a time series generated by a Gaussian process used in one of the DNS.
Its real and imaginary components are seen to vary randomly, with a mean value of 0 and an
average amplitude of 1 on a O(1) time scale.
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3 Recent Work on Nonrotating Stratified Turbulence

In this section, we review a series of papers linking theoretically derived scaling laws to obser-

vations from direct numerical simulations, that have shown a great deal of success in advancing

the field.

3.1 Multiscale Model of Stratified Turbulence

Chini et al. (2022) and Shah et al. (2023) obtained scaling laws for several transport properties of

strongly stratified turbulence by performing a multiscale expansion of the governing equations.

This is motivated by the notion that the turbulence contains a combination of large and small

horizontal scales where the large scales are dominated by vortical “pancake” structures. The

large-scale flows are, therefore, strongly anisotropic, with scales of order unity (by construction)

in the horizontal direction, and scales of order α (with α ≪ 1) in the vertical direction. DNS

results from Maffioli & Davidson (2016), Cope et al. (2020), Garaud (2020) further revealed

that between these ‘pancakes’ there appeared to be eddies with a much smaller horizontal

length scale. In order to capture the dynamics at both scales, Chini et al. (2022) developed a

multiscale model with a small horizontal length scale of order α and a large horizontal length

scale of O(1). Crucially, they assume there is a single vertical scale of the same order as the

small horizontal scale, implying isotropy on the small scales. Due to the faster turnover time

of the smaller eddies, a new fast timescale is also introduced, associated with the shearing rate

1/α between the ‘pancake’ eddies. Overall, we have:

xs = xh, xf = xh/α, ζ = z/α, ts = t, tf = t/α, (3.1)

where the subscript s corresponds to large/slow scales and the subscript f corresponds to

small/fast scales. Using the proposed rescaling of the coordinate system, the derivatives be-

come

∇hq = ∇sq +
1

α
∇fq,

∂q

∂z
=

1

α

∂q

∂ζ
,

∂q

∂t
=

∂q

∂ts
+

1

α

∂q

∂tf
. (3.2)

In addition to this multi-scale model for the flow, Chini et al. (2022) proposed to split each
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Figure 3: Multiscale eddy schematic. Larger, horizontally anisotropic eddies are seen in orange
in counter-rotating pairs. Smaller, isotropic eddies are seen in blue.

quantity into a mean component q̄ which varies on the larger/slower scales, and a perturbation

component q′ which varies on both the large/slow and small/fast scales:

q(xh, ζ, t) = q̄(xs, ζ, ts) + q′(xs,xf , ζ, ts, tf ). (3.3)

A fast-averaging operator is also defined to isolate mean and perturbation dynamics:

q(xs, ζ, ts) ≡ lim
τf ,lx,ly→∞

1

lxlyτf

∫ τf

0

∫
Dh

q(xs,xf , ζ, ts, tf )dxfdtf . (3.4)

An important property of the mean-perturbation representation is that perturbations fast-

average to zero (q′ = 0), while mean quantities are unaffected (q̄ = q̄).

Non-diffusive Dynamics

Chini et al. (2022) applied this multiscale model to the governing equations for stratified tur-

bulence in the following asymptotic limit (Fr ≪ 1, Re ≫ 1, P e ≫ 1), such that the so-called

buoyancy Renolds number defined as Reb = α2Re, and the buoyancy Péclet number defined as

Peb = α2Pe are both of order unity or larger. The governing equations are split into mean-

perturbation form and multiscale derivatives are substituted into derivative operators. The

averaging operator defined in (3.4) is used to produce the mean equations, which are then sub-

tracted from the total equations to obtain the perturbation equations. Applying this to the
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continuity equation (2.6), they find:

∇s · ūh +
1

α

∂w̄

∂ζ
= 0, (3.5)

1

α
∇f · u′

h +
1

α

∂w′

∂ζ
+ h.o.t. = 0. (3.6)

Chini et al. (2022) noted that w̄ = O(α) must hold in order for the mean flow to remain fully

three-dimensional. At the leading order, the perturbation equation reveals that the horizontal

perturbations are of the same order as the vertical perturbations, i.e., u′
h = O(w′) = O(u′).

A similar procedure is applied to the horizontal component of the momentum equation and

gives:

∂ūh

∂ts
+ ūh · ∇sūh +

1

α
u′
h · ∇fu′

h +
w̄

α

∂ūh

∂ζ
+

w′

α

∂u′
h

∂ζ
= −∇sp̄+ F̄ h +

1

Reb

∂2ūh

∂ζ2
+ h.o.t.,

(3.7)

1

α

∂u′
h

∂tf
+

1

α
ūh · ∇fu

′
h +

w′

α

∂ūh

∂ζ
= − 1

α
∇fp

′ +
1

Reb

(
∇2

fu
′
h +

∂2u′
h

∂ζ2

)
+ h.o.t.. (3.8)

This reveals the buoyancy Reynolds number defined above to be the effective Reynolds number of

the large-scale ‘pancake’ eddies due to their shorter vertical extent. They noted that for the fast-

averaged Reynolds stresses to affect the mean dynamics at leading order requires u′ = O(α1/2).

We also see that the effective Reynolds number of the perturbations is larger, namely Reb/α,

due to their faster turnover time.

