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Abstract

Efficient Second-Order Methods for Non-Convex Optimization and Machine Learning

by

Zhewei Yao

Doctor of Philosophy in Applied Mathematics

University of California, Berkeley

Professor Ming Gu, Co-chair

Associate Professor Michael Mahoney, Co-chair

Hessian-based analysis/computation is widely used in scientific computing. However, due to
the (incorrect, but in our experience widespread) belief that Hessian-based computations are
infeasible for large machine learning (ML) problems, the majority of work in ML (except for
quite small problems) only performs the first-order methods. However, using sub-sampling
and randomized numerical linear algebra algorithms, the computation of second-order meth-
ods can be efficiently extracted for large-scale machine learning problems. In this thesis, we
consider three use cases of second-order methods as follows: (i) For non-convex optimization
and/or ML problems, we propose inexact variants of three classic Newton-type methods—
Trust Region method, Cubic Regularization method, and Newton-CG method, as well as a
novel adaptive second-order method—AdaHessian. For classic methods, under the relaxed
gradient and Hessian approximation, we theoretically prove that our methods achieve the
same complexity as their full gradient and Hessian counterparts, and empirically show the
efficiency and robustness of those Newton-type algorithms. For the novel AdaHessian algo-
rithm, we incorporate moving average for the Hessian information, and illustrate its superb
performance on large-scale deep learning problems compared to first-order optimizers; (ii)
For machine learning and data science analysis, we develop a popular Hessian-based compu-
tation framework. The framework enables fast computations of the top Hessian eigenvalues,
the Hessian trace, and the full Hessian eigenvalue/spectral density, and it can be used to
analyze neural networks (NNs), including the topology of the loss landscape (i.e., curvature
information) to gain insight into the behavior of different models/optimizers; (iii) For ap-
plication, first, we show that Hessian-based metric can be used as the sensitivity metric to
determine the robustness of every single layer of the NNs, and this can help perform mixed-
precision quantization. Second, we demonstrate that second-order based adversarial attacks
can achieve smaller perturbation as compared to first-order methods, which can be used as
a powerful attack method to verify the robustness of a NN to adversarial attacks.
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Chapter 1

Introduction

In the past decades, first-order methods have taken the stage as the primary workhorse
for solving large scale optimization problems, training/analyzing machine learning and data
science models, and using the designed algorithms/metric for real applications due to their
affordable computational costs per iteration. In particular, a plethora of research has been
put into studying and developing variants of stochastic gradient descent (SGD) optimization
algorithms [195, 73, 156, 227, 260, 125], first-order based analysis [206, 266], and first-order
based applications [144, 222].

However, despite the success of first-order methods in optimization and machine learn-
ing, there exists disadvantages since those algorithms solely rely on gradient information.
We here separately discuss the shortcomings of first-order methods for optimization algo-
rithms, machine learning and data science analysis, and their applications. First, for op-
timization problems, those variants of SGD optimization algorithms can be only ensured
to converge to first-order stationary points, where the gradient is (close to) zero. However,
first-order stationary points include saddle points, which are prevalent in high-dimensional
non-convex problems. This can significantly hurt the performance of the trained model at
test time. Meanwhile, first-order optimization algorithms converge very slowly due to the
ill-conditioning property of high-dimensional problems. Another challenging ad-hoc rule is
the choice of hyperparameters and hyperparameter tuning methods for first-order methods,
including learning rate (aka step size), decay schedule, choice of momentum parameters, etc.
This can take a significant amount of both human labor and computing resources. Second,
for machine learning and data science analysis purposes, first-order analysis cannot fully
capture the topology of the landscape. For instance, gradient-based methods can hardly
distinguish two quadratic functions at minimal point (i.e., ∇f(x) = 0), e.g., f(x) = x2 and
f(x) = 10x2. Finally, due to the limitations of first-order optimization algorithms and analy-
sis, utilizing first-order methods for applications, such as sensitive measurement for machine
learning models and generating adversarial examples, will lead to sub-optimal solutions.

In contrast, second-order based optimization algorithms have shown to be more resilient
to ill-conditioning of the problem and have a faster convergence rate, and second-order based
analysis can provide finer-scale topology of the loss landscape. As a result, incorporating
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second-order methods for applications can have better performance, e.g., more accurate sen-
sitivity measurement and smaller error accumulation, as compared to first-order methods.
However, second-order methods have typically been much less explored in large-scale op-
timization and machine learning problems due to their prohibitive computational cost per
iteration and/or the prohibitive storage cost of the large Hessian matrix. Those challenges
limit the applications of second-order methods for large-scale problems in high dimensions.

In this thesis, we develop novel efficient second-order methods for solving large-scale non-
convex optimization and machine learning problems. The rest of the dissertation is consisted
of three major parts and is organized as follows.

Part I focuses on non-convex optimization algorithms.
Chapter 2 considers two classical Newton-type optimization algorithms, trust region

method (TR) and cubic regularization method (CR), for general non-convex and smooth op-
timization problems. to increase efficiency, the gradient and Hessian, as well as the solution
to the underlying sub-problems are all suitably approximated. We show that under certain
conditions on these approximations, to coverage to second-order criticality, our algorithms
achieve the same optimal iteration complexity as the exact counterparts. Empirically, we
show that by subsampling the gradient and Hessian, we can indeed speed up the algorithms
on some real datasets. The material in this chapter has appeared in [252].

Chapter 3 extends variants of Newton-CG algorithm for nonconvex problems proposed
in [199] in which only inexact estimates of the gradient and the Hessian information are
available. To achieve further speedup, we propose a new pre-defined step size version for
each update iteration instead of using a backtracking line search method for the suitable step
size. Under the relaxed gradient and Hessian approximation condition, we show that worse-
case iteration complexities to converge to an approximate second-order stationary point
match the optimal rates obtained for the exact counterparts. We evaluate the performance
of our proposed algorithms empirically on several machine learning models. The material in
this chapter is in preparation for submission.

Chapter 4 presents a second-order stochastic optimization algorithm which dynamically
incorporates the curvature of the loss function via ADAptive estimates of the Hessian.
The main disadvantage of traditional second-order methods is their heavier per-iteration
computation and poor accuracy as compared to first-order methods on state-of-the-art deep
learning models. To address these, we incorporate several novel approaches in AdaHessian,
including low cost Hessian diagonal approximation, spatial averaging, and temporal averag-
ing. We show that AdaHessian achieves new state-of-the-art results by a large margin as
compared to other adaptive optimization methods, including variants of Adam. The mate-
rial has appeared in [249].

Part II focuses on Hessian-based analysis for machine learning and data science problems.
Chapter 5 uses top-k eigenvalues of the Hessian matrix of the neural network to analyze

the difference between the local geometry of the neighborhood that the model converges
when large batch size is used as compared to small batch, and the connection between
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robust optimization and large batch size training. The material in this chapter has appeared
in [251].

Chapter 6 presents a new scalable framework that enables fast computation of Hessian
(i.e., second-order derivative) information for deep neural networks, including the top eigen-
value, the trace, and the full ESD [111]. We apply this framework to study how residual
connections and batch normalization affect training and the resulted generalization perfor-
mance. Our extensive analysis shows new finer-scale insights, demonstrating that, while
conventional wisdom is sometimes validated, in other cases it is simply incorrect. The ma-
terial in this chapter has appeared in [254].

Part III focuses on the novel applications of second-order method for neural networks.
Chapter 7 introduces a novel second-order quantization method to address the mixed-

precision quantization problem, where higher precision is used for certain “sensitive” layers
of the neural network, and lower precision for “non-sensitive” layers. We show that the
average trace of the Hessian matrix is a proper metric to measure the sensitivity of each
layer, and extensively conduct experiments on different deep learning models. The material
in this chapter has appeared in [250].

Chapter 8 extends the traditional TR method for the adversarial attack on neural net-
works to efficiently compute adversarial perturbations. Our proposed attack methods achieve
comparable results with the state-of-the-art first-order attacks, but with significant speedup.
The material in this chapter has appeared in [255].

Chapter 9 offers some concluding remarks and future directions. For better presentation,
we defer most of the proofs, detailed numerical settings, as well as some illustrations to the
appendices in Part IV.
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Part I

Optimization Algorithm
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Chapter 2

Inexact Non-Convex Newton-Type
Methods

2.1 Introduction

We consider the following generic optimization problem

min
x∈Rd

F (x), (2.1)

where F : Rd → R is a smooth but possibly non-convex function. Over the last few decades,
many optimization algorithms have been developed to solve (2.1). The bulk of these efforts
in the machine learning (ML) community has been on developing first-order methods, i.e.,
those which solely rely on gradient information; see the recent textbooks [15, 132, 143] for
excellent and in-depth treatments of such class of methods. Such algorithms, however, can
generally be, at best, ensured to converge to first-order stationary points, i.e., x for which
‖∇F (x)‖ = 0, which include saddle-points. It has been argued that converging to saddle
points can be undesirable for obtaining good generalization errors with many non-convex
machine learning models, such as deep neural networks [62, 56, 207, 137]. In fact, it has
also been shown that in certain settings, existence of “bad” local minima, i.e., sub-optimal
local minima with high training error, can significantly hurt the performance of the trained
model at test time [224, 80]. Important cases have also been demonstrated where, stochastic
gradient descent, which is, nowadays, arguably the optimization method of choice in ML,
indeed stagnates at high training error [104]. As a result, scalable algorithms which avoid
saddle points and guarantee convergence to a local minimum are desired.

Second-order methods, on the other hand, which effectively employ the curvature infor-
mation in the form of Hessian, have the potential for convergence to second-order stationary
points, i.e., x for which ‖∇F (x)‖ = 0 and ∇2F (x) � 0. However, the main challenge
preventing the ubiquitous use of these methods is the computational costs involving the
application of the underlying matrices, e.g., Hessian. In an effort to address these compu-
tational challenges, for large-scale convex settings, stochastic variants of Newton’s methods
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have been shown, not only, to enjoy desirable theoretical properties, e.g., fast convergence
rates and robustness to problem ill-conditioning [196, 247, 23], but also to exhibit superior
empirical performance [131, 18].

For non-convex optimization, however, the development of similar efficient methods lags
significantly behind. Indeed, designing efficient and Hessian-free variants of classic non-
convex Newton-type methods such as trust-region (TR) [57], cubic regularization (CR) [169],
and its adaptive variant (ARC) [39, 40], can be an appropriate place to start bridging this
gap. This is, in particular, encouraging since Hessian-free methods only involve Hessian-
vector products, which in many cases including neural networks [95, 180], are computed
as efficiently as evaluating gradients. In this light, coupling stochastic approximation with
Hessian-free techniques indeed holds promise for many of the challenging ML problems of
today e.g., [153, 243, 193].

In many applications, however, even accessing the exact gradient information can be very
expensive. For example, for finite-sum problems in high dimensions, where

F (x) =
1

n

n∑
i=1

fi(x), (2.2)

computing the exact gradient requires a pass over the entire data, which can be costly when
n� 1. Inexact access to both the gradient and Hessian information can usually help reduce
the underlying computational costs [196, 229]. Here, we aim to advance the developments
in the above mentioned directions.

The rest of this paper is organized as follows. We briefly highlight the main contribu-
tions of the present paper in Section 2.1.1. A brief survey of the related work is gathered
in Section 2.1.2. Notation and assumptions used throughout the paper are introduced in
Section 2.1.3. We present the detailed theoretical analysis of our proposed methods in Sec-
tion 2.2. In particular, analysis of TR and ARC, are respectively, given in Section 2.2.1 and
Section 2.2.2. Treatment of the finite-sum problem (2.2) is presented in Section 2.2.3. Sec-
tion 2.3 contains some numerical examples. Conclusions and further thoughts are gathered
in Section 2.4.

2.1.1 Contributions

Here, we further these ideas by analyzing inexact variants of TR and ARC algorithms, which,
to increase efficiency, incorporate approximations of gradient and Hessian information, as
well as solutions of the underlying sub-problems. Our algorithms are motivated by the works
of [41, 246], which analyzed the variants of TR and ARC where Hessian is approximated but
the accurate gradient information is required. We will show that, under mild conditions on
approximations of the gradient, Hessian, as well as sub-problem solves, our proposed inexact
TR and ARC algorithms can retain the same optimal worst-case convergence guarantees
as the exact counterparts [43, 41]. More specifically, to achieve (εg, εH)-Optimality (cf.
Definition 1), we show the following.
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Table 2.1: Comparison of optimal worst-case iteration complexities for convergence to a
(ε,
√
ε)− Optimality (cf. Definition 1), among different second-order methods for non-convex

optimization. TR and CR refer, respectively, to the class of trust region and cubic regulariza-
tion methods. “Practically Implementable” refers to an algorithm which not only does not
require exhaustive search over hyper-parameter space for tuning, but also failure to precisely
“fine-tune” is not likely to result in unwanted behaviors, e.g., divergence or stagnation.

Method Class
Iteration

Complexity
Inexact
Hessian

Inexact
Gradient

Practically
Implementable

TR [41] O(ε−2.5) 3 7 3

TR [246] O(ε−2.5) 3 7 3

TR (Algorithm 1) O(ε−2.5) 3 3 3

CR [41] O(ε−1.5) 3 7 3

CR [246] O(ε−1.5) 3 7 3

CR [229] O(ε−1.5) 3 3 7

CR (Algorithm 2) O(ε−1.5) 3 3 3

(i) Inexact TR (Algorithm 1), under Condition 1 on the gradient and Hessian approxima-
tion, and Condition 2 on approximate sub-problem solves, requires the optimal iteration
complexity of O(max{ε−2

g ε−1
H , ε−3

H }). In particular, we obtain convergence for a practical case
where the accuracy tolerances in gradient and Hessian estimations, i.e., (δg, δH) in Condi-
tion 1, are adaptively chosen; see Section 2.2.1 for more details.

(ii) Inexact ARC (Algorithm 2), under Condition 3 on the gradient and Hessian approxima-
tion, and Condition 4 on approximate sub-problem solves, requires less thanO(max{ε−2

g , ε−3
H }),

which is sub-optimal. These conditions are described in Section 2.2.2.1. However, under re-
spectively stronger Conditions 5 and 6, the optimal iteration complexity ofO(max{ε−3/2

g , ε−3
H })

is recovered. Unfortunately, we were unable to provide convergence guarantees with adaptive
tolerances and as a result (δg, δH) in Condition 3 are set fixed a priori to a sufficiently small
value. The details are given in Section 2.2.2.2.

To prove our results, we follow a similar line of reasoning as that in [246]. However,
incorporating gradient approximation introduces several new layers of technical difficulty.
These difficulties arise as a result of the discrepancy between the true objective function and
its quadratic and cubic approximations within Inexact TR and ARC, respectively, which now
involve an additional “bias” term. Properly controlling such an added error term necessitates
a much finer-grained analysis. For example, one has to consider various scenarios arising
from large and small gradient norms. Among all of these, the case where the true gradient is
small enough to be of similar magnitude as the approximation noise level requires a special
treatment and analysis.
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We finally empirically demonstrate the advantages of our methods on several model
problems in Section 2.3. In addition to showing favorable performance, e.g., in terms of
efficiency, we also highlight some additional features of our algorithms such as robustness to
hyper-parameter tuning. Such properties amount to a practically implementable algorithm
for which failure to fine-tune of the hyper-parameters is unlikely to result in divergence or
stagnation.

A snapshot of comparison among our proposed methods and other similar algorithms is
given in Table 2.1.

2.1.2 Related work

Due to the resurgence of deep learning, recently, there has been a rise of interest in efficient
non-convex optimization algorithms. For non-convex problems, where saddle points have
been shown to give understandable generalization performance, several variants of stochastic
gradient descent (SGD) have recently been devised that promise to efficiently escape saddle
points and, instead, converge to second-order stationary point [81, 123, 139].

As for second-order methods, there have been a few empirical studies of the application
of inexact curvature information for, mostly, deep-learning applications, e.g., see the work
of [153] and follow-ups, e.g., [239, 233, 105, 126]. However, the theoretical understanding
of these inexact methods remains largely under-studied. Among a few related theoretical
prior works, most notably are the ones which study derivative-free and probabilistic models
in general, and Hessian approximation in particular for trust-region methods [58, 49, 22, 13,
133, 212, 92].

For cubic regularization, the seminal works of [39, 40] are the first to study Hessian
approximation and the resulting algorithm is an adaptive variant of the cubic regularization,
referred to as ARC. In [41], similar Hessian inexactness is also extended to trust region
methods. However, to guarantee optimal complexity, they require not only exact gradient
information but also progressively accurate Hessian information which can be difficulty to
satisfy. More general treatment of line-search and cubic regularization methods based on
probabilistic models are given in [44]. For minimization of a finite-sum (2.2), a sub-sampled
variant of ARC was proposed in [127], which directly relies on the analysis of [39, 40]. A more
refined analysis was given in [52], which incorporates sub-sampling strategies to develop both
standard and accelerated ARC variants for convex objectives. More recently, [229] proposed
a stochastic variant of cubic regularization, henceforth referred to as SCR, in which, in order
to guarantee optimal performance, only stochastic gradient and Hessian is required. However
for the practical implementation of their algorithm, one must either assume to know, rather
unknowable, problem related constants, e.g, Lipschitz continuity of the gradient and Hessian,
or perform an exhaustive grid search over the space of hyper-parameters.

In the context of both TR and ARC, under milder Hessian approximation conditions
than prior works, [246] recently analyzed optimal complexity of variants in which the Hessian
matrix is approximated, but the exact gradient is used. Our approach here builds upon the
ideas in [246].
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2.1.3 Notation and Assumptions

Notation: Throughout the paper, vectors and matrices are denoted by bold lowercase and
blackboard bold uppercase letters, e.g., v and V, respectively. We use regular lower-case
and upper-case letters to denote scalar constants, e.g., c or K. The transpose of a real vector
v is denoted by vT . The inner-product between two vectors v,w is denoted by 〈v,w〉. For a
vector v, and a matrix V, ‖v‖ and ‖V‖ denote the vector `2 norm and the matrix spectral
norm, respectively. The subscript, e.g., xt, denotes iteration counter. At iteration t, the
approximations of the gradient and Hessian are written, respectively, as gt and Ht. The
smallest eigenvalue of matrix V is denoted by λmin(V).

Assumptions: Unlike convex problems, where tracking the first-order condition, i.e.,
norm of the gradient, is sufficient to evaluate (approximate) optimality, in non-convex set-
tings, the situation is much more involved, e.g., see examples of [165, 106]. In this light,
one typically sets out to design algorithms that can guarantee convergence to approximate
second-order optimality.

Definition 1 ((εg, εH)-Optimality). Given 0 < εg, εH < 1, x is an (εg, εH)-Optimal solution
of (2.1), if

‖∇F (x)‖ ≤ εg, and λmin(∇2F (x)) ≥ −εH . (2.3)

For our analysis throughout the paper, we make the following standard assumptions on
the smoothness of objective function F .

Assumption 1 (Hessian Regularity). F (x) is twice continuously differentiable. Further-
more, there are some constants 0 < LF , KF <∞ such that for any x = xt + τst, τ ∈ [0, 1],
we have ∥∥∇2F (x)−∇2F (xt)

∥∥ ≤ LF‖x− xt‖, (2.4a)∥∥∇2F (xt)
∥∥ ≤ KF , (2.4b)

where xt and st are, respectively, the iterate and update direction at the tth iteration.

For our inexact algorithms, we require that the approximate gradient, gt, and the inexact
Hessian, Ht, at each iteration t, satisfy the following conditions.

Assumption 2 (Gradient and Hessian Approximation Error). For some 0 < δg, δH < 1, the
approximations of the gradient and Hessian tth iteration satisfy,

‖gt −∇F (xt)‖ ≤ δg,

‖Ht −∇2F (xt)‖ ≤ δH .

Note that by the triangle inequality, Assumptions 1 and 2 imply that ‖Ht‖ ≤ KH , where
KH ≤ KF + δH .
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2.2 Algorithms and Theoretical Analysis

In this section we will present our main algorithms as well as their respective analysis, i.e.,
inexact variants of TR (Algorithm 1) and ARC (Algorithm 2) where the gradient, Hessian
and the solution to sub-problems are all approximated.

As it can be seen from Algorithms 1 and 2, compared with the standard classical coun-
terparts, the main differences in iterations lie in using the approximations of the gradient,
Hessian, and the solution to the corresponding sub-problem (2.6) and (2.9). Another notable
difference is when the gradient estimate is small, i.e., ‖gt‖ ≤ εg, in which case our algorithm
completely ignores the gradient; see Step 5 of Algorithms 1 and 2. This turns out to be
crucial in obtaining the optimal iteration complexity for both algorithms. Intuitively, when
the gradient is too small, its approximation involves a great degree of noisy information. As
a result, solving the subproblems using such noisy gradient information can result in direc-
tions of ascent. In practice, however, such unfortunate steps are usually simply corrected
by the subsequent steps and hence one can always safely employ the approximate gradient
without any such safeguard. In this light, in our experiments, we never needed to enforce
this step and opted to retain the gradient term even when it was small.

It can also be seen that Algorithms 1 and 2 are highly similar in their corresponding
steps. In particular, after initialization, one computes a local model mt of F around xt,
and obtains a step that guarantees model reduction mt(st) < mt(0) = 0. Subsequently, one
checks that the actual reduction in F is in accordance with what is predicted using the local
model. More specifically, at every iteration of Algorithms 1 and 2, by computing

ρt :=
F (xt + st)− F (xt)

mt(st)
, (2.5)

one checks whether F (xt)−F (xT + sT ) is large enough relative to the reduction in the local
model mt(st)−mt(0). If ρt is larger than a preset threshold, the update st will be accepted
and we set xt+1 = xt + st. In this case, local models are “loosened” to allow for larger trial
steps in the next iteration. However, a small value of ρt hints at a large discrepancy between
the predicted and the actual reduction in F , which implies that the local models mismatch
the actual function. In this case, the step is rejected and the local models are “tightened”
by adjusting the trust region or cubic regularization parameters.

At a high-level, these similar algorithmic steps give rise to similar analytical steps as well.
For example, the notion of Cauchy and Eigen Points plays a crucial role in the analysis of both
algorithms. Generally, when the gradient is large, both algorithms adopt the Cauchy point,
otherwise Eigen point is used as trial step. Furthermore, it is shown that as long as ∆t is
small enough and σt is large enough, the trial steps generated, respectively, by Algorithms 1
and 2 are accepted. This in turn implies that, after a fixed number of rejections, both
algorithms are guaranteed to eventually accept their trial steps and hence make progress
towards optimality. Since the overall number of rejected trial steps is upper bounded, we are
guaranteed to obtain convergence for both algorithms. Although the high-level analysis have
many common grounds, the analysis of Algorithms 1 and 2 have distinctive technical features
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Algorithm 1 Inexact TR
1: Input:

- Starting point: x0

- Initial trust-region radius: ∆0 > 0
- Other Parameters: 0 ≤ εg, 0 ≤
εH , 0 < η ≤ 1, γ > 1.

2: t=0
3: while ‖gt‖ ≥ εg, λmin(Ht) ≤ −εH do
4: if ‖gt‖ ≤ εg then
5: gt = 0
6: end if
7: Find st as in (2.6)

8: Set ρt as in (2.5) with mt as in (2.6b)

9: if ρt ≥ η then
10: xt+1 = xt + st and ∆t+1 = γ∆t

11: else
12: xt+1 = xt and ∆t+1 = ∆t/γ
13: end if
14: t=t+1
15: end while
16: Output: xt

Algorithm 2 Inexact ARC
1: Input:

- Starting point: x0

- Initial regularization parameter:
σ0 > 0

- Other Parameters: 0 ≤ εg, 0 ≤
εH , 0 < η ≤ 1, γ > 1.

2: t=0
3: while ‖gt‖ ≥ εg, λmin(Ht) ≤ −εH do
4: if ‖gt‖ ≤ εg then
5: gt = 0
6: end if
7: Find st as in (2.9)

8: Set ρt as in (2.5) with mt as in (2.9b)

9: if ρt ≥ η then
10: xt+1 = xt + st and σt+1 = σt/γ
11: else
12: xt+1 = xt and σt+1 = γσt
13: end if
14: t=t+1
15: end while
16: Output: xt

as well. In particular, obtaining optimal complexity of Algorithm 2 requires more restrictive
conditions on the solution of the sub-problem than simple Cauchy or Eigen points, and it
also necessitates a more refined analysis and careful control over the size of the accepted
steps at each successful iterations.

2.2.1 Inexact Trust Region

The inexact TR algorithm is depicted in Algorithm 1. Every iteration of Algorithm 1 involves
approximate solution to a sub-problem of the form

st ≈ argmin
‖s‖≤∆t

mt(s), (2.6a)

where

mt(s) ,


〈gt, s〉+

1

2
〈s,Hts〉, ‖gt‖ ≥ εg

〈s,Hts〉, Otherwise

. (2.6b)
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Classically, the analysis of TR method involves obtaining a minimum descent along two
important directions, namely negative gradient and (approximate) negative curvature. Up-
dating the current point using these directions gives, respectively, what are known as Cauchy
Point and Eigen Point [57]. In other words, Cauchy Point and Eigen Point, respectively,
correspond to the optimal solution of (2.6) along the negative gradient and the negative
curvature direction (if it exists).

Definition 2 (Cauchy Point for Algorithm 1). When ‖gt‖ ≥ εg, Cauchy Point for Algo-
rithm 1 is obtained from (2.6) as

sCt = − αC

‖gt‖
gt, αC = argmin

0≤α≤∆t

mt

(
− α

‖gt‖
gt

)
. (2.7a)

Definition 3 (Eigen Point for Algorithm 1). When λmin(Ht) ≤ −εH , Eigen Point for Algo-
rithm 1 is obtained from (2.6) as

sEt = αEut, αE = argmin
|α|≤∆t

mt(αut), (2.7b)

where ut is an approximation to the corresponding negative curvature direction, i.e., for some
0 < ν < 1,

〈ut,Htut〉 ≤ νλmin(Ht) and ‖ut‖ = 1.

The properties of Cauchy and Eigen Points have been studied in [39, 40, 246], and are
also stated in Lemmas 2 and 3.

We are now ready to give the convergence guarantee of Algorithm 1. For this, we first
present sufficient conditions (Condition 1) on the degree of inexactness of the gradient and
Hessian. In other words, we now give conditions on δg, δH in Assumption 2 which ensure
convergence.

Condition 1 (Gradient and Hessian Approximation for Algorithm 1). Given the termination
criteria, εg, εH , in Algorithm 1, we require the inexact gradient and Hessian to satisfy

δg ≤
(

1− η
4

)
max {εg, ‖gt‖} and δH ≤ min

{
max

{
(1− η)νεH

2
,∆t

}
, 1

}
. (2.8)

Note that Condition 1 are adaptive, which can have desirable consequences in practice.
For example, when ∆t is large (which is typically the case during the early stages of the
algorithm), one can afford cruder approximation of the Hessian by choosing larger δH . Sim-
ilarly, the condition on δg, for large ‖gt‖, amounts to a relative error condition. Although
this latter condition on δg is perhaps not easily enforceable a priori (unless one has a lower-
bound estimate of ‖gt‖), it nonetheless qualitatively indicates that when the true gradient is
large, one can very well employ loose approximations; see also Remark 3. As the algorithm
progresses towards convergence, Condition 1 implies that ultimately we must seek to have



CHAPTER 2. INEXACT NON-CONVEX NEWTON-TYPE METHODS 13

δg ∈ O(εg), δH ∈ O(εH). These bounds are indeed the minimum requirements for the gradi-
ent and Hessian approximations to achieve (εg, εH)-Optimality; see the termination step for
Algorithm 1.

In Algorithm 1, sub-problem (2.6) need only be solved approximately. Indeed, in large-
scale settings, obtaining the exact solution of the sub-problem (2.6) is computationally pro-
hibitive. For this, as it has been classically done, we require that an approximate solution of
the sub-problem satisfies what are known as Cauchy and Eigen Conditions [57, 42, 246]. In
other words, we require that an approximate solution to (2.6) is at least as good as Cauchy
and Eigen points in Definitions 2 and 3, respectively. Condition 2 makes this explicit.

Condition 2 (Approximate solution of (2.6) for Algorithm 1). If ‖gt‖ ≥ εg, then we take
the Cauchy Point, i.e. st = sCt , otherwise we take the Eigen point, i.e., st = sEt . Here, sCt
and sEt are Cauchy and Eigen points, as in Definitions 2 and 3, respectively.

Under Assumptions 1 and 2 , as well as assuming Conditions 1 and 2 hold, we are now
ready to give the optimal iteration complexity of Algorithm 1.

Theorem 1 (Optimal Complexity of Algorithm 1). Let Assumption 1 hold and suppose
that gt and Ht satisfy Assumption 2 with δg and δH under Condition 1. If the approximate
solution to the sub-problem (2.6) satisfies Condition 2, then Algorithm 1 terminates after at
most

T ∈ O
(
max

{
ε−2
g ε−1

H , ε−3
H

})
,

iterations.

The worst iteration complexity of Theorem 1 matches the bound obtained in [57, 41,
246], which is known to be optimal in worst-case sense [41]. Further, it follows immediately
that the terminating points of Algorithm 1 satisfies ‖gT‖ ≤ εg+δg and λmin(HT ) ≥ −εH−δh,
i.e. xT is a (εg + δg, εH + δh)-optimal solution of (2.1).

2.2.2 Inexact ARC

The inexact ARC algorithm is given in Algorithm 2. Every iteration of Algorithm 2 involves
an approximate solution to the following sub-problem:

st ≈ argmin
s∈Rd

mt(s), (2.9a)

where

mt(s) ,


〈gt, s〉+

1

2
〈s,Hts〉+

σt
3
‖s‖3, ‖gt‖ ≥ εg

1

2
〈s,Hts〉+

σt
3
‖s‖3, Otherwise

. (2.9b)

Similar to Section 2.2.1, our analysis for inexact ARC also involves Cauchy and Eigen
points obtained from (2.9) as follows.
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Definition 4 (Cauchy Point for Algorithm 2). When ‖gt‖ ≥ εg, Cauchy Point for Algo-
rithm 2 is obtained from (2.9) as

sCt = −αCgt, αC = argmin
α≥0

mt(−αgt). (2.10a)

Definition 5 (Eigen Point for Algorithm 2). When λmin(Ht) ≤ −εH , Eigen Point for Algo-
rithm 2 is obtained from (2.9) as

sEt = αEut, αE = argmin
α∈R

mt(αut), (2.10b)

where ut is an approximation to the corresponding negative curvature direction, i.e., for some
0 < ν < 1,

〈ut,Htut〉 ≤ νλmin(Ht) and ‖ut‖ = 1.

Note that since both sCt and sEt are line minimizers of mt(s) along the directions −gt and
ut, respectively, they satisfy

〈−gt,∇mt(s
C
t )〉 = 〈sCt ,∇mt(s

C
t )〉 = 0,

〈ut,∇mt(s
E
t )〉 = 〈sEt ,∇mt(s

E
t )〉 = 0.

Further properties of Cauchy Point and Eigen Point for the cubic problem can be found in
Lemma 10 and Lemma 11.

As we shall show, the worst-case iteration complexity of inexact ARC depends on how
accurately we approximate the gradient and Hessian, as well as the problem solves. In
Section 2.2.2.1, we show that under nearly minimum requirement of the gradient and Hes-
sian approximation (Condition 3), the inexact ARC can achieve sub-optimal complexity
O(max{ε−2

g , ε−3
H }). In Section 2.2.2.2, we then show that under more restrict approxima-

tion condition (Condition 5), the optimal worst-case complexity O(max{ε−1.5
g , ε−3

H }) can be
recovered.

2.2.2.1 Sub-optimal Complexity for Algorithm 2

In this section, we provide sufficient conditions on approximating the gradient and Hessian,
as well as the sub-problem solves for inexact ARC to achieve the sub-optimal complexity
O(max{ε−2

g , ε−3
H }).

First, similar to Section 2.2.1, we require that the estimates of the gradient and Hessian
satisfy the following condition.

Condition 3 (Gradient and Hessian Approximation for Algorithm 2). Given the termination
criteria, εg, εH , in Algorithm 2, we require the inexact gradient and Hessian to satisfy

δg ≤
(

1− η
12

)
max{εg, ‖gt‖},

and δH ≤
(

1− η
6

)
min

{
ν max {−λmin(Ht), εH} ,

√
2LF εg

}
.

(2.11)
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It is easy to see that δg ∈ O(εg), δH ∈ O
(
min

{√
εg, εH

})
. Similar constraints on δH have

appeared in several previous works, e.g. [229, 246]. These are nearly minimum requirement
for the approximation to determine whether the iterate satisfies (εg, εH)-Optimality (Defini-
tion 1). In the case when εH = O(

√
εg), Condition 3 is indeed the minimum requirement. We

note that the condition on δg and δH are adaptive in that, for large ‖gt‖ and −λmin(Ht), they
amount to relative error conditions on the approximate gradient and Hessian, respectively.
In fact the condition on δg is very similar to that in Condition 1. Of course, in such such
cases, these conditions cannot be a priori enforced in a straightforward manner. Nonetheless,
they qualitatively indicates that in regions with large gradient and negative curvature, one
can rely on loose approximations of the gradient and Hessian, respectively. As the algorithm
progresses towards convergence, Condition 3 implies that ultimately we must seek to have
δg ∈ O(εg) and δH ∈ O

(
min

{√
εg, εH

})
.

As for solving the sub-problem, we require the following.

Condition 4 (Approximate solution of (2.9) for Algorithm 2). We use the same trial steps
as in Condition 2 but with sCt and sEt as in Definitions 4 and 5, respectively.

Condition 4 implies that when the gradient is large-enough, we take the Cauchy step.
Otherwise, we update along the Eigen Point direction.

Under Assumptions 1 and 2, as well as Conditions 3 and 4, we now present the proof of
sub-optimal complexity of Algorithm 2.

Based on the above lemmas, it follows,

Theorem 2 (Complexity of Algorithm 2). Let Assumption 1 hold and consider any 0 <
εg, εH < 1. Further, suppose that gt and Ht satisfy Assumption 2 with δg and δH under
Condition 3. If the approximate solution to the sub-problem (2.9) satisfies Condition 4, then
Algorithm 2 terminates after at most

T ∈ O
(
max

{
ε−2
g , ε−3

H

})
,

iterations.

Remark 1. To obtain similar sub-optimal iteration complexity, the sufficient condition on
approximating Hessian in [246] requires that δH ∈ O (min {εg, εH}), which is stronger than
Condition 3.