A similar decomposition yields the mean and perturbation equations for T̄ and T ′ respec-

tively:

∂T̄

∂ts
+ ūh · ∇sT̄ +

1

α
u′
h · ∇fT ′ +

1

α
w̄
∂T̄

∂ζ
+

1

α
w′ ∂T

′

∂ζ
+ w̄ =

1

Peb

∂2T̄

∂ζ2
+ h.o.t., (3.9)

1

α

∂T ′

∂tf
+

1

α
ūh · ∇fT

′ +
w′

α

∂T̄

∂ζ
+ w′ =

1

Peb

(
∇2

fT
′ +

∂2T ′

∂ζ2

)
+ h.o.t. . (3.10)

Similar to the momentum equations, Chini et al. (2022) observed that the relevant temperature

diffusion parameter is Peb = α2Pe in the mean equation, and Peb/α in the perturbation equa-

tion. The following result is predicated on the assumption that Peb ≥ O(1). As the vertical

advection of the background temperature gradient is a crucial element of stratified turbulence,

Chini et al. (2022) inferred that it must be of the same order as the horizontal advection terms,
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leading to the conclusion that T̄ = O(w̄), and similarly for the perturbations that T ′ = O(αw′).

The mean and perturbation components of the vertical momentum equation are:

0 = − 1

α

∂p̄

∂ζ
+

1

Fr2
T̄ + h.o.t., (3.11)

1

α

∂w′

∂tf
+

1

α
ūh · ∇fw

′ = − 1

α

∂p′

∂ζ
+

1

Fr2
T ′ +

1

Reb

(
∇2

fw
′ +

∂2w′

∂ζ2

)
+ h.o.t. . (3.12)

The mean equation at the leading order is revealed to be governed by hydrostatic balance

and, furthermore, shows that α = Fr. This result can be used to compute scaling laws for each

variable as a function of the Froude number of the flow, including the mean vertical velocity w̄ =

O(Fr), the perturbation velocity u′ = O(Fr1/2), the temperature fluctuation T ′ = O(Fr3/2),

the temperature flux w′T ′ = O(Fr2), and the vertical turbulent viscosity w′lz = O(Fr3/2).

This implies, as expected, that as the stratification becomes stronger, vertical transport becomes

inhibited.

Thermally Diffusive Dynamics

As mentioned before, the analysis of Chini et al. (2022) assumes that Peb ≥ O(1) which is always

satisfied when Reb ≥ O(1) and Pr ≥ O(1). If Pr ≪ 1, however, this does not have to be the

case and allows for new thermally diffusive regimes of stratified turbulence where Reb ≥ O(1)

but Peb ≪ 1. Shah et al. (2023) recently extended the multiscale theory developed in Chini

et al. (2022) for such low Prandtl number flows.

Taking the limit Peb ≪ 1 does not directly affect the leading orders of the continuity or

horizontal momentum equations. Several scaling laws obtained by Chini et al. (2022) therefore

remain valid in this regime; i.e. we have w̄ = O(α), u′ = O(α1/2), p̄ = O(1), and p′ = O(α1/2).

By contrast, taking Peb ≪ 1 directly impacts the mean and fluctuation equations for the

temperature, as shown by Shah et al. (2023), who identified two distinct regimes.

The first case is the intermittent regime: α ≪ Peb ≪ O(1). In this case, inspection of the

temperature equations (3.9) and (3.10) shows that the leading order of the mean dynamics be-

comes significantly influenced by temperature diffusion while the perturbation dynamics remain
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unaffected. Dominant balance in each equation implies

w̄ =
1

Peb

∂2T̄

∂ζ2
+ h.o.t., (3.13)

1

α

∂T ′

∂tf
+

1

α
ūh · ∇fT

′ +
w′

α

∂T̄

∂ζ
+ w′ =

1

Peb

(
∇2

fT
′ +

∂2T ′

∂ζ2

)
+ h.o.t. . (3.14)

The scaling of T̄ needs to be chosen to ensure balance in the mean temperature equation

(3.13) between the vertical advection of the background stratification and the diffusion of T̄ .

This reveals that T̄ = O(αPeb). Shah et al. (2023) noted that in this limit, there are two choices

of how to balance the vertical momentum equation. The first choice is to impose hydrostatic

balance in the mean equation producing the scaling of α = Fr/
√
Peb. Upon inspection of

the perturbation equations, the temperature equation implies that T ′ = O(α3/2), but this

reveals an inconsistency in the vertical momentum perturbation equation (3.12) where T ′/Fr2 =

O(α−1/2/Peb) is unbalanced. Shah et al. (2023) determined that hydrostatic balance must be

imposed in the perturbation equations instead which recovers α = Fr.

As a result, the scaling of w̄, u′ and T ′ retain their original dependence on Fr as in the

non-diffusive regime, but the scaling of the mean temperature changes to be T̄ = O(Fr3Pe).

This regime was determined to be valid when Reb ≥ O(1) and while α ≪ Peb ≪ 1 which is

equivalent to Re ≥ Fr−2 and Fr−1 ≪ Pe ≪ Fr−2.

The next case is the fully diffusive regime where Peb ≪ α. In this case, thermal diffusion

dominates the leading order of both the mean and perturbation dynamics. The temperature

equations become:

w̄ =
1

Peb

∂2T̄

∂ζ2
+ h.o.t., (3.15)

w′ =
1

Peb

(
∇2

fT
′ +

∂2T ′

∂ζ2

)
+ h.o.t., (3.16)

which implies T̄ = O(αPeb) and T ′ = O(α1/2Peb). Shah et al. (2023) notes that there are

two choices to balance the vertical momentum equations. Similar to the intermittent regime,

choosing to balance the mean equation first leads to an inconsistency in the perturbation equa-

tions. Thus Shah et al. (2023) balances the perturbation equation revealing α = Fr2/Peb =(
Fr2

Pe

)1/3

This value of α produces new scalings laws for the velocity and temperature, namely:

w̄ = O((Fr2/Pe)1/3), u′ = O((Fr2/Pe)1/6), T̄ = O(Fr2), T ′ = O(Fr5/3Pe1/6), and predicts
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that the vertical length scale of the turbulent eddies ought to be O((Fr2/Pe)1/3).

3.2 Numerical Results

Direct Numerical Simulations (DNS) by Cope et al. (2020) and Garaud et al. (2024) successfully

validated the multiscale asymptotics of Chini et al. (2022) and Shah et al. (2023). These DNS

were performed using the PADDI code, developed by Stephan Stellmach and described in Traxler

et al. (2011). PADDI is a three-dimensional pseudospectral code that can solve equations (2.4) -

(2.6) in a triply periodic domain. PADDI utilizes a pencil-based fast Fourier transform algorithm

and a semi-implicit, three-step Adams-Bashforth method with adaptive time-stepping.

The majority of the simulations reported by Cope et al. (2020) and Garaud et al. (2024)

used a domain size of Lx = 4π, Ly = Lz = 2π with a steady horizontal shear forcing defined as

F = sin(y)ex. They conducted simulations over a broad parameter space by varying the Froude

number for different values of the Prandtl number thus spanning both the fully diffusive and

non-diffusive regime. Characteristic results are shown in Figure 4, taken from Cope et al. (2020).

The large anisotropic flow structures are most visible in the streamwise velocity component, and

we see that layering dominates the flow in the stratified regimes. Small isotropic scales are clearly

visible in the vertical component of the velocity field.

Cope et al. (2020) conducted simulations with Pe ≤ O(1), which guarantees that Peb ≪ O(α)

and therefore lies in the thermally diffusive regime found in Shah et al. (2023). They measured

the vertical eddy length scale of the flow by using an autocorrelation function Aw defined as

Aw(l, t) =
1

LxLyLz

∫
w(x, y, z, t)w(x, y, z + l, t)dxdydz, (3.17)

and proposed to use the first zero of Aw as an estimate of the length scale lz of the small-scale

eddies. Cope et al. (2020) empirically obtained the same scaling law for lz = O((Fr2/Pe)1/3)

predicted in the thermally-diffusive limit by Shah et al. (2023). This is demonstrated in Figure

5. The figure also shows that the vertical rms velocity follows the predicted scaling of α−1/2 =

(Fr2/Pe)1/6 in the stratified turbulent regime.

Garaud (2020) performed DNS of stratified turbulence at Pr = 0.1, in a regime that Shah

et al. (2023) later discovered to be the non-diffusive and intermediate stratified turbulence

regimes. Her results are not as clear as those of Cope et al. (2020) and suggested an alternative
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Figure 4: A diagram of the flow structures present in stratified flow simulations taken from Cope
et al. (2020).
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Figure 5: Plot of the vertical eddy length scale lz (left) and mean vertical velocity w̄ (right)
taken Cope et al. (2020). The vertical eddy length scale decays proportional to (BPe)−1/3 =
(Fr2/Pe)1/3 within the stratified turbulent regime (yellow).

scaling law where both wrms and lz scale as Fr2/3, which does not fit the Chini et al. (2022)

theory. In order to understand the origin of this unusual scaling law, Garaud et al. (2024)

hypothesized that this could be related to the spatially intermittent nature of the turbulence,

where large regions of the flow become increasingly laminar as the stratification increases. The

multiscale analysis and derived scaling laws summarized in the previous section, by contrast, rely

on the existence of small-scale turbulence. Garaud et al. (2024) proposed to numerically separate

mean and perturbation dynamics by utilizing a vorticity weighting algorithm to separately

measure the rms vertical velocity both inside and outside turbulence patches of the flow:

wturb(t) =

√
⟨w2ω2

z⟩
⟨ω2

z⟩
to estimate w′

rms, (3.18)

wlam(t) =

√〈
w2ω−2

z

〉〈
ω−2
z

〉 to estimate w̄rms. (3.19)

Using this algorithm, they found that wturb ∝ Fr1/2 while wlam ∝ Fr, as predicted by Chini

et al. (2022), see Figure 6.

As a result of these DNS and multiscale models, we now have a better understanding of the
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Figure 6: Plot of the weighted wrms scaling from Garaud et al. (2024). Perturbation dynamics
are plotted in blue and mean dynamics in red. The left plot depicts the scaling expected from
Chini et al. (2022) with the perturbations decaying with Fr1/2. The right plot shows the
perturbations scaling with (Fr2/Pe)1/6 as predicted by Shah et al. (2023)

various regimes of stratified turbulence. A regime diagram depicting the dynamics of stratified

turbulence within the (Pe, Fr) parameter space, taken from Shah et al. (2023), is shown in Figure

7, for Pr = 0.1 and Pr ≃ 0.0002, showing the unstratified region in gray, the viscous regime

(Reb ≤ 1) in white, the non-diffusive regime in green, and the intermittent (Fr ≪ Peb ≪ 1)

and thermally-diffusive (Peb ≪ Fr) regimes in yellow and purple, respectively.