2.2.2.2 Optimal Complexity for Algorithm 2

In this section, we show that by better approximation of the gradient, Hessian as well as the
sub-problem (2.9), Algorithm 2 indeed enjoys the optimal iteration complexity.

First we require the following condition on approximating the gradient and Hessian.
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Condition 5 (Gradient and Hessian Approximation for Algorithm 2). Given the termination
criteria, εg, εH , in Algorithm 2, we require the inexact gradient and Hessian to satisfy

δg ≤
(1− η)

192LF

(√
K2
H + 8LF max{min{‖gt‖, ‖gt+1‖}, εg} −KH

)2

, (2.12a)

δH ≤
(1− η)

6
min

{
1

4

(√
K2
H + 8LF‖gt‖ −KH

)
, νεH

}
, (2.12b)

δg ≤ δH ≤ ζεg, (2.12c)

where 0 < ζ < 1−
√

2/2.

Condition 5 implies δg = O(ε2g) and δH = O(min{εg, εH}), which is strictly stronger
than Condition 3 in Section 2.2.2.1. Admittedly, although Condition 5 allows one to obtain
optimal iteration complexity of Algorithm 2, it also implies more computations, e.g., for
finite-sum problems of Section 2.2.3, this translates to larger sampling complexities. We
suspect that, instead of being an inherent property of Algorithm 2, this is merely a by-
product of our analysis. In this light, we conjecture that the same requirement as (2.11)
should also be sufficient for Algorithm 2; investigating this conjecture is left for future work.

Now we provide a sufficient condition on approximating the solution of the sub-problem
(2.9). Here, we require that the sub-problem (2.9) is solved more accurately than in Con-
dition 4. To obtain optimal complexity, similar conditions have been considered in several
previous works [42, 246]. Specifically we require the solution is, not only, as good as Cauchy
and Eigen points, but also it satisfies an extra requirement, (2.13), which accelerates the
convergence to first-order critical points.

Condition 6 (Approximate solution of (2.9) for Algorithm 2). If ‖gt‖ ≥ εg, find st, such
that mt(st) ≤ mt(s

C
t ) and

‖∇m(st)‖ ≤ θt‖gt‖, θt ≤ min {ζ, 1/5, ‖st‖/5} . (2.13)

Otherwise, we take the Eigen Point, i.e. st = sEt . Here, sCt and sEt are Cauchy and Eigen
points, as in Definitions 4 and 5, respectively.

It is not hard to see that, compared with Condition 4, when the gradient is large enough,
Condition 6 involves a more accurate solution of (2.9) than a simple Cauchy Point. For a
given p � d, let Ut ∈ Rd×p be any orthonormal basis for some p-dimensional sub-space S
such that Span{sCt } ⊆ S ⊂ Rd. Such a sub-space can be easily constructed from sCt and
Ht using standard methods such as Lanczos process [8, Section 7.5]. Now, a practical way
to ensure Condition 6 for the case where ‖gt‖ ≥ εg, is by approximating the unconstrained
high-dimensional sub-problem (2.9) with the following lower-dimensional problem

min
v∈Rp

〈Utv,gt〉+
1

2
〈Utv,HtUtv〉+

σt
3
‖Utv‖3,
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followed by setting st = Utv. Obviously, when p� d, solving such lower-dimensional prob-
lem, which involves smaller matrix and vectors, can be significantly easier than the original
high-dimensional one. One can consider a sequence of such reduced sub-problems using pro-
gressively larger sub-spaces and stop when (2.13) holds. Since ultimately ‖∇m(st)‖ = 0 for
when S = Rd, we are guaranteed to also satisfy (2.13) for large enough S ⊂ Rd.

The optimal iteration complexity of Algorithm 2 is stated in Theorem 3.

Theorem 3 (Optimal Complexity of Algorithm 2). Let Assumption 1 hold and consider any
0 < εg, εH < 1. Further, suppose that gt and Ht satisfy Assumption 2 with δg and δH under
Condition 5. If the approximate solution to the sub-problem (2.9) satisfies Condition 6, then
Algorithm 2 terminates after at most

T ∈ O
(
max{ε−1.5

g , ε−3
H }
)
,

iterations.

Remark 2. If we assume LF is known (set σt ≡ LF ) and st is close enough to the best
solution s∗t of mt(s), by using Taylor expansion, it is not hard to show that

F (xt + st)− F (xt) ≥ −c1mt(st) ≥ −c2mt(s
∗
t ).

Given ‖gt‖ or −λmin(Ht) is large, −m(s∗t ) would then be large. Therefore, there could be
enough descent along st. Roughly speaking, we could drop Lemmas 10 to 16, and get the
same iteration complexity results, i.e. T ∈ O(max{ε−1.5

g , ε−3
H }). For example, we do not need

Lemma 10 to show Cauchy Point is one of the directions for −mt(st). Also, in this case,
either Lemma 18 or Lemma 19 becomes redundant.

2.2.3 Finite-Sum Problems

As a special class of (2.1), we now consider non-convex finite-sum minimization of (2.2),
where each fi : Rd → R is smooth and non-convex. In big-data regimes where n � 1,
one can consider sub-sampling schemes to speed up various aspects of many Newton-type
methods, e.g., see [196, 247, 23] for such techniques in the context of convex optimization.
More specifically, we consider the sub-sampled gradient and Hessian as

g ,
1

|Sg|
∑
i∈Sg

∇fi(x), and H ,
1

|SH |
∑
i∈SH

∇2fi(x), (2.14)

where Sg,SH ⊂ {1, · · · , n} are the sub-sample batches for the estimates of the gradient and
Hessian, respectively. In this setting, a relevant question is that of “how large sample sizes
Sg and SH should be to guarantee, at least with high probability, that g and H in (2.14)
satisfy Assumption 2”. As long as |Sg| � n and |SH | � n, such sub-sampling strategies can
result in significant reduction in overall computational costs.

If sampling is done uniformly at random, we have the following sampling complexity
bounds, whose proofs can be found in [196, 246]. For more sophisticated sampling/sketching
schemes, see [184, 247, 246].
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Lemma 1 (Sampling Complexity [196, 246]). For any 0 < δg, δH , δ < 1, let g and H be as
in (2.14) with

|Sg| ≥
16K2

g

δ2
g

log
1

δ
and |SH | ≥

16K2
H

δ2
H

log
2d

δ
,

where 0 < Kg, KH < ∞ are such that ‖∇fi(x)‖ ≤ Kg and ‖∇2fi(x)‖ ≤ KH . Then, with
probability at least 1− δ, Assumption 2 holds with the corresponding δg and δH .

Combining Lemma 1 with the sufficient conditions presented earlier, i.e., Conditions 1
and 2 for Algorithm 1 and Conditions 3 and 4 or Conditions 5 and 6 for Algorithm 2, we
can immediately obtain, similar, but probabilistic, iteration complexities as in Sections 2.2.1
and 2.2.2. For completeness, we bring such a result for Algorithm 1 and omit those related
to Algorithm 2.

Since Conditions 1, 3 and 5 are only guaranteed probabilistically, in order to guarantee
success, a small failure probability across all iterations is required. In particular, in order to
get an accumulative success probability of 1− δ for the entire T iterations, the per-iteration
failure probability is set as (1 − T

√
(1− δ)) ∈ O(δ/T ). Fortunately, this failure probability

appears only in the “log factor” in Lemma 1 and so it is not the dominating cost. For
example, for T ∈ O(max{ε−2

g ε−1
H , ε−3

H }), as in Theorem 1, we can set the per-iteration failure
probability to δmin{ε2gεH , ε3H}.

Corollary 1 (Optimal Complexity of Algorithm 1 For Finite-Sum Problem (2.2)). Consider
any 0 < εg, εH , δ < 1. Let δg and δH be as in Condition 1 and set δ0 = δmin{ε2gεH , ε3H}.
Furthermore, for such δg, δH and δ0, let the sample-size |Sg| and |SH | be as in Lemma 1
and form the sub-sampled gradient and Hessian as in H as in (2.14). For Problem (2.2),
under Assumptions 1 and 2 and Conditions 1 and 2, Algorithm 1 terminates in at most T ∈
O(max{ε−2

g ε−1
H , ε−3

H }) iterations, upon which, with probability 1− δ, we have that ‖∇F (x)‖ ≤
εg + δg, and λmin(∇2F (x)) ≥ − (δH + εH).

2.3 Experiments

In this section, we provide empirical results evaluating the performance of Algorithms 1 and 2.
We aim to demonstrate that approximate gradient, approximate Hessian and approximate
sub-problem solves indeed help improve the computational efficiency. For our experiments,
we consider the following methods:

• F ull ARC: Standard ARC algorithms with exact gradient and Hessian.

• SubH TR/ARC [246]: TR and ARC with exact gradient and sub-sampled Hessian.

• SCR (GD) [229]: CR with sub-sampled gradient and Hessian. The sub-problems are
solved by gradient descent (GD) [37].
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• SCR (Lanczos): CR which is similar to SCR (GD) [229] but the sub-problems are solved
by generalized Lanczos method [39].

• SGD: Stochastic gradient descent with momentum [223]. The momentum parameter is
set to the typical value of 0.9. The gradient size is set to be 1000.

• Adagrad: An adaptive first-order method developed in [73]. The gradient size is set to be
1000.

• Adam: A modification of Adagrad which has become the method of choice within the
machine learning community [125]. The two momentum terms in ADAM are set to be 0.9
and 0.999, which are typically chosen in practice. The gradient size is set to be 1000.

• I nexact TR/ARC (this work): TR and ARC with sub-sampled gradient and Hessian
as described in Algorithms 1 and 2. The sub-problems of Algorithms 1 and 2 are solved,
respectively, by CG-Steihaug [221], and by generalized Lanczos method [39]. For both al-
gorithms, the gradient sample size is adaptively chosen as follows: if ‖gt‖ ≥ 1.2‖gt−1‖ or
‖gt‖ ≤ ‖gt−1‖/1.2, we respectively decrease or increase the sample size for gradient estima-
tion by a factor of 1.2. Otherwise, the sample size stays the same as the previous iteration.

For our experiments, except SCR (GD), we use CG-Steihaug method [171] and gener-
alized Lanczos method [39] to solve the sub-problems of TR and ARC, respectively. Also
following [243], we set the maximum iterations for the sub-problem solvers to 250. Further
specific hyper-parameters as well as samples sizes used for second-order algorithms in our
experiments are gathered in Table 2.2.

Method Full ARC SubH TR SubH ARC SCR Algorithm 1 Algorithm 2
Hyper-parameter σ0 = 10 ∆0 = 10 σ0 = 10 σ = 10 (Figure 2.2) ∆0 = 10 σ0 = 10
|Sg| (Section 2.3.1) n n n N/A 5,000 5,000
|SH | (Section 2.3.1) n 1,000 1,000 N/A 1,000 1,000
|Sg| (Section 2.3.2) n n n 0.1n 0.1n 0.1n
|SH | (Section 2.3.2) n 0.01n 0.01n 0.01n 0.01n 0.01n

Table 2.2: The hyper-parameters and the samples sizes used for Newton-type methods used
in the experiments. n is as in Tables 2.3 and 2.4. Recall that |Sg| is adjusted adaptively for
Algorithms 1 and 2, and hence the values given here refer to the gradient sample size at ini-
tialization. For Hessian estimation, however, We use fixed sample size for both Algorithms 1
and 2.

Similar to [243], the performance of all the algorithms in our experiments is measured by
tallying total number of propagations, i.e., number of oracle calls of function, gradient and
Hessian-vector products. More specifically, for each i in (2.2), after computing fi(x), com-
puting ∇fi(x) is equivalent to one additional function evaluation. In our implementations,
we merely require Hessian-vector products ∇2fi(x)v, instead of forming the explicit Hessian,
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which amounts to two additional function evaluations, as compared with gradient evaluation.
We would like note that we opted to choose propagations as the complexity since “wall-clock”
time can be highly affected by particular implementation details as well as system specifica-
tions. In contrast, counting the number of propagations (or oracle calls) is implementation
and system independent and is hence more appropriate and fair. For experiments of Sec-
tion 2.3.1, we use GTX Titan X GPU with 12GB RAM memory. The code is based on
Python with framework PyTorch 1.2.0. In Section 2.3.2, the experiments are performed on
a Macbook Pro, 2017c(2.9GHz Intel Core i7-7820HQ, 16 GB RAM) with Matlab. Our code
is publicly available at https://github.com/yaozhewei/Inexact_Newton_Method.

2.3.1 Multi-layer Perceptron

We first evaluate the performance of Algorithm 1 in terms of running time, as measured by
the training loss versus total number of propagations. We do this using a simple multi-layer
perceptron (MLP) model on MNIST dataset, which is available from LIBSVM library [45].

Hidden
Layer Size

n d

16 60,000 12,704
128 60,000 101,632

1,024 60,000 813,056

Table 2.3: The dimension of the parameter space for various hidden layer sizes in MLP
experiment.

Here, we consider an MLP involving one hidden layer and one output layer to determine
the assigned the class of the input image. All intermediate neurons involve SoftPlus acti-
vation function [85], which amounts to a smooth optimization problem. We consider three
instances of such an MLP with hidden layer sizes of 16, 128, and 1,024. Table 2.3 gathers
the dimensions of the resulting optimization problems.

Similar to the observations in [243], despite the best of our efforts, we were unable to
obtain the expected performance of any variant of ARC and CR on this model problem using
a variety of implementations. As a result, we did not include them in this experiment.

For all first-order methods, fixed step sizes in the range α = [0.0001, 0.001, 0.01, 0.1] are
tested. As is clearly observed here, and also is reported in the similar literature [131, 243,
18], the performance of first-order methods strongly depends on the particular choice of their
main hyper-parameter, i.e., the step-size. For example, in Figure 2.1 (g)-(i), a finely-tuned
ADAM can have superior performance. However, if the step-size is not chosen appropriately,
the performance of ADAM could be unpleasantly erratic. As it can also be seen, even the
best performing step-size for ADAM ceases to be appropriate at later stages of the algorithm.

https://github.com/yaozhewei/Inexact_Newton_Method
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As a result, to obtain a solution with higher accuracy, one needs to pick a new step-size at
later stages of the algorithm, as otherwise ADAM ultimately diverges or exhibits violent
zigzagging behavior.
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Figure 2.1: Results of variants of TR (SubH TR and Inexact TR) and first-order methods
(SGD, AdaGrad, and ADAM) on MLP with different hidden size (16, 128, and 1024). Both
x-axis and y-axis are drawn using the logarithmic scaling.

2.3.2 Non-linear Least Squares

Since, we did not manage to obtain a reasonable performance using any variants of ARC and
CR, we opted to exclude them from the previous experiments in Section 2.3.1. Nonetheless,
on a simpler non-linear least squares problem, we were able to compare and contrast various
properties of these methods, which we include in this section.

Computational Efficiency (Figure 2.2): We now consider the running time of Al-
gorithm 2 in the context of simple, yet illustrative, nonlinear least squares arising from the
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task of binary classification with squared loss1. Specifically, given training data {ai, bi}ni=1,
where ai ∈ Rd, bi ∈ {0, 1}, consider the following empirical risk minimization problem

min
x∈Rd

1

n

n∑
i=1

(
bi − φ

(
〈ai,x〉

))2

,

where φ(z) is the sigmoid function, i.e. φ(z) = 1/(1 + e−z). Datasets are taken from LIBSVM

library [45]; see Table 2.4. We use the same setup in [243].

Table 2.4: Datasets used for experiments with non-linear least squares.

Data n d

covertype 464,810 54
ijcnn1 49,990 22

Figure 2.2 depicts the results. For all variants of SCR, we hand-tuned the algorithm
by performing an exhaustive grid-search over the involving hyper-parameters, and we show
the best results. For all variants ARC, we choose the same initial parameters, σ0. We can
observe that all methods achieve similar training errors, while Algorithm 2 does so with
much fewer number of propagation calls, as compared with other methods. Furthermore, all
variants of ARC perform similarly, or better, than all variants of CR. This is an empirical
evidence that the “optimal” worst-case analysis of CR, while theoretically interesting, might
not translate to many practical applications of interest.

Robustness to Hyper-parameters (Figure 2.3): Next, we highlight the practical
challenges arising with algorithms that heavily rely on the knowledge of hard-to-estimate
parameters. In particular, we aim here to demonstrate that an algorithm whose perfor-
mance is greatly affected by specific settings of parameters that cannot be easily estimated,
lacks the versatility needed in many practical applications. To do so, we perform one such
demonstration by focusing on sensitivity/robustness of Algorithm 2 and SCR to the cubic
regularization parameter σ. The results are gathered in Figure 2.3. One can see that the
performance of SCR is highly dependent on the choice of its main hyper-parameter, i.e.,
σ. Indeed, if σ is not chosen appropriately, SCR either converges very slowly or does not
converge at all. Determining an appropriate value of σ requires an expensive (in human time
or CPU time) hyper-parameter search. This is in sharp contrast with Algorithm 2 which
shows great robustness to the choice of σ0 and works more-or-less “out of the box.”

1Since logistic loss, which is the “standard” loss used in this task, leads to a convex problem, we use
square loss to obtain a non-convex objective.
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Figure 2.2: Performance of variants of ARC and CR methods on ijcnn1 and covertype for
binary linear classification. The x-axis is drawn on the logarithmic scale.

2.3.3 Summary of Numerical Experiments

From the above numerical examples, i.e., multi-layer perceptron in Section 2.3.1 and non-
linear least squares in Section 2.3.2, we can make the following general observations regarding
the overall performance of Algorithms 1 and 2.

i. Within the context of both inexact TR and ARC, we can clearly see the added effi-
ciency obtained from sub-sampling both the gradient and the Hessian. This is illustrated
by competitive performance compared with several first-order methods as well as superior
performance relative to more expensive variants, i.e., exact algorithms and those where only
the Hessian is approximated as in [246].

ii. In terms of tuning the respective underlying hyper-parameters, our inexact ARC variant
is significantly more robust compared to SCR [229]. Similarly, in contrast to first-order al-
gorithms whose performance is greatly affected by the choice of their main hyper-parameter,
i.e., step-size, the performance of the proposed Newton-type methods exhibits significant
resilience to particular choices of their hyper-parameters.

2.4 Conclusions and Further Thoughts

In this paper, we considered inexact variants of trust region and adaptive cubic regulariza-
tion in which, to increase efficiency, the gradient and Hessian, as well as the solution to the
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Figure 2.3: Robustness of Algorithm 2 and sensitivity of SCR w.r.t. the cubic regularization
parameter on covertype dataset. For Algorithm 2, this parameter, initially set to σ0,
adaptively changes across iterations; while for SCR, it is kept fixed at a certain σ for all
iterations. (a) Robustness of Algorithm 2 to the choice of σ0, where σ0 varies over several
orders of magnitude. (b)–(c) Sensitivity of SCR with two different sub-problem solvers
(Lanczos and GD) and several choices of the fixed cubic regularization σ. For SCR (GD),
the step size of GD for solving the sub-problem is hand-tuned to obtain the best performance
(which can be extremely expensive).

underlying sub-problems are all suitably approximated. We showed that under certain con-
ditions on these approximation, to coverage to second-order criticality, the inexact variants
achieve the same optimal iteration complexity as the exact counterparts. The advantages,
and perhaps shortcomings, of our algorithms were also numerically demonstrated.

We note that unlike Conditions 2, 4 and 6, ensuring Conditions 1, 3 and 5 is not generally
as straightforward and remains the main practical challenge in our work and, to our knowl-
edge, all of related literature. Although, deterministic approaches such as finite-difference
schemes can theoretically guarantee these conditions, obtaining an appropriate discretiza-
tion scheme relies on the knowledge of problems-dependent constants that are typically hard
to estimate. Similarly, for the case of finite-sum minimization in Section 2.2.3, which is
an important driving application for our results here, randomized sub-sampling techniques
can give sufficient sample sizes to guarantee such conditions. However, this also requires
estimates of the constants LF , KH , and Kg. Fortunately, for several problems in machine
learning obtaining such estimates is in fact straightforward, e.g., linear predictor models
in [246, Table 1] and [196, Table 2] as well as deep learning in [78]. Furthermore, in our
experience as well as that of many others, the performance of such sub-sampled algorithms
is most resilient to under-sampling. This is in sharp contrast, however, to the quality of the
sub-problem solutions, which significantly affect the overall performance of the algorithms.

As a by-product of our analysis, the bound on gradient approximations for obtaining the
optimal iteration complexity of inexact ARC remains very pessimistic, and tightening such a
bound is left for future work. An important missing piece from our work here is incorporating
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function approximations as a way to further reduce the computational costs, which we are
currently pursuing. Finally, our results here only consider iteration complexities of the
proposed algorithms. A much finer grained analysis is required to obtain overall running
time, which is an important avenue for future work.
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Chapter 3

Inexact Newton-CG Algorithms with
Complexity Guarantees

3.1 Introduction

We consider the following unconstrained optimization problem

min
x∈Rd

f(x), (3.1)

where f : Rd → R is a smooth but nonconvex function. At the heart of many machine
learning and scientific computing applications lies the problem of finding an (approximate)
minimizer of Problem (3.1). Faced with modern “big data” problems, many classical op-
timization algorithms [171, 19] are inefficient in terms of memory and/or computational
overhead. Much recent research has focused on approximating various aspects of these al-
gorithms. For example, efficient variants of first-order algorithms, such as the stochastic
gradient method, make use of inexact approximations of the gradient. The defining element
of second-order algorithms is the use of the curvature information from the Hessian matrix.
In these methods, the main computational bottleneck lies with evaluating the Hessian, or
at least being able to perform matrix-vector products involving the Hessian. Evaluation of
the gradient may continue to be an unacceptably expensive operation in second-order algo-
rithms too. Hence, in adapting second-order algorithms to machine learning and scientific
computing applications, we seek to approximate the computations involving the Hessian
and the gradient, while preserving much of the convergence behavior of the exact underlying
second-order algorithm.

Second-order methods use curvature information to nonuniformly rescale the gradient
in a way that often makes if a more “useful” search direction, in the sense of providing a
greater decrease in function value. Superior convergence properties can be obtained by com-
parison with first-order methods; for example, the classical Newton’s method has a locally
quadratic convergence rate. Second-order information also opens the possibility of conver-
gence to points that satisfy second-order necessary conditions for optimality, that is, x for
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which ‖∇f(x)‖ = 0 and ∇2f(x) � 0. (By contrast, first-order methods typically guarantee
convergence only to first-order stationary points, for which ‖∇f(x)‖ = 0, although first-order
methods that make use of random perturbations can guarantee approximate second-order
optimality; see for example [123].) For nonconvex machine learning problems, first-order sta-
tionary points include saddle points, which are undesirable for obtaining good generalization
performance [62, 56, 207, 137].

The canonical example of second-order methods is the classical Newton’s method, which
in its pure form is often written as

xk+1 = xk + αkdk, where dk = −H−1
k gk,

where Hk = ∇2f(xk) is the Hessian, gk = ∇f(xk) is the gradient, and αk is some appropriate
step-size, often chosen using an Armijo-type line-search [171, Chapter 3]. A more practi-
cal variant for large-scale problems is Newton-Conjugate-Gradient (Newton-CG), in which
the linear system Hkdk = −gk is solved inexactly using the conjugate gradient (CG) algo-
rithm [221]. Such an approach requires access to the Hessian matrix only via matrix-vector
products; it does not require Hk to be evaluated explicitly.

Recently, a new variant of the Newton-CG algorithm was proposed in [199] that can be
applied to large-scale non-convex problems. This algorithm comes equipped with certain
safeguards and enhancements that allow derivation of worst-case complexity results in terms
of number of iterations and total running time. However, this approach relies on exact
evaluation of the gradient and on matrix-vector multiplication involving the exact Hessian at
each iteration. Such operations can be prohibitively expensive in machine learning problems.
For example, when the underlying optimization problem has the finite-sum form

min
x∈Rd

f(x) =
n∑
i=1

fi(x), (3.2)

exact computation of the Hessian/gradient can be extremely costly when n� 1, requiring a
complete pass through the training data set. Our work here builds upon that of [199] to allow
for the inexact computation of the gradient and Hessian, while preserving the complexity
result of [199].

3.1.1 Related Work

Since deep learning became ubiquitous, first-order methods such as gradient descent and its
adaptive, stochastic variants [125, 73], have become the most popular class of optimization
algorithms in machine learning; see the recent textbooks [15, 132, 143, 240] for in-depth
treatments. These methods are easy to implement, and their per-iteration cost is low com-
pared to second-order alternatives. Although classical theory for first-order methods guar-
antees convergence only to first-order optimal (stationary) points, [81, 123, 139] argued that
stochastic variants of certain first-order methods such as SGD have the potential of escap-
ing saddle points and converging to the second-order stationary point. Effectiveness of such
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methods usually requires painstaking fine-tuning of their (often many) hyperparameters, and
the number of iterations they require to escape saddle regions can be large. By contrast,
second-order methods can make use of curvature information (via the Hessian) to escape
saddle points efficiently and ultimately converge to the second-order stationary points. This
behavior is seen in trust-region region methods [57, 60, 59], cubic regularization [169] and
its adaptive variants (ARC) [39, 40], as well as line-search based second-order methods [200,
199].

Subsequent to [39, 40, 41], which were among the first works to study Hessian approxima-
tions to ARC and trust region algorithms, respectively, [246] analyzed the optimal complexity
of both trust region and cubic regularization, in which the Hessian matrix is approximated
under milder conditions. Extension to gradient approximations was then studied in [229,
252]. The analysis in [93, 44, 21] relies on probabilistic models whose quality are ensured with
a certain probability, but which allow for approximate evaluation of the objective function
as well.

A notable difficulty of these methods concerns solution of their respective subproblems,
which can themselves be nontrivial nonconvex optimization problems. An exception is [199],
whose fundamental operations are linear algebra computations, which are much better un-
derstood. This paper enhances the classical Newton-CG approach with safeguards to detect
negative curvature in the Hessian, during solution of the Newton equations to obtain the
step dk. Negative curvature directions can subsequently be exploited by the algorithm to
make significant progress in reducing the objective. Moreover, [199] gives complexity guar-
antees that have been shown to be optimal in certain settings. (Henceforth, we use the term
”Newton-CG” to refer specifically to the algorithm in [199].)

3.1.2 Contribution

We describe variants of the Newton-CG algorithm in [199] in which both the gradient and
the Hessian are approximated, while maintaining the convergence and complexity properties
of the original algorithm. More specifically, to achieve (εg,

√
εg)-Optimality (see Definition 6

below) under Condition 7 on gradient and Hessian approximations (see below, in Section
3.2.2), we show the following.

• Inexact Newton-CG with backtracking line-search (Algorithm 3), achieves the optimal

iteration complexity of O(ε
−3/2
g ); see Section 3.2.2.

• Inexact Newton-CG in which a pre-defined step size replaces the backtracking line searches
(Algorithm 4) achieves the same optimal iteration complexity of O(ε

−3/2
g ); see Section 3.2.3.

• The accuracy required in our gradient approximation changes adaptively with the current
gradient size. One consequence of this feature is to allow cruder gradient approximations in
the regions with larger gradients, translating to a more efficient algorithm overall.
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• We empirically illustrate the advantages of our methods on several real datasets; see
Section 3.3.

3.2 Algorithms and Theoretical Analysis

We describe our algorithms and present our main theoretical results in this section. We start
with background (Section 3.2.1), then proceed to our two main algorithms (Section 3.2.2 and
Section 3.2.3).

3.2.1 Notation and Assumption

Throughout this paper, scalar constants are denoted by regular lower-case and upper-case
letters, e.g., c and K. We use bold lowercase and blackboard bold uppercase letters to
denote vectors and matrices, e.g., a and A, respectively. The transpose of a real vector a
is denoted by aT . For a vector a, and a matrix A, ‖a‖ and ‖A‖ denote the vector `2 norm
and the matrix spectral norm, respectively. Subscripts (as in at) denote iteration counters.
The smallest eigenvalue of a symmetric matrix A is denoted by λmin(A).

For nonconvex problems, determination of near-optimality can be much more complicated
than for convex problems; see the examples of [165, 106]. In this paper, as in earlier works
(see for example [199]), we make use of approximate second-order optimality, defined as
follows.

Definition 6 ((εg, εH)-optimality). Given 0 < εg, εH < 1, x is an (εg, εH)-optimal solution
of (3.1), if

‖∇f(x)‖ ≤ εg and λmin(∇2f(x)) ≥ −εH . (3.3)

Assumption 3. The smooth nonconvex function f is bounded below by the finite value flow.
Moreover, on an open set in Rn containing all line segments [xk,xk + dk] for iterates xk
and search directions dk generated by our algorithms, the objective function has Lipschitz
continuous gradient and Hessian, that is, there are positive constants 0 < Lg < ∞ and
0 < LH <∞ such that

‖∇f(x)−∇f(y)‖ ≤ Lg‖x− y‖ and
∥∥∇2f(x)−∇2f(y)

∥∥ ≤ LH‖x− y‖.

For our inexact Newton-CG algorithms, we also require that the approximate gradient
and Hessian satisfy the following conditions, for prescribed positive values δg,t and δH .

Definition 7. For given δg,t and δH , we say that the approximate gradient gt and Hessian
Ht at iteration t are δg,t-accurate and δH-accurate if

‖gt −∇f(xt)‖ ≤ δg,t and ‖Ht −∇2f(xt)‖ ≤ δH , (3.4)

respectively.
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Under these assumptions and conditions, it is easy to show that there exist constants
Ug and UH such that the following are satisfied for all iterates xt in the set defined in
Assumption 3:

‖gt‖ ≤ Ug and ‖Ht‖ ≤ UH . (3.5)

3.2.2 Results with Line Search

Here, we present our inexact damped Newton-CG algorithm (Algorithm 3); and, using
Procedures 8 and 9, we establish worst case iteration complexity results to achieve (εg, εH)-
optimality (Definition 6). More specifically, we will show that under mild conditions on the
approximate gradient and Hessian, the worst case complexity of our inexact algorithm is the
same as the original exact counterpart, given in [199].

Our inexact damped Newton-CG method is depicted in Algorithm 3, where the major dif-
ference between our method and the exact counterpart in [199] is using the approximations of
gradient and Hessian. Another notable difference (highlighted in blue) is that our algorithm
directly calls Procedure 9 to check if there is a sufficiently large negative curvature direction
when the direction dk obtained from Procedure 8 is small, specifically ‖dk‖ ≤

√
εg/LH. If

there is no large negative curvature, we terminate and return the point xk + dk, which al-
ready satisfies the second-order optimality condition. Otherwise, a backtracking line search
will be performed along the negative curvature direction detected by Procedure 9. In theory,
this modification is critical to obtaining the optimal worst case complexity. In practice, how-
ever, we have never observed the need to enforce this step, even when the norm of update
direction, dk, from Procedure 8 is very small.

In order to establish the iteration complexity of Algorithm 3, we first present a sufficient
condition on the degree of the inexactness of the gradient and Hessian.

Condition 7. To make the output of Algorithm 3 satisfy Definition 6, we require the inexact
gradient gk and Hessian Hk to satisfy Definition 7 with

δg,k ≤
1− ζ

8
max (εg,min(εH‖dk‖, ‖gk‖, ‖gk+1‖)) , and δH ≤

1− ζ
2

εH .

Obviously, one can simplify Condition 7 to have iteration-independent δg as

δg ≤
(1− ζ)εg

8
.

However, the adaptively of the iteration-dependent version of Condition 7 through gk and
gk+1 offers practical advantages. Indeed, in many iterations, one can expect ‖gk‖ and ‖gk+1‖
to be of similar magnitudes. Also, as shown in Lemma 27, we have ‖dk‖ ≤ ε−1

H

√
1 + ζ2/4‖gk‖.

Thus, the three terms in min(εH‖dk‖, ‖gk‖, ‖gk+1‖) are often roughly of the same order, and
usually larger than εg. These observations suggest that when the true gradient is large, we
can employ loose approximations.

Now, combining Lemmas 29–32, we have the final iteration complexity in Theorem 4.
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Algorithm 3 Inexact Damped Newton-CG with Line Search

1: Inputs: εg, εH > 0; Backtracking parameter θ ∈ (0, 1); Starting point x0; upper bound
on Hessian norm UH > 0; accuracy parameter ζ ∈ (0,min{1, UH});

2: for k = 0, 1, 2, · · · do
3: if ‖gk‖ ≥ εg then
4: Call Procedure 8 with H = Hk,M = UH , ε = εH ,g = gk and accuracy parameter ζ

to obtain d and dtype;
5: if dtype == NC then

6: dk ← −sgn(dT∇f(xk))
|dTHkd|
‖d‖2

d
‖d‖ ;

7: else
8: dk ← d;
9: end if

10: if ‖dk‖ ≤
√

εg
LH

then

11: Call Procedure 9 with H = Hk,M = UH , ε = εH to obtain v and λmin(Hk);
12: if Procedure 9 certificates λmin(Hk) ≥ −εH then
13: xk+1 ← xk + dk and terminate;
14: else
15: dk ← −sgn(vT∇f(xk))

|vTHkv|
‖v‖2 v and go to Line-Search;

16: end if
17: else
18: Go to Line-Search;
19: end if
20: else
21: Call Procedure 9 with H = Hk,M = UH , ε = εH ;
22: if Procedure 9 certificates λmin(Hk) ≥ −ε then
23: Terminate;
24: else
25: dk ← −sgn(vT∇f(xk))

|vTHkv|
‖v‖2 v and go to Line-Search;

26: end if
27: end if
28: Line-Search: Compute a step length αk = θjk , where jk is the smallest nonnegative

integer such that

f(xk + αkdk) < f(xk)−
η

6
α3
k‖dk‖3; (3.6)

29: xk+1 ← xk + αkdk;
30: end for
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Theorem 4. Let Assumption 3 and Condition 7 hold. Let εH =
√
LHε, εg = ε. Define

K̄ :=

 3(f(x0)− flow)

min
(
csol/(8L

3/2
H ), csolL

3/2
H , csol, cncL

3/2
H /8

)ε−3/2

+ 2, (3.7)

where csol and cnc are defined in Lemmas 29 and 30, respectively. Then with probability at
least (1− δ)K̄, Algorithm 3 terminates at a point satisfying

‖∇f(xk)‖ . ε and λmin(∇2f(xk)) & −
√
LHε, (3.8)

in at most K1 iterations.

Finally, combining the complexity of Procedures 8 and 9, we provide the total computa-
tional complexity of our Algorithm 3 in terms of the function, gradient, and Hessian-vector
evaluations.

Corollary 2. Suppose that the assumptions of Theorem 4 hold. Let εg = ε, εH =
√
LHε, and

K̄ be defined as in (3.7). Then with probability at least (1 − δ)K̄, Algorithm 3 terminates
after at most O(ε−7/4) numbers of function, gradient, and Hessian-vector evaluations.

Table 3.1: The upper bound of LH for some non-convex problems in the form finite sum
minimization (3.2). Here, we consider {ai, bi}ni=1 as training data where ai ∈ Rd and bi ∈ R.
When we calculate the upper bound of LH for single data point, and for simplicity, we omit
the sub-script of ai and bi. For Welsch’s exponential, α is some positive constant.

Problem Formulation Predictor Function
Upper bound of LH for single

data point
Upper bound of LH for

entire problem

n∑
i=1

(bi − φ(〈ai,x〉))2 φ(z) = 1/(1 + e−z)
2‖a‖3(|bφ′′′(z)|+ 3|φ′(z)φ′′(z)|+
|φ(z)φ′′′()|) ≤ 2(|b|+ 4)‖a‖3 maxi 2(|b|+ 4)‖ai‖3

n∑
i=1

(bi − φ(〈ai,x〉))2 φ(z) = (ez − e−z)/(ez + e−z)
2‖a‖3(|bφ′′′(z)|+ 3|φ′(z)φ′′(z)|+
|φ(z)φ′′′(z)|) ≤ 2(|b|+ 4)‖a‖3 maxi 2(|b|+ 4)‖ai‖3

n∑
i=1

φ(bi − 〈ai,x〉) φ(z) = (1− e−αz2)/α ‖a‖3|φ′′′(z)| 9α3/2 maxi ‖ai‖3

3.2.3 Results without Line Search

Although Algorithm 3 employs approximated gradients and Hessian, the back-tracking
line search for the step-size αk is still chosen using the full function evaluation of f .1 Since
the cost of gradient evaluation is typically has the same order as that of the corresponding

1The same setting is considered in [252, 196].
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Algorithm 4 Inexact Newton-CG without Line Search

1: Inputs: εg, εH > 0; Parameter θ ∈ (0, 1); Starting point x0; upper bound on Hessian
norm UH > 0; accuracy parameter ζ ∈ (0,min{1, UH});

2: for k = 0, 1, 2, · · · do
3: if ‖gk‖ ≥ εg then
4: Call Procedure 8 with H = Hk,M = UH , ε = εH ,g = gk and accuracy parameter ζ

to obtain d and dtype;
5: if dtype == NC then

6: dk ← −sgn(dTgk)
|dTHkd|
‖d‖2

d
‖d‖ ;

7: else
8: dk ← d;
9: end if

10: if ‖dk‖ ≤
√

εg
LH

then

11: Call Procedure 9 with H = Hk,M = UH , ε = εH to obtain v and λmin(Hk);
12: if Procedure 9 certificates λmin(Hk) ≥ −εH then
13: xk+1 ← xk + dk and terminate;
14: else
15: dk ← −sgn(vTgk)

|vTHkv|
‖v‖2 v and dtype = NC;

16: end if
17: end if
18: else
19: Call Procedure 9 with H = Hk,M = UH , ε = εH ;
20: if Procedure 9 certificates λmin(Hk) ≥ −ε then
21: Terminate;
22: else
23: dk ← −sgn(vTgk)

|vTHkv|
‖v‖2 v and dtype = NC;

24: end if
25: end if
26: if dtype = NC then

27: αk = − 3θ̃k
2(LH+η)

28: else

29: αk = −
[

3θ2k(1−ζ)
4(LH+η)

]1/2
ε
1/2
H

‖dk‖1/2

30: end if
31: xk+1 ← xk + αkdk;
32: end for

function, the computation reduction from gradient approximation might be negligible. How-
ever, in this section, we show that a “fixed” (pre-defined) step size can be carefully chosen
to obviate the need for function evaluations. Despite this desirable advantage, one can also
identify two main disadvantages for this approach. First, the guaranteed descent in the ob-
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jective will usually be smaller than what we can obtain from Lemmas 29 to 31. Second, our
approach will require an approximate upperbound on the Lipchitz constant of Hessian (LH),
which might not be readily available. Fortunately, there are many important instances, in
particular in machine learning, in which an estimate of (LH) can easily be obtained, e.g.,
empirical risk minimization problems involving the usual squared loss [243] as well as and
Welsch’s exponential variant [264].

Although the gradient and Hessian in Algorithm 3 are already approximated, the back-
tracking line-search step is still costly when n � 1. Here, we present Algorithm 4, as
a modification to Algorithm 3, which uses a fixed (pre-defined) step size rather than line
search, and as a consequence, function evaluations are no longer needed. Clearly, eliminating
exact functional evaluations would increase the efficiency of the overall algorithm. The main
difference between Algorithm 3 and 4 is highlighted in blue.

Condition 8. To make the output of Algorithm 3 satisfy Definition 6, we require the inexact
gradient gk and Hessian Hk to satisfy Definition 7 with

δg,k ≤
1− ζ

8
min

(
max (εg,min(εH‖dk‖, ‖gk‖, ‖gk+1‖)) ,min{ 3εH

8(LH + η)
,

3ε2H
65(LH + η)

}
)

and δH ≤
1− ζ

4
εH .

Note that throughout this section, we assume εH =
√
LHεg to remove the function evaluation

of Algorithm 4.

We are now ready to give the iteration complexity of Algorithm 4. The proof is similar
to Theorem 4 and is therefore omitted.

Theorem 5. Let Assumption 3 and Condition 8 hold. Define

K̂2 :=

⌈
24(f(x0)− flow)

min{c̄sol, c̄nc}
ε−3

⌉
+ 4, (3.9)

where c̄sol and c̄nc are defined in Lemmas 33 and 35, respectively. Then with probability at
least 1− K̂2δ, Algorithm 4 terminates at a point satisfying

‖∇f(xk)‖ . ε2, λmin(∇2f(xk)) & −ε, (3.10)

in at most K̂2 iterations.

Note that the worst case iteration complexity of Algorithm 4 is the same as Algorithm 3
but the function evaluation of Algorithm 4 is removed.
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3.2.4 Evaluation Complexity of Algorithm 4 for Finite-Sum
Problems

Combining Lemma 1 with the sufficient conditions presented earlier, i.e., Condition 8, we
can immediately obtain, similar, but probabilistic, iteration complexities as in Section 3.2.3.
Since both Lemma 28 and Condition 8 are only guaranteed probabilistically, in order to get
an accumulative success probability of 1 − δ for the entire K̂2 iterations, the per-iteration
failure probability is set as (1− K̂2

√
(1− δ)) ∈ O(δ/T ). Fortunately, this failure probability

appears only in the “log factor” in both Lemmas 1 and 28 and so it is not the dominating
cost. For K̂2 ∈ O(ε−3}) in Theorem 5, we can set the per-iteration failure probability to δε3.
In more details, we can set the per-iteration failure probability for Lemma 28 to be δε3/3,
and set that for Lemma 1 to be the same, i.e., δε3/3.

Corollary 3 (Evaluation Complexity of Algorithm 4 For Finite-Sum Problem (3.2)). Con-
sider any 0 < εg, εH , δ < 1. Let δg,t and δH be as in Condition 7 and set δ0 = δε3/3. It is
not hard to see

δg,t ∈ O(ε2) and δH ∈ O(ε).

Let Lemma 28 has the failure probability with δ0. Furthermore, for such δg,t, δH and δ0,
let the sample-size |Sg| and |SH | be as in Lemma 1 and form the sub-sampled gradient and
Hessian as in H as in (2.14). For Problem (3.2), under Assumption 3 and Condition 8
terminates in at most K̂2 ∈ O(ε−3) iterations, upon which, with probability 1 − δ, we have
that ‖∇F (x)‖ ≤ O(ε2), and λmin(∇2F (x)) ≥ −O(ε).

The total number of gradient, and Hessian-vector evaluation (T) is bounded by:

T = (

⌈
24(f(x0)− flow)

min{c̄sol, c̄nc}
ε−3

⌉
+ 4)︸ ︷︷ ︸

K̂2

·( 16K2
g

δ2
g,t

log
1

δ︸ ︷︷ ︸
Gradient Sampling

+
16K2

H

δ2
H

log
2d

δ︸ ︷︷ ︸
Hessian Sampling

·(O(ε−1/2)︸ ︷︷ ︸
Procedure 8

+ O(ε−1/2)︸ ︷︷ ︸
Procedure 9

))

= O(ε−3) · (O(ε−4) +O(ε−5/2))

= O(ε−7).

3.3 Numerical Evaluation

In this section, we evaluate the performance of Algorithm 3 and 4 on two model problems:
non-linear least square (NLS) and multi-layer perceptron (MLP). We aim to illustrate the
efficiency of gradient and Hessian approximations as well as of using the pre-defined step
size. For our evaluation, we consider the following methods:

• SGD: Stochastic gradient descent with momentum [223]. The momentum parameter is set
to the value of 0.0 in NLS and 0.9 in MLP. The gradient sampling size is 1% out of the full
dataset in NLS, and 1000 in MLP.
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• Adagrad: An adaptive first-order method developed in [73]. The gradient sampling size is
1000 in MLP.

• Adam: A modification of Adagrad which has become the method of choice within the
machine learning community [125]. The two momentum terms in ADAM are set to be 0.9
and 0.999, which are typically chosen in practice. The gradient sampling size is 1000 in MLP.

• Full GN: Gauss-Newton method [91] with full pre-conditioned matrix and full gradient.

• SubH GN: Sub-sampling Gauss-Newton method [91] with approximated pre-conditioned
matrix. The sampling size of pre-conditioned matrix is 5% out of the full dataset in NLS.

• LBFGS: Limited-memory BFGS method [145] with history size of 100.

• Full NTCG: Newton Method with Capped-CG solver [199] with full gradient and full Hes-
sian.

• SubH NTCG (this work): Newton Method with Capped-CG solver [199] with full gradient
and approximated Hessian. The sub-sampling size of Hessian is 1% in NLS and 1000 in
MLP.

• Inexact NTCG Full-Eval (this work): Newton Method with Capped-CG solver with
approximated gradient and approximated Hessian. The back-tracking line search uses the
full dataset to evaluate the objective function. The gradient sampling is adaptively changed
based on the following criterion: if ‖gt‖ ≥ 1.2‖gt−1‖ or ‖gt‖ ≤ ‖gt−1‖/1.2, we respectively
decrease or increase the sample size for gradient estimation by a factor of 1.2. Otherwise,
the sample size stays the same as in the previous iteration. The sub-sampling size of Hessian
is 1% in NLS and 1000 in MLP.

• Inexact NTCG Sub-Eval (this work): Newton Method with Capped-CG solver with
approximated gradient and approximated Hessian. The back-tracking line search uses the
same samplers as the gradient approximation to evaluate the function decreasing. The
gradient sampling is adaptively changed based on the following criterion: if ‖gt‖ ≥ 1.2‖gt−1‖
or ‖gt‖ ≤ ‖gt−1‖/1.2, we respectively decrease or increase the sample size for gradient
estimation by a factor of 1.2. Otherwise, the sample size stays the same as the previous
iteration. The sub-sampling size of Hessian is 1% in NLS and 1000 in MLP. Note that,
our work here does not provide theoretical guarantee for this variant of NTCG. However,
practically, we have found that this variant is highly effective. Intuitively, there is no need
for very accurate functional evaluation at the beginning of iterations. As training continues,
since the gradient sampling size increases, we will finally require very accurate functional
evaluation.

• Inexact NTCG Fixed (this work): Newton Method with Capped-CG solver with ap-
proximated gradient and approximated Hessian. The step size is chosen as a constant.
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Figure 3.1: Comparison between our Inexact NTCG (SubH NTCG, Inexact NTCG

Full-Eval, Inexact NTCG Sub-Eval, and Inexact NTCG Fixed) with Full NTCG on
ijcnn1 and covertype.

Particularly, the step size is 0.04 for dtype = NC and 0.2 for dtype = SOL in NLS. The gradi-
ent sampling is adaptively changed based on the following criterion: if ‖gt‖ ≥ 1.2‖gt−1‖ or
‖gt‖ ≤ ‖gt−1‖/1.2, we respectively decrease or increase the sample size for gradient estima-
tion by a factor of 1.2. Otherwise, the sample size stays the same as the previous iteration.
The sub-sampling size of Hessian is 1% in NLS.

Similar to [243, 252], the performance of all the algorithms is measured by tallying
the total number of propagations, i.e., the number of oracle calls of function, gradient and
Hessian-vector products, as this is a machine/implementation independent measure of algo-
rithm complexity.

3.3.1 Non-Linear Least Squares

We use the same setting as Section 2.3.2.
Inner Comparison. The comparison between different NTCG algorithms is shown

in Figure 3.1. We can observe that all variants of NTCG except Full NTCG converges to
similar training loss within the same amount of computation. Our Inexact NTCG family does
so with much fewer number of propagation calls as compared to SubH. Although Inexact

NTCG Fixed has faster per-iteration cost, as compared to other two Inexact NTCG, its actual
convergence speed is much slower than that of Inexact NTCG Sub-Eval. This is caused by
the per-step function decreasing of Inexact NTCG Sub-Eval being much better than that
of Inexact NTCG Fixed.

Outer Comparison. Figure 3.2 depicts the results of comparison between Inexact

NTCG Sub-Eval and other methods. As one can see, the performance of Inexact NTCG

Sub-Eval is comparable to Full GN, which is faster than SGD and LBFGS and slower than
SubH GN.
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Figure 3.2: Comparison between Inexact NTCG Sub-Eval with other methods (Full GN,
SubH GN, LBFGS, SGD) on ijcnn1 and covertype.

3.3.2 Multi-Layer Perceptron

We use the same setting as Section 2.3.1.
We use several fixed step size in range α = [0.0001, 0.001, 0.01, 0.1] for all first-order

methods, i.e., SGD, Adagrad, and ADAM. As is clearly observed here, the performance of
first-order methods strongly depends on the step-size. For example, in Figure 3.3 (g)-(i),
a finely-tuned ADAM can have superior performance. However, if the step-size is not chosen
appropriately, the performance of ADAM could be unpleasantly erratic. This leads to the need
for extremely expensive hyper-parameter sweeps, which methods such as those we present
can avoid.

3.4 Conclusion

In this paper, we have considered inexact variants of Netwon-CG algorithm in which, to
increase efficiency, the gradient and Hessian are all suitably approximated. For all of our
proposed variants, we showed that the iteration complexities needed to achieve approximate
second-order criticality are the same (up to some constant) as that of the exact variants.
Also, we proved that a fixed step-size—instead of needing to use a back-tracking line search
algorithm—exists to guarantee the convergent property. The advantages, and perhaps short-
comings, of our algorithms were also numerically demonstrated.
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Figure 3.3: The comparison between our methods, SubH NTCG and Inexact NTCG Sub-Eval,
with other first-order methods, SGD (first row), Adagrad (second row), and ADAM (thrid row)
on MLP with different hidden size, 16 (first column), 128 (second column), and 1024 (third
column).
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Chapter 4

AdaHessian: An Adaptive Second
Order Optimizer for Machine
Learning

4.1 Introduction

The high dimensional and non-convex nature of many machine learning tasks has rendered
many classical optimization methods inefficient for training and/or evaluating Neural Net-
work (NN) models. After decades of research, first-order methods, and in particular variants
of Stochastic Gradient Descent (SGD), have become the main workhorse for training NN
models. However, they are by no means an ideal solution for training NN models. There
are often a lot of ad-hoc rules that need to be followed very precisely to converge (hopefully)
to a point with good generalization properties. Even the choice of the first-order optimizer
has become an ad-hoc rule which can significantly affect the performance. For example,
SGD with momentum is typically used in Computer Vision (CV); Adam is used for train-
ing transformer models for Natural Language Processing (NLP); and Adagrad is used for
Recommendation Systems (RecSys). Using the wrong SGD variant can lead to significant
performance degradation. Another challenging ad-hoc rule is the choice of hyperparameters
and hyperparameter tuning methods, even after an optimizer is chosen. Hyperparameters
include learning rate, decay schedule, choice of momentum parameters, number of warmup
iterations, etc. As a result of these and other issues, one has to babysit the optimizer to
make sure that training converges to an acceptable training loss, without any guarantee that
a given number of iterations is enough to reach a local minima.

Importantly, one may not observe the above problems for certain popular learning tasks,
such as ResNet50 training on ImageNet. The reason is that, for these tasks, years of industrial
scale hyperparameter tuning has lead to what may be called ideal SGD behaviour. That is,
for this problem, hyperparameters have been brute-force engineered to compensate for the
deficiencies of first-order methods. Such a brute force approach is computationally and
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financially not possible for many large-scale learning problems—certainly it is not possible
to do routinely—and this has made it challenging to train and apply NN models reliably.

Many of these issues stem from the fact that first-order methods only use gradient infor-
mation and do not consider the curvature properties of the loss landscape, thereby leading
to their suboptimal behaviour. second-order methods, on the other hand, are specifically
designed to capture and exploit the curvature of the loss landscape and to incorporate both
gradient and Hessian information. They are among the most powerful optimization algo-
rithms, and they have many favorable properties such as resiliency to ill-conditioned loss
landscapes, invariance to parameter scaling, and robustness to hyperparameter tuning. The
main idea underlying second-order methods involves preconditioning the gradient vector be-
fore using it for weight update. This has a very intuitive motivation related to the curvature
of the loss landscape. For a general problem, different parameter dimensions exhibit different
curvature properties. For example, the loss could be very flat in one dimension and very
sharp in another. As a result, the step size taken by the optimizer should be different for
these dimensions, and we would prefer to take bigger steps for the flatter directions and
relatively smaller steps for the sharper directions. This can be illustrated with a simple
2D quadratic function as shown in Figure 4.1, where we show the trajectories of different
optimizers. As can be seen, first-order methods need a large number of steps for convergence
and/or are hard to converge at all without hyperparameter tuning. However, second-order
methods capture this curvature difference, by normalizing different dimensions through ro-
tation and scaling of the gradient vector before the weight update. Nonetheless, this comes
at a cost. Despite the theoretically faster convergence rate of second-order methods, they
are rarely used for training NN models. This is due in part to their high computational cost.

In this paper, however, we will show that it is possible to compute approximately an
exponential moving average of the Hessian and use it to precondition the gradient adap-
tively. The result is AdaHessian, an adaptive optimizer that exceeds the state-of-the-art
performance for a wide range of learning problems, including ResNets [104] for CV, trans-
formers [174] for NLP problems, and DLRM [166] models for RecSys tasks. In more detail,
the main contributions of our work are the following.

• To reduce the overhead of second-order methods, we approximate the Hessian as a diagonal
operator. This is achieved by applying Hutchinson’s method to approximate the diagonal
of the Hessian. Importantly, this approximation allows us to efficiently apply a root-mean-
square exponential moving average to smooth out “rugged” loss surfaces. The advantage of
this approach is that it has O(d) memory complexity.

• We incorporate a block diagonal averaging to reduce the variance of Hessian diagonal
elements. In particular, this has no additional computational overhead in the Hutchinson’s
method, but it favorably affects the performance of the optimizer.

• To reduce AdaHessian overhead, we measure the sensitivity of AdaHessian to different
hyperparameters such as learning rate, block diagonal averaging size, and delayed Hessian
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computation. Interestingly, our results show that AdaHessian is robust to those hyperpa-
rameters. See Section 4.5.1 and 4.5.2.

• We extensively test AdaHessian on a wide range of learning tasks. In all tests, AdaHessian
significantly outperforms other adaptive optimization methods. Importantly note that these
results are achieved even though we use the same learning rate schedule, weight decay,
warmup schedule, dropout, as well as first/second-order moment coefficients. In particular,
we consider the following tasks.

– Computer Vision: AdaHessian achieves significantly higher accuracy, as compared to
Adam. For instance, for ResNet32 on Cifar10, AdaHessian achieves 93.08% as opposed
to 91.63% achieved by Adam. Furthermore, for ResNet18 on ImageNet, AdaHessian
achieves 70.08% accuracy as opposed to 64.53% of Adam. For all tests, AdaHessian
achieves similar performance to the ideal SGD behavior, which is a result of hyperpa-
rameters having been tuned for many years at the industrial scale. Comparison with
other optimizers and other models is discussed in Section 4.4.2.

– Natural Language Processing: AdaHessian improves the performance of trans-
formers for machine translation and language modeling tasks, as compared to AdamW.
In particular, AdaHessian significantly outperforms AdamW by 0.13/0.33 BLEU on
IWSLT14/WMT14, and by 2.7/1.0 PPL on PTB/WikiText-103. Moreover, for Squeeze-
BERT [117] fine-tuning on GLUE, AdaHessian achieves 0.41 better points than AdamW.
See Section 4.4.3, 4.4.4, and 4.4.5 for more details.

– Recommendation System: AdaHessian improves the performance of DLRM on the
Criteo Ad Kaggle dataset by 0.032% as compared to Adagrad, which is commonly used.
See Section 4.4.6 for more details.

• We measure the sensitivity of AdaHessian to different hyperparameters such as learning
rate, spatial averaging size, and delayed Hessian computation. Interestingly, our results show
that AdaHessian is robust to those hyperparameters. See Section 4.5.1 and 4.5.2 for more
details.

We emphasize that our empirical results are achieved even though we use the same learning
rate schedule, weight decay, warmup schedule, dropout, batch size, and first/second-order
moment coefficients as the heavily-tuned default first-order baseline optimizers. Additional
gains could be achieved if one wanted to extensively optimize these hyperparameters.

4.2 Problem Formulation and Related work

We focus on supervised learning tasks where the goal is to solve a non-convex stochastic
optimization problem of the form:

min
θ
L(θ) =

1

N

N∑
i=1

li(xi, yi; θ), (4.1)
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Figure 4.1: The trajectory of gradient descent and AdaHessian on a simple 2D quadratic function f(x, y) =
10x2 + y2. Gradient descent converges very slowly, even though this problem has a reasonable condition
number. However, AdaHessian converges to the optimum in just one step. This is because second-order
methods normalize the curvature difference between x and y axis by preconditioning the gradient vector
before the weight update (by rescaling and rotating the gradient vector).

where θ ∈ Rd denotes the model parameters, li(xi, yi; θ) is the loss function, (xi, yi) is the
paired input data and its corresponding ground truth label, and N is the total number of
data points in the training dataset. Furthermore, we denote the gradient of the loss w.r.t.
model parameters as g = 1

NB

∑NB

i=1
∂li
∂θ

, and the corresponding second derivative (i.e., Hessian)

as H = 1
NB

∑NB

i=1
∂2li
∂θ2

, where NB is the size of one mini-batch.
Solving (4.1) for a real learning problem (and not a simple model) is a very challenging

task. Despite years of research, we have not yet been able to resolve several seemingly ad-
hoc tricks that are required to converge (hopefully) to a good solution. Next, we briefly
discuss the different popular optimization methods proposed in recent years to address the
challenges associated with solving (4.1). This is by no means a comprehensive review, and
we refer the interested reader to [26] for a thorough review.

4.2.1 Adaptive first-order Methods

Due to their simplicity and effectiveness, first-order optimization methods [195, 168, 73, 260,
125, 146] have become the de-facto algorithms used in deep learning. There are multiple
variations, but these methods can be represented using the following general update formula:

θt+1 = θt − ηtmt/vt, (4.2)

where ηt is the learning rate, and mt, and vt denote the so called first and second moment
terms, respectively. A simple and popular update method is SGD, originally proposed in
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1951 as a root-solving algorithm [195]:

mt = βmt−1 + (1− β)gt and vt ≡ 1. (4.3)

Here, gt is the gradient of a mini-batch at t-th iteration and β is the momentum hyperpa-
rameter.

Using SGD to solve (4.1) is often very challenging, as the convergence of the iterative
formulae in (4.2) is very sensitive to the right choice of the learning rate, its decay schedule,
and the momentum parameter. To address this, several methods have been proposed to
take into account the knowledge of the geometry of the data by scaling gradient coordinates,
using the past gradient information. This can be viewed in one of two equivalent ways: either
as automatically adjusting the learning rate in (4.2); or as an adaptive preconditioning of
the gradient. One notable method is Adagrad [73, 156], which accumulates all the gradients
from the first iteration and applies the square root of the result to precondition the current
gradient. The update formulae in this case become1:

mt = gt and vt =

√√√√ t∑
i=1

gigi. (4.4)

While Adagrad works well for sparse settings, its performance significantly degrades
for dense settings, which is the case for many machine learning tasks. In particular, this
stems from the accumulation of all previous gradients for the preconditioner (4.4). This
results in a monotonic increase in the magnitude of the second moment, vt, which effectively
translates into a rapid decay of the learning rate. To address this, several methods have
been proposed where the intuition is to limit the accumulation to a small window of past
iterations, and in particular exponentially reduce the weight of earlier iterations. Notable
works incorporating this method are RMSProp, ADADelta, and Adam [227, 260, 125]. In
particular, for Adam [125], the two moments for the update rule are the following:

mt =
(1− β1)

∑t
i=1 β

t−i
1 gi

1− βt1
and vt =

√
(1− β2)

∑t
i=1 β

t−i
2 gigi

1− βt2
, (4.5)

where 0 < β1, β2 < 1 are two hyperparameters sometimes referred to as first and second
moment coefficients. In particular, note that the sum over past gradients is scaled by β2

which exponentially reduces the contribution of early gradients. A summary of the different
mt and vt used by common first-order optimizers is given in Table 4.1. A notable variant
here is AdamW [146], which shows that decoupling weight decay from the update equation of
Adam can lead to a noticeable performance improvement. Recently, AdamW has become the
preferred optimizer for NLP tasks, and in particular for training transformers [232]. There
are also many other variants of adaptive first-order methods [47, 265, 147, 213, 218].

1Throughout the chapter, without further notification, for two vectors, e.g., a and b, we use both ab and
a� b to denote the element-wise product, and 〈a, b〉 denotes the inner product.
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Table 4.1: Summary of the first and second moments used in different optimization algorithms for updating
model parameters (θt+1 = θt − ηmt/vt). Here β1 and β2 are first and second moment hyperparameters.

Optimizer mt vt

SGD [195] β1mt−1 + (1− β1)gt 1

Adagrad [73] gt

√∑t
i=1 gigi

Adam [125]
(1−β1)

∑t
i=1 β

t−i
1 gi

1−βt
1

√
(1−β2)

∑t
i=1 β

t−i
2 gigi

1−βt
2

RMSProp [227] gt
√
β2v2

t−1 + (1− β2)gtgt

AdaHessian
(1−β1)

∑t
i=1 β

t−i
1 gi

1−βt
1

√
(1−β2)

∑t
i=1 β

t−i
2 D

(s)
i D

(s)
i

1−βt
2

Despite all these attempts, it is still not clear which optimizer should work for a new
learning task/model. This is in fact one of the main baffling practical issues in machine
learning, and one for which theory has little to say. For example, SGD is currently the best
performing optimizer for some CV tasks. That is, using other variants such as AdamW leads
to significantly worse generalization performance. However, for NLP tasks, AdamW has the
best performance by a large margin as compared to SGD. The point here is that even the
choice of the optimizer has effectively become a hyperparameter.

4.2.2 second-order Methods

second-order methods are among the most powerful optimization methods that have been
designed, and there have been several attempts to use their many advantages for training
NNs. second-order methods are designed to address ill-conditioned optimization problems
by automatically rotating and rescaling the gradient. This allows one to choose a better
descent direction, and to adjust automatically the learning rate for each parameter. There
have also been multiple theoretical studies showing better convergence rate of second-order
based methods [24, 252, 197, 247, 245, 244, 57, 2, 238, 3, 38, 48]. In particular, second-order
methods can guarantee convergence to second-order critical points, while the vast majority
of first-order methods lack such guarantees. For example, theoretically it has been shown
that some first-order methods can only converge to an approximate second-order critical
point [81, 123, 139, 192].

Newton’s method is a classical second-order method where one solves a linear system,
essentially meaning that the inverse of the local Hessian is used at every iteration to pre-
condition the gradient vector.2 One major challenge with this approach is that it can be

2To be clear, when we refer to computing an inverse, we mean that we use a numerical method that
performs a linear equation solve that effectively amounts to working with the inverse implicitly. Of course,
one would never actually compute the Hessian inverse explicitly.
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Figure 4.2: A simple model with N layers (first column); with the convolutional blocks of the N-1 layer
shown (second column); and the loss landscape of each block (third column), which can be calculated by
perturbing the convolutions’s parameters in two different eigendirections. (See [254] for details of how to
construct loss landscape.) Note the different loss landscape topologies. first-order methods do not explicitly
capture this difference. The entries (3D tensors) colored in orange show the components used for calculating
the spatial average of Hessian. The part of the gradient (fourth panel) highlighted in the orange box is the
corresponding gradient of the orange convolution kernel; and the part of the Hessian diagonal (fifth panel)
highlighted in the orange box is used to compute the spatial average.

expensive to solve the linear system, näıvely requiring cubic computational complexity, not
including the cost of forming the Hessian itself and the corresponding quadratic memory
complexity. However, the overhead of such a näıve implementation can be improved by
using so-called matrix free methods, where the Hessian matrix is never explicitly formed
(addressing quadratic memory cost), and its inverse is approximately and only implicitly
applied (addressing the cubic computational complexity).

One seminal work here is the limited memory BFGS (LBFGS) [31] method which has
a desirable linear computational and memory complexity. This approach approximates the
Hessian as a series sum of first-order information from prior iterations. As such, these ap-
proaches that do not directly use the Hessian operator are referred to as Quasi-Newton
methods. While this approach works well for many optimization problems, it does not
work well for many machine learning problems. One reason for this is that LBFGS method
requires full batch gradients, as stochastic gradients can lead to drastic errors in the ap-
proximation [25]. This is one of the main challenges with Quasi-Newton methods applied to
machine learning problems [4]. Other approaches such as approximating the Hessian as the
Kronecker product of vectors have also been explored [154].

There has also been work on enhancing first-order methods by incorporating the Fisher
information matrix [98]. The main idea is to use the Fisher information instead of the
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Figure 4.3: Local versus global curvature. Illustration of the local curvature which can be noisy, and
the global curvature with a simple 1D problem f(x) = x2 + 0.1x sin(20πx). Using the exponential moving
average of (4.12) is key to avoid the misleading local curvature information. To demonstrate this we test
AdaHessian without moving average (orange trajectory) which does not converge even after 1000 iterations.
On the other hand, AdaHessian converges in 7 iterations with the moving average enabled.

squared norm of the gradient. A näıve use of Fisher information has computational and
memory overhead, but it is possible to also approximate the Fisher information matrix using
low rank decomposition [98].

Another line of work has been to incorporate automatically the Hessian operator itself,
instead of approximating it using first-order information. A work here is [208] which uses
Gauss-Newton Hessian diagonal to adjust adaptively the learning rate. The work of [244]
also directly incorporates the Hessian using a trust region method.

While the above approaches are very interesting and result in a good performance for
simple models, they do not achieve comparable results for more complex NN architectures.
One of the reasons that second-order methods have not been successful yet for machine
learning, as opposed to other domains such as scientific computing, is due to the stochastic
nature of the problem. Such stochastic noise leads to an erroneous approximation of the
Hessian, leading to suboptimal descent directions. SGD is more robust to such noise since
we can efficiently incorporate moving averages and momentum. Ideally, if there was a way
to apply the same moving average method to the Hessian, then that would help smooth out
local curvature noise to get a better approximation to the non-noisy curvature of the loss
landscape. However, such an approximation is challenging since the Hessian is a matrix that
cannot be explicitly formed to be averaged, whereas it is easy to form the gradient vector.

As we show below, AdaHessian addresses this problem by incorporating the Hutchinson’s
method along with spatial averaging to reduce the impact of the stochastic noise. The result
exceeds the performance of all the above methods for machine learning tasks. Next, we
formally introduce the AdaHessian algorithm.
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4.3 Methodological Approach

Here, we first provide the formulation for the full Newton method in Section 4.3.1. Then,
we describe the three components of AdaHessian, namely Hessian diagonal approximation
(Section 4.3.2), spatial averaging (Section 4.3.3), and Hessian momentum (Section 4.3.4).
Finally, we discuss the overall formulation of AdaHessian in Section 4.3.5.

4.3.1 A General Hessian Based Descent Direction

For the loss function f(w) : Rd → R, let us denote the corresponding gradient and Hessian
of f(wt) at iteration t as gt, and Ht, respectively.3 A general descent direction can then be
written as follows for a positive-definite Hessian:

∆wt = H−kt gt, where H−kt = UTt Λ−kt Ut. (4.6)

Here, we refer to 0 ≤ k ≤ 1 as Hessian power, and UT
t ΛtUt is the eigendecomposition of Ht.

Note that for k = 0, we recover the gradient descent method; and for k = 1, we recover the
Newton method. In our empirical tests we consider non-convex machine learning problems,
but we provide a standard convergence behaviour of (4.6) in Appendix C.1 for a simple
strongly convex and strictly smooth function f(w). (We emphasize that the proof is very
standard and we are only including it for completeness.)

The basic idea of Hessian based methods is to precondition the gradient with the H−k

and use H−kg for the update direction, instead of using the bare gradient g vector. The
preconditioner automatically rotates and rescales the gradient vector. This is important
since the loss landscape curvature is generally different across different directions/layers and
since these directions need not correspond to the canonical axes. This is illustrated in Fig-
ure 4.2, where we show a 2D schematic plot of the loss landscape for different convolution
channels [254]. Each channel can have a different loss landscape topology. For example, the
last channel has a much flatter loss landscape, as compared to other layers. As a result, it is
preferable to take a larger step size for the last channel than for the first channel, which has
a very “sharp” loss landscape. Problems that exhibit this behaviour are ill-conditioned. The
role of the Hessian is to automatically normalize this ill-conditionedness by stretching and
contracting different directions to accommodate for the curvature differences (full Newton
method also rotates the gradient vector along with adjusting the step size).

However, there are two major problems with this approach. The first problem is that
a näıve use of the Hessian preconditioner comes at the prohibitively high cost of applying
Hessian inverse to the gradient vector at every iteration (H−kg term). The second and more
challenging problem is that local Hessian (curvature) information can be very misleading
for a noisy loss landscape. A simple example is illustrated in Figure 4.3, where we plot
a simple parabola with a small sinusoidal noise as the loss landscape (shown in green).