Figure 7: Flow regime diagram in Péclet/Froude parameter space at Pr = 0.1 (left) and at
Pr = 0.00017 (right) taken from Garaud et al. (2024).
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4 Stochastically forced non-rotating DNS

As discussed in Section 2, we implemented a stochastic forcing in the governing equations in

preparation for running DNS of rotating stratified turbulence. The Coriolis force has a tendency

to create steady span-wise flows in the steadily forced simulations which are not particularly

realistic. Instead, we prefer using stochastic forcing in order to maintain isotropy in the hori-

zontal direction. This section compares the results of non-rotating DNS using this new forcing

against those of Garaud (2020) and Garaud et al. (2024).

4.1 Numerical Model

The DNS are conducted using the same PADDI code as in Cope et al. (2020), Garaud (2020),

and Garaud et al. (2024). We use a domain size of (4π × 4π × π) as illustrated in Figure 1 and

with (256×256×64) Fourier modes in (x, y, z) respectively. Most simulations, unless specifically

indicated otherwise, are run with Re = 600 and Pr = 0.1 (i.e. Pe = 60), as in Garaud (2020)

and Garaud et al. (2024), and vary the Froude number.

DNS are initialized either from random initial conditions at t = 0, or, by restarting the

simulation from a previous run at different input parameters. In the first scenario, the initial

conditions are: 
uh(x, 0) = 0,

w(x, 0) = ϵ(x),

T (x, 0) = ϵ(x)

(4.1)

where 0 < |ϵ(x)| ≪ 1 is a small amplitude random white noise. A divergence-cleaning operator

is then applied to ensure that ∇·u = 0 at t = 0. By forcing only the horizontal component of the

momentum equation, the simulations rely on some form of instability to transfer energy into the

vertical component of velocity, rather than forcing the vertical component of velocity directly.

In the second scenario, simulations are restarted from a prior simulation with a change in one of

the relevant parameters such as the Froude number (or Rossby number for the rotating runs). In

both cases, simulations exhibit a transient phase known as the “spin-up” before the flow adjusts

to become statistically stationary. For DNS started from (4.1), the horizontal components of
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Figure 8: Timeseries of the root-mean-squared total velocity urms and vertical velocity wrms

obtained from a non-rotating DNS with Fr = 0.1, Re = 600, Pr = 0.1 (left), and a time series
of urms during the transient phase from Fr = 0.1 to Fr = 0.32 at Re = 1000.

the velocity grow quickly in response to the forcing and begin to generate horizontal shear. The

shear drives an instability, allowing the perturbation in the vertical velocity to exponentially

grow to O(1) as seen in Figure 8. The horizontal velocity then decays again as the instability

settles into a statistically steady state. Typically, this transient phase lasts about 50 time units.

For simulations restarted with a parameter change, the transient phase is typically shorter, and

results in adjustments to the rms velocities and changes in the flow structure, see the right panel

of Figure 8.

4.2 Typical Non-Rotating Simulations

Once in a statistically steady state, the flow structures that emerge are qualitatively similar to

those observed by Cope et al. (2020) and Garaud et al. (2024). The horizontal flow field u forms

layers on short vertical length scales, which are seen in Figure 9 to decrease with the Froude

number. For stronger stratifications, the flow becomes more laminar while the turbulence is

confined to localized patches, as discussed by Garaud et al. (2024).

Inspecting the vertical velocities at the same instants in time (see Figure 10) reveals that

the vertical velocity is strongest within these turbulent regions.

The horizontal spectra seen in Figure 11 confirm that the larger-scale mean flow is anisotropic

and dominated by mostly horizontal energy. The flow becomes isotropic at a wavenumber which

becomes larger as the Froude number decreases. Note the transition from a |kh|−3 spectrum to a
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Fr−1 = 1 Fr−1 = 3.16 Fr−1 = 10 Fr−1 = 17.36

Figure 9: Snapshots of u on a horizontal slice through the top of the domain (top row) and on a
vertical slice through the side of the domain (bottom row), for DNS at Re = 600, Pr = 0.1 and
stratification increasing from left to right. The snapshot of the flow is taken from a statistically
stationary state.

|kh|−5/3 spectrum as the flow becomes isotropic. Finally, at larger wavenumbers the flow become

viscously dominated and no longer follows the |kh|−5/3 scaling. Our results are quite similar

to the horizontal spectra presented by Garaud et al. (2024), with the exception of the plateau

of the horizontal energy at small wavenumbers. That is explained by the forcing mechanism

used, which in these simulations provides a similar amount of energy to wavenumbers below

|kh| <
√
2. By contrast, Garaud et al. (2024) used a forcing which excited only the smallest

non-zero horizontal wavenumber, so the plateau is absent in their spectra.

In summary, we appear to be observing the same phenomena in these simulations that have

been seen in prior work, at least from a qualitative point of view, with some minor discrepancies

that can be explained by the forcing employed here.

Fr−1 = 1 Fr−1 = 3.16 Fr−1 = 10 Fr−1 = 17.36

Figure 10: Snapshots of w on a horizontal slice through the top of the domain (top row) and
on a vertical slice through the side of the domain (bottom row), for the same simulations and
times as in Figure 9.
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Figure 11: Kinetic energy spectra for the horizontal flow (red) and vertical flow (blue), as a
function of the horizontal wavenumber kh, for a range of Froude numbers. Overplotted in each

panel is a red line showing a k−3
h scaling law, and a blue line showing a k

−5/3
h scaling law.