3Without confusion, we use the same gradient and Hessian notations for f(w) and L(θ). Furthermore,
when there is no confusion we will drop subscript t.
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As one can see, the local Hessian (curvature) information is completely misleading, as it
computes the curvature of the sinusoidal noise instead of global Hessian information for the
parabola. Applying such misleading information as the preconditioner would actually result
in very small steps to converge to one of the many local minima created by the sinusoidal
noise. The same problem exists for the gradient as well, but that can be alleviated by using
gradient momentum instead of local gradient information. However, as mentioned before
it is computationally infeasible to compute (näıvely) a Hessian momentum. The reason is
that we cannot form the Hessian matrix and average it throughout different iterations, as
such an approach has quadratic memory complexity in the number of parameters along with
a prohibitive computational cost. However, one could use Randomized Numerical Linear
Algebra to get a sketch of the Hessian matrix [251, 254, 99]. In particular, we show how
this can be done to approximate the Hessian diagonal. However, as we discuss next, both
problems can be resolved by using Hessian diagonal instead of the full Hessian.

4.3.2 Hessian Diagonal Approximation

To address the issue that applying the inverse Hessian to the gradient vector at every it-
eration is computationally infeasible, one could use an inexact Newton method, where an
approximate Hessian operator is used instead of the full Hessian [64, 246, 245, 252, 24].
The most simple and computationally efficient approach is to approximate the Hessian as a
diagonal operator in (4.6):

∆w = diag(H)−kg, (4.7)

where diag(H) is the Hessian diagonal, which we denote as D.4 We show that using (4.7)
has the same convergence rate as using (4.6) for simple strongly convex and strictly smooth
function f(w) (see Appendix C.2). Note that we only include the proof for completeness,
and our algorithm AdaHessian can be applied for general machine learning problems.

The Hessian diagonalD can be efficiently computed using the Hutchinson’s method. The
two techniques we use for this approximation are: (i) a Hessian-free method [251]; and (ii) a
randomized numerical linear algebra (RandNLA) method [17, Figure 1]. In particular, the
Hessian-free method is an oracle to compute the multiplication between the Hessian matrix
H with a random vector z, i.e.,

∂gT z

∂θ
=
∂gT

∂θ
z + gT

∂z

∂θ
=
∂gT

∂θ
z = Hz. (4.8)

Here, the first equality is the chain rule, and the second equality is since z is independent
of θ. (4.8) effectively allows us to compute the Hessian times a vector z, without having
to form explicitly the Hessian, by backpropotating the gT z term. This has the same cost
as ordinary gradient backpropogation [251]. Then, with the Hessian matvec oracle, one can
compute the Hessian diagonal using Hutchinson’s method:

D = diag(H) = E[z � (Hz)], (4.9)

4Note that D can be viewed as a vector, in which case D−kg is an element-wise product of vectors.
Without clarification, D is treated as a vector for the rest of the paper.
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Figure 4.4: Illustration of the diagonal Hessian estimation with Hutchinson’s method.

where z is a random vector with Rademacher distribution, and Hz is computed by the
Hessian matvec oracle given in (4.8). This process is illustrated in Figure 4.4. It can be
proved that the expectation of z � (Hz) is the Hessian diagonal [17].

Figure 4.5: Illustration of the block size used to average the Hessian diagonal to smooth spatial variations.
For a convolution layer, we average each channel (groups of 9 parameters); and for multi-head attention, we
average consecutive elements along the rows (attention dimension). We found that using block averaging
helps, although AdaHessian is not very sensitive to this hyperparameter as illustrated in Table 4.7.

Another important advantage, besides computational efficiency, of using the Hessian di-
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agonal is that we can compute its moving average to resolve the local noisy Hessian as
mentioned at the end of Section 4.3.1. This allows us to smooth out noisy local curvature
information, and to obtain estimates that use global Hessian information instead. We in-
corporate both spatial averaging and momentum (temporal averaging) to smooth out this
noisy Hessian estimate as described next.

4.3.3 Spatial Averaging

The Hessian diagonal can vary significantly for each single parameter dimension of the prob-
lem. We found it helpful to perform spatial averaging of Hessian diagonal and use the average
to smooth out spatial variations. For example, for a convolutional layer, each convolution
parameter can have a very different Hessian diagonal. In AdaHessian we compute the aver-
age of the Hessian diagonal for each convolution kernel (3 × 3) as illustrated in Figure 4.5.
Mathematically, we perform a simple spatial averaging on the Hessian diagonal as follows:

D(s)[ib+ j] =

∑b
k=1D[ib+ k]

b
for 1 ≤ j ≤ b, 0 ≤ i ≤ d

b
− 1, (4.10)

where D ∈ Rd is the Hessian diagonal, D(s) ∈ Rd is the spatially averaged Hessian diagonal,
D[i] (D(s)[i]) refers to the i-th element of D (D(s)), b is the spatial average block size, and
d is the number of model parameters divisible by b. We show that replacing D in (4.7) by
D(s) in (4.10), the update direction has the same convergence rate as using (4.6) for simple
strongly convex and strictly smooth function f(w) (see Appendix C.3). Note that we only
include the proof for completeness, and our algorithm AdaHessian can be applied for general
machine learning problems.

Figure 4.5 provides illustration of spatial averaging for both convolutional and matrix
kernels. In general, the block size b is a hyperparameter that can be tuned for different
tasks. While this is a new hyperparameter that can help the performance, the performance
of AdaHessian is not very sensitive to it (we provide sensitivity results in Section 4.5.1).

Next we describe momentum which is another useful method to smooth out Hessian noise
over different iterations.

4.3.4 Hessian Momentum

We can easily apply momentum to Hessian diagonal since it is a vector instead of a quadrati-
cally large matrix. This enables us to adopt momentum for Hessian diagonal in AdaHessian.
More specifically, let D̄t denote the Hessian diagonal with momentum that is calculated as:

D̄t =

√
(1− β2)

∑t
i=1 β

t−i
2 D

(s)
i D

(s)
i

1− βt2
, (4.11)

where D(s) is the spatially averaged Hessian diagonal (defined in (4.10)), and 0 < β2 < 1 is
the second moment hyperparameter. Note that this is exactly the same as the momentum
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Algorithm 5 AdaHessian
1: Input:

- Initial Parameter: θ0

- Learning rate: η
- Exponential decay rates: β1, β2

- Block size: b
- Hessian Power: k

2: Set: m0 = 0, v0 = 0
3: for t = 1, 2, . . . do
4: gt ← current step gradient
5: Dt ← current step estimated diagonal Hessian
6: Compute D

(s)
t based on (4.10)

7: Update D̄t based on (4.11)
8: Update mt, vt based on (4.12)
9: θt = θt−1 − ηmt/vt

10: end for

term in Adam [125] or RMSProp [227] except that we are using the spatial averaging Hessian
diagonal instead of the gradient.

To illustrate the importance of Hessian momentum, we provide a simple example in 1D
by considering f(x) = x2+0.1xsin(20πx), as shown in Figure 4.3. It can be clearly seen that
the method without the second-order momentum gets trapped at a local minima even with
more than 1000 iterations (orange trajectory). On the contrary, the optimization converges
within 7 iterations with Hessian momentum (blue trajectory). (While this example is over-
simplified in certain ways, we are using it here only to convey the importance of momentum.)

4.3.5 AdaHessian

To summarize, instead of only applying momentum for gradient, AdaHessian uses spatial
averaging and Hessian momentum to smooth out local variations in Hessian diagonal. More
specifically, the first and second-order moments (mt and vt) for AdaHessian are computed
as follows:

mt =
(1− β1)

∑t
i=1 β

t−i
1 gi

1− βt1
,

vt = (D̄t)
k =

√(1− β2)
∑t

i=1 β
t−i
2 D

(s)
i D

(s)
i

1− βt2

k

,

(4.12)

where 0 < β1, β2 < 1 are the first and second moment hyperparameters that are also used in
Adam. Note that Adam uses the same formulation except that the spatial averaging Hessian
diagonal D

(s)
i is replaced with gradient.
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Table 4.2: Results of ResNet20/32 on Cifar10 (left two columns) and ResNet18 on ImageNet (last col-
umn). On Cifar10: Adam performs consistently worse than SGD; AdamW has slightly worse performance
than SGD; and AdaHessian outperforms AdamW and even gets accuracy comparable to SGD. On Ima-
geNet: AdaHessian has significantly better accuracy than Adam (5.53%), AdamW (2.67%), and has similar
performance to SGD.

Dataset
Cifar10 ImageNet

ResNet20 ResNet32 ResNet18

SGD [201] 92.08 ± 0.08 93.14 ± 0.10 70.03
Adam [125] 90.33 ± 0.13 91.63 ± 0.10 64.53
AdamW [146] 91.97 ± 0.15 92.72 ± 0.20 67.41

AdaHessian 92.13 ± 0.18 93.08 ± 0.10 70.08

The main overhead of AdaHessian is the Hutchinson’s method to approximate Hessian
diagonal, D. We use one Hutchinson step per iteration to approximate the Hessian diagonal
(i.e., one random Rademacher vector z in (4.9)). The cost of this estimation is one Hessian
matvec (to compute Hz), which is equivalent to one gradient backpropagation [251, 254].

Also note that it is possible to get a more accurate approximation to Hessian diagonal by
using more Hutchinson steps per iteration. However, we found that one step per iteration
performs well in practice since the multiple calculations could be performed as Hessian
momentum (Section 4.3.4). In fact, as we discuss in Section 4.5.2, it is possible to skip
the Hutchinson calculation for few iterations to reduce further its computational overhead,
without significant impact on final accuracy.

4.4 Results

4.4.1 Experiment Setup

One of the problems with several formerly proposed optimization methods is that the meth-
ods were originally tested with very simple models on very few tasks. When those methods
were later tested by the community on more complex models the results were often worse than
popular optimization methods. To avoid such a scenario, we extensively test AdaHessian
on a wide range of learning tasks, including image classification, neural machine transla-
tion (NMT), language modeling (LM), and recommendation system (RecSys). We compare
the AdaHessian performance with SGD, Adam, AdamW [146], and Adagrad. Moreover,
to enable a fair comparison we will use the same β1 and β2 parameters in AdaHessian as
in Adam/AdamW for each task, even though those default values may favor Adam (or
AdamW) and disfavor AdaHessian. Furthermore, we will use the exact same weight decay
and learning rate schedule in AdaHessian as that used by other optimizers. Below we briefly
explain each of the learning tasks tested.
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Table 4.3: NMT performance (BLEU) on IWSLT14 De-En and WMT14 En-De testsets (higher is better).
Unlike in Table 4.2, SGD has significantly worse results than AdamW. Note that AdaHessian outperforms
the default and heavily tuned optimizer AdamW by 0.13 and 0.33 on IWSLT14 and WMT14, which is
significant for this task.

Model
IWSLT14 WMT14

small base

SGD 28.57 ± .15 26.04
AdamW [146] 35.66 ± .11 28.19

AdaHessian 35.79 ± .06 28.52

Image Classification We experiment on both Cifar10 (using ResNet20/32) and Ima-
geNet (using ResNet18) datasets. Cifar10 consists of 50k training images and 10k testing
images. ImageNet has 1.2M training images and 50k validation images. We follow the set-
tings described in [104] for training. We run each experiment 5 times on Cifar10 and report
the mean and standard deviation of the results.

Neural Machine Translation (NMT) We use IWSLT14 German-to-English (De-En)
and WMT14 English-to-German (En-De) datasets. Transformer base architecture is used for
WMT14 (4.5M sentence pairs), and small architecture is used for IWSLT14 (0.16M sentence
pairs). We follow the settings reported in [174] and use pre-normalization described in [236].
The length penalty is set to 0.6/1.0 and the beam size is set to 4/5 for WMT/IWSLT [173].
We report the average results of the last 10/5 checkpoints respectively. For NMT, BLEU
score is used [176]. In particular, we report tokenized case-sensitive BLEU on WMT14 En-
De and case-insensitive BLEU IWSLT14 De-En. Furthermore, we use AdamW for this task
instead of Adam since the former is the standard optimizer (Adam consistently scores lower).

Language Modeling We use PTB [159] and Wikitext-103 [157] datasets, which contain
0.93M and 100M tokens, respectively. Following [149], a three-layer tensorized transformer
core-1 for PTB and a six-layer tensorized transformer core-1 for Wikitext-103 are used in
the experiments. We apply the multi-linear attention mechanism with masking and report
the perplexity (PPL) on the test set with the best validation model.

Natural Language Understanding We use the GLUE task [234] to evaluate the fine-
tuning performance of SqueezeBERT [116]. More specifically, we use 8 different tasks in
GLUE and report and final average performance on the validation dataset.

Recommendation System The Criteo Ad Kaggle dataset contains approximately 45
million samples over 7 days. We follow the standard setting and use the first 6 days as
the training set and the last day as the test set. Furthermore, we use DLRM, a novel
recommendation model that has been recently released by Facebook [166]. The testing
metric for Recommendation Systems is Click Through Rate (CTR), measured on training
and test sets.

We refer the interested reader to Appendix C.4 for more detailed experimental settings.
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Table 4.4: LM performance (PPL) on PTB and Wikitext-103 test datasets (lower is better). The PPL of
AdaHessian is 2.7 and 1.0 lower than that of AdamW.

Model
PTB Wikitext-103

Three-Layer Six-Layer

SGD 59.9 ± 3.0 78.5
AdamW [146] 54.2 ± 1.6 20.9

AdaHessian 51.5 ± 1.2 19.9

Next we report the experimental results on each of these tasks.

4.4.2 Image Classification

The results on Cifar10 are shown in Table 4.2. First, note the significantly worse performance
of Adam, as compared to SGD even on this simple image classification dataset. Particu-
larly, Adam has 1.75%/1.51% lower accuracy for ResNet20/32 than SGD. AdamW achieves
better results than Adam, but its performance is still slightly worse than SGD. However,
AdaHessian achieves significantly better results as compared to Adam (1.80%/1.45% for
ResNet20/32), even though we use the same β1 and β2 parameters in AdaHessian as in
Adam. That is, we did not tune these two hyperparameters, even though tuning them could
potentially lead to even better performance.5 Compared with SGD, AdaHessian achieves
comparable accuracy for both ResNet20 (0.05% higher) and ResNet32 (0.06% lower). The
training and testing curves of different optimizers for ResNet20/32 on Cifar10 are shown
in Figure C.1.

Next, we use the best learning rate obtained by training ResNet20/32 on Cifar10 to
optimize ResNet18 on ImageNet for all four optimizers. We try two different learning rate
schedules for all four optimizers, and we use the one with the better result. The two learning
rate schedules are quite standard, i.e., the step decay schedule and the plateau based sched-
ule [179]. The final result is reported in Table 4.2. Again note that the final performances of
Adam and AdamW are much worse than that of SGD and AdaHessian. We plot the training
and testing curve in Figure C.2.

It is worthwhile to note that our learning rate tuning is performed at an academic scale,
but AdaHessian still significantly exceeds other adaptive methods and reaches the same
performance level as SGD which has been tuned at the industrial scale.

5In fact, in Table 4.8 we achieve 92.40 for ResNet20 which is higher than what we report in Table 4.2.
This is to emphasize that we only tuned learning rate in Table 4.2. Still AdaHessian achieves significantly
better results than Adam.
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Table 4.5: Comparison of AdamW and AdaHessian for SqueezeBERT on the development set of the GLUE
benchmark. As can be seen, the average performance of AdaHessian is 0.41 higher as compared to AdamW.
The result of AdamW+ is directly from [116] and the result of AdamW∗ is reproduced by us.

RTE MPRC STS-B SST-2 QNLI QQP MNLI-m MNLI-mm Avg.

AdamW+ [116] 71.8 89.8 89.4 92.0 90.5 89.4 82.9 82.3 86.01

AdamW∗ 79.06 90.69 90.00 91.28 90.30 89.49 82.61 81.84 86.91
AdaHessian 80.14 91.94 90.59 91.17 89.97 89.33 82.78 82.62 87.32

4.4.3 Neural Machine Translation

We use BLEU [176] as the evaluation metric for NMT. Following standard practice, we
measure tokenized case-sensitive BLEU and case-insensitive BLEU for WMT14 En-De and
IWSLT14 De-En, respectively. For a fair comparison, we do not include other external
datasets.

The NMT results are shown in Table 4.3. The first interesting observation is that here
SGD performs much worse than AdamW (which is opposite to its behaviour for image classi-
fication problems where SGD has superior performance; see Appendix 4.4.2). As pointed out
in the introduction, even the choice of the optimizer has become another hyperparameter.
In particular, note that the BLEU scores of SGD are 7.09 and 2.15 lower than AdamW on
IWSLT14 and WMT14, which is quite significant. Similar observations about SGD were
also reported in [263].

Despite this, AdaHessian achieves state-of-the-art performance for NMT with transform-
ers. In particular, AdaHessian outperforms AdamW by 0.13 BLEU score on IWSLT14. Fur-
thermore, the accuracy of AdaHessian on WMT14 is 28.52, which is 0.33 higher than that of
AdamW. We also plot the training losses of AdamW and AdaHessian on IWSLT14/WMT14
in Figure C.3. As one can see, AdaHessian consistently achieves lower training loss. These
improvements are quite significant for NMT, and importantly these are achieved even though
AdaHessian directly uses the same β1 and β2, as well as the same number of warmup itera-
tions as in AdamW.

4.4.4 Language Modeling

We report the language modeling results in Table 4.4, using the tensorized transformer
proposed in [149]. Similar to NMT, note that the perplexity (PPL) of SGD is more than
57 points worse than AdamW on Wikitext-103. That is, similar to the NMT task, SGD
performs worse than AdamW. However, AdaHessian achieves more than 1.8/1.0 better PPL
than that of AdamW on PTB/Wikitext-103, respectively.

We also show the detailed training loss curves in Figure C.4. AdaHessian achieves con-
sistently lower loss values than AdamW throughout the training process on both PTB and
Wikitext-103. Similar to NMT, the β1/β2 as well as the warmup phase of AdaHessian are
kept the same as AdamW.
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4.4.5 Natural Language Understanding

We report the NLU results in Table 4.5, using the SqueezeBERT model [117] tested on
GLUE datasets [234]. As can be seen, AdaHessian has better performance than AdamW
on 5 out of 8 tasks. Particularly, on RTE and MPRC, AdaHessian achieves more than 1
point as compared to AdamW. On average, AdaHessian outperforms AdamW by 0.41 points.
Note that similar to NMT and LM, except learning rate and block size, AdaHessian directly
uses the same hyperparameters as AdamW. Interestingly, note that these results are better
than those reported in SqueezeBERT [116], even though we only change the optimizer to
AdaHessian instead of AdamW.
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Figure 4.6: Training and Testing Accuracy curves of Adagrad and AdaHessian on Criteo Ad Kaggle
dataset. As can be seen, the test accuracy of AdaHessian is better (0.032%) than that of Adagrad. This is
quite significant for this task.

4.4.6 Recommendation System

We solely focus on modern recommendation systems, and in particular on the DLRM model
widely adopted in industry [166]. These systems include a large embedding layer followed by
a series of dense FC layers. In training, a sparse set of rows of the embedding layer is used and
only those rows are updated. These rows do change from one iteration to the next. For such
a sparse setting, we use Adagrad to update the embedding table, and we use AdaHessian to
update the rest of the FC network in the experiments. (Pytorch currently does not support
second-order backpropagation for the sparse gradient to the embedding.) AdaHessian uses
the same hyperparameters for updating the embedding table as in the Adagrad experiment
without tuning. The training and testing accuracy curves are reported in Figure 4.6. The
testing accuracy of AdaHessian is 79.167%, which is 0.032% higher than Adagrad. It should
be noted that this is a quite significant accuracy increase for Recommendation Systems [237].
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Table 4.6: Robustness of AdamW and AdaHessian to the learning rate on IWSLT14. We scale the base
learning rate used in Section 4.4.3. As can be seen, AdaHessian is much more robust to large learning rate
variability as compared to AdamW.

LR Scaling 0.5 1 2 3 4 5 6 10

AdamW 35.42 ± .09 35.66 ± .11 35.37 ± .07 35.18 ± .07 34.79 ± .15 14.41 ± 13.25 0.41 ± .32 Diverge
AdaHessian 35.33 ± .10 35.79 ± .06 35.21 ± .14 34.74 ± .10 34.19 ± .06 33.78 ± .14 32.70 ± .10 32.48 ± .83

Table 4.7: Block Size effect of AdaHessian on IWSLT14. With various block sizes, the performance of
AdaHessian is very stable and no worse than that of AdamW (35.66 ± .11).

Block Size 1 2 4 8 16 32 64 128

AdaHessian 35.67 ± .10 35.66 ± .07 35.78 ± .07 35.77 ± .08 35.67 ± .08 35.79 ± .06 35.72 ± .06 35.67 ± .11

4.5 Discussion

As reported in the previous section, AdaHessian achieves state-of-the-art performance on a
wide range of tasks. Two important issues are the sensitivity of AdaHessian to the hyper-
parameters of learning rate and block size. This is discussed next.

4.5.1 Learning Rate and Block Size Effects

Here, we explore the effects of the learning rate and block size b on AdaHessian. We first
start with the effect of learning rate, and test the performance of AdaHessian and AdamW
with different learning rates. The results are reported in Table 4.6 for IWSLT14 dataset,
where we scale the original learning rate with a constant factor, ranging from 0.5 to 20 (the
original learning rate is the same as in Section 4.4.3). It can be seen that AdaHessian is
more robust to the large learning rates. Even with 10× learning rate scaling, AdaHessian
still achieves 32.48 BLEU score, while AdamW diverges even with 6× learning rate scaling.
This is a very desirable property of AdaHessian, as it results in reasonable performance for
such a wide range of learning rates.

We also test the effect of the spatial averaging block size (parameter b in (4.10)). As a
reminder, this parameter is used for spatially averaging the Hessian diagonal as illustrated
in Figure 4.5. The sensitivity results are shown in Table 4.7 where we vary the block size from
1 to 128. While the best performance is achieved for the block size of 32, the performance
variation for other block sizes is rather small. Moreover, all the results are still no worse
than the result with AdamW.

4.5.2 AdaHessian Overhead

Here, we discuss and measure the overhead of AdaHessian. In terms of computational com-
plexity, AdaHessian requires twice the flops as compared to SGD. This 2× overhead comes
from the cost of computing the Hessian diagonal, when one Hutchinson step is performed per
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Table 4.8: Comparison between AdaHessian theoretical and measured speed, as compared to Adam and
SGD, tested on Cifar10. We also measured the speed up for different Hessian computation frequencies. As
one can see, AdaHessian is not orders of magnitude slower than SGD, despite the widely-held incorrect
belief about the efficiency of Hessian based methods. Furthermore, by increasing the Hessian computation
frequency, the run time can improve from 3.23× to 1.45×, as compared to SGD for ResNet32. The real
measurement is performed on one RTX Titan GPU.

Hessian Computation Frequency 1 2 3 4 5

Theoretical Per-iteration Cost (×SGD) 2× 1.5× 1.33× 1.25× 1.2×
ResNet20 (Cifar10) 92.13 ± .08 92.40 ± .04 92.06 ± .18 92.17 ± .21 92.16 ± .12
Measured Per-iteration Cost (×SGD) 2.42× 1.71× 1.47× 1.36× 1.28×
Measured Per-iteration Cost (×Adam) 2.27× 1.64× 1.42× 1.32× 1.25×
ResNet32 (Cifar10) 93.08 ± .10 92.91 ± .14 92.95 ± .17 92.93 ± .24 93.00 ± .10
Measured Per-iteration Cost (×SGD) 3.23× 2.12× 1.74× 1.56× 1.45×
Measured Per-iteration Cost (×Adam) 2.91× 1.96× 1.64× 1.48× 1.38×

optimization iteration. Each Hutchinson step requires computing one Hessian matvec (the
Hz term in (4.9)). This step requires one more gradient backpropagation, hence leading to
twice the theoretical complexity.

We have also measured the actual runtime of AdaHessian in PyTorch on a single RTX
Titan GPU machine, as reported in the second column of Table 4.8. For ResNet20, AdaHes-
sian is 2.42× slower than SGD (and 2.27× slower than Adam). As one can see, AdaHessian
is not orders of magnitude slower than first-order methods. The gap between the measured
and theoretical speed is likely due to the fact that Pytorch [178] (and other existing frame-
works) are highly optimized for first-order methods. Even then, if one considers the fact
that SGD needs a lot of tuning, this overhead may not be large.

It is also possible to reduce the AdaHessian overhead. One simple idea is to reduce
the Hutchinson calculation frequency from 1 Hessian matvec per iteration to every multiple
iterations. For example, for a frequency of 2, we perform the Hutchinson step at every other
optimization iteration. This reduces the theoretical computational cost to 1.5× from 2×.
One can also further reduce the frequency to 5, for which this cost reduces to 1.2×.

We studied how such reduced Hutchinson calculation frequency approach would impact
the performance. We report the results for training ResNet20/ResNet32 on the Cifar10
in Table 4.8, when we vary the Hutchinson frequency from 1 to 5. As one can see, there
is a small performance variation, but the AdaHessian overhead significantly decreases as
compared to SGD and Adam.

4.6 Conclusions

In this work, we proposed AdaHessian, an adaptive Hessian based optimizer. AdaHessian
incorporates an approximate Hessian diagonal, with spatial averaging and momentum to
precondition the gradient vector. This automatically rescales the gradient vector resulting
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in better descent directions. One of the key novelties in our approach is the incorporation
spatial averaging for Hessian diagonal along with an exponential moving average in time.
These enable us to smooth noisy local Hessian information which could be highly misleading.

We extensively tested AdaHessian on various datasets and tasks, using state-of-the-art
models. These include IWSLT14 and WMT14 for neural machine translation, PTB and
Wikitext-103 for language modeling, GLUE for natural language understanding, Cifar10
and ImageNet for image classification , and Criteo Ad Kaggle for recommendation system.
AdaHessian consistently achieves comparable or higher generalization performance as com-
pared to the highly tuned default optimizers used for these different tasks.

Stepping back, it is important for every work to state its limitations (in general, but in
particular in this area). The current limitation of AdaHessian is that it is 2 − 3× slower
than first-order methods such as SGD and Adam. We briefly explored how this overhead
could be reduced, but more work is needed in this area. However, AdaHessian consistently
achieves comparable or better accuracy. For example, for LM task, AdaHessian achieves up
to 2.7 better PPL, as compared to AdamW, which is significant for this task.

Finally, from a higher-level perspective, we should note that there has been significant
development within second-order methods, both theory and practice, even though these
methods were widely viewed as being inapplicable for machine learning even just a few years
ago. Some examples include Hessian based model compression [135, 103, 69, 70], adversarial
attacks [255], and studies of the loss landscape topology for different NN architectures [206,
254], to name just a few. AdaHessian is an important step in this area, and we expect that
it will enable still further progress. We have open sourced AdaHessian and we hope that it
would help this progress [110].
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Part II

Machine Learning and Data Science
Analysis
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Chapter 5

Hessian-based Analysis of Large
Batch Training and Robustness to
Adversaries

5.1 Introduction

During the training of a Neural Network (NN), we are given a set of input data x with the
corresponding labels y drawn from an unknown distribution P . In practice, we only observe a
set of discrete examples drawn from P , and train the NN to learn this unknown distribution.
This is typically a non-convex optimization problem, in which the choice of hyper-parameters
would highly affect the convergence properties. In particular, it has been observed that using
large batch size for training often results in convergence to points with poor convergence
properties. The main motivation for using large batch is the increased opportunities for
data parallelism which can be used to reduce training time [90, 82]. Recently, there have
been several works that have proposed different methods to avoid the performance loss with
large batch [90, 219, 257]. However, these methods do not work for all networks and datasets.
This has motivated us to revisit the original problem and study how the optimization with
large batch size affects the convergence behavior.

We first start by analyzing how the Hessian spectrum and gradient change during training
for small batch and compare it to large batch size and then draw connection with robust
training.

In particular, we aim to answer the following questions:
Q1 How is the training for large batch size different than small batch size? Equivalently, what
is the difference between the local geometry of the neighborhood that the model converges
when large batch size is used as compared to small batch?
A1 We backpropagate the second-derivative and compute its spectrum during training.
The results show that despite the arguments regarding prevalence of saddle-points plaguing
optimization [62, 81], that is actually not the problem with large batch size training, even
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Figure 5.1: Top 20 eigenvalues of the Hessian is shown for C1 on CIFAR-10 (left) and M1
on MNIST (right) datasets. The spectrum is computed using power iteration with relative
error of 1e−4.

when batch size is increased to the gradient descent limit. In [124], an approximate numerical
method was used to approximate the maximal eigenvalue at a point. Here, by directly
computing the spectrum of the true Hessian, we show that large batch size progressively gets
trapped in areas with noticeably larger spectrum (and not just the dominant eigenvalue).
For details please see Section 5.3, especially Figure 5.1, 5.2, and 5.4.
Q2 What is the connection between robust optimization and large batch size training?
Equivalently, how does the batch size affect the robustness of the model to adversarial
perturbation?
A2 We show that robust optimization is antithetical to large batch training, in the sense that
it favors areas with small spectrum (aka flat minimas). We show that points converged with
large batch size are significantly more prone to adversarial attacks as compared to a model
trained with small batch size. Furthermore, we show that robust training progressively favors
the opposite, leading to points with flat spectrum and robust to adversarial perturbation. We
provide empirical and theoretical proof that the inner loop of the robust optimization, where
we find the worst case, is a saddle-free optimization problem almost everywhere. Details are
discussed in Section 5.4, especially Table 5.1, D.3, and Figure 5.4, 5.6.

Limitations: We believe it is critical for every paper to clearly state limitations. In this
work, we have made an effort to avoid reporting just the best results, and repeated all the
experiments at least three times and found all the findings to be consistent. Furthermore, we
performed the tests on multiple datasets and multiple models, including a residual network,
to avoid getting results that may be specific to a particular test. The main limitation is that
we do not propose a solution for large batch training. We do offer analytical insights into
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the relationship between large batch and robust training, but we do not fully resolve the
problem of large batch training. There have been several approaches to increasing batch size
proposed so far [90, 219, 257], but they only work for particular cases and require extensive
hyper-parameter tuning. We are performing an in-depth follow up study to use the results
of this paper to better guide large batch size training.

5.2 Related Work

Deep neural networks have achieved good performance for a wide range of applications. The
diversity of the different problems that a DNN can be used for, has been related to their
efficiency in function approximation [162, 63, 134, 6]. However the work of [261] showed that
not only the network can perform well on a real dataset, but it can also memorize randomly
labeled data very well. Moreover, the performance of the network is highly dependent on
the hyper-parameters used for training. In particular, recent studies have shown that Neural
Networks can easily be fooled by imperceptible perturbations to input data [89]. Moreover,
multiple studies have found that large batch size training suffers from poor generalization
capability [90, 257].

Here we focus on the latter two aspects of training neural networks. [124] presented
results showing that large batches converge to a “sharper minima”. It was argued that even
if the sharp minima has the same training loss as the flat one, small discrepancies between
the test data and the training data can easily lead to poor generalization performance [124,
67]. The fact that “flat minimas” generalize well goes back to the earlier work of [108].
The authors relate flat minima to the theory of minimum description length [194], and
proposed an optimization method to actually favor flat minimas. There have been several
similar attempts to change the optimization algorithm to find “better” regions [66, 46]. For
instance, [46] proposed entropy-SGD, which uses Langevin dynamics to augment the loss
functional to favor flat regions of the “energy landscape”. The notion of flat/sharpness does
not have a precise definition. A detailed comparison of different metrics is discussed in [67],
where the authors show that sharp minimas can also generalize well. The authors also argued
that the sharpness can be arbitrarily changed by reparametrization of the weights. However,
this won’t happen when considering the same model and just changing the training hyper-
parameters which is the case here. In [219, 220], the authors proposed that the training can
be viewed as a stochastic differential equation, and argued that the optimum batch size is
proportional to the training size and the learning rate.

As our results show, there is an interleaved connection by studying when NNs do not work
well. [225, 89] found that they can easily fool a NN with very good generalization by slightly
perturbing the inputs. The perturbation magnitude is most of the time imperceptible to
human eye, but can completely change the networks prediction. They introduced an effective
adversarial attack algorithm known as Fast Gradient Sign Method (FGSM). They related
the vulnerability of the Neural Network to linear classifiers and showed that RBF models,
despite achieving much smaller generalization performance, are considerably more robust
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Figure 5.2: The landscape of the loss is shown along the dominant eigenvector, v1, of the
Hessian for C1 on CIFAR-10 dataset. Here ε is a scalar that perturbs the model parameters
along v1.

to FGSM attacks. The FGSM method was then extended in [130] to an iterative FGSM,
which performs multiple gradient ascend steps to compute the adversarial perturbation.
Adversarial attack based on iterative FGSM was found to be stronger than the original one
step FGSM. Various defenses have been proposed to resist adversarial attacks [158, 88, 96,
20, 79]. We will later show that there is an interleaved connection between robustness of the
model and the large batch size problem.

The structure of this paper is as follows: We present the results by first analyzing how
the spectrum changes during training, and test the generalization performances of the model
for different batch sizes in Section 5.3. In Section 5.4, we discuss details of how adversarial
attack/training is performed. In particular, we provide theoretical proof that finding adver-
sarial perturbation is a saddle-free problem under certain conditions, and test the robustness
of the model for different batch sizes. Also, we present results showing how robust training
affects the spectrum with empirical studies. Finally, in Section 5.5 we provide concluding
remarks.

5.3 Large Batch, Generalization Gap and Hessian

Spectrum

Setup: The architecture for the networks used is reported in Table D.2. In the text, we refer
to each architecture by the abbreviation used in this table. Unless otherwise specified, each
of the batch sizes are trained until a training loss of 0.001 or better is achieved. Different
batches are trained under the same conditions, and no weight decay or dropout is used.

We first focus on large batch size training versus small batch and report the results
for large batch training for C1 network on CIFAR-10 dataset, and M1 network on MNIST
are shown in Table 5.1, and Table D.3, respectively. As one can see, after a certain point
increasing batch size results in performance degradation on the test dataset. This is in line
with results in the literature [124, 90].
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Figure 5.3: The landscape of the loss is shown when the C1 model parameters are changed
along the first two dominant eigenvectors of the Hessian with the perturbation magnitude
ε1 and ε2.