Note the plateau in the horizontal energy for wavenumbers below ∼ 1.5, corresponding to the
stochastically forced range.

4.3 Quantititative Analysis

We now extract the rms vertical velocity from the data to see if it follows the scaling laws

first presented by Chini et al. (2022) and then numerically validated by Garaud et al. (2024).

Because of the spatiotemporal intermittency of the turbulence observed at larger stratifications,

we employ the same vorticity-weighted rms velocities (3.18) and (3.19) used by Garaud et al.

(2024) in order to isolate mean (large scale, slow) and perturbation (small scale, fast) dynamics.

The results are presented in Figure 12, which shows wturb in blue and wlam in red, for various

simulations. The steadily forced Re = 600 DNS data from Garaud et al. (2024) is plotted

alongside the data from our DNS (see legend for detail). Overall, we see that these characteristic
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Figure 12: Weighted rms velocities wturb (blue) and wlam (red) as a function of 1/Fr, for various
simulations. Filled symbols correspond to the new data from stochastically-forced simulations,
while open symbols correspond to the data of Garaud et al. (2024).

vertical velocities decrease with increasing stratification as expected. Furthermore, we find that

the measurements of wlam are similar between the two types of forcing, and follow the predicted

scaling of wlam ∝ Fr (Chini et al., 2022) for sufficiently strong stratification. However, we

also find that wturb is systematically smaller in the stochastically forced simulations than in

the steadily-forced simulations, and seems to decay faster with increasing stratification than the

predicted Fr1/2 scaling law.

To understand why that might be the case, we ran 2 additional simulations with Re = 1000

and Pr = 0.1. These data points are shown as squares in Figure 12 and seem to be more

consistent with the steadily forced DNS at Re = 600. Furthermore, the difference between wturb

measured in the Re = 600 and Re = 1000 simulations for Fr = 0.1 shows that the Re = 600 run

is actually partially viscously influenced. This implies that the simulations with Fr < 0.1 are

also viscously influenced, and explains why they do not follow the Fr1/2 scaling law for wturb.

This result is consistent with our inspection of the horizontal energy spectrum for Fr ≤ 0.1 in

Figure 11.

We also present the mixing efficiency given by (2.17) as a function of the stratification in

Figure 13, comparing again the stochastically-forced simulations with those of Garaud (2020) and
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Garaud et al. (2024). The qualitative behavior appears to be similar between the two sets of data.

We see a gradual increase of the mixing efficiency at lower values of 1/Fr, which reaches a plateau

at intermediate stratifications (corresponding to the strongly stratified turbulent regime), and

then decays as the flow becomes viscously influenced at higher 1/Fr values. We observe the

same trend in both sets of DNS, whereby η decays more rapidly with increasing stratification

in lower Re simulations than in higher Re simulations, suggesting that these flows have started

to become viscous earlier than their high Re counterparts. This is as expected. Despite these

similarities, there is also a crucial difference between the sets of simulations. The stochastic

forcing seems to generate flows with a mixing efficiency that peaks at η ≈ 0.5 for intermediate

stratification. This differs from the prior DNS with the steady shear forcing which sees the

mixing efficiency peak at η ≈ 0.4 and implies that the mixing might be caused by different

instabilities altogether.

 0.1

 1

 1  10

η

1/Fr

Stoch. Re=600
Stoch. Re=1000

Steady Re=600
Steady Re=1000

Figure 13: Mixing efficiency η defined in (2.17) as a function of 1/Fr.

We believe that several factors may contribute to the aforementioned differences between

the new stochastically-forced simulations and the previous DNS with steady forcing. One

such factor is the difference in the effective non-dimensional parameters of the flow. The non-

dimensionalization selected assumes that the characteristic horizontal scale of the eddies is 1.

In previous DNS with steady forcing, Garaud (2020) and Garaud et al. (2024) selected their
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Figure 14: Volume rendering of the vertical vorticity ωz (left) and χ (right) taken from a
steady-forcing DNS by Garaud (2020) with Re = 600, Pr = 0.1 and Fr = 0.05. The figure
demonstrates a strong correlation between the regions of strong vertical vorticity and strong
thermal dissipation.

forcing wavenumber to be 1, accordingly. In our DNS, however, wavenumbers up to |kh| =
√
2

are forced so the characteristic length scale of the eddies is correspondingly smaller than in

equivalent steady-forced simulations by a factor of
√
2. This suggests that the input Reynolds

number Re of the stochastically forced simulations probably ought to be scaled by a factor of

1/
√
2 for a more meaningful comparison with the steady-forced simulations, i.e. Re = 600 in

our simulations corresponds to ReEff ≈ 424 in the simulations by Garaud (2020) and Garaud

et al. (2024). This could explain why our simulations appear to become viscous at weaker

stratifications compared to prior DNS.

Beyond superficial differences in the non-dimensionalization, there also appear to be more

fundamental differences in the flow dynamics. In particular, we believe that there is a new

mechanism for generating small horizontal length scales in the stochastically forced flow that is

not present in simulations with steady forcing. In the steadily forced DNS (and in the multiscale

theory by Chini et al. (2022)), small horizontal length scales can only be generated by the vertical

shear instability and are, therefore, indicative of buoyancy mixing events. The stochastic forcing,

by contrast, seems to produce small horizontal scales that are not associated with mixing events.