As discussed before, one popular argument about large batch size’s poor generalization
accuracy has been that large batches tend to get attracted to “sharp” minimas of the train-
ing loss. In [124] an approximate metric was used to measure curvature of the loss function
for a given model parameter. Here, we directly compute the Hessian spectrum, using power
iteration by back-propagating the matvec of the Hessian [155]. Unless otherwise noted, we
continue the power iterations until a relative error of 1e−4 reached for each eigenvalue. The
Hessian spectrum for different batches is shown in Figure 5.1. Moreover, the value of the
dominant eigenvalue, denoted by λθ1, is reported in Table 5.1, and Table 5.2, respectively
(Additional result for MNIST tested using LeNet-5 is given in appendix. Please see Ta-
ble D.3). From Figure 5.1, we can clearly see that for all the experiments, large batches have
a noticeably larger Hessian spectrum both in the dominant eigenvalue as well as the rest of
the 19 eigenvalues. However, note that curvature is a very local measure. It would be more
informative to study how the loss functional behaves in a neighborhood around the point
that the model has converged. To visually demonstrate this, we have plotted how the total
loss changes when the model parameters are perturbed along the dominant eigenvector as
shown in Figure 5.2, and Figure D.1 for C1 and M1 models, respectively. We can clearly see
that the large batch size models have been attracted to areas with higher curvature for both
the test and training losses.

This is reflected in the visual figures. We have also added a 3D plot, where we perturb the
parameters of C1 model along both the first and second eigenvectors as shown in Figure 5.3.
The visual results are in line with the numbers shown for the Hessian spectrum (see λθ1)
in Table 5.1, and Table D.3. For instance, note the value of λθ1 for the training and test loss
for B = 256, 2048 in Table 5.1 and compare the corresponding results in Figure 5.3.

A recent argument has been that saddle-points in high dimension plague optimization for
neural networks [62, 81]. We have computed the dominant eigenvalue of the Hessian along
with the total gradient during training and report it in Figure 5.4. As we can see, large
batch size progressively gets attracted to areas with larger spectrum, but it clearly does not
get stuck in saddle points [138].
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Table 5.1: Result on CIFAR-10 dataset using C1, C2 network. We show the Hessian spectrum
of different batch training models, and the corresponding performances on adversarial dataset
generated by training/testing dataset (testing result is given in parenthese).

Batch Acc. λθ1 λx1 ‖∇xJ ‖ Acc ε = 0.02 Acc ε = 0.01

16 100 (77.68) 0.64 (32.78) 2.69 (200.7) 0.05 (20.41) 48.07 (30.38) 72.67 (42.70)
32 100 (76.77) 0.97 (45.28) 3.43 (234.5) 0.05 (23.55) 49.04 (31.23) 72.63 (43.30)
64 100 (77.32) 0.77 (48.06) 3.14 (195.0) 0.04 (21.47) 50.40 (32.59) 73.85 (44.76)
128 100 (78.84) 1.33 (137.5) 1.41 (128.1) 0.02 (13.98) 33.15 (25.2 ) 57.69 (39.09)
256 100 (78.54) 3.34 (338.3) 1.51 (132.4) 0.02 (14.08) 25.33 (19.99) 50.10 (34.94)
512 100 (79.25) 16.88 (885.6) 1.97 (100.0) 0.04 (10.42) 14.17 (12.94) 28.54 (25.08)
1024 100 (78.50) 51.67 (2372 ) 3.11 (146.9) 0.05 (13.33) 8.80 (8.40 ) 23.99 (21.57)

C
1

C
if

ar
-1

0

2048 100 (77.31) 80.18 (3769 ) 5.18 (240.2) 0.06 (18.08) 4.14 (3.77 ) 17.42 (16.31)

256 100 (79.20) 0.62 (28 ) 12.10 (704.0) 0.10 (41.95) 0.57 (0.38) 0.73 (0.47)
512 100 (80.44) 0.75 (57 ) 4.82 (425.2) 0.03 (26.14) 0.34 (0.25) 0.54 (0.38)
1024 100 (79.61) 2.36 (142) 0.523 (229.9) 0.04 (17.16) 0.27 (0.22) 0.46 (0.35)

C
2

C
if

ar
-1

0

2048 100 (78.99) 4.30 (307) 0.145 (260.0) 0.50 (17.94) 0.18 (0.16) 0.33 (0.28)

5.4 Large Batch, Adversarial Attack and Robust

training

We first give a brief overview of adversarial attack and robust training and then present
results connecting these with large batch size training.

5.4.1 Robust Optimization and Adversarial Attack

Here we focus on white-box adversarial attack, and in particular the optimization-based
approach both for the attack and defense. Suppose M(θ) is a learning model (the neural
network architecture), and (x, y) are the input data and the corresponding labels. The loss
functional of the network with parameter θ on (x, y) is denoted by J (θ,x, y). For adversarial
attack, we seek a perturbation ∆x (with a bounded L∞ or L2 norm) such that it maximizes
J (θ,x, y):

max
∆x∈U

J (θ,x + ∆x, y), (5.1)

where U is an admissibility set for acceptable perturbation (typically restricting the mag-
nitude of the perturbation). A typical choice for this set is U = B(x, ε), a ball of radius ε
centered at x. A popular method for approximately computing ∆x, is Fast Gradient Sign
Method [89], where the gradient of the loss functional is computed w.r.t. inputs, and the
perturbation is set to:

∆x = ε sign(
∂J(x, θ)

∂x
). (5.2)
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This is not the only attack method possible. Other approaches include an iterative FGSM
method (FGSM-10)[130] or using other norms such as L2 norm instead of L∞ (We denote
the L2 method by L2Grad in our results). Here we also use a second-order attack, where
we use the Hessian w.r.t. input to precondition the gradient direction with second-order
information; please see Table D.1 in Appendix for details.

One method to defend against such adversarial attacks, is to perform robust training [225,
150]:

min
θ

max
∆x∈U

J (θ,x + ∆x, y). (5.3)

Solving this min-max optimization problem at each iteration requires first finding the
worst adversarial perturbation that maximizes the loss, and then updating the model pa-
rameters θ for those cases. Since adversarial examples have to be generated at every iteration,
it would not be feasible to find the exact perturbation that maximizes the objective function.
Instead, a popular method is to perform a single or multiple gradient ascents to approxi-
mately compute ∆x. After computing ∆x at each iteration, a typical optimization step
(variant of SGD) is performed to update θ.
Next we show that solving the maximization part is actually a saddle-free problem almost
everywhere. This property assures us that the Hessian w.r.t input does not have negative
eigenvalue which allows us to use CG for performing Newton solver for our 2nd order adver-
sarial perturbation tests in Section 5.4.4. 1

5.4.2 Adversarial perturbation: A saddle-free problem

Recall that our loss functional is J (θ; x, y). We make following assumptions for the model
to help show our theoretical result,

Assumption 4. We assume the model’s activation functions are strictly ReLu activation,
and all layers are either convolution or fully connected. Here, Batch Normalization layers
are accepted. Note that even though the ReLu activation has discontinuity at origin, i.e.
x = 0, ReLu function is twice differentiable almost everywhere.

The following theorem shows that the problem of finding an adversarial perturbation that
maximized J , is a saddle-free optimization problem, with a Positive-Semi-Definite (PSD)
Hessian w.r.t. input almost everywhere. For details on the proof please see Appendix. D.1.

Theorem 6. With Assumption. 4, for a DNN, its loss functional J (θ,x, y) is a saddle-free
function w.r.t. input x almost everywhere, i.e.

∇2J (θ,x, y)

∇x2
� 0.

From the proof of Theorem 6, we could immediately get the following proposition of DNNs:

1This results might also be helpful for finding better optimization strategies for GANS.
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Table 5.2: Result on CIFAR-100 dataset using CR network. We show the Hessian spectrum
of different batch training models, and the corresponding performances on adversarial dataset
generated by training/testing dataset (testing result is given in parenthese).

Batch Acc. λθ1 Acc ε = 0.02 Acc ε = 0.01

64 99.98 (70.81) 0.022 (10.43) 61.54 (34.48) 78.57 (39.94)
128 99.97 (70.9 ) 0.055 (26.50 ) 58.15 (33.73) 77.41 (38.77)
256 99.98 (68.6 ) 1.090 (148.29) 39.96 (28.37) 66.12 (35.02)
512 99.98 (68.6 ) 1.090 (148.29) 40.48 (28.37) 66.09 (35.02)

Table 5.3: Accuracy of different models across different adversarial samples of MNIST, which
are obtained by perturbing the original model MORI

Dclean DFGSM DFGSM10 DL2GRAD DFHSM DL2HESS MEAN of Adv

MORI 99.32 60.37 77.27 14.32 82.04 33.21 53.44
MFGSM 99.49 96.18 97.44 63.46 97.56 83.33 87.59
MFGSM10 99.5 96.52 97.63 66.15 97.66 84.64 88.52
ML2GRAD 98.91 96.88 97.39 86.23 97.66 92.56 94.14
MFHSM 99.45 94.41 96.48 52.67 96.89 77.58 83.60
ML2HESS 98.72 95.02 96.49 77.18 97.43 90.33 91.29

Proposition 1. Based on Theorem 6 with Assumption 4, if the input x ∈ Rd and the
number of the output class is c, i.e. y ∈ {1, 2, 3 . . . , c}, then the Hessian of DNNs w.r.t. to
x is almost a rank c matrix almost everywhere; see Appendix D.1 for details.

5.4.3 Large Batch Training and Robustness

Here, we test the robustness of the models trained with different batches to an adversarial
attack. We use Fast Gradient Sign Method for all the experiments (we did not see any
difference with FGSM-10 attack). The adversarial performance is measured by the fraction
of correctly classified adversarial inputs. We report the performance for both the training
and test datasets for different values of ε = 0.02, 0.01 (ε is the metric for the adversarial
perturbation magnitude in L∞ norm). The performance results for C1, and C2 models on
CIFAR-10, CR model on CIFAR-100, are reported in the last two columns of Tables 5.1,and
5.2 (MNIST results are given in appendix, Table D.3). The interesting observation is that for
all the cases, large batches are considerably more prone to adversarial attacks as compared to
small batches. This means that not only the model design affects the robustness of the model,
but also the hyper-parameters used during optimization, and in particular the properties of
the point that the model has converged to.

From this result, there seems to be a strong correlation between the spectrum of the
Hessian w.r.t. θ and how robust the model is. However, we want to emphasize that in
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Figure 5.4: Changes in the dominant eigenvalue of the Hessian w.r.t weights and the
total gradient is shown for different epochs during training. Note the increase in λθ1 (blue
curve) for large batch v.s. small batch. In particular, note that the values for total gradient
along with the Hessian spectrum show that large batch does not get “stuck” in saddle
points, but areas in the optimization landscape that have high curvature. More results are
shown in Figure D.10. The dotted points show the corresponding results when using robust
optimization, which makes the solver stay in areas with smaller spectrum.

general there is no correlation between the Hessian w.r.t. weights and the robustness of the
model w.r.t. the input. For instance, consider a two variable function J (θ,x) (we treat
θ and x as two single variables), for which the Hessian spectrum of θ has no correlation
to robustness of J w.r.t. x. This can be easily demonstrated for a least squares problem,
L = ‖θx− y‖2

2. It is not hard to see the Hessian of θ and x are, xxT and θθT , respectively.
Therefore, in general we cannot link the Hessian spectrum w.r.t. weights to robustness of
the network. However, the numerical results for all the neural networks show that models
that have higher Hessian spectrum w.r.t. θ are also more prone to adversarial attacks. A
potential explanation for this would be to look at how the gradient and Hessian w.r.t. input
(i.e. x) would change for different batch sizes. We have computed the dominant eigenvalue
of this Hessian using power iteration for each individual input sample for both training and
testing datasets. Furthermore, we have computed the norm of the gradient w.r.t. x for these
datasets as well. These two metrics are reported in λx1 , and ‖∇xJ ‖; see Table 5.1 for details.
The results on all of our experiments show that these two metrics actually do not correlate
with the adversarial accuracy. For instance, consider C1 model with B = 512. It has both
smaller gradient and smaller Hessian eigenvalue w.r.t. x as compared to B = 32, but it
performs acidly worse under adversarial attack. One possible reason for this could be that
the decision boundaries for large batches are less stable, such that with small adversarial
perturbation the model gets fooled.
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Table 5.4: Accuracy of different models across different samples of CIFAR-10, which are
obtained by perturbing the original model MORI

Dclean DFGSM DFGSM10 DL2GRAD DFHSM DL2HESS MEAN of Adv

MORI 79.46 15.25 4.46 12.37 29.64 22.93 16.93
MFGSM 71.82 63.05 63.44 57.68 66.04 62.36 62.51
MFGSM10 71.14 63.32 63.88 58.25 65.95 62.70 62.82
ML2GRAD 63.52 59.33 59.73 57.35 60.44 58.98 59.16
MFHSM 74.34 47.65 43.95 38.45 62.75 55.77 49.71
ML2HESS 71.59 50.05 46.66 42.95 62.87 58.42 52.19
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Figure 5.5: 1-D Parametric plot for C3 model on CIFAR-10. We interpolate between pa-
rameters of MORI and MADV , and compute the cross entropy loss on the y-axis.

5.4.4 Adversarial Training and Hessian Spectrum

In this part, we study how the Hessian spectrum and the landscape of the loss functional
change after adversarial training is performed. Here, we fix the batch size (and all other opti-
mization hyper-parameters) and use five different adversarial training methods as described
in Section 5.4.1.

For the sake of clarity let us denote D to be the test dataset which can be the original
clean test dataset or one created by using an adversarial method. For instance, we denote
DFGSM to be the adversarial dataset generated by FGSM, and Dclean to be the original clean
test dataset.

Setup: For the MNIST experiments, we train a standard LeNet on MNIST dataset [27]
(using M1 network). For the original training, we set the learning rate to 0.01 and momentum
to 0.9, and decay the learning rate by half after every 5 epochs, for a total of 100 epochs.
Then we perform an additional five epochs of adversarial training with a learning rate of
0.01. The perturbation magnitude, ε, is set to 0.1 for L∞ attack and 2.8 for L2 attack.
We also present results for C3 model [35] on CIFAR-10, using the same hyper-parameters,
except that the training is performed for 100 epochs. Afterwards, adversarial training is
performed for a subsequent 10 epochs with a learning rate of 0.01 and momentum of 0.9 (the
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Figure 5.6: Spectrum of the sub-sampled Hessian of the loss functional w.r.t. weights.
The results are computed for different batch sizes, which are randomly chosen, of B =
1, 320, 50000 of C1.

learning rate is decayed by half after five epochs). Furthermore, the adversarial perturbation
magnitude is set to ε = 0.02 for L∞ attack and 1.2 for L2 attack [211].

The results are shown in Table 5.3, 5.4. We can see that after adversarial training the
model becomes more robust to these attacks. Note that the accuracy of different adversarial
attacks varies, which is expected since the various strengths of different attack method. In
addition, all adversarial training methods improve the robustness on adversarial dataset,
though they lose some accuracy on Dclean, which is consistent with the observations in [89].
As an example, consider the second row of Table 5.3 which shows the results when FGSM is
used for robust training. The performance of this model when tested against the L2GRAD
attack method is 63.46% as opposed to 14.32% of the original model (MORI). The rest of
the rows show the results for different algorithms. In Section D.4, we give further discussion
about the performances of first-order and second-order attacks.

The main question here is how the landscape of the loss functional is changed after
these robust optimizations are performed? We first show a 1-D parametric interpolation
between the original model parameters θ and that of the robustified models, as shown in Fig-
ure 5.5 (see Figure D.5 for all cases) and D.4. Notice the robust models are at a point that
has smaller curvature as compared to the original model. To exactly quantify this, we com-
pute the spectrum of the Hessian as shown in Figure 5.6, and D.6. Besides the full Hessian
spectrum, we also report the spectrum of sub-sampled Hessian. The latter is computed by
randomly selecting a subset of the training dataset. We denote the size of this subset as BH

to avoid confusion with the training batch size. In particular, we report results for BH = 1
and BH = 320. There are several important observations here. First, notice that the spec-
trum of the robust models is noticeably smaller than the original model. This means that
the min-max problem of (5.3) favors areas with lower curvature. Second, note that even
though the total Hessian shows that we have converged to a point with positive curvature
(at least based on the top 20 eigenvalues), but that is not necessarily the case when we look
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at individual samples (i.e. BH = 1). For a randomly selected batch of BH = 1, we see that
we have actually converged to a point that has both positive and negative curvatures, with
a non-zero gradient (meaning it is not a saddle point). To the best of our knowledge this
is a new finding, but one that is expected as SGD optimizes the expected loss instead of
individual ones.

Now going back to Figure 5.4, we show how the spectrum changes during training when
we use robust optimization. We can clearly see that with robust optimization the solver
is pushed to areas with smaller spectrum. This is a very interesting finding and shows
the possibility of using robust training as a systematic means to bias the solver to avoid
sharp minimas. A preliminary result is shown in Table D.4, where we can see that robust
optimization performs better for large batch size training as opposed to the baseline, or when
we use the method proposed by [90]. However, we emphasize that the goal is to perform
analysis to better understand the problems with large batch size training. More extensive
tests are needed before one could claim that robust optimization performs better than other
methods.

5.5 Conclusion

In this work, we studied NNs through the lens of the Hessian operator. In particular, we
studied large batch size training and its connection with stability of the model in the presence
of white-box adversarial attacks. By computing the Hessian spectrum we provided several
points of evidence that show that large batch size training tends to get attracted to areas with
higher Hessian spectrum. We reported the eigenvalues of the Hessian w.r.t. whole dataset,
and plotted the landscape of the loss when perturbed along the dominant eigenvector. Visual
results were in line with the numerical values for the spectrum. Our empirical results show
that adversarial attacks/training and large batches are closely related. We provided several
empirical results on multiple datasets that show large batch size training is more prone to
adversarial attacks (more results are provided in the supplementary material). This means
that not only is the model design important, but also that the optimization hyper-parameters
can drastically affect a network’s robustness. Furthermore, we observed that robust training
is antithetical to large batch size training, in the sense that it favors areas with noticeably
smaller Hessian spectrum w.r.t. θ.

The results show that the robustness of the model does not (at least directly) correlate
with the Hessian w.r.t. x. We also found that this Hessian is actually a PSD matrix, meaning
that the problem of finding the adversarial perturbation is actually a saddle-free problem
almost everywhere for cases that satisfy this criterion 4. Furthermore, we showed that even
though the model may converge to an area with positive curvature when considering all of
the training dataset (i.e. total loss), if we look at individual samples then the Hessian can
actually have significant negative eigenvalues. From an optimization viewpoint, this is due
to the fact that SGD optimizes the expected loss and not the individual per sample loss.
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Chapter 6

PyHessian: Neural Networks Through
the Lens of the Hessian

6.1 Introduction

Residual neural networks [104] (ResNets) are widely used Neural Networks (NNs) for vari-
ous learning tasks. The two main architectural components of ResNets are residual connec-
tions [104] and Batch Normalization (BN) layers [118]. However, going beyond motivating
stories to characterize precisely when and why these two popular architectural ingredients
help or hurt training/generalization—especially in terms of measurable properties of the
model—is still largely unsolved. Relatedly, characterizing whether other suggested archi-
tectural changes will help or hurt training/generalization is still done in a largely ad hoc
manner. For example, it is often motivated by plausible but untested intuitions, and it is
not characterized in terms of measurable properties of the model.

In this work, we present and apply PyHessian, an open source scalable framework with
which one can directly analyze Hessian information, i.e., second-derivative information w.r.t.
model parameters, in order to address these and related questions. PyHessian computes Hes-
sian information by applying known techniques from Numerical Linear Algebra (NLA) [12,
86, 142] and Randomized NLA (RandNLA) [151, 72, 71, 251, 10, 230] (that are approxi-
mate but come with rigorous theory). PyHessian enables computing Hessian information—
including top Hessian eigenvalues, Hessian trace, and Hessian eigenvalue spectral density
(ESD), and it supports distributed implementation—allowing distributed-memory execu-
tion on both cloud (e.g., AWS, Google Cloud) and supercomputer systems, for fast and
efficient Hessian computation.

As an application of PyHessian, we use it to analyze the impact of residual connections
and BN on the trainability of NNs, leading to new insights. In more detail, our main
contributions are the following:

• We introduce PyHessian, a new framework for direct and efficient computation of Hessian
information, including the top eigenvalue, the trace, and the full ESD [111]. We also apply
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Figure 6.1: The parametric loss landscapes of ResNet20 (top) and ResNet38 (bottom) on
Cifar-10 is plotted by perturbing the model parameters at the end of training across the first
and second Hessian eigenvector. Results for the original ResNet architecture (left), ResNet
without BN (middle; denoted as ResNet−BN), and ResNet without residual connection (right;
denoted as ResNet−Res). It can be clearly seen that removing BN from ResNet20 actually
leads to a smoother loss landscape, which is opposite to the common belief that adding
BN leads to a smoother loss landscape [206]. We only observed the claimed smoothness
property for the deeper ResNet38 model (second row). This smoothness can be quantified by
measuring the trace of the Hessian operator, reported in Figure 6.2, as well as the full Hessian
ESD, shown in Figure 6.3 and E.9. We also visualize the loss landscape throughout training
for different epochs as shown in Figure E.14 and E.16, which provide further evidence.
Models trained on Cifar-100 also exhibit a similar behavior (as shown in Figure E.18, E.19
and E.20).

PyHessian to study how residual connections and BN affect training.

• We observe that removing BN layers from ResNet (denoted below as ResNet−BN) leads
to rapid increase of the Hessian spectrum (the top eigenvalue, the trace, and the ESD
support range). This increase is significantly more rapid for deeper models. See Figure 6.2,
E.7, E.8, and E.9 on Cifar-10 as well as Figure E.5, E.11, E.12, and E.13 on Cifar-100.

• We observe that, for shallower networks (ResNet20), removing the BN layer results in a
flatter Hessian spectrum, as compared to standard ResNet20 with BN. See Figure 6.2 and 6.3
on Cifar-10 and Figure E.5 and E.11 on Cifar-100. This observation is the opposite of the
common belief that the addition of BN layers make the loss landscape smoother (which
we observe to hold only for deeper networks).

• We observe that, for deeper networks (in our case, ResNet32/38), removing BN results in
converging to sharper local minima, as compared to ResNet with BN. See Figure 6.2, 6.3,
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E.15 and E.16 on Cifar-10 as well as Figure E.5, E.11, E.19 and E.20 on Cifar-100.

• We show that removing residual connections from ResNet generally makes the top eigen-
value, the trace, and the Hessian ESD support range increase slightly. This increase is
consistent for both shallower and deeper models (ResNet20/32/38/56). See Figure 6.2, 6.3,
E.10, E.14, E.15, E.16, and E.17 on Cifar-10 as well as Figure E.5, E.11, E.18, E.19, and E.20
on Cifar-100.

• We perform Hessian analysis for different stages of ResNet models (details in Section 6.4.1),
and we find that generally BN is more important for the final stages than for earlier
stages. In particular, removing BN from the last stage significantly degrades testing perfor-
mance, with a strong correlation with the Hessian trace. See the comparison between the
orange curve and the blue curve in Figure 6.4 and E.4, the accuracy reported in Table 6.2
on Cifar-10 (Figure E.6, and the accuracy reported on Cifar-100 in Table E.2).

6.2 Related work

Here, we review work related to Hessian-based analysis for NN training and inference, as
well as work that studies the impact of different architectural components on the topology
of the NN loss landscape.

Hessian and Large-scale Hessian Computation: Hessian-based analysis/computation
is widely used in scientific computing. However, due to the (incorrect) belief that Hessian-
based computations are infeasible for large NN problems, the majority of work in ML (ex-
cept for quite small problems) performs only first-order analysis.1 However, using implicit
or matrix-free methods, it is not even necessary to form the Hessian matrix explicitly in
order to extract second-order information. Instead, it is possible to use stochastic methods
from RandNLA to extract this information, without explicitly forming the Hessian matrix.
For example, [12, 10] proposed fast algorithms for trace computation; and [142, 230] pro-
vided efficient randomized algorithms to estimate the ESD of a positive semi-definite matrix.
These algorithms only require an oracle for computing the product of the Hessian matrix
with a given random vector. It is possible to compute this so-called “matvec” and extract
Hessian information without explicitly forming the Hessian [16, 153]. In particular, using
the so-called R-operator, the Hessian matvec can be computed with the same computational
graph used for backpropagating the gradient [153].

Hessian eigenvalues of small NN models were analyzed [202, 203]; and the work of [181]
studied the geometry of NN loss landscapes by computing the distribution of Hessian eigen-
values at critical points. More recently, [251] used a deflated power-iteration method to
compute the top eigenvalues for deep NNs during training. Moreover, the work of [84] mea-
sured the Hessian ESD, based on the Stochastic Lanczos algorithm of [142, 230]. Here, we

1The näıve view arises since the Hessian matrix is of size (say) m ×m. Thus, like most linear algebra
computations, exact full spectral computations (which are sufficient but never necessary) cost O(m3) time.
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extend the analysis of [84, 251] by studying how the depth of the NN model as well as its
architecture affect the Hessian spectrum (in terms of top eigenvalue, trace, and full ESD).
Furthermore, we also perform block diagonal Hessian spectrum analysis, and we observe a
fine-scale relationship between the Hessian spectrum and the impact of adding/removing
residual connections and BN.

Hessian-based analysis has also been used in the context of NN training and inference.
For example, [136] analytically computes Hessian information for a single linear layer and
uses the Hessian spectrum to determine the optimal learning rate to accelerate training.
In [135], the authors approximated the Hessian as a diagonal operator and used the inverse
of this diagonal matrix to prune NN parameters. Subsequently, [103] used the inverse of
the full Hessian matrix to develop an “Optimal Brain Surgeon” method for pruning NN
parameters. The authors argued that a diagonal approximation may not be very accurate,
as off-diagonal elements of the Hessian are important; and they showed that capturing these
off-diagonal elements does indeed lead to better performance, as compared to [135]. In the
recent work of [68], a layer-wise pruning method was proposed. This restricts the Hessian
computations to each layer, and it provides bounds on the performance drop after pruning.
More recently, [70, 214, 69] proposed a Hessian-based method for quantizing2 NN models,
achieving significantly better performance, as compared to first-order based methods.

(Quasi-)Newton (second-order) methods [2, 64, 180, 183, 186, 5, 26] have been extensively
explored for convex optimization problems [28]. In particular, in the seminal work of [170,
145], a Quasi-Newton method was proposed to accelerate first-order based optimization
methods. The idea is to precondition the gradient vector with the inverse of the Hessian.
However, instead of directly using the Hessian, a series of approximate rank-1 updates are
used instead. Follow up work of [209] extended this method and proposed a stochastic BFGS
algorithm. More recently, the work of [25] proposed an adaptive batch size Limited-memory
BFGS method [145] for large-scale machine learning problems; and an adaptive batch size
method based on measuring directly the spectrum of the Hessian has been proposed [253]
for large-scale NN training.

Hessian-based methods have also been explored for non-convex problems, including trust-
region (TR) [57], cubic regularization (CR) [169], and its adaptive variant (ARC) [39, 40].
For these problems, [32, 77, 197, 247] provide sketching/sampling techniques for Newton
methods, where guarantees are established for sampling size and convergence rates; and
[245, 247, 244, 252] show that sketching/sampling methods can significantly reduce the need
for data in approximate Hessian computation.

One important concern for applying second-order methods to training is the cost of com-
puting Hessian information at every iteration. The work of [154] proposed the so-called
Kronecker-Factored Approximations (K-FAC) method, which approximates the Fisher in-
formation matrix into a Kronecker product. However, the approach comes with several new
hyperparameters, which can actually be more expensive to tune, compared to first-order

2Quantization is a process in which the precision of the parameters is reduced from single precision
(32-bits) to a lower precision (such as 8-bits).
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methods [148].
A major limitation in most of this prior work is that tests are typically restricted to

small/simple NN models that may not be representative of NN workloads that are encoun-
tered in practice. This is in part due to the lack of a scalable and easily programmable
framework that could be used to test second-order methods for a wide range of state-of-the-
art models. Addressing this is the main motivation behind our development of PyHessian,
which is released as open-source software and is available to researchers [111]. In this paper,
we illustrate how PyHessian can be used for analyzing the NN behaviour during train-
ing, even for very deep state-of-the-art models. Future work includes using this framework
for second-order based optimization, by testing it on modern NN models, as well as fairly
gauging the benefit that may arise from such methods, in light of the cost for any extra
hyperparameter tuning that may be needed [148].

Residual Connections and Batch Normalization: Residual connections [104] and
BN [118] are two of the most important ingredients in modern convolutional NNs. There have
been different hypothesis offered for why these two components help training/generalization.
First, the original motivation for residual connections was that they allow gradient infor-
mation to flow to earlier layers of the NN, thereby reducing the vanishing gradient problem
during training. The empirical study of [141] found that deep NNs with residual connections
exhibit a significantly smoother loss landscape, as compared to models without residual con-
nections. This was achieved by the so-called filter-normalized random direction method to
plot 3D loss landscapes, i.e., not through direct analysis of the Hessian spectrum. This result
is interesting, but it is hard to draw conclusions with perturbations in two directions, for a
model that has millions of parameters (and thus millions of possible perturbation directions).

Second, the original motivation for why BN helps training/generalization was originally
attributed to reducing the so-called Internal Covariance Shift (ICS) [118]. However, this was
disputed in the recent study of [206]. In particular, the work of [206] used first-order analysis
to analyze the loss landscape, and found that adding a BN layer results in a smoother loss
landscape. Importantly, they found that adding BN does not reduce the so called ICS.
Again, while interesting, such first-order analysis may not fully capture the topology of the
landscape; and, as we will show with our second-order analysis, this smoothness claim is
not correct in general.

The work of [206] also performed an interesting theoretical analysis, showing a connection
between adding the BN layer and the Lipschitz constant of the gradient (i.e., the top Hessian
eigenvalue). It was argued that adding the BN layer leads to a smaller Lipschitz constant.
However, the theoretical analysis is only valid for per-layer Lipschitz constant, as it ignores
the complex interaction between different layers. It cannot be extended to the Lipschitz
constant of the entire model (and, as we will show, this result does not hold for shallow
networks).
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6.3 Methodology

For a supervised learning problem, we seek to minimize:

min
θ
L(θ) =

1

N

N∑
i=1

l(M(xi), yi, θ), (6.1)

where θ ∈ Rm is the learnable weight parameter, l(M(x), y, θ) is the loss function, (x, y) is
the input pair, M is the NN architecture, and N is the size of training data. Below we first
discuss how PyHessian computes the second-order statistics, and we then discuss the impact
of architectural components on the trainability of the model.

6.3.1 Neural Network Hessian Matvec

For a NN with m parameters, the gradient of the loss w.r.t. model parameters is a vector

∂L

∂θ
= gθ ∈ Rm,

and the second derivative of the loss is a matrix,

H =
∂2L

∂θ2
=
∂gθ
∂θ
∈ Rm×m,

commonly called the Hessian. A typical NN model involves millions of parameters, and thus
even forming the Hessian is computationally infeasible. However, it is possible to compute
properties of the Hessian spectrum without explicitly forming the Hessian matrix. Instead,
all we need is an oracle to compute the application of the Hessian to a random vector v.
This can be achieved by observing the following:

∂gTθ v

∂θ
=
∂gTθ
∂θ

v + gTθ
∂v

∂θ
=
∂gTθ
∂θ

v = Hv. (6.2)

Here, the first equality is the chain rule, the second is due to the independence of v to θ,
and the third equality is the definition of the Hessian. Importantly, note that the cost of
this Hessian matrix-vector multiply (hereafter referred to as Hessian matvec) is the same
as one gradient backpropagation. Having this oracle, we can easily compute the top k
Hessian eigenvalues using power iteration [251]; see Algorithm 10. However, for a typical
NN with millions of parameters, the top eigenvalues may not be representative of how the
loss landscape behaves. Therefore, we also compute the trace and ESD of the Hessian, as
described below.

6.3.2 Hutchinson Method for Hessian Trace Computation

The trace of the Hessian can be computed using RandNLA, and in particular with Hutchin-
son’s method [12, 10] for the fast computation of the trace, using only Hessian matvec
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computations (as given in (6.2)). In particular, since we are interested in the Hessian, i.e.,
a symmetric matrix, suppose we have a random vector v, whose components are i.i.d. sam-
pled from a Rademacher distribution (or Gaussian distribution with mean 0 and variance
1). Then, we have the identity

Tr(H) = Tr(HI) = Tr(HE[vvT ]) = E[Tr(HvvT )]

= E[vTHv],
(6.3)

where I is the identity matrix of appropriate size. That is, the trace of H can be estimated
by computing E[vTHv], where we compute the expectation by drawing multiple random
samples. Note that Hv can be efficiently computed from (6.2), and then vTHv is simply a
dot product between the Hessian matvec and the original vector v. See Algorithm 11 for a
description.

6.3.3 Full Eigenvalue Spectral Density

To provide finer-grained information on the Hessian spectrum than is provided by the top
eigenvalues or the trace, we need to compute the full empirical spectral density (ESD) of the
Hessian eigenvalues, defined as

φ(t) =
1

m

m∑
i=1

δ(t− λi), (6.4)

where δ(·) is the Dirac distribution and λi is the ith eigenvalue of H, in descending order.

Algorithm 6 Stochastic Lanczos Quadrature for ESD Computation
1: Input:

- Parameter: θ
- Degree m and nv

2: Compute the gradient of θ by backpropagation, i.e., compute gθ = dL
dθ

.
3: for i = 1, 2, . . . nv do
4: Draw a random vector v from N(0,1) and normalize it (same dimension as θ).
5: Get the tridiagonal matrix T through Lanczos algorithm.
6: Compute τ

(i)
k and λ̃

(i)
k from T

7: φziσ =
∑q

k=1 τkf(λ̃k; t, σ)
8: end for
9: Output: φ(t) = 1

nv

∑nv

l=1

(∑q
i=1 τ

(l)
i f(λ̃

(l)
i ; t, σ)

)
Recent work in NLA/RandNLA has provided efficient matrix-free algorithms to estimate

this ESD [142, 86, 230] through Stochastic Lanczos Quadrature (SLQ). Here, we briefly
describe SLQ in simple terms. This approach was also used in [84] to compute the Hessian
ESD. For more details, see [142, 86, 230].

Here is a summary of our approach to compute the ESD φ(t). First, we approximate
φ(t) (of (6.4)) by φσ(t) ( (6.5) below) by applying a Gaussian kernel (first approximation),
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Figure 6.2: The Hessian trace of the entire network for ResNet/ResNet−BN/ResNet−Res
with depth 20/32/38/56 on Cifar-10. For each depth, ResNet (blue) is the baseline. It
can be clearly seen that removing BN from the architecture (orange) generally results in a
rapid increase of the Hessian trace. This increase is more pronounced for deeper networks
such as ResNet32 and ResNet38. Importantly, the Hessian trace of ResNet20 without BN
is lower than the original model (blue). This is in contrast to the claim of [206]. Also, we
generally observe that residual connections smooth the Hessian trace for both shallow and
deep networks (compare blue and green lines). Results on Cifar-100 also exhibit the same
behaviour (as shown in Figure E.5).

and we express this in the same expectation form as in the Hutchinson algorithm ( (6.9)
below). Next, since the computation inside the expectation depends directly on t and the
unknown eigenvalues (denoted by λis), we further simplify the problem by using Gaussian
quadrature ( (6.13) below) (second approximation). Then, since the weights and λis in the
Gaussian quadrature are still unknown, we use the stochastic Lanczos algorithm to approxi-
mate the weights and λis ( (6.14) below) (third approximation). Finally, we approximate the
expectation of the eigenvalue distribution as a sum ( (6.15) below) (forth approximation).

In more detail, for the first approximation, we apply a Gaussian kernel, f , with variance
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σ2 to (6.4) to obtain

φσ(t) =
1

m

m∑
i=1

f(λ; t, σ), (6.5)

where f(λ; t, σ) = 1
σ
√

2π
exp(−(t−λ)2/(2σ2)) is the Gaussian kernel. Clearly, φσ(t)→ φ(t), as

σ → 0. Thus, if we had an algorithm to approximate (6.5), then we could take the limit and
reduce the standard deviation of the Gaussian kernel to approximate (6.4). In our context,
the question of how to compute φσ(t) amounts to computing the density distribution of the
Hessian convolved with a Gaussian kernel.

To do this, observe that

Tr(f(H)) = Tr(Qf(Λ)QT ) = Tr(f(Λ)), (6.6)

where QΛQT is the eigendecomposition of H, and let f(H) be the matrix function defined
as

f(H) , Qf(Λ)QT , Qdiag(f(λ1), ..., f(λm))QT . (6.7)

We can plug (6.6) into (6.5) to get

φσ(t) =
1

m
Tr(f(H; t, σ)). (6.8)

For a given value of t, the trace Tr(f(H; t, σ)) can be efficiently computed using the Hutchin-
son algorithm (described in §6.3.2). That is, we draw a random Rademacher vector v and
compute the expectation E[vTf(H; t, σ)v] to get

φσ(t) =
1

m
E[vTf(H; t, σ)v]. (6.9)

However, this is still intractable, as the trace computation needs to be repeated for every
value of t (which scales with the number of model parameters).

To get around this, we relax this problem further [142, 230]. Define φvσ(t) = vTf(H; t, σ)v,
in which case we have

φvσ(t) = vTf(H; t)v = vTQf(Λ; t)QTv

=
m∑
i=1

µ2
i f(λi; t),

(6.10)

where µi is the magnitude (or dot product) of v along the ith eigenvector of H. Now let us
define a probability distribution w.r.t. α with the cumulative distribution function, π(α), as
the following piece-wise function:

π(α) =


0 α ≤ λm,∑j

i=1 µ
2
i λj ≤ α ≤ λj−1,∑m

i=1 µ
2
i λ1 ≤ α.

(6.11)
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Then, by the Riemann-Stieltjes integral, it follows that

φvσ(t) =

∫ λ1

λm

f(α; t)dπ(α). (6.12)

This integral can be estimated by the Gauss quadrature rule [87],

φvσ(t) ≈
q∑
i=1

ωif(ti; t, σ), (6.13)

where (ωi, ti) is the weight-node pair to estimate the integral. The stochastic Lanczos algo-
rithm can then be used to estimate accurately this quantity [230, 86, 142]. Specifically, for
the q-step Lanczos algorithm, we have q eigenpairs (λ̃i, ṽi). Let τi = (ṽi[1])2, where ṽi[1] is
the first component of ṽi, in which case it follows that

φvσ(t) ≈
q∑
i=1

ωif(ti; t, σ) ≈
q∑
i=1

τif(λ̃i; t, σ). (6.14)

Therefore, as in the Hutchinson algorithm, with multiple different runs (e.g., nv times) of
Lanczos algorithm, φσ can be approximated by

φσ(t) = Tr(f(H)) ≈ 1

nv

nv∑
l=1

(
q∑
i=1

τ
(l)
i f(λ̃

(l)
i ; t, σ)

)
. (6.15)

See Algorithm 6 for a description of the SLQ algorithm.

6.4 Results

Here, we provide extensive experiments to study the impact of BN and residual connection
on the Hessian spectrum. We first start by discussing the experimental settings in §6.4.1,
followed by presenting the Hessian spectrum results for the entire model in §6.4.2 as well
different ResNet stages in §6.4.3.

6.4.1 Experimental Setting

Using PyHessian, we measure all three Hessian spectrum metrics (i.e., top eigenvalues, trace,
and full ESD) throughout the training process of SGD with momentum. We consider var-
ious ResNet [104] architectures, and in particular ResNet20/32/38/56 on the Cifar-10, and
we analyze these models and variants with/without BN and with/without residual connec-
tions. We also experimented with same networks tested on Cifar-100 dataset, and all of the
observations were consistent. These results are presented in Appendix.

For clarity, we refer to the networks without BN as ResNet−BN , and we refer to the
networks without residual connections as ResNet−Res. We train each model with various



CHAPTER 6. PYHESSIAN: NEURAL NETWORKS THROUGH THE LENS OF THE
HESSIAN 84

initial learning rates, and we pick the best performing result for analysis. See Appendix E.3
for more details on training settings. We analyze the spectrum throughout training at all
checkpoints. The accuracy of each model is reported in Table 6.1, and the testing curve is
shown in Figure E.2.

Table 6.1: Accuracy of ResNet, ResNet−BN , and ResNet−Res, with different depths, on
Cifar-10. The accuracy drops if the BN layer is removed (denoted by ResNet−BN), and
this degradation is more pronounced for deeper models. In fact, ResNet−BN 56 cannot be
trained at all. Removing the residual connections (denoted as ResNet−Res) also results in
slight performance degradation. Accuracy of models on Cifar-100 is reported in Table E.1.

Model\Depth 20 32 38 56

ResNet 92.01% 92.05% 92.37% 93.59%
ResNet−BN 87.27% 66.57% 53.65% N/A
ResNet−Res 90.66% 89.8% 88.92% 87.38%

6.4.2 Full Network Hessian Analysis

We start with the original ResNet model with BN and residual connections. Hereafter we
refer to this as ResNet. The behaviour of the Hessian trace throughout training is shown
in Figure 6.2. Furthermore, we show the evolution of the Hessian ESD throughout training
in Figure 6.3 for Cifar-10.

6.4.2.0.1 Batch Normalization As discussed before, a BN layer is crucial for training
NN models, and removing this component can adversely affect the generalization perfor-
mance, as is shown in Table 6.1. The drop in performance is very significant for deeper
models. For example, we could not even train ResNet56 on Cifar-10 without a BN layer,
even with hyperparameter tuning.

The first interesting observation is that removing BN layer (denoted by ResNet−BN) ex-
hibits different behaviour for shallower versus deeper models. For example, for ResNet20
we see that removing BN results in smaller trace and Hessian ESD values, as compared to
baseline, as shown in Figure 6.2 (orange curve versus blue curve), and 6.3 (second versus
first column). In more detail, from the evolution plot of Figure 6.3 throughout training,
it can be seen that the ESD of ResNet−BN 20 initially reduces significantly and centers
around zero. That is, the model gets attracted to areas with a significantly large number
of small/degenerate Hessian directions. This continues until epoch 30, at which point the
training gets attracted to regions of the loss landscape with several non-degenerate Hes-
sian directions.

This clearly shows that training without BN makes training harder, but it does not
necessarily mean that the Hessian spectrum is going to be larger than the baseline model,
despite the claim made by [206]. In fact, we only observe the smoothing behaviour proposed
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Figure 6.3: (first row) We show the Hessian ESD throughout training for
ResNet/ResNet−BN/ResNet−Res (each shown in a different column) with depth 20 on Cifar-
10. For a fixed epoch, every point corresponds to a Hessian eigenvalue. These plots show
several important phenomena. First note that removing BN (middle column) does not lead
to a non-smooth loss landscape as was claimed by [206]. We can clearly see that this is
true throughout training. However, removing the residual connection leads makes the loss
landscape non-smooth throughout training (middle/last row). We show the Hessian ESD at
epoch 0 and epoch 180. This clearly shows that removing BN leads to a maximum eigenvalue
of 100, whereas the baseline has a maximum Hessian eigenvalue of 150. See Figure E.7,
where we plot the Hessian ESD for several other epochs throughout training. We observed
the same behaviour on Cifar-100 dataset (as shown in Figure E.11).

by [206] for deeper NN models. For example, observe the Hessian trace plot of ResNet32/38,
shown in Figure 6.2. Here, the Hessian trace of ResNet−BN 32 increases to 10000 from zero,
as compared to 2000 for ResNet. The Hessian ESD also exhibits the same behaviour, as
shown in Figure E.8 and E.9. We can clearly see that the range of eigenvalues of ResNet−BN
is significantly larger, as compared to ResNet.

The Hessian ESD of ResNet32 and ResNet38 throughout the training process is shown
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in Figure E.8, E.9. Again, we see the interesting behaviour that without the BN layer, the
spectrum initially converges to degenerate Hessian directions, before finding non-degenerate
directions in later epochs of training. The Hessian trace and the range of the Hessian ESD
significantly increases as the model gets deeper.

These plots show the numerical values of the Hessian spectrum. However, the results
could be more intuitively presented via parametric plots of the loss landscape. We plot the
parametric 3D loss landscapes of ResNet20/38 on Cifar-10 with/without BN in Figure 6.1
(compare left and middle columns). These plots are computed by perturbing the model
parameters across the first and second eigenvectors of the Hessian. For ResNet20, it can
be clearly seen that removing the BN layer (middle plot) results in convergence to a flatter
local minimum, as compared to ResNet20 with BN. This observation is the opposite of the
common belief that adding BN layer makes the loss landscape smoother [206]. However, for
ResNet38, we can also see that removing the BN layer results in convergence to a point with
a higher value of loss. The visualizations corroborate our finding that initially ResNet−BN
finds points with degenerate Hessian directions, before converging to a point with non-
degenerate directions. We provide more visualizations for ResNet20 (Figure E.14), ResNet32
(Figure E.15), and ResNet38 (Figure E.16), which show the same behaviour.

In summary, our empirical results highlight two points. First, our findings show several
fine-scale behaviours when the BN layer is removed. Importantly, we find that the obser-
vation made in [206] only holds for deeper models, and are not necessarily true for shallow
networks. Second, using the scalable Hessian-based techniques implemented in PyHessian,
one can test the hypotheses that these or other claims hold more generally. For example, we
observed exactly similar behaviour for Cifar-100 dataset, as shown in Appendix E.5.
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Figure 6.4: Stage-wise Hessian trace of ResNet/ResNet−BN/ResNet−Res 32 on Cifar-10.
(See Figure E.4 for depth 20/32; and see Figure E.1 for stage illustration.) Removing
BN layer from the third stage significantly increases the trace, compared to removing BN
layer from the first/second stage. This has a direct correlation with the final generalization
performance, as shown in Table 6.2. ResNet/ResNet−BN/ResNet−Res on Cifar-100 has the
similar trend as shown in Figure E.6.
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Table 6.2: Accuracy of ResNet models on Cifar-10 with different depths is shown in the first
row. Accuracy of the corresponding architectures, but with BN removed from one of the
stages, is shown in the next three rows, respectively. (See Figure E.1 for stage definition.)
For instance, the last row is a ResNet model with no BN layer in the third stage. We observe
a general correlation between the accuracy drop and stage based Hessian analysis, shown
in Figure 6.4. In particular, we see that stages which significantly affect accuracy also exhibit
a significant increase in the Hessian trace. Models on Cifar-100 have the similar trend, as
shown in Table E.2.

Model\Depth 20 32 38 56

ResNet 92.01% 92.05% 92.37% 93.59%
RM BN stage 1 91.28% 91.98% 92.20% 92.19%
RM BN stage 2 91.49% 91.94% 91.70% 92.20%
RM BN stage 3 90.59% 88.57% 86.96% 73.77%

6.4.2.0.2 Residual Connection We next study the impact of residual connections on
the smoothness of the loss landscape. Removing residual connections leads to slightly poorer
generalization, as shown in Table 6.1, although the degradation is much smaller than remov-
ing the BN layer.

We report the behaviour of the Hessian trace for ResNet−Res in Figure 6.2 for ResNet20/32/38/56
on Cifar-10. It can clearly be seen that the trace of ResNet−Res is consistently higher than
that of ResNet, for both shallow and deep models on different datasets.

In addition, from the Hessian ESD in Figure 6.3, E.7, E.8, E.9, and E.10, we can see that
the top eigenvalues as well as the support range of ESD of ResNet−Res increases for deeper
models. These results are in line with the findings of [141].

We also visualize the loss landscape of these models in Figure 6.1, E.14, E.15, E.16,
and E.17. It can clearly be seen that the converging point for ResNet−Res becomes sharper,
as compared with ResNet, as the depth grows.

Again, our empirical results highlight two points. First, we make observations that pro-
vide a finer-scale understanding of seemingly-contradictory claims in the previous literature.
Second, using the scalable Hessian-based techniques that are implemented in PyHessian,
one can ask these questions and test the hypotheses that these or other claims hold more
generally. Similar to the previous section, we saw exactly similar behaviour for Cifar-100, as
reported in Appendix E.5.

6.4.3 Stage-wise Hessian Analysis

We also analyzed the impact of removing BN and residual connection from different stages
of the model. We define each stage of ResNet as blocks with the same activation resolution,
as schematically shown in Figure E.1.



CHAPTER 6. PYHESSIAN: NEURAL NETWORKS THROUGH THE LENS OF THE
HESSIAN 88

We plot the Hessian trace for the three stages of ResNet32 on Cifar-10 in Figure 6.4
(similar plots for ResNet20/38/56 on Cifar-10 is shown in Figure E.4). We can clearly see
that removing the BN from the last stage of ResNet32 results in a more rapid increase in the
Hessian trace, as compared to removing BN from the first or second stage. Interestingly, this
has a direct correlation with the final generalization performance reported in Table 6.2. We
can see that removing BN in the third stage results in higher accuracy drop, as compared to
removing it from other stages. A similar trend exists for other models (ResNet20/38); and we
generally observe the same behaviour on Cifar-100, as reported in Figure E.6 and Table E.2.

As for the residual connections, we can see that removing them results in a relatively
smaller increase in the Hessian trace, and correspondingly the impact of removing the residual
connections on accuracy is smaller, as compared to removing BN. See Table 6.3 for Cifar-10.

Table 6.3: Accuracy of ResNet on Cifar-10 is reported for baseline (first row), along with
architectures where the residual connection is removed at different stages.

Model\Depth 20 32 38 56

ResNet 92.01% 92.05% 92.37% 93.59%
RM Res stage 1 91.52% 92.27% 91.74% 91.79%
RM Res stage 2 91.06% 91.07% 91.08% 91.28%
RM Res stage 3 91.54% 92.09% 92.14% 92.34%

6.4.4 Summary of Results

Table 6.4 presents a summary of the tables and figures used in this work and their corre-
sponding properties, i.e., Accuracy, Trace, ESD, and Loss Landscape.

Table 6.4: Navigation summary for all figures and tables used throughout this paper.

Cifar-10 Cifar-100

Accuracy Table 6.1, Figure E.2 Table E.1, Figure E.3
RM BN Acc. Table 6.2 Table E.2
RM Res Acc Table 6.3 Table E.3
Trace Figure 6.2 Figure E.5
Stage-wise Trace Figure 6.4, E.4 Figure E.6
ESD Figure 6.3, E.7, E.8, Figure E.11, E.12,

E.9, E.10 E.13
Loss Landscape Figure 6.1, E.14, E.15, Figure E.18, E.19,

E.16, E.17 E.20
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6.5 Conclusions

We have developed PyHessian, an open-source framework for analyzing NN behaviour through
the lens of the Hessian [111]. PyHessian enables direct and efficient computation of Hessian-
based statistics, including the top eigenvalues, the trace, and the full ESD, with support
for distributed-memory execution on cloud/supercomputer systems. Importantly, since it
uses matrix-free techniques, PyHessian accomplishes this without the need to form the full
Hessian. This means that we can compute second-order statistics for state-of-the-art NNs
in times that are only marginally longer than the time used by popular stochastic gradient-
based techniques.

As a typical application, we have also shown how PyHessian can be used to study in detail
the impact of popular NN architectural changes (such as adding/modifying BN and residual
connections) on the NN loss landscape. Importantly, we found that adding BN layers does
not necessarily result in a smoother loss landscape, as claimed by [206]. We have observed
this phenomenon only for deeper models, where removing the BN layer results in convergence
to “sharp” local minima that have high training loss and poor generalization, but it does
not seem to hold for shallower models. We also showed that removing residual connections
resulted in a slightly coarser loss landscape, a finding which we illustrated with parametric
3D visualizations, and which all three Hessian spectrum metrics confirmed. We have open-
sourced PyHessian to encourage reproducibility and as a scalable framework for research on
second-order optimization methods, on practical diagnostics for NN learning/generalization,
as well as on analytics tools for NNs more generally.
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Part III

Novel Application



91

Chapter 7

HAWQ-V3: Hessian Aware
trace-Weighted integer-only
Quantization of Neural Networks

7.1 Introduction

An important step toward realizing pervasive deep learning is enabling real-time inference,
both at the edge and in the cloud, with low energy consumption and state-of-the-art model
accuracy. This will have a significant impact on applications such as real-time intelligent
healthcare monitoring, autonomous driving, audio analytics, and speech recognition. Over
the past decade, we have observed significant improvements in the accuracy of Neural Net-
works (NNs) for various tasks. However, the state-of-the-art models are often prohibitively
large and too compute-heavy to be deployed for real-time use. A promising approach to
address this is through quantization [94, 101], where low-precision quantized integer values
are used to express the model parameters and feature maps. That can help reduce the model
footprint, and improve inference speed and energy consumption.

However, existing quantization algorithms often use simulated quantization, where the
parameters are stored with quantization, but are cast to floating point for inference. As
a result, all or part of the inference operations (e.g. convolution, matrix operations, batch
norm layers, residual connections) are performed using floating point precision. This of course
limits the speed up as we cannot utilize low precision logic. To address this, we build upon
existing integer-only quantization methods [120], and propose systematic methods to extend
them to low and mixed-precision quantization with Hessian as the sensitive metric [69]. In
particular, we make the following contributions:
• We develop HAWQ-V3, a mixed-precision integer-only quantization framework with

integer-only multiplication, addition, and bit shifting with static quantization. Impor-
tantly, no floating point and no integer division calculation is performed in the entire
inference. This includes the batch norm layers and residual connections, which are typi-
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cally kept at floating point precision in prior integer-only quantization work [70]. While
keeping these operations in floating point helps accuracy, this is not allowed for integer-
only hardware. We show that ignoring this and attempting to deploy a model that uses
floating point residual on integer-only hardware can lead to more than 90% mismatch
( Figure F.3). HAWQ-V3 completely avoids this by using a novel approach to perform
residual connections in pure integer-only arithmetic. See Section 7.3.3 and Appendix F.7
for details.

• We propose a novel hardware-aware mixed-precision quantization formulation that uses
an Integer Linear Programming (ILP) problem to find the best bit-precision setting. The
ILP solver minimizes the model perturbation using the Hessian metric while observing
application-specific constraints on model size, latency, and total bit operations. Com-
pared to the contemporary work of [115], our approach is hardware-aware and uses direct
hardware measurement to find a bit precision setting that has the optimal balance between
latency and accuracy. See Section 7.3.4 and Appendix F.9 for details.

• To verify the feasibility of our approach, we deploy the quantized integer-only models
using Apache TVM [51] for INT8, INT4, and mixed-precision settings. To the best of our
knowledge, our framework is the first that adds INT4 support to TVM. By profiling the
latency of different layers, we show that we can achieve an average of 1.47× speed up with
INT4, as compared to INT8 on a T4 GPU for ResNet50. See Section 7.3.5 and Table 7.2
for more details.

• We extensively test HAWQ-V3 on a wide range of workloads, including ResNet18, ResNet50,
and InceptionV3, and show that we can achieve a substantial performance improvement,
as compared to the prior state-of-the-art. For instance, we achieve an accuracy of 78.50%
with INT8 quantization, which is more than 4% higher than prior integer-only work for
InceptionV3. Furthermore, we show that mixed-precision INT4/8 quantization can be
used to achieve higher speed up as compared to INT8 inference with minimal impact on
accuracy. For example, for ResNet50 we can speedup latency by 23% as compared to INT8
and still achieve 76.73% accuracy. See Section 7.4 and Table 7.1, 7.2 for more details.

7.2 Related Work

There have been significant efforts recently to improve the trade-off between accuracy and
efficiency of NN models. These can be broadly categorized as follows: (i) Designing new NN
architectures [117, 204, 226]; (ii) Co-designing NN architecture and hardware together [100,
83, 241, 109]; (iii) Pruning redundant filters [135, 102, 161, 140, 152, 248]; (iv) knowledge
distillation [107, 160, 185, 256]; and (v) using quantization (reduced precision). Here, we
provide a more detailed overview of this related work.

Quantization. A common solution is to compress NN models with quantization [7,
114, 190, 267, 268, 120, 262, 70, 54], where low-bit precision is used for weights/activations.
Quantization reduces model size without changing the original network architecture, and it
could potentially permit the use of low-precision matrix multiplication or convolution.
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Figure 7.1: Illustration of fake vs true quantization for convolution and batch normalization
folding. For simplicity, we ignore the affine coefficient of BN. (Left) In the simulated quan-
tization (aka fake quantization approach), weights and activations are simulated as integers
with floating point representation, and all the multiplication and accumulation happen in
FP32 precision. Furthermore, the BN parameters (i.e. µ and σ) are stored and computed
using FP32 precision. This is undesirable but can significantly help accuracy since BN pa-
rameters are sensitive to quantization. However, with this approach, one cannot benefit
from low-precision ALUs. (Right) An illustration of the integer-only pipeline with dyadic
arithmetic for convolution and BN folding. The standard deviation (σ) in BN is merged
into the quantization scale of the weights, and the mean is quantized to INT32 and merged
as a bias into the weights (denoted by bi32) Note that with this approach, all the weights
and activations are stored in integer format, and all the multiplications are performed with
INT4 and accumulated in INT32 precision. Finally, the accumulated result is requantized to
INT4 with dyadic scaling (denoted by SwSh

σSa
). Importantly, no floating point or even integer

division is performed. See Section 7.3.2 and Appendix F.4 for more details.

While the gains on speed/power increase for low-precision quantization, low-precision
quantization suffers from accuracy degradation. To address this, recent work uses non-
uniform quantizers [262], channel-wise quantization [128], and progressive quantization-aware
fine-tuning [267]. Other works try to include periodic regularization to assist quantiza-
tion [167, 76], apply post training quantization [14, 33, 115], or improve accuracy by changing
the channel counts accordingly for different layers [54]. Despite these advances, performing
uniform ultra low-bit quantization still results in a significant accuracy degradation. A
promising direction is to use mixed-precision quantization [269, 235, 70, 215], where some
layers are kept at higher precision, while others are kept at a lower precision. However, a
challenge with this approach is finding the right the mixed-precision setting for the different
layers. A brute force approach is not feasible since the search space is exponentially large in
the number of layers.

HAQ [235] proposes to search this space by applying a Reinforcement Learning algorithm,
while [242] uses a Differentiable Neural Architecture Search. However, these searching meth-
ods require large computational resources, and their performance is very sensitive to hyper-
parameters and even initialization. To address these issues, HAWQ [70, 69] introduces an
automatic way to find good mixed-precision settings based on the sensitivity obtained using
the Hessian spectrum. However, the Pareto frontier method in [69] is not flexible enough to
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satisfy simultaneously different requirements on hardware. To address this, we propose here
an ILP solution that can generate mixed-precision settings with various constraints (such
as model size, BOPS, and latency), and which can be solved within seconds on commodity
hardware. The contemporary work of [115] also proposes to use an ILP. However, their
approach is not hardware aware, and their approach uses FP32 casting.

Another issue is that the quantized weights and activations need to be converted to
floating point precision during inference, as shown in Figure 7.1. This high-precision casting
can have high overhead and limits inference speed, especially for hardware with limited on-
chip memory. Using FP32 ALUs also requires a larger die area in the chip, further limiting
the peak computational capacity of the hardware. The work of [120] addresses this casting
problem by using integer-only quantization in INT8 precision. However, there are several
shortcomings associated with their approach (which are addressed in HAWQ-V3). First,
[120] does not support low-precision or mixed-precision quantization. We show that this is
useful in practice, as it can improve the inference speed by up to 50% with a small impact on
accuracy. Second, both [120] and HAWQ are hardware agnostic and do not co-design/adapt
the quantization for the target hardware. In contrast, the ILP approach in HAWQ-V3 is
hardware aware, and it directly takes this into account when determining mixed-precision bit
setting. Third, as we discuss in Section 7.3.2, the approach used in [120] leads to sub-optimal
accuracy for INT8 quantization, while our approach can achieve up to 5% higher accuracy
for INT8 inference. Finally, to address the absence of low-precision support in previous
works [120, 70], we extend TVM to support INT4 and mixed-precision quantization, and
we validate our results by directly running the quantized model with low bit-width on the
hardware. See Appendix F.1 for the discussion of different deployment frameworks.

7.3 Methodology

Assume that the NN has L layers with learnable parameters, denoted as {W1,W2, ...,WL},
with θ denoting the combination of all such parameters. For a supervised setting, the goal
is to optimize the following empirical risk minimization loss function:

L(θ) =
1

N

∑N

i=1
l(xi, yi; θ), (7.1)

where (x, y) is the input data and the corresponding label, l(x, y; θ) is the loss function (e.g.,
MSE or Cross Entropy loss), and N is the total number of data points. We assume that we
have the trained model parameters θ given in floating point precision. Our goal is to quantize
the model with the optimal trade-offs among memory footprint, speed, and accuracy. Below,
we first define quantization and then present HAWQ-V3.

Uniform Quantization. Quantization restricts NN weights/activations to a finite set
of values as follows:

Q(r) = Int
(
r/S

)
− Z, (7.2)

where Q is the quantization operator, r is a real valued number (activation or a weight), S
is a real valued scaling factor, and Z is the zero point, chosen such that the 0 value would
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exactly map to quantized values. Furthermore, Int maps a floating point value to an integer
value through a rounding operation (e.g., round to nearest and truncation).

This formulation for Q corresponds to uniform quantization. However, some work in the
literature has also explored non-uniform quantization [55, 262, 177, 235]. Although non-
uniform quantization may achieve higher accuracy for a fixed bit-width, such approaches are
typically difficult to deploy on hardware to reduce latency.1 As such, for HAWQ-V3, we
only focus on uniform quantization. Meanwhile, for HAWQ-V3, we use (i) symmetric quan-
tization for weights and asymmetric quantization for activations; and (ii) static quantization
for all the scaling factors S. Please see Appendix F.2 for more details.

7.3.1 Quantized Matrix Multiplication and Convolution

Consider a layer with hidden activation denoted as h and weight tensor denoted as W ,
followed by ReLU activation. First, h and W are quantized to Shqh and Swqw, where Sh
and Sw are the real valued quantization scales, qh and qW are the corresponding quantized
integer values. The output result, denoted with a, can be computed as follows:

a = SwSh(qw ∗ qh), (7.3)

where qw ∗ qh is the matrix multiplication (or convolution) calculated with integer in low
precision (e.g., INT4) and accumulated in INT32 precision. This result is then requantized
and sent to the next layer as follows:

qa = Int

(
a

Sa

)
= Int

(
SwSh
Sa

(qw ∗ qh)

)
, (7.4)

where Sa is the pre-calculated scale factor for the output activation.
In HAWQ-V3, the qw ∗ qh operation is performed with low-precision integer-only mul-

tiplication and INT32 accumulation, and the final INT32 result is quantized by scaling it
with SwSh/Sa. The latter is a floating point scaling that needs to be multiplied with the
accumulated result (in INT32 precision). A naive implementation requires floating point
multiplication for this stage. However, this can be avoided by enforcing the scaling to be a
dyadic number. Dyadic numbers are rational numbers with the format of b/2c, where b, c
are two integer numbers. As such, a dyadic scaling in (7.4) can be efficiently performed
using INT32 integer multiplication and bit shifting. Given a specific SwSh/Sa, we use DN
(representing Dyadic Number) to denote the function that can calculate the corresponding
b and c:

b/2c = DN (SwSh/Sa) . (7.5)

An advantage of using dyadic numbers besides avoiding floating point arithmetic, is that
it removes the need to support division (which typically has an order of magnitude higher
latency than multiplication) in the hardware. This approach is used for INT8 quantization
in [120], and we enforce all the rescaling to be dyadic for low-precision and mixed-precision
quantization as well.

1However, they can reduce total model footprint.
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7.3.2 Batch Normalization

Batch normalization (BN) is an important component of most NN architectures, especially
for computer vision applications. BN performs the following operation to an input activation
a:

BN(a) = β
a− µB
σB

+ γ (7.6)

where µB and σB are the mean and standard deviation of a, and β, γ are trainable parame-
ters. During inference, these parameters (both statistics and trainable parameters) are fixed,
and therefore the BN operations could be fused with the convolution (see Appendix F.4).
However, an important problem is that quantizing the BN parameters often leads to signifi-
cant accuracy degradation. As such, many prior quantization methods keep BN parameters
in FP32 precision (e.g., [69, 33, 54, 55, 262, 177], just to name a few). This makes such
approaches not suitable for integer-only hardware. While using such techniques help accu-
racy, HAWQ-V3 completely avoids that. We fuse the BN parameters with the convolution
and quantized them with integer-only approach (Please see Figure 7.1 where we compare
simulated qauntization and HAWQ-V3 for BN and convolution.).

Another important point to discuss here is that we found the BN folding used in [120]
to be sub-optimal. In their approach BN and CONV layers are fused together while BN
running statistics are still kept updating. This actually requires computing each convolution
layer twice, once without BN and then with BN (as illustrated in [120, Figure C8]). However,
we found that this is unnecessary and degrades the accuracy. Instead, in HAWQ-V3, we
follow a simpler approach where we first keep the Conv and BN layer unfolded, and allow
the BN statistics to update. After several epochs, we then freeze the running statistics in
the BN layer and fold the CONV and BN layers (please see Appendix F.4 for details). As
we will show in Section 7.4, this approach results in better accuracy as compared to [120].

7.3.3 Residual Connection

Residual connection [104] is another important component in many NN architectures. Similar
to BN, quantizing the residual connections can lead to accuracy degradation, and as such,
some prior quantization works perform the operation in FP32 precision [55, 262, 235]. There
is a common misunderstanding that this may not be a big problem. However, this actually
leads to complete loss of signal, especially for low precision quantization. The main reason
for this is that quantization is not a linear operation, that is Q(a+b) 6= Q(a)+Q(b) (a, b are
floating point numbers). As such, performing the accumulation in FP32 and then quantizing
is not the same as accumulating quantized values. Therefore, it is not possible to deploy
quantization methods that keep residual connection in FP32 in integer-only hardware (we
provide more detailed discussion of this in Appendix F.6 and also quantify the resulting error
which can be more than 90%).

We avoid this in HAWQ-V3, and use INT32 for the residual branch. We perform the
following steps to ensure that the addition operation can happen with dyadic arithmetic. Let
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Figure 7.2: Illustration of HAWQ-V3 for a residual block with and without transition layer.
Input feature map is given in INT32 precision, which is requantized to INT4 precision (green
boxes) before any convolution layer (gray boxes). The BN layer is folded into the convolution.
The residual addition is performed in INT32 precision, and the final accumulated result is
re-scaled and sent to the next layer. For blocks with a transition layer, we only quantize the
input once to INT4 and we use the same result for both 1× 1 convolutions.

us denote the activation passing through the residual connection as r = Srqr.
2 Furthermore,

let us denote the activation of the main branch before residual addition as m = Smqm, and
the final output after residual accumulation by a = Saqa. Then we will have:

qa = DN (Sm/Sa) qm + DN (Sr/Sa) qr. (7.7)

Note that with this approach, we only need to perform a dyadic scaling of qm and add
the result with the dyadically scaled qr. All of these operations can happen with integer-
only arithmetic. Also we should note that in our approach all the scales are statically
known. These steps are schematically illustrated in Figure 7.2 for a residual connection
with/without downsampling. Similar approach is performed for concatenation layer as well
(see Appendix F.5).

7.3.4 Mixed Precision and Integer Linear Programming

Uniformly quantizing all the layers to low bit-width (e.g. INT4) could lead to significant
accuracy degradation. However, it is possible to benefit from low-precision quantization
by keeping a subset of sensitive layers at high precision [70]. The basic idea is to keep
sensitive layers at higher precision and insensitive layers at lower precision. An important
component of HAWQ-V3 is that we directly consider hardware-specific metrics such as
latency, to select the bit-precision configuration. This is important since a layer’s latency

2This is either the input or the output activation after the downsampling layer.
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does not necessarily halve when quantized from INT8 to INT4 precision. In fact, as we
discuss in Section 7.4, there are specific layer configurations that do not gain any speed up
when quantized to low precision, and some that superlinearly benefit from quantization. As
such, quantizing the former will not lead to any latency improvement, and will only hurt
accuracy. Therefore, it is better to keep such layers at high precision, even if they have low
sensitivity. These trade-offs between accuracy and latency should be taken into consideration
when quantizing them to low precision. Importantly, these trade-offs are hardware-specific
as latency in general does not correlate with the model size and/or FLOPS. However, we can
consider this by directly measuring the latency of executing a layer in quantized precision
on the target hardware platform. This trade-off is schematically shown in Figure 7.3 (and
later quantified in Figure F.4). We can use an Integer Linear Programming (ILP) problem to
formalize the problem definition of finding the bit-precision setting that has optimal trade-off
as described next.