We demonstrate this in Figures 14 and 15 using the thermal dissipation rate χ = ⟨|∇T |2⟩/Pe,

a strong indicator of mixing events, and the vertical vorticity ωz, a quantity that is strongest in
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Figure 15: Volume rendering of the vertical vorticity ωz (left) and |∇T |2/Pe (right) taken from
a stochastically-forced simulation at Re = 600, Pr = 0.1 and Fr = 0.074 simulation. Regions
of strong vertical vorticity and strong thermal dissipation are not as clearly correlated.

flows with small horizontal length scales. Figure 14 presents a volume rendering of both ωz and

χ at the same time from a strongly-stratified simulation taken from Garaud (2020). We observe

a strong correlation between the regions where the thermal dissipation is strongest and the

regions where the vertical vorticity is also strongest, suggesting that small horizontal scales are

always associated with instabilities that mix buoyancy. Figure 15, by contrast, presents similar

volume renderings of ωz and χ in stochastically-forced DNS and shows that the correlation is

this time not as strong. While some of the high |ωz| regions also have high χ, there are several

structures in the vertical vorticity, however, which do not appear to have a visible counterpart

in the thermal dissipation. We conclude then that there must be some mechanism to generate

these scall horizontal scales besides the vertical shear instability. We hypothesize that these are

caused by the advection of the mean horizontal flow by the stochastically forced vortices, which

can cause some filamentation and, thus, the emergence of small horizontal scales not associated

with vertical mixing.

The appearance of small non-turbulent horizontal scales has another important consequence.

Garaud et al. (2024) used the magnitude of the vertical vorticity as a diagnostic to isolate

turbulent patches. Since the vertical vorticity is no longer exclusively strong in regions of strong

mixing events, the algorithms to generate wturb (3.18) and wlam (3.19) are no longer effective at

isolating perturbation dynamics from the mean flow dynamics. As a result, in what follows we
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shall solely use wrms to measure the effect of stratification/rotation on vertical mixing.

In conclusion, the stochastic forcing used here produces flows that exhibit the general be-

havior expected of stratified turbulence. However, the flow structure is distinct from prior work

which used a steady forcing in as much as it leads to the generation of small horizontal scales

that are not necessarily related to vertical mixing processes.
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5 Rotating Stratified Turbulence

5.1 Model setup

We now explore the effects of rotation on the stochastically-forced stratified turbulence simu-

lations. The DNS presented in this section have the same setup as the DNS in §2.5 with the

inclusion of the Coriolis term in the momentum equation (2.4) encoded into PADDI. Simulations

are presented here for two different Froude numbers in the strongly stratified regime, and vary

the Rossby number.

5.2 Typical Simulations

We begin by presenting simulations with Fr = 0.18, Re = 600, Pr = 0.1 and gradually increase

the rotation rate. Snapshots of the simulations in a statistically stationary state are presented

in Figures 16 and 17 for u and w respectively.

Rotation begins to influence the flow dynamics as the Rossby number decreases below 1, as

expected. Indeed, in Figure 16, we see the appearance of columnar vortices in the horizontal

velocity field for Ro−1 ≥ 1. Inspecting these vortices reveals that they span the entire vertical

extent of the domain, a phenomenon known generally as “Taylor Columns”. These columns seem

to become more vertically invariant as the rotation rate increases. Outside of these columns, the

flow continues to have small vertical scales. Furthermore, as the Rossby number decreases, the

horizontal scale of columns approaches the size of the domain, and the characteristic horizontal

velocities increase despite the fact that the forcing remains the same. This is suggestive of an

inverse cascade to large scales, leading to the formation of a so-called “condensate”.

From Figure 17, we see that the vertical velocity is also affected by the appearance of the

Taylor columns in the flow. In fact, we see that the small vertical length scales are increasingly

suppressed within the columns as the Rossby number decreases. Furthermore, the magnitude of

the vertical velocity becomes weaker within the columns. Instead, vertical mixing events appear

to be localized outside of the columns.

To gain more insight into the flow structure, and in particular, the anti-correlation between

the Taylor columns and the regions of strong mixing, we now present volume renderings of

the DNS in Figure 18. On the left, we show the vertical vorticity ωz, and on the right, we

show the local thermal dissipation rate |∇T |2/Pe, which is a measure of irreversible mixing.
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Ro−1 = 0.5 Ro−1 = 1 Ro−1 = 2 Ro−1 = 4

Figure 16: Instantaneous snapshots of u on a horizontal slice through the top of the domain
(top row) and on a vertical slice through the side of the domain (bottom row). In all cases,
Re = 600, Pr = 0.1, Fr = 0.18. For lower Rossby DNS, Taylor columns spontaneously emerge
from the flow and begin to dominate the flow dynamics.

Ro−1 = 0.5 Ro−1 = 1 Ro−1 = 2 Ro−1 = 4

Figure 17: Instantaneous snapshots of w on a horizontal slice through the top of the domain
(top row) and on a vertical slice through the side of the domain (bottom row). The snapshots
are taken at the same time as in Figure 16. The Taylor columns are also visible in the vertical
velocity field, corresponding to regions of large-scale, low w.