Assume that we have B choices for quantizing each layer (i.e., 2 for INT4 or INT8).
For a model with L layers, the search space of the ILP will be BL. The goal of solving
the ILP problem is to find the best bit configuration among these BL possibilities that
results in optimal trade-offs between model perturbation Ω, and user-specified constraints
such as model size, BOPS, and latency. Each of these bit-precision settings could result
in a different model perturbation. To make the problem tractable, we assume that the
perturbations for each layer are independent of each other (i.e., Ω =

∑L
i=1 Ω

(bi)
i , where Ω

(bi)
i

is the i-th layer’s perturbation with bi bit)3. This allows us to precompute the sensitivity of
each layer separately, and it only requires BL computations. For the sensitivity metric, we
use the Hessian based perturbation proposed in [69, Eq. 2.11], which is defined as

Ωi =
1

ni
Tr(Hi), (7.8)

where ni is the number of parameters in the i− th layer and Hi is the Hessian matrix of loss
w.r.t. the weight in the i-th layer. The ILP problem tries to find the right bit precision that
minimizes this sensitivity, as follows:

Objective: min{bi}Li=1

∑L

i=1
Ω

(bi)
i , (7.9)

Subject to:
∑L

i=1
M

(bi)
i ≤ Model Size Limit, (7.10)∑L

i=1
G

(bi)
i ≤ BOPS Limit, (7.11)∑L

i=1
Q

(bi)
i ≤ Latency Limit. (7.12)

Here, M
(bi)
i denotes the size of i-th layer with bi bit quantization, Q

(bi)
i is the associated

latency, and G
(bi)
i is the corresponding BOPS required for computing that layer. The latter

3Similar assumption can be found in [70, 69].
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Figure 7.3: Illustration of inference speed and generalization performance trade-off of
ResNet18. For each layer, we need to consider the speedup of INT4 vs INT8 and the
sensitivity based on the second-order (Hessian) sharpness [69] of this layer.

measures the total Bit Operations for calculating a layer [11]:

G
(bi)
i = bwi

baiMACi,

where MACi is the total Multiply-Accumulate operations for computing the i-th layer, and
bwi
, bai are the bit precision used for weight and activation.4 Note that it is not necessary

to set all these constraints at the same time. Typically, which constraint to use depends on
the end-user application.

We solve the ILP using open source PULP library [198] in Python, where we found that
for all the configurations tested in the paper, the ILP solver can find the solution in less than
1 second given the sensitivity metric. For comparison, the RL based method of [235] could
take tens of hours to find the right bit-precision setting. Meanwhile, as can be seen, our ILP
solver can be easily used for multiple constraints. However, the complexity of Pareto frontier
proposed by [69] is exponentially increasing for multiple constraints. In Section 7.4.2, we
show the results with different constraints.

We should also mention that the contemporary work of [115], also proposed an ILP
formulation. However, our approach is hardware-aware and we directly deploy and measure
the latency of each layer in hardware.

4bwi and bai are always the same in HAWQ-V3. As such, HAWQ-V3 does not need to cast lower-
precision integer numbers, e.g., INT4, to higher-precision integer numbers, e.g., INT8, which is more efficient
than [69, 33, 235].
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7.3.5 Hardware Deployment

Model size alone is not a good metric to measure the efficiency (speed and energy consump-
tion) of NNs. In fact, it is quite possible that a small model would have higher latency and
consume a larger amount of energy for inference. The same is also true for FLOPs. The
reason is that neither model size nor FLOPs can account for cache misses, data locality,
memory bandwidth, underutilization of hardware, etc. To address this, we need to deploy
and directly measure the latency.

We target Nvidia Turing Tensor Cores of T4 GPU for deployment, as it supports both
INT8 and INT4 precision and has been enhanced for deep learning network inference. The
only API available is the WMMA kernel call which is a micro-kernel for performing matrix-
matrix operations in INT4 precision on Tensor Cores. However, there is also no existing
compiler that would map a NN quantized to INT4 to Tensor Cores using WMMA instruc-
tions. To address this challenge, another contribution of our work is extending TVM [51]
to support INT4 inference with/without mixed precision with INT8. This is important so
we can verify the speed benefits of mixed-precision inference. To accomplish this, we had
to add new features in both graph-level IR and operator schedules to make INT4 inference
efficient. For instance, when we perform optimizations such as memory planning, constant
folding, and operator fusion, at the graph-level IR, 4-bit data are involved. However, on
byte-addressable machines, manipulating 4-bit data individually leads to inefficiency in stor-
age and communication. Instead, we pack eight 4-bit elements into an INT32 data type and
perform the memory movement as a chunk. In the final code generation stage, the data type
and all memory access will be adjusted for INT32. By adopting similar scheduling strategies
to Cutlass [172], we implement a new direct convolution schedule for Tensor Cores for both
8-bit and 4-bit data in TVM. We set the knobs for the configurations such as thread size,
block size, and loop ordering so that the auto-tuner in TVM could search for the best latency
settings.

Another important point is that we have completed the pipeline to test directly the
trained weights and to avoid using random weights for speed measurements. This is impor-
tant, since small discrepancies between the hardware implementation may go unnoticed from
the quantization algorithm in the NN training framework (PyTorch in our case) which does
not use TVM for the forward and backward propagation. To avoid any such issue, we made
sure that the results between TVM and PyTorch match for every single layer and stage to
machine-precision accuracy, and we verified the final Top-1 accuracy when executed in the
hardware with integer-only arithmetic. In Appendix F.7, we present the error accumula-
tion of feature maps for ResNet50 with INT4 quantization, which uses fake quantization in
PyTorch and is deployed in TVM.

7.4 Results

In this section, we first discuss ImageNet results on various models (ResNet18/50 and Incep-
tionV3) for INT8, INT4, and mixed-precision INT4/8 with/without distillation. Afterward,
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we study the different use cases of the ILP formulation, and the corresponding trade-offs
between model size, latency, and accuracy. Detailed discussion on the implementation and
set up is provided in Appendix F.8. For all the experiments we made sure to report and
compare with the highest accuracy known for the baseline NN model in FP32 (i.e., we use
a strong baseline for comparison). This is important since using a weak baseline accuracy
could lead to misleading quantization accuracy.

Table 7.1: Quantization results for ResNet18/50 and InceptionV3. Here, we abbreviate
Integer-Only Quantization as “Int”, Uniform Quantization as “Uni”, the Baseline Accuracy
as ”BL”, Weight Precision and Activation Precision as “Precision”, Model Size as “Size” (in
MB), Bit Operations as “BOPS” (in G), and Top-1 Accuracy as “Top-1”. Also, “WxAy”
means weight with x-bit and activation with y-bit, and 4/8 means mixed precision with 4 and
8 bits. “MP” means mixed precision with bitwidth ranging from 1-bit to 8-bit, and “W1*”
means the bitwidth is 1-bit but the network architecture is changed (by using more channels).
Our result with/without distillation is represented as HAWQ-V3+Dist/HAWQ-V3.

[ResNet18]

Method Int Uni BL Precision Size BOPS Top-1

RVQuant [177] 7 7 69.91 W8A8 11.1 116 70.01
HAWQ-V3 3 3 71.47 W8A8 11.1 116 71.56

PACT [55] 7 3 70.20 W5A5 7.2 50 69.80
LQ-Nets [262] 7 7 70.30 W4A32 5.8 225 70.00
HAWQ-V3 3 3 71.47 W4/8A4/8 6.7 72 70.22
HAWQ-V3+Dist 3 3 71.47 W4/8A4/8 6.7 72 70.38

CalibTIB[115] 7 3 71.97 W4A4 5.8 34 67.50
HAWQ-V3 3 3 71.47 W4A4 5.8 34 68.45

[ResNet50]

Method Int Uni BL Precision Size BOPS Top-1

Integer Only [120] 3 3 76.40 W8A8 24.5 247 74.90
RVQuant [177] 7 7 75.92 W8A8 24.5 247 75.67
HAWQ-V3 3 3 77.72 W8A8 24.5 247 77.58

PACT [55] 7 3 76.90 W5A5 16.0 101 76.70
LQ-Nets [262] 7 7 76.50 W4A32 13.1 486 76.40
RVQuant [177] 7 7 75.92 W5A5 16.0 101 75.60
HAQ [235] 7 7 76.15 WMPA32 9.62 520 75.48
OneBitwidth [54] 7 3 76.70 W1*A8 12.3 494 76.70
HAWQ-V3 3 3 77.72 W4/8A4/8 18.7 154 75.39
HAWQ-V3+Dist 3 3 77.72 W4/8A4/8 18.7 154 76.73

CalibTIB[115] 7 3 77.20 W4A4 13.1 67 73.70
HAWQ-V3 3 3 77.72 W4A4 13.1 67 74.24

[InceptionV3]

Method Int Uni BL Precision Size BOPS Top-1

Integer Only [120] 3 3 78.30 W8A8 22.7 366 74.20
RVQuant [177] 7 7 74.19 W8A8 22.7 366 74.22
HAWQ-V3 3 3 78.88 W8A8 22.7 366 78.76

Integer Only [120] 3 3 78.30 W7A7 20.1 280 73.70
HAWQ-V3 3 3 78.88 W4/8A4/8 19.6 265 74.65
HAWQ-V3+Dist 3 3 78.88 W4/8A4/8 19.6 265 74.72

HAWQ-V3 3 3 78.88 W4A4 12.3 92 70.39
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7.4.1 Low Precision Integer-Only Quantization Results
We first start with ResNet18/50 and InceptionV3 quantization on ImageNet, and compare
the performance of HAWQ-V3 with other approaches, as shown in Table 7.1.

Uniform 8-bit Quantization. Our 8-bit quantization achieves similar accuracy com-
pared to the baseline. Importantly, for all the models HAWQ-V3 achieves higher accuracy
than the integer-only approach of [120]. For instance, on ResNet50, we achieve 2.68% higher
accuracy as compared to [120]. This is in part due to our BN folding strategy that was
described in Section 7.3.2.

Uniform 4-bit Quantization. To the best of our knowledge, 4-bit results of HAWQ-
V3 are the first integer-only quantization results reported in the literature. The accuracy
results for ResNet18/50, and InceptionV3 are quite high, despite the fact that all of the
inference computations are restricted to be integer multiplication, addition, and bit shifting.
While there is some accuracy drop, this should not be incorrectly interpreted that uniform
INT4 is not useful. On the contrary, one has to keep in mind that certain use cases have
strict latency and memory footprint limit for which this may be the best solution. However,
higher accuracy can be achieved through mixed-precision quantization.

Mixed 4/8-bit Quantization. The mixed-precision results improve the accuracy by
several percentages for all the models, while slightly increasing the memory footprint of
the model. For instance, the mixed-precision result for ResNet18 is 1.88% higher than its
INT4 counterpart with just a 1.9MB increase in model size. Further improvements are also
possible with distillation (denoted as HAWQ-V3+Dist in the table). For ResNet50, the
distillation can boost the mixed-precision by 1.34%. We found that distillation helps most
for mixed-precision quantization, and we found little to no improvement for uniform INT8,
or uniform INT4 quantization cases.5

Overall, the results show that HAWQ-V3 achieves comparable accuracy to prior quan-
tization methods including both uniform and mixed-precision quantization (e.g., PACT,
RVQuant, OneBitwidth, HAQ which use FP32 arithmetic, and/or non-standard bit preci-
sion such as 5 bits, or different bit-width for weights and activations). Similar observations
hold for InceptionV3, as reported in Table 7.1.

7.4.2 Mixed-precision Results with Different Constraints

Here, we discuss various scenarios where different constraints could be imposed for quan-
tization, and the interesting trade-offs associated with each scenario. The ILP problem
in (7.9) has three constraints of model size, BOPS, and latency. We consider three differ-
ent thresholds for each of the constraints and study how the ILP balances the trade-offs to
obtain an optimal quantized model. We also focus on the case, where the practitioner is not
satisfied with the performance of the INT4 quantization and wants to improve the perfor-
mance (accuracy, speed, and model size) through mixed-precision quantization (INT4 and

5We used simple distillation without extensive tuning. One might be able to improve the results further
with more sophisticated distillation algorithms.
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Table 7.2: Mixed-precision quantization results for ResNet18 and ResNet50 with different
constraints. Here, we abbreviate constraint level as “Level”. Model Size as “Size”, Bit
Operations as “BOPS”, the speedup as compared to INT8 results as “Speed”, and Top-
1 Accuracy as “Top-1”, The last column of Top-1 represents results of HAWQ-V3 and
HAWQ-V3+Dist.

[ResNet18]

Level Size (MB) BOPS (G) Speed Top-1

INT8 – 11.2 114 1x 71.56

S
iz

e

High 9.9 103 1.03x 71.20/71.59
Medium 7.9 98 1.06x 70.50/71.09

Low 7.3 95 1.08x 70.01/70.66

B
O

P
S High 8.7 92 1.12x 70.40/71.05

Medium 6.7 72 1.21x 70.22/70.38
Low 6.1 54 1.35x 68.72/69.72

L
at

en
cy High 8.7 92 1.12x 70.40/71.05

Medium 7.2 76 1.19x 70.34/70.55
Low 6.1 54 1.35x 68.56/69.72

INT4 – 5.6 28 1.48x 68.45

[ResNet50]

Level Size (MB) BOPS (G) Speed Top-1

INT8 – 24.5 247 1x 77.58

S
iz

e

High 21.3 226 1.09x 77.38/ 77.58
Medium 19.0 197 1.13x 75.95/76.96

Low 16.0 168 1.18x 74.89/76.51

B
O

P
S High 22.0 197 1.16x 76.10/76.76

Medium 18.7 154 1.23x 75.39/76.73
Low 16.7 110 1.30x 74.45/76.03

L
at

en
cy High 22.3 199 1.13x 76.63/76.97

Medium 18.5 155 1.21x 74.95/76.39
Low 16.5 114 1.28x 74.26/76.19

INT4 – 13.1 67 1.45x 74.24

INT8). The ILP formulation enables the practitioner to set each or all of these constraints.
Here, we present results when only one of these constraints is set at a time. The results are
shown in Table 7.2, which is split into three sections of Size (model size), BOPS, and La-
tency. Each section represents the corresponding constraint as specified by the practitioner.
The ILP solver then finds the optimal mixed-precision setting to satisfy that constraint,
while maximizing accuracy. See Appendix F.9 for the example of the latency constraint for



CHAPTER 7. HAWQ-V3: HESSIAN AWARE TRACE-WEIGHTED INTEGER-ONLY
QUANTIZATION OF NEURAL NETWORKS 104

ResNet18.
We start with the model size and BOPS constraints for ResNet18. The model size of

pure INT4 quantization is 5.6MB, and INT8 is 11.2MB. However, the accuracy of INT4
quantization is 68.45% which maybe low for a particular application. The practitioner then
has the option to set the model size constraint to be slightly higher than pure INT4. One
option is to choose 7.9MB which is almost in between INT4 and INT8. For this case, the
ILP solver finds a bit-precision setting that results in 71.09% accuracy which is almost the
same as INT8. This model is also 6% faster than INT8 quantization.

Another possibility is to set the speed/latency as a constraint. The results for this setting
are represented under the “Latency” row in Table 7.2. For example, the practitioner could
request the ILP to find a bit-precision setting that would result in 19% faster latency as
compared to the INT8 model (see “Medium” row). This results in a model with an accuracy
of 70.55% with a model size of only 7.2MB. A similar constraint could also be made for
BOPS.

Several very interesting observations can be made from these results. (i) The correlation
between model size and BOPS is weak which is expected. That is a larger model size does
not mean higher BOPS and vice versa. For example, compare Medium-Size and High-BOPS
for ResNet18. The latter has lower BOPS despite being larger (and is actually faster as well).
(ii) The model size does not directly correlate with accuracy. For example, for ResNet50,
High-BOPS has a model size of 22MB and accuracy of 76.76%, while High-Size has a smaller
model size of 21.3MB but higher accuracy of 77.58%.

In summary, although directly using INT4 quantization may result in large accuracy
degradation, we can achieve significantly improved accuracy with much faster inference as
compared to INT8 results. This gives the practitioner a wider range of choices beyond
just INT8 quantization. Finally, we should mention that the accuracy and speed for all of
the results shown for ResNet18/50 and InceptionV3 have been verified by directly measuring
them when executed in quantized precision in hardware through TVM. As such, these results
are actually what the practitioner will observe, and these are not simulated results.

7.5 Conclusions

In this work, we presented HAWQ-V3, a new low-precision integer-only quantization frame-
work, where the entire inference is executed with only integer multiplication, addition, and
bit shifts. In particular, no FP32 arithmetic or even integer division is used in the entire
inference. We presented results for uniform and mixed-precision INT4/8. For the latter,
we proposed a hardware-aware ILP based method that finds the optimal trade-off between
model perturbation and application specific constraints such as model size, inference speed,
and total BOPS. The ILP problem can be solved very efficiently, under a second for all the
models considered here. We showed that our approach can achieve up to 5% higher accuracy
as compared to the prior integer-only approach of [120]. Finally, we directly implemented
the low-precision quantized models in hardware by extending TVM to support INT4 and
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INT4/8 inference. We verified all the results, by matching the activation of each layer with
our PyTorch framework (up to machine precision), including the verification of the final ac-
curacy of the model. The framework, the TVM implementation, and the quantized models
have been open sourced [112].
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Chapter 8

TRAttack: Trust Region Based
Adversarial Attack on Neural
Networks

8.1 Introduction

Deep Neural Networks (DNNs) have achieved impressive results in many research areas,
such as classification, object detection, and natural language processing. However, recent
studies have shown that DNNs are often not robust to adversarial perturbation of the input
data [225, 89]. This has become a major challenge for DNN deployment, and significant
research has been performed to address this. These efforts can be broadly classified into three
categories: (i) research into finding strategies to defend against adversarial inputs (which
has so far been largely unsuccessful); (ii) new attack methods that are stronger and can
break the proposed defense mechanisms; and (iii) using attack methods as form of implicit
adversarial regularization for training neural networks [253, 211, 251]. Our interest here is
mainly focused on finding more effective attack methods that could be used in the latter two
directions. Such adversarial attack methods can be broadly classified into two categories:
white-box attacks, where the model architecture is known; and black-box attacks, where the
adversary can only perform a finite number of queries and observe the model behaviour.
In practice, white-box attacks are often not feasible, but recent work has shown that some
adversarial attacks can actually transfer from one model to the other [164]. Therefore, precise
knowledge of the target DNN may actually not be essential. Another important finding in
this direction is the existence of an adversarial patch, i.e., a small set of pixels which, if
added to an image, can fool the network. This has raised important security concerns for
applications such as autonomous driving, where addition of such an adversarial patch to
traffic signs could fool the system [29].

Relatedly, finding more efficient attack methods is important for evaluating defense
strategies, and this is the main focus of our paper. For instance, the seminal work of [36]
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Figure 8.1: An example of DeepFool, CW, and our TR attack on AlexNet, with L2 norm.
Both CW and TR perturbations are smaller in magnitude and more targeted than Deep-
Fool’s (2× smaller here). TR attack obtains similar perturbation as CW, but 15× faster.
In the case of the VGG-16 network, we achieve an even higher speedup of 37.5× (please
see Figure 8.4 for timings).
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introduced a new type of optimization based attack, commonly referred to as CW (Carlini-
Wagner) attack, which illustrated that defensive distillation [175] can be broken with its
stronger attack. The latter approach had shown significant robustness to the fast gradient
sign attack method [89], but not when tested against the stronger CW attack. Three metrics
for an efficient attack are the speed with which such a perturbation can be computed, the
magnitude or norm of the perturbation that needs to be added to the input to fool the net-
work, and the transferability of the attack to other networks. Ideally (from the perspective
of the attacker), a stronger attack with a smaller perturbation magnitude is desired, so that
it could be undetectable (e.g. an adversarial patch that is harder to detect by humans).

Figure 8.2: An example of DeepFool and TR attack on VGG-16, with L∞ norm. The first
pattern is the original image. The second pattern is the image after TR attack. The final
two patterns are the perturbations generated by DeepFool and TR. The TR perturbation
is smaller than DeepFool’s (1.9× smaller). Also, the TR perturbation is more concentrated
around the butterfly.

In this work, we propose a novel trust region based attack method. Introduced in [221,
57], trust region (TR) methods form a family of numerical optimization methods for solv-
ing non-convex optimization problems [171]. The basic TR optimization method works by
first defining a region, commonly referred to as trust region, around the current point in
the optimization landscape, in which a (quadratic) model approximation is used to find a
descent/ascent direction. The idea of using this confined region is due to the model approx-
imation error. In particular, the trust region method is designed to improve upon vanilla
first-order and second-order methods, especially in the presence of non-convexity.

We first consider a first-order TR method, which uses gradient information for attacking
the target DNN model and adaptively adjusts the trust region. The main advantage of first-
order attacks is their computational efficiency and ease of implementation. We show that our
first-order TR method significantly reduces the over-estimation problem (i.e. requiring very
large perturbation to fool the network), resulting in up to 3.9× reduction in the perturbation
magnitude, as compared to DeepFool [163]. Furthermore, we show TR is significantly faster
than the CW attack (up to 37×), while achieving similar attack performance. We then pro-
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pose an adaptive TR method, where we adaptively choose the TR radius based on the model
approximation to further speed up the attack process. Finally, we present the formulation
for how our basic TR method could be extended to a second-order TR method, which could
be useful for cases with significant non-linear decision boundaries, e.g., CNNs with Swish
activation function [188]. In more detail, our main contributions are the following:

• We cast the adversarial attack problem into the optimization framework of TR methods.
This enables several new attack schemes, which are easy to implement and are significantly
more effective than existing attack methods (up to 3.9×, when compared to DeepFool).
Our method requires a similar perturbation magnitude, as compared to CW, but it can
compute the perturbation significantly faster (up to 37×), as it does not require extensive
hyper-parameter tuning.

• Our TR-based attack methods can adaptively choose the perturbation magnitude in every
iteration. This removes the need for expensive hyper-parameter tuning, which is a major
issue with the existing optimization based methods.

• Our method can easily be extended to second-order TR attacks, which could be useful
for non-linear activation functions. With fewer iterations, our second-order attack method
outperforms the first-order attack method.

Limitations. We believe that it is important for every work to state its limitations (in
general, but in particular in this area). We paid special attention to repeat the experiments
multiple times, and we considered multiple different DNNs on different datasets to make sure
the results are general. One important limitation of our approach is that a näıve implementa-
tion of our second-order method requires computation of Hessian matvec backpropogation,
which is very expensive for DNNs. Although the second-order TR attack achieves better
results, as compared to the first-order TR attack, this additional computational cost could
limit its usefulness in certain applications. Moreover, our method achieves similar results as
CW attack, but significantly faster. However, if we ignore the strength of the attack, then
the DeepFool attack is faster than our method (and CW’s for that matter). Although such
comparison may not be fair, as our attack is stronger. However, this may be an important
point for certain applications where maximum speed is needed.

8.2 Background

In this section, we review related work on adversarial attacks. Consider x ∈ Rn as input
image, and y ∈ Rc the corresponding label. Suppose M(x; θ) = ŷ is the DNN’s prediction
probabilities, with θ the model parameters and ŷ ∈ Rc the vector of probabilities. We
denote the loss function of a DNN as L(x, θ,y). Then, an adversarial attack is aimed to find
a (small) perturbation, ∆x, such that:

argmax(M(x + ∆x; θ)) = argmax(ŷ) 6= argmax(y).
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There is no closed form solution to analytically compute such a perturbation. However,
several different approaches have been proposed by solving auxiliary optimization or ana-
lytical approximations to solve for the perturbation. For instance, the Fast Gradient Sign
Method (FGSM) [89] is a simple adversarial attack scheme that works by directly maximiz-
ing the loss function L(x, θ,y). It was subsequently extended to an iterative FGSM [130],
which performs multiple gradient ascend steps to compute the adversarial perturbation, and
is often more effective than FGSM in attacking the network. Another interesting work in
this direction is DeepFool, which uses an approximate analytical method. DeepFool assumes
that the neural network behaves as an affine multiclass classifier, which allows one to find
a closed form solution. DeepFool is based on “projecting” perturbed inputs to cross the
decision boundary (schematically shown in Figure 8.3), so that its classification is changed,
and this was shown to outperform FGSM. However, the landscape of the decision boundary
of a neural network is not linear. This is the case even for ReLU networks with the softmax
layer. Even before the softmax layer, the landscape is piece-wise linear, but this cannot be
approximated with a simple affine transformation. Therefore, if we use the local information,
we can overestimate/underestimate the adversarial perturbation needed to fool the network.

The seminal work of [36] introduced the so-called CW attack, a more sophisticated way to
directly solve for the ∆x perturbation. Here, the problem is cast as an optimization problem,
where we seek to minimize the distance between the original image and the perturbed one,
subject to the constraint that the perturbed input would be misclassified by the neural
network. This work also clearly showed that defensive distillation, which at the time was
believed to be a robust method to defend against adversaries, is not robust to stronger
attacks. One major disadvantage of the CW attack is that it is very sensitive to hyper-
parameter tuning. This is an important problem in applications where speed is important,
as finding a good/optimal adversarial perturbation for a given input is very time consuming.
Addressing this issue, without sacrificing attack strength, is a goal of our work.

On another direction, adversarial training has been used as a defense method against
adversarial attacks [211]. In particular, by using adversarial examples during training, one
can obtain models that are more robust to attacks (but still not foolproof). This adversarial
training was further extended to ensemble adversarial training [228], with the goal of making
the model more robust to black box attacks. Other approaches have also been proposed to
detect/defend against adversarial attacks [175, 158]. However, it has recently been shown
that, with a stronger attack method, defense schemes such as distillation or obfuscated
gradients can be broken [34, 36, 9].

A final important application of adversarial attacks is to train neural networks to ob-
tain improved generalization, even in non-adversarial environments. Multiple recent works
have shown that adversarial training (specifically, training with mixed adversarial and clean
data) can be used to train a neural network from scratch in order to achieve a better final
generalization performance [211, 205, 253, 251]. In particular, the work of [251] empirically
showed that using adversarial training would result in finding areas with “flatter” curvature.
This property has recently been argued to be an important parameter for generalization
performance [124]. Here, the speed with which adversarial perturbations can be computed
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Decision Boundary

Figure 8.3: Schematic illustration of the decision boundaries for a classification problem.
Points mapped to the hashed region, are classified with the same label.

is very important since it appears in the inner loop of the training process, and the training
needs to be performed for many epochs.

8.3 Trust Region Adversarial Attack

Let us denote the output of the DNN before the softmax function to be z = Z(x; θ) ∈ Rc.
Therefore, we will have:

M(x; θ) = softmax
(
Z(x; θ)

)
= ŷ.

Denote yt to be the true label of x, and zt = arg max z to be the prediction output of
M(x; θ). For clarification, note that zt is only the same as yt if the neural network makes
the correct classification. An adversarial attack seeks to find ∆x that fools the DNN, that
is:

arg min
‖∆x‖p

arg max Z(x + ∆x; θ) 6= yt, (8.1)

where ‖ · ‖p denotes the Lp norm of a vector. It is often computationally infeasible to solve
(8.1) exactly. Therefore, a common approach is to approximately solve (8.1) [36, 89, 225].
To do so, the problem can be formulated as follows:

max
‖∆x‖p≤ε

J (x + ∆x, θ,y), (8.2)

where ε constrains the perturbation magnitude, and J can be either the loss function (L)
or more generally another kernel [36]. In the case of DeepFool (DF) attack, this problem is
solved by approximating the decision boundary by a linear affine transformation. For such a
decision boundary, the perturbation magnitude could be analytically computed by just eval-
uating the gradient at the current point. However, for neural networks this approximation
could be very inaccurate, that is it could lead to over/under-estimation of the perturbation
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Algorithm 7 Trust Region Attack
1: Input:

- Image x0, label y
- initial radius ε0, threshold σ1 and σ2, radius adjustment rate η

2: ∆x = 0, j = 0
3: Using scheme to choose the attacking index i
4: while arg max Z(xj) = arg max y do
5: ∆xtmp = arg min‖∆xj‖≤εj m

j(∆xj) = arg min‖∆xj‖≤εj〈∆xj,gjt,i〉+ 1
2
〈∆xj,Hj

t,i∆xj〉
6: xj+1 = clip(xj + ∆xtmp,min(x),max(x))

7: ρ =
(zj+1

t −zj+1
i )−(zj+1

t −zj+1
i )

mj(∆xj)

8: if ρ > σ1 then
9: εj+1 = min{ηεj, εmax}

10: else if ρ < σ2 then
11: εj+1 = min{εj/η, εmin}
12: else
13: εj+1 = εj

14: end if
15: j = j + 1
16: end while
17: Output: Adversarial Image
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Figure 8.4: The two subfigures show, for various neural networks, the time to compute the
adversarial attack (x-axis) and the perturbation needed by that attack method to fool an
image (y-axis), corresponding to ImageNet results in Table 8.3. On the left, the y-axis is
plotted for average perturbation; and on the right, for the worst case perturbation. An attack
that achieves smaller perturbation in shorter time is preferred. Different colors represent
different models, and different markers illustrate the different attack methods. Observe that
our TR and TR Adap methods achieve similar perturbations as CW but with significantly
less time (up to 37.5×).
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along a sub-optimal direction. The smallest direction would be orthogonal to the decision
boundary, and this cannot be computed by a simple affine transformation, as the decision
boundary is non-linear (see Fig. 8.3 for illustration). This is obvious for non-linear activation
functions, but even in the case of ReLU, the model behaves like a piece-wise linear func-
tion (before the softmax layer, and actually non-linear afterwards). This approach cannot
correctly find the orthogonal direction, even if we ignore the non-linearity of the softmax
layer.

To address this limitation, we instead use TR methods, which are well-known for solving
non-convex optimization problems [221]. The problem of finding adversarial perturbation
using TR is defined as follows:

max
‖∆xj‖p≤εj

mj(∆xj) = 〈∆xj,gjt,i〉+
1

2
〈∆xj,Hj

t,i∆xj〉, (8.3)

where εj is the TR radius at jth iteration, mj is the approximation of the kernel function of
f(xj−1) = (zj−1

t − zj−1
i ) with gjt,i and Hj

t,i denoting the corresponding gradient and Hessian,

and xj = x +
∑j−1

i=1 ∆xi. Note that the subscript means the index of maximal z, i.e.
arg max z. The main idea of the TR method is to iteratively select the trusted radius
εj to find the adversarial perturbation within this region such that the probability of an
incorrect class becomes maximum. TR adjusts this radius by measuring the approximation
of the local model mj(sj) to the actual function value f(xj+1) − f(xj). In particular, we
increase the trusted radius if the approximation of the function is accurate (measured by

ρ = f(xj+1)−f(xj)
mj(sj)

> σ1 with a typical value of σ1 = 0.9). In such a case, the trusted radius

is increased for the next iterations by a factor of η > 1 (εj+1 = ηεt). However, when the

local model mj(sj) is a poor approximation of f(xj+1) − f(xj), i.e., ρ = f(xj+1)−f(xj)
mj(sj)

< σ2

(with a typical σ2 = 0.5), we decrease the trusted radius for the next iteration εj+1 = εt/η.
Otherwise, we keep the same εj for εj+1. Typically, a threshold is also used for lower and
upper bounds of εj. Using this approach, the TR attack can iteratively find an adversarial
perturbation to fool the network. See Alg. 7 for details.

Note that for cases where all the activations of the DNN are ReLU, the Hessian is zero
almost everywhere [251, Theorem 1], and we actually do not need the Hessian. This means
the landscape of zt−zi is piece-wise linear, i.e., we could omit Hj

t,i in (8.3). However, for non-
linear activation functions, we need to keep the Hessian term (since when the NN has smooth
activation functions, the Hessian is not zero). For these cases, the problem of finding the
adversarial perturbation becomes a Quadratic Constrained Quadratic Programming (QCQP)
problem. It is quadratic constraint due to the fact that the norm of the perturbation is limited
by the TR radius, ηj, and the quadratic programming arises from the non-zero Hessian term.
We use Lanczos algorithm to solve the QCQP problem. In this approach, the solution is
iteratively found in a Krylov subspace formed by the Hessian operator.
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Table 8.1: Average perturbations / worst case perturbations are reported of different models
on Cifar-10 for best class attack.. Lower values are better. The first set of rows show L2

attack and the second shows L∞ attack.

DeepFool CW TR Non-Adap TR Adap

Model Accuracy ρ2 ρ2 ρ2 ρ2

AlexLike 85.78 1.67% / 11.5% 1.47% / 9.70% 1.49% / 9.13% 1.49% / 9.09%
AlexLike-S 86.53 1.74% / 11.0% 1.57% / 8.59% 1.57% / 9.48% 1.57% / 9.46%
ResNet 92.10 0.80% / 5.60% 0.62% / 3.12% 0.66% / 3.97% 0.66% / 3.96%
WResNet 94.77 0.89% / 5.79% 0.66% / 4.51% 0.73% / 4.43% 0.72% / 4.34%

DeepFool FGSM TR Non-Adap TR Adap

Model Accuracy ρ∞ ρ∞ ρ∞ ρ∞

AlexLike 85.78 1.15% / 6.85% 1.40% / 16.44% 1.05% / 5.45% 1.03% / 5.45%
AlexLike-S 86.53 1.18% / 6.01% 1.45% / 14.88% 1.09% / 4.76% 1.07% / 4.73%
ResNet 92.10 0.60% / 3.98% 0.85% / 4.35% 0.56% / 3.18% 0.50% / 3.35%
WResNet 94.77 0.66% / 3.34% 0.85% / 3.30% 0.56% / 2.67% 0.54% / 2.69%

8.4 Performance of the Method

To test the efficacy of the TR attack method and to compare its performance with other
approaches, we perform multiple experiments using different models on Cifar-10 [129] and
ImageNet [65] datasets. In particular, we compare to DeepFool [163], iterative FGSM [89,
130], and the Carlini-Wagner (CW) attack [36].

As mentioned above, the original TR method adaptively selects the perturbation mag-
nitude. Here, to test how effective the adaptive method performs, we also experiment with
a case where we set the TR radius to be a fixed small value and compare the results with
the original adaptive version. We refer to the fixed radius version as ”TR Non-Adap” and
the adaptive version as ”TR Adap”. Furthermore, the metric that we use for performance
of the attack is the relative perturbation, defined as follows:

ρp =
‖∆x‖p
‖x‖p

, (8.4)

where ∆x is the perturbation needed to fool the testing example. The perturbation is chosen
such that the accuracy of the model is reduced to less than 0.1%. We report both the average
perturbation as well as the highest perturbation required to fool a testing image. To clarify
this, the highest perturbation is computed after all of testing images (50K in ImageNet and
10K in Cifar-10) and then finding the the highest perturbation magnitude that was needed to
fool a correctly classified example. We refer to this case as worst case perturbation. Ideally
we would like this worst case perturbation to be bounded and close to the average cases.
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Table 8.2: Average perturbations / worst case perturbations are reported of different models
on Cifar-10 for hardest class attack. Lower values are better. The first set of rows show L2

attack and the second shows L∞ attack.