For weak rotation rates (top row), there is no evidence of columnar structure and both ωz

and |∇T |2/Pe seem to be distributed evenly throughout the domain. As the rotation rate

increases (middle row), we see the appearance of vertically invariant, cyclonic vortices, which

correspond to regions where mixing is strongly suppressed. The anti-cyclones, on the other

hand, remain more turbulent and correspond to regions of strong mixing. As Ω/N approaches

1, or equivalently as Ro approaches Fr/2, the anti-cyclones become rotationally constrained as

well (bottom row), suggesting that mixing might become fully suppressed for Ro ≪ Fr/2.

Figure 19 shows plots of the horizontal and vertical kinetic energy spectrum for these simu-

lations as well as additional ones for larger rotation rates. Inspection of the horizontal energy

spectrum confirms that there is indeed an inverse cascade of energy, most clearly visible for
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1/Ro = 0.5

1/Ro = 2

1/Ro = 10

Figure 18: Volume rendering of the vertical vorticity ωz (left) and of the local thermal dissipation
|∇T |2/Pe (right) from DNS with 1/Ro = 0.5 (top), 1/Ro = 2 (middle), and 1/Ro = 10
(bottom), for Re = 600, Pr = 0.1 and Fr = 0.18.
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Figure 19: Energy Spectrum of the flow according to the total horizontal wavenumber |kh| for
flows with varying Rossby numbers (decreasing from left to right, then top to bottom). The red
lines represent the total horizontal energy (u2+v2)/2 at different time steps while the blue lines
represent the vertical energy v2/2. As the rotation rate increases, we see an inverse cascade
of energy transferring energy into the smallest wavenumbers in the domain. Furthermore, the
vertical energy decreases with the Rossby number achieving a lower maximum in smaller Rossby
number simulations. Finally, the energy spectra follow the |kh|−3 scaling to larger wavenumbers
as the Rossby number becomes smaller.

1/Ro ≥ 4, piling large amounts of energy at the smallest horizontal wavenumber in the domain.

The horizontal kinetic energy spectrum appears to follow the |kh|−3 law at small wavenumbers,

as before, and we can see that it continues to follow this scaling even after the flow becomes

isotropic at larger wavenumber (at least for Ro−1 ≥ 4). In addition, the vertical kinetic en-

ergy spectrum seems to have a lower maximum value with decreasing Rossby number, with the

typical vertical energy at 1/Ro = 10 being roughly a factor of 10 less than for 1/Ro = 0.5.

An important caveat of these conclusions is that the lowest Rossby number simulations may

not have reached a sufficiently long period in a statistically stationary state. This is because the

timestep needs to be very small in simulations with higher rotation rates. Due to the Courant

condition, we must have ∆t ≤ ∆x/Umax, where ∆x is the grid resolution, and Umax is the

maximum velocity in the domain at any given moment. As the Rossby number decreases and

more energy is transferred into horizontal motions, Umax increases, and therefore, the number

of timesteps needed to achieve the same simulation time increases as well. Due to this, our

lowest Rossby number simulations are not fully integrated into a statistically stationary state.
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Figure 20: Time series of |u|rms in a DNS with Re = 600, Pr = 0.1, Fr = 0.18 and Ro = 0.1.
The time series generated is shorter, and yet cost the same amount of compute time as the time
series shown in Figure 8.

Simulations that have not reached a statistically stationary state will be labeled differently in

the next section.

5.3 Quantitive Analysis

We now investigate the effect of rotation on more quantitative aspects of stratified turbulence.

Figure 21 presents plots of the horizontal and vertical velocities, of the mixing efficiency, and of

the temperature flux as functions of the rotation rate (measured by 1/Ro). Two sets of DNS

are shown, a series with Froude number Fr = 0.18 corresponding to a more weakly stratified

system in blue and a series with Fr = 0.1 corresponding to a more strongly stratified system

in red. In each plot, the vertical dotted line represents the value 1/Fr for each Froude number

respectively.

As expected from the DNS visualizations presented in the previous section, we find that

the rms horizontal velocity increases as the Rossby number decreases below 1. By contrast,

proxies for vertical mixing (vertical temperature flux, mixing efficiency, and vertical velocity)

are roughly constant, until Ro approaches Fr. For Rossby number smaller or equal to Fr we see

that mixing is strongly suppressed. We hypothesize that this is because the Taylor columns take

up larger fractions of the domain, inhibiting vertical mixing as the Rossby number decreases

past Fr.
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Figure 21: Measurements from DNS with varying Rossby number. Points shown in blue are of a
series of DNS with Fr = 0.18 and those in red are taken from DNS with Fr = 0.1. In all cases,
Re = 600 and Pr = 0.1. The open circles indicate DNS that have not reached a statistically
stationary state yet. The top left panel shows the horizontal rms velocity |uh|rms, the top right
shows the temperature flux ⟨wT ⟩, the bottom left is the mixing efficiency η, and the bottom
right is the vertical rms velocity wrms.

5.4 Insight from Multiscale Analysis

In order to explain the DNS results, we return to the multiscale analysis presented by Chini

et al. (2022) and introduce the Coriolis term to the horizontal momentum equations (3.7), (3.8).

The mean and perturbation equations become

∂ūh

∂ts
+ ūh · ∇sūh +

1

α
u′
h · ∇fu′

h +
w̄

α

∂ūh

∂ζ
+

w′

α

∂u′
h

∂ζ
+

1

Ro
ez × ūh

= −∇sp̄+ F̄ h +
1

Reb

∂2ūh

∂ζ2
+ h.o.t.,

(5.1)
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1

α

∂u′
h

∂tf
+

1

α
ūh · ∇fu

′
h +

w′

α

∂ūh

∂ζ
+

1

Ro
ez × u′

h

= − 1

α
∇fp

′ +
1

Reb

(
∇2

fu
′
h +

∂2u′
h

∂ζ2

)
+ h.o.t. .

(5.2)

We see from equation (5.1) that we should expect rotation to affect the mean flow when 1/Ro

becomes O(1), and that the effect of rotation on ūh should become dominant when Ro ≪ 1.

When Ro = O(1), by contrast, we see from equation (5.2) that the perturbations to the mean

flow are unaffected by rotation, as the crucial ratio α/Ro is still very small (recall that α ≪

O(1)). It is only when Ro approaches α that we expect the perturbations to start feeling the

effects of rotation, and when Ro ≪ α that rotation will dominate the perturbation dynamics.

We, therefore, expect (at least) three regimes: Ro ≥ O(1) where rotation is not dominant,

α ≤ Ro ≪ 1 where rotation dominates the mean but not the fluctuations, and Ro ≪ α where

rotation dominates at all scales.

When α ≪ Ro ≪ 1, we expect columns to develop in the mean flow as the mean equations

become geostrophically balanced, i.e.

1

Ro
ez × ū = −∇sp̄, (5.3)

where we must have p̄ = O(Ro−1) in order to balance the horizontal momentum equation.

Because the other equations of motion are unaffected by rotation, we still have that T̄ , w̄ ≤ O(α).

Therefore, the leading order of the vertical momentum equation (3.11) becomes

1

α

∂p̄

∂ζ
= 0 , (5.4)

and we have that ∇sp̄ = ∇p̄ to leading order. In order to show that the mean flow becomes

vertically invariant, we take the curl of equation (5.3) and find that ∂ū
∂ζ = 0 to leading order.

For this reason, we see the appearance of columns in the flow which seem to dominate the mean

dynamics but which do not completely suppress mixing and vertical transport.

If we suppose that the Rossby number were to become smaller than α which is the case for

Ro < Fr (still assuming that α = Fr), the leading order of the horizontal momentum equations
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now becomes,

1

Ro
ez × ūh = −∇sp̄, (5.5)

α

Ro
ez × u′

h = −∇fp
′. (5.6)

In this limit, the perturbations also become vertically invariant for similar reasons, and mixing

in the flow is heavily suppressed. With the limited data presented in Figure 21, it is clear that

the Fr = 0.18 simulations experience this transition, evinced by the proxies of mixing declining

quickly after passing the threshold value.

6 Discussion and Conclusion

In this work, we have studied rotating stochastically-forced stratified turbulence using direct

numerical simulations. In the non-rotating case, we have shown that stochastically forced strat-

ified turbulence exhibits subtle differences in flow properties compared to steadily forced DNS.

The mixing efficiency is notably larger in the stochastically forced case, and regions of high ver-

tical vorticity are not always correlated with strong mixing events. Specifically, small horizontal

scales are produced in the stochastically forced flow, seemingly independent of an instability

mechanism. As a result, we find that the method posited by Garaud et al. (2024) to isolate

mean flow and perturbations by the vertical vorticity is not as relevant here, and probably ought

to be replaced by an algorithm which uses the thermal dissipation as a weight function.

Our DNS of rotating stratified turbulence with Fr ≪ Ro ≤ 1 revealed strong columnar

vortices in the mean flow structure. These vortices are primarily cyclonic and vertically invariant,

thereby suppressing vertical mixing within their core. The flow also generates unstable anti-

cyclonic regions, within which mixing still occurs. For very rapid rotation Ro ≪ Fr, we find

that vertical mixing is suppressed entirely and the flow becomes almost two-dimensional.

These preliminary results suggest opportunities to expand on the work presented here to

resolve some outstanding issues. Foremost, the range of each dimensionless number Ro, Fr,Re

investigated here needs to be expanded to cover parameter space more comprehensively. Further-

more, a small portion of the simulation data presented had not reached a sufficiently stationary

state, and so these simulations need to be extended to confirm these results. We also acknowl-
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edge that the effect of rotation is only investigated here at the poles of rotating bodies (i.e.

where eΩ = ez). Rotation, as well as the β-effect, may influence the large-scale flow structure in

different ways when rotation is not aligned with gravity. In order to generalize these results, one

might need to run simulations in a spherical shell. Finally, we believe the multiscale theory for

stratified turbulence developed by Chini et al. (2022) requires an additional vertical length scale

in order to capture the dynamics within the columns that appear in the flow. As a consequence,

we suspect that the value for α may indeed vary with the Rossby number in the rapidly rotating

limit.

Despite these caveats, we find, as in Praud et al. (2006) and Aubert et al. (2012), that

Ω/N , rather than Ro, seems to be the correct bifurcation parameter for determining the effect

of rotation on vertical mixing by stratified turbulence. This indicates that regions of rotating

stratified turbulence with Fr ≪ Ro ≪ 1 can have large-scale flows that are rotationally influ-

enced, and yet allow substantial vertical mixing. Crucially, this limit is relevant for geophysical

and astrophysical systems such as the solar tachocline (Ω/N = O(10−3)) and the Earth’s oceans

(Ω/N = O(10−2)) for modeling vertical mixing. This suggests that the theory of Chini et al.

(2022) still models vertical mixing in these regions even though they are rapidly rotating in the

sense that their Rossby number is small (Tulekeyev et al., 2024).
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