DeepFool TR Non-Adap TR Adap

Model ρ2 ρ2 ρ2

AlexLike 4.36% /18.9% 2.47% /13.4% 2.47% /13.4%
AlexLike-S 4.70% /17.7% 2.63% /14.4% 2.62% /14.2%
ResNet 1.71% /8.01% 0.99% /4.76% 0.99% /4.90%
WResNet 1.80% /8.74% 1.05% /6.23% 1.08% /6.23%

Model ρ∞ ρ∞ ρ∞

AlexLike 2.96% /12.6% 1.92% /9.99% 1.86% /10.0%
AlexLike-S 3.12% /12.2% 1.98% /8.19% 1.92% /8.17%
ResNet 1.34% /9.65% 0.77% /4.70% 0.85% /5.44%
WResNet 1.35% /6.49% 0.81% /3.77% 0.89% /3.90%

Table 8.3: Average perturbations / worst case perturbations are reported of different models
on ImageNet for best class attack. Lower values are better. The first set of rows show L2

attack and the second shows L∞ attack.

DeepFool CW TR Non-Adap TR Adap

Model Accuracy ρ2 ρ2 ρ2 ρ2

AlexNet 56.5 0.20% / 4.1% 0.31% / 1.8% 0.17% / 2.5% 0.18% / 3.3%
VGG16 71.6 0.14% / 4.4% 0.16% / 1.1% 0.12% / 1.2% 0.12% / 3.8%
ResNet50 76.1 0.17% / 3.0% 0.19% / 1.1% 0.13% / 1.5% 0.14% / 2.3%
DenseNet121 74.4 0.15% / 2.5% 0.20% / 1.5% 0.12% / 1.3% 0.13% / 1.7%

DeepFool FGSM TR Non-Adap TR Adap

Model Accuracy ρ∞ ρ∞ ρ∞ ρ∞

AlexNet 56.5 0.14% / 4.3% 0.16% / 4.7% 0.13% / 1.4% 0.13% / 3.6%
VGG16 71.5 0.11% / 4.0% 0.18% / 5.1% 0.10% / 1.4% 0.10% / 3.4%
ResNet50 76.1 0.13% / 3.2% 0.18% / 3.7% 0.11% / 1.3% 0.11% / 2.7%
DenseNet121 74.4 0.11% / 2.3% 0.15% / 4.1% 0.10% / 1.1% 0.10% / 1.8%
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8.4.1 Setup

We consider multiple different neural networks including variants of (wide) residual net-
works [104, 259], AlexNet, VGG16 [217], and DenseNet from [113]. We also test with cus-
tom smaller/shallower convolutional networks such as a simple CNN [251, p. C1] (refer as
AlexLike with ReLU and AlexLike-S with Swish activation). To test the second-order attack
method we run experiments with AlexNet-S (by replacing all ReLUs with Swish function ac-
tivation function [189]), along with a simple MLP (3072→ 1024→ 512→ 512→ 256→ 10)
with Swish activation function.

By definition, an adversarial attack is considered successful if it is able to change the
classification of the input image. Here we perform two types of attacks. The first one is
where we compute the smallest perturbation needed to change the target label. We refer to
this as best class attack. This means we attack the class with:

argmin
j

zt − zj
‖∇x(zt − zj)‖

.

Intuitively, this corresponds to perturbing the input to cross the closest decision boundary
(Figure 8.3). On the other hand, we also consider perturbing the input to the class whose
decision boundary is farthest away:

argmax
j

zt − zj
‖∇x(zt − zj)‖

.

Furthermore, we report two perturbation metrics of average perturbation, computed as:

ρp =
1

N

N∑
i=1

‖∆xi‖p
‖xi‖p

,

along with worst perturbation, computed as:

ρp = max{‖∆xi‖p
‖xi‖p

}Ni=1.

For comparison, we also consider the following attack methods:

• Iterative FGSM from [89, 130], where the following formula is used to compute adversarial
perturbation, after which the perturbation is clipped in range (min(x),max(x)):

xj+1 = xj + ε sign(∇xL(xj, θ,y)),

• DeepFool (DF) from [163]. We follow the same implementation as [163]. For the hardest
class test, the target class is set the same as our TR method.

• CW attack from [36]. We use the open source code from [191]1.

Finally, we measure the time to fool an input image by averaging the attack time over all
the testing examples. The measurements are performed on a Titan Xp GPU with an Intel
E5-2640 CPU.

1https://github.com/bethgelab/foolbox
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Table 8.4: Average perturbations / worst case perturbations are reported of different models
on ImageNet for hardest class attack (on the top 100 prediction classes). Lower values are
better. The first set of rows show L2 attack and the second shows L∞ attack.

DeepFool TR Non-Adap TR Adap

Model ρ2 ρ2 ρ2

AlexNet 0.74% /8.7% 0.39% /5.0% 0.39% /5.0%
VGG16 0.45% /5.4% 0.27% /3.6% 0.27% /3.8%
ResNet50 0.52% /5.8% 0.31% /4.2% 0.31% /4.2%
DenseNet 0.48% /5.7% 0.29% /3.8% 0.29% /3.8%

Model ρ∞ ρ∞ ρ∞

AlexNet 0.53% /9.9% 0.31% /7.5% 0.33% /9.1%
VGG16 0.36% /11.6% 0.25% /5.1% 0.26% /6.8%
ResNet50 0.43% /6.6% 0.28% /3.7% 0.30% /4.6%
DenseNet 0.38% /6.4% 0.24% /4.5% 0.27% /5.7%

Table 8.5: second-order and first-order comparison on MLP and AlexNet with Swish activa-
tion function on Cifar-10. The corresponding baseline accuracy without adversarial pertur-
bation is 62.4% and 76.6%, respectively. As expected, the second-order TR attack achieves
better results as compared to first-order with fixed iterations. However, the second-order
attack is significantly more expensive, due to the overhead of solving QCQP problem.

Iter 1 2 3 4 5 6 7 8 9 10

MLP TR First 47.63 33.7 22.24 13.76 8.13 4.59 2.41 1.31 0.63 0.27
MLP TR Second 47.84 33.37 21.49 13.3 7.39 4.16 2.17 1.09 0.49 0.20

AlexNet TR First 51.51 28.17 12.45 5.53 2.61 1.33 0.82 0.66 0.51 0.46
AlexNet TR Second 50.96 26.97 10.73 4.11 1.79 0.91 0.67 0.54 0.47 0.44

8.4.2 Cifar-10

We first compare different attacks of various neural network models on Cifar-10 dataset,
as reported in Table 8.1. Here, we compute the average and worst case perturbation for
best class attack. For L2 attack, we can see that TR Non-Adap can achieve comparable
perturbation as CW, with both TR and CW requiring smaller perturbation than DeepFool.
An important advantage of the TR attack is its speed, as compared to CW attack, which
is illustrated in Figure G.1 (please see appendix). Here we plot the time spent to fool one
input image versus average perturbation for all L2 attack methods on different models. It
can be clearly seen that, with similar perturbations, the time to get the adversarial examples
is: TR < CW. Note that DeepFool is also very fast but requires much larger perturbations
than TR attack and CW. Also note that the TR Adap method achieves similar results, with
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slightly slower speed and slightly larger perturbation. This is because the adaptive method
has not been tuned any way, whereas for the non adaptive version we manually tuned ε.
TR Adap does not require tuning, as it automatically adjust the TR radius. The slight
performance degradation is due to the relaxed σ1 and σ2 parameters, which could be made
more conservative as a trade-off for speed. But we did not tune these parameters beyond
the default, to give a realistic performance for the non-tuned version.

Another important test is to measure the perturbation needed to fool the network to
the hardest target class. This is important in that flipping a pedestrian to a cyclist may be
easier than flipping it to become a car. In Table 8.2, we report the hardest class attack on
Cifar-10. Note that our methods are roughly 1.5 times better than DeepFool in all cases.
Particularly, For L2 attack on WResNet, our worst case is 3.9 times better than DeepFool
in terms of perturbation magnitude.

8.4.3 ImageNet Result

We observe similar trends on ImageNet. We report different attacks on various models on
ImageNet in Table 8.3. Note that TR and CW require significantly smaller perturbation for
the worst case as compared to DeepFool. However, TR is significantly faster than CW. The
timing results are shown in Figure 8.4. For instance in the case of VGG-16, TR attack is
37.5× faster than CW which is significant. An example perturbation with AlexNet is shown
in Figure 8.1 (for which TR is 15× faster). As one can see, CW and TR perturbations
are smaller than DeepFool (2× in this case), and more targeted around the object. For L∞
methods, our TR Non-Adap and TR Adap are consistently better than FGSM and DeepFool
in both average and worst cases. Particularly, for worst cases, TR is roughly two times better
than the other methods. An example perturbation of DeepFool and TR Non-Adap with L∞
on VGG16 is shown in Figure 8.2. It can be clearly seen that, TR perturbation is much
smaller than DeepFool (1.9× in this case), and more targeted around the objective.

8.4.4 second-order method

As mentioned in Section 8.3, the ReLU activation function does not require Hessian computa-
tion. However, for non-linear activation functions including Hessian information is beneficial,
although it may be very expensive. To test this hypothesis, we consider two models with
Swish activation function. We fix the TR radius (set to be 1 for all cases) of our first and
second-order methods, and gradually increase the iterations. Table 8.5 shows the results for
MLP and AlexNet models. It can be seen that second-order TR out-performs the first-order
TR method in all iterations. Particularly, for two and three iterations on AlexNet, TRS can
drop the model accuracy 1.2% more as compared to the first-order TR variant. However,
the second order based model is more expensive than the first-order model, mainly due to
the overhead associated with solving the QCQP problem. There is no closed form solution
for this problem because the problem is non-convex and the Hessian can contain negative
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spectrum. Developing a computationally efficient method for this is an interesting next
direction.

8.5 Conclusions

We have considered various TR based methods for adversarial attacks on neural networks.
We presented the formulation for the TR method along with results for our first/second-
order attacks. We considered multiple models on Cifar-10 and ImageNet datasets, including
variants of residual and densely connected networks. Our method requires significantly
smaller perturbation (up to 3.9×), as compared to DeepFool. Furthermore, we achieve
similar results (in terms of average/worst perturbation magnitude to fool the network), as
compared to the CW attack, but with significant speed up of up to 37.5×. For all the models
considered, our attack method can bring down the model accuracy to less than 0.1% with
relative small perturbation (in L2/L∞ norms) of the input image. Meanwhile, we also tested
the second-order TR attack by backpropogating the Hessian information through the neural
network, showing that it can find a stronger attack direction, as compared to the first-order
variant.
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Chapter 9

Conclusion

9.1 Summary

In this dissertation, we presented variants of the usage of second-order methods including
solving non-convex optimization, analyzing the training procedure and design ingredients
of deep learning architectures, measuring the sensitivity of low-precision neural networks,
and adversarial attacking deep learning models. In order to apply second-order methods to
large-scale optimization and/or machine learning problems, we incorporated sampling gra-
dient and/or Hessian algorithms for non-convex optimization, and we combined randomized
numerical linear algebra algorithms to efficiently compute Hessian-based metrics for deep
learning (neural networks) analysis and applications.

In Part I, we considered optimization algorithms for non-convex problems. Specifically,
in Chapter 2, we proposed inexact variants of trust region and adaptive cubic regularization
methods, which, to increase efficiency, incorporate various approximations. In particular, in
addition to inexact sub-problem solves, both the gradient and Hessian are suitably estimated.
Using certain conditions on such approximations, we showed that our proposed inexact
methods achieve similar optimal worst-case iteration complexities as the exact counterparts.
In the context of finite-sum problems, we then explored randomized sub-sampling methods
as ways to construct the gradient and Hessian approximations and examine the empirical
performance of our algorithms on some model problems. We empirically demonstrated that
our proposed algorithms are practically implementable in that failure to precisely fine-tune
the associated hyper-parameters is unlikely to result in unwanted behaviors, e.g., divergence
or stagnation. In Chapter 3, We considered variants of the Newton-CG algorithm for non-
convex problems proposed in [199] in which only inexact estimates of the gradient and the
Hessian information are available. Under certain conditions on the inexactness measures,
we derived iteration complexity for achieving ε-approximate second-order optimality that
matches best-known lower bounds. Our inexactness condition on the gradient was adaptive,
allowing for crude accuracy in regions with large gradient. We described two variants of our
approach, one in which the step-size along the computed search direction is chosen adap-
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tively and another in which the step-size is pre-defined. We evaluated the performance of
our proposed algorithms empirically on several machine learning models. In Chapter 4, we
introduced AdaHessian, a new stochastic optimization algorithm. AdaHessian directly in-
corporated approximate curvature information from the loss function, and it included several
novel performance-improving features, including: (i) a fast Hutchinson based method to ap-
proximate the curvature matrix with low computational overhead; (ii) a spatial averaging to
reduce the variance of the second derivative; and (iii) a root-mean-square exponential mov-
ing average to smooth out variations of the second-derivative across different iterations. We
performed extensive tests on NLP, CV, and recommendation system tasks, and AdaHessian
achieved state-of-the-art results.

In Part II, we explored the usage of second-order methods for analyzing neural networks.
In Chapter 5, we studied large batch size training through the lens of the Hessian operator
and robust optimization. In particular, we performed a Hessian-based study to analyze ex-
actly how the landscape of the loss function changes when training with a large batch size.
We computed the true Hessian spectrum, without approximation, by back-propagating the
second derivative. Extensive experiments on multiple networks showed that saddle-points
are not the cause for the generalization gap of large batch size training, and the results consis-
tently showed that large batch converges to points with noticeably higher Hessian spectrum.
Furthermore, we showed that robust training allows one to favor flat areas, as points with a
large Hessian spectrum show poor robustness to adversarial perturbation. We further studied
this relationship, and provided empirical and theoretical proof that the inner loop for robust
training is a saddle-free optimization problem almost everywhere. In Chapter 6, We presented
PyHessian, a new scalable framework that enables fast computation of Hessian (i.e., second-
order derivative) information for deep neural networks. PyHessian enabled fast computations
of the top Hessian eigenvalues, the Hessian trace, and the full Hessian eigenvalue/spectral
density, and it supported distributed-memory execution on cloud/supercomputer systems
and is available as open source [111]. This general framework can be used to analyze neural
network models, including the topology of the loss landscape (i.e., curvature information) to
gain insight into the behavior of different models/optimizers. To illustrate this, we analyzed
the effect of residual connections and Batch Normalization layers on the trainability of neural
networks.

In Part III, we studied the application of second-order methods for neural network-related
applications. In Chapter 7, we presented HAWQ-V3, a novel mixed-precision integer-only
quantization framework using Hessian trace as the sensitivity metric. We proposed the
integer-only inference where the entire computational graph is performed only with integer
multiplication, addition, and bit shifting, without any floating point operations or even
integer division. A novel hardware-aware mixed-precision quantization method is presented
where the bit-precision is calculated by solving an integer linear programming problem that
balances the trade-off between Hessian-based model perturbation and other constraints,
e.g., memory footprint and latency. We also had direct hardware deployment for 4-bit
uniform/mixed-precision quantization. To illustrate the benefit of our framework, we did
extensive experiments on different neural networks. In Chapter 8, we presented a new
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family of trust region based adversarial attacks, with the goal of computing adversarial
perturbations efficiently. We proposed several attacks based on variants of the trust region
optimization method. We tested the proposed methods on different datasets using several
different models.

Hessian-based analysis/computation/optimization is widely used in scientific computing.
However, as machine learning problems grow both in data size and model size, the usage
of the second-order for large-scale machine learning problems is limited due to the high
computation cost of the Hessian matrix. In this dissertation, we presented some efficient
second-order based algorithms and demonstrated both theoretical and empirical advantages
of these algorithms. We hope this dissertation takes an important step towards more efforts
and developments of second-order methods.

9.2 Future Directions

Beyond to what has been done in this dissertation, there are promising directions as future
works.

• For second-order optimization algorithms, usually, an accurate Hessian approximation
is needed to achieve a fast theoretical and/or practical convergence rate. This limits the
application of traditional Newton-type of algorithms for recent large-scale machine learning
problems, particularly for deep learning problems, since the model size and the dataset
increase to the order of trillion [30]. Therefore, it is almost impossible to get an accurate
gradient/Hessian approximation of such models and tasks. First-order based methods, such
as SGD and Adam, work well for such large-scale problems since they are robust to mini-
batch training. Designing and developing effective second-order methods for mini-batch
training will be a promising direction.

• The storage cost and the per-iteration computational cost of second-order optimization
methods are generally much higher than those of first-order methods. Those require both
new algorithm design and system design. On the algorithm design side, more efficient Newton
and quasi-Newton algorithms need to be proposed. For instance, a low-rank approximation
of Hessian can save the space cost of storing the Hessian matrix as well as reduce the
computational cost. However, how to find such an effective approximation is still an open
problem. On the system design side, the current popular frameworks, e.g., TensorFlow [1]
and PyTorch [178], only optimize first-order related computations. This leads Hessian-
related computations to be slow. Designing an optimized system framework for Hessian-
based computation would be super beneficial for this community.

• Current module components for deep learning models are mainly designed for achiev-
ing high testing accuracy. However, this causes the final architecture to be vulnerable to
adversarial attacks (or even random perturbations) and/or to be hard to compress (e.g.,
quantization and pruning). One way to address this is to use the Hessian-aware module
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component design. As shown in [251, 111, 250], Hessian-related metric can be used to de-
termine the robustness and the sensitivity of a trained model. However, how to directly
incorporate Hessian-related metric in model designing is still under-explored. One interest-
ing direction is that using Hessian-related metric as a regularization term (e.g., treat Hessian
spectrum as a penalty term) in Neural Architecture Search [270].
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[228] Florian Tramèr et al. “Ensemble adversarial training: Attacks and defenses”. In: arXiv
preprint arXiv:1705.07204 (2017).



BIBLIOGRAPHY 139

[229] Nilesh Tripuraneni et al. “Stochastic cubic regularization for fast nonconvex opti-
mization”. In: Advances in neural information processing systems. 2018, pp. 2899–
2908.

[230] Shashanka Ubaru, Jie Chen, and Yousef Saad. “Fast Estimation of tr(f(A)) via Stochas-
tic Lanczos Quadrature”. In: SIAM Journal on Matrix Analysis and Applications 38.4
(2017), pp. 1075–1099.

[231] Nicolas Vasilache et al. “Tensor comprehensions: Framework-agnostic high-performance
machine learning abstractions”. In: arXiv preprint arXiv:1802.04730 (2018).

[232] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural information
processing systems. 2017, pp. 5998–6008.

[233] Oriol Vinyals and Daniel Povey. “Krylov Subspace Descent for Deep Learning”. In:
AISTATS. 2012, pp. 1261–1268.

[234] Alex Wang et al. “Glue: A multi-task benchmark and analysis platform for natural
language understanding”. In: arXiv preprint arXiv:1804.07461 (2018).

[235] Kuan Wang et al. “HAQ: Hardware-Aware Automated Quantization”. In: In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition (2019).

[236] Qiang Wang et al. “Learning Deep Transformer Models for Machine Translation”.
In: Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics. 2019, pp. 1810–1822.

[237] Ruoxi Wang et al. “Deep & cross network for ad click predictions”. In: Proceedings
of the ADKDD’17. 2017, pp. 1–7.

[238] Shusen Wang et al. “GIANT: Globally improved approximate Newton method for
distributed optimization”. In: Advances in Neural Information Processing Systems.
2018, pp. 2332–2342.

[239] Simon Wiesler, Jinyu Li, and Jian Xue. “Investigations on Hessian-free optimiza-
tion for cross-entropy training of deep neural networks”. In: INTERSPEECH. 2013,
pp. 3317–3321.

[240] Stephen J. Wright and Benjamin Recht. Optimization for Data Analysis. Cambridge
University Press, 2021.

[241] Bichen Wu et al. “FBNet: Hardware-aware efficient convnet design via differentiable
neural architecture search”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2019, pp. 10734–10742.

[242] Bichen Wu et al. “Mixed Precision Quantization of ConvNets via Differentiable Neural
Architecture Search”. In: arXiv preprint arXiv:1812.00090 (2018).

[243] Peng Xu, Fred Roosta, and Michael W. Mahoney. “Second-Order Optimization for
Non-Convex Machine Learning: An Empirical Study”. In: Proceedings of the 2020
SIAM International Conference on Data Mining. to appear. SIAM. 2020.



BIBLIOGRAPHY 140

[244] Peng Xu, Farbod Roosta-Khorasan, and Michael W Mahoney. “Second-order opti-
mization for non-convex machine learning: An empirical study”. In: arXiv preprint
arXiv:1708.07827 (2017).

[245] Peng Xu, Farbod Roosta-Khorasani, and Michael W Mahoney. “Newton-type meth-
ods for non-convex optimization under inexact Hessian information”. In: arXiv preprint
arXiv:1708.07164 (2017).

[246] Peng Xu, Farbod Roosta-Khorasani, and Michael W. Mahoney. “Newton-Type Meth-
ods for Non-Convex Optimization Under Inexact Hessian Information”. In: arXiv
preprint arXiv:1708.07164 (2017).

[247] Peng Xu et al. “Sub-sampled Newton methods with non-uniform sampling”. In: Ad-
vances in Neural Information Processing Systems. 2016, pp. 3000–3008.

[248] Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. “Designing energy-efficient convo-
lutional neural networks using energy-aware pruning”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2017, pp. 5687–5695.

[249] Zhewei Yao et al. “ADAHESSIAN: An adaptive second order optimizer for machine
learning”. In: arXiv preprint arXiv:2006.00719 (2020).

[250] Zhewei Yao et al. “HAWQV3: Dyadic Neural Network Quantization”. In: arXiv
preprint arXiv:2011.10680 (2020).

[251] Zhewei Yao et al. “Hessian-based Analysis of Large Batch Training and Robustness
to Adversaries”. In: Advances in Neural Information Processing Systems (2018).

[252] Zhewei Yao et al. “Inexact non-convex Newton-type methods”. In: arXiv preprint
arXiv:1802.06925 (2018).

[253] Zhewei Yao et al. “Large batch size training of neural networks with adversarial
training and second-order information”. In: arXiv preprint arXiv:1810.01021 (2018).

[254] Zhewei Yao et al. “PyHessian: Neural Networks Through the Lens of the Hessian”.
In: arXiv preprint arXiv:1912.07145 (2019).

[255] Zhewei Yao et al. “Trust region based adversarial attack on neural networks”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2019, pp. 11350–11359.

[256] Hongxu Yin et al. “Dreaming to distill: Data-free knowledge transfer via DeepInver-
sion”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2020, pp. 8715–8724.

[257] Yang You, Igor Gitman, and Boris Ginsburg. “Scaling SGD batch size to 32K for
ImageNet training”. In: arXiv preprint arXiv:1708.03888 (2017).

[258] Yang You et al. “Large batch optimization for deep learning: Training bert in 76
minutes”. In: International Conference on Learning Representations. 2019.



BIBLIOGRAPHY 141

[259] Sergey Zagoruyko and Nikos Komodakis. “Wide residual networks”. In: arXiv preprint
arXiv:1605.07146 (2016).

[260] Matthew D Zeiler. “Adadelta: an adaptive learning rate method”. In: arXiv preprint
arXiv:1212.5701 (2012).

[261] Chiyuan Zhang et al. “Understanding deep learning requires rethinking generaliza-
tion”. In: arXiv preprint arXiv:1611.03530 (2016).

[262] Dongqing Zhang et al. “LQ-Nets: Learned Quantization for Highly Accurate and
Compact Deep Neural Networks”. In: The European Conference on Computer Vision
(ECCV). 2018.

[263] Jingzhao Zhang et al. “Why ADAM Beats SGD for Attention Models”. In: arXiv
preprint arXiv:1912.03194 (2019).

[264] Ruizhi Zhang et al. “Robustness and Tractability for Non-convex M-estimators”. In:
arXiv preprint arXiv:1906.02272 (2019).

[265] Sixin Zhang, Anna E Choromanska, and Yann LeCun. “Deep learning with elas-
tic averaging SGD”. In: Advances in Neural Information Processing Systems. 2015,
pp. 685–693.

[266] X-Y Zhang et al. “Sobol sensitivity analysis: a tool to guide the development and
evaluation of systems pharmacology models”. In: CPT: pharmacometrics & systems
pharmacology 4.2 (2015), pp. 69–79.

[267] Aojun Zhou et al. “Incremental network quantization: Towards lossless cnns with low-
precision weights”. In: International Conference on Learning Representations (2017).

[268] Shuchang Zhou et al. “Dorefa-net: Training low bitwidth convolutional neural net-
works with low bitwidth gradients”. In: arXiv preprint arXiv:1606.06160 (2016).

[269] Yiren Zhou et al. “Adaptive quantization for deep neural network”. In: arXiv preprint
arXiv:1712.01048 (2017).

[270] Barret Zoph and Quoc V Le. “Neural architecture search with reinforcement learn-
ing”. In: arXiv preprint arXiv:1611.01578 (2016).



142

Part IV

Appendix



143

Appendix A

Appendix for Chapter 2

A.1 Proof of Theorem 1

We first give the following two standard lemmas regarding Cauchy and Eigen points [57],
which establish Condition 2.

Lemma 2 (Cauchy Points). [57, Corollary 6.3.2] Suppose that sCt = arg min‖αgk‖≤∆t mt(−αgt).
We have

−mt(s
C
t ) ≥ 1

2
‖gt‖min

{ ‖gt‖
1 + ‖Ht‖

,∆t

}
. (A.1)

Lemma 3 (Eigen points). [57, Theorem 6.6.1] When λmin(Ht) is negative, suppose ut sat-
isfies

〈gt,ut〉 ≤ 0, and 〈ut,Htut〉 ≤ −ν|λmin(Ht)|‖ut‖2, (A.2)

and let sEt = arg min‖st‖≤∆t mt(αut). We have

−mt(s
E
t ) ≥ ν

2
|λmin(Ht)|∆2

t . (A.3)

The above two lemmas show the descent that can be obtained by Cauchy and Eigen
Points. The following lemma bounds the difference between the actual decrement, i.e.,
F (xt + st)− F (xt), and the one predicted by m(st).

Lemma 4. Under Assumptions 1 and 2, we have

F (xt + st)− F (xt)−mt(st) ≤


δg∆t +

1

2
δH∆2

t +
1

2
LF∆3

t , ‖gt‖ ≥ εg,

〈st,∇F (xt)〉+
1

2
δH∆2

t +
1

2
LF∆3

t , ‖gt‖ < εg.

(A.4)
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Proof. When ‖gt‖ ≥ εg, using taylor expansion of F (xt) at point xt,

F (xt + st)− F (xt)−mt(st) = 〈st,∇F (xt)− gt〉+
1

2
〈st, (∇2F (xt + τst)−Ht)st〉

≤ 〈st,∇F (xt)− gt〉+ |1
2
〈st, (Ht −∇2F (xt + τst))st〉|

≤ 〈st,∇F (xt)− gt〉+ |1
2
〈st, (Ht −∇2F (xt))st〉|

+ |1
2
〈st, (∇2F (xt + τst)−∇2F (xt))st〉|

≤ 〈st,∇F (xt)− gt〉+
1

2
δH‖st‖2 +

1

2
LF‖st‖3

≤ δg∆t +
1

2
δH∆2

t +
1

2
LF∆3

t ,

where τ ∈ [0, 1]. Similarly, When ‖gt‖ < εg,

F (xt + st)− F (xt)−mt(st) ≤ 〈st,∇F (xt)〉+
1

2
δH∆2

t +
1

2
LF∆3

t .

By combining Lemmas 2 and 4, Lemma 5 guarantees that, in case ‖gt‖ ≥ εg, the iteration
is successful and the update is accepted.

Lemma 5. Suppose Assumptions 1 and 2, as well as Conditions 1 and 2 hold. Further,
suppose at iteration t, we have ‖gt‖ ≥ εg and

∆t ≤ min

 ‖gt‖
1 +KH

,

√
(1− η)‖gt‖

12LF
,
(1− η)‖gt‖

3

 .

Then the iteration t is successful, i.e. ∆t+1 = γ∆t.

Proof. First, since ‖gt‖ ≥ εg and ∆t ≤ ‖gt‖/(1 +KH), by Condition 2, we have st = sCt and

−mt(st) ≥
1

2
‖gt‖min

{ ‖gt‖
1 + ‖Ht‖

,∆t

}
=

1

2
‖gt‖∆t.

Now according to Lemma 4, we have

1− ρt =
F (xt + st)− F (xt)−mt(st)

−mt(st)
≤ δg∆t + 1

2
δH∆2

t + 1
2
LF∆3

t
1
2
‖gt‖∆t

= 2
δg
‖gt‖

+
δH
‖gt‖

∆t +
LF
‖gt‖

∆2
t ≤

1− η
2

+
δH
‖gt‖

∆t +
LF
‖gt‖

∆2
t .
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Let

r(t) =
LF
‖gt‖

t2 +
δH
‖gt‖

t− 1− η
2

.

It is not hard to see that −δH +
√
δ2
H + 2LF (1− η)‖gt‖/(2LF ) is the positive root of r(t).

Then by the fact that −y +
√
y2 + 2LF (1− η‖g‖t)/(2LF ) is monotonically decreasing for

y ≥ 0 and Condition 1 (δH < 1), it follows

−δH +
√
δ2
H + 2LF (1− η)‖gt‖

2LF
≥ −1 +

√
1 + 2LF (1− η)‖gt‖

2LF
.

Now, we consider two cases. If 2LF (1− η)‖gt‖ ≤ 1, it is not hard to show that

−1 +
√

1 + 2LF (1− η)‖gt‖ ≥
2LF (1− η)‖gt‖

3
.

Otherwise, if 2LF (1− η)‖gt‖ > 1, then it can be shown that

−1 +
√

1 + 2LF (1− η)‖gt‖ ≥
√
LF (1− η)‖gt‖

3
.

By assumption ∆t ≤ min
{√

(1− η)‖gt‖/(12LF ), (1− η)‖gt‖/3
}

, so

∆t ≤ −1 +
√

1 + 2LF (1− η)‖gt‖/(2LF ),

and r(∆t) ≤ 0. Therefore, it follows,

1− ρt ≤
1− η

2
+

δH
‖gt‖

∆t +
LF
‖gt‖

∆2
t ≤ (1− η) + r(∆t) ≤ 1− η,

which implies that the iteration t is successful.

Remark 3. It can be easily seen that if δg ≤ 3∆t/4, the above lemma still holds. Indeed,

δg ≤
3

4
∆t ≤

3

4
min

 ‖gt‖
1 +KH

,

√
(1− η)‖gt‖

12LF
,
(1− η)‖gt‖

3

 ≤ (1− η)‖gt‖
4

.

Although δg ≤ 3∆t/4 can be looser than what Condition 1 requires, it nonetheless can be used
in practice as a rough bound for gradient approximations.

Now we consider that case when ‖gt‖ ≤ εg. As alluded to earlier in this section, in this
case we have to rely on the negative curvature of Hessian since dealing with the first-order
term in (A.4) is particularly challenging when ‖gt‖ < εg. Hence, by solely considering the
negative eigenvectors of Hessian, we drop the first-order term 〈st,∇F (xt)〉 in the quadratic
model. Lemma 6 gives the corresponding details.
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Lemma 6. Suppose Assumptions 1 and 2, as well as Conditions 1 and 2 hold. Further,
suppose at iteration t, we have ‖gt‖ < εg, λmin(Ht) < −εH and

∆t ≤
(

1− η
2

)(
ν|λmin(Ht)|
LF + 1

)
.

Then tth is successful, i.e. ∆t+1 = γ∆t.

Proof. Here, by Condition 2, we have st = sEt , which by (A.3) implies−mt(st) ≥ ν|λmin(Ht)|∆2
t/2.

Hence, recalling (A.4), we have

F (xt + st)− F (xt)−mt(st) ≤ 〈st,∇F (xt)〉+
1

2
δH‖st‖2 +

1

2
LF‖st‖3.

Since either st or −st could be a searching direction, at least one of

〈st,∇F (xt)〉 ≤ 0 or 〈−st,∇F (xt)〉 ≤ 0,

is true. Without loss of generality, assume 〈st,∇F (xt)〉 ≤ 0. Hence,

F (xt + st)− F (xt)−mt(st) ≤
1

2
δH‖st‖2 +

1

2
LF‖st‖3.

Next, suppose ∆t ≤ (1− η)νεH/2, which from (2.8) implies that δH ≤ (1− η)νεH/2. We
have

1− ρt =
F (xt + st)− F (xt)−mt(st)

−mt(st)
≤ δH∆2

t/2 + LF∆3
t/2

ν|λmin(Ht)|∆2
t/2

=
δH + LF∆t

ν|λmin(Ht)|

≤ (1− η)νεH/2 + LF (1− η)ν|λmin(Ht)|/(2(LF + 1))

ν|λmin(Ht)|
< 1− η.

Now, consider ∆t ≥ (1− η)νεH/2, which from (2.8) implies that δH ≤ ∆t. Similarly, we
have

1− ρt =
F (xt + st)− F (xt)−mt(st)

−mt(st)

≤ δH∆2
t/2 + LF∆3

t/2

ν|λmin(Ht)|∆2
t/2

=
(LF + 1)∆t

ν|λmin(Ht)|
< (1− η)/2 < 1− η.

Hence, in both cases, we have ρt ≥ η and the iteration is successful.

Based on Lemmas 5 and 6, the following lemma helps to get the lower bound of ∆t,
whose proof could be found in [246].
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Lemma 7. Under Assumptions 1 and 2 and Conditions 1 and 2, for Algorithm 1 and for
all t, we have

∆t ≥
1

γ
min

 εg
1 +KH

,

√
(1− η)εg

12LH
,
(1− η)εg

3
,
(1− η)νεH
2(LF + 1)

 .

As a consequence, we now can give the upper bound on the number of successful itera-
tions.

Lemma 8 (Successful iterations). Let Tsucc denote the set of all the successful iterations
before Algorithm 1 stops. Under Assumptions 1 and 2 and Conditions 1 and 2, the number
of successful iterations is upper bounded by

|Tsucc| ≤
F (x0)− F (x∗)

CεH min{ε2g, ε2H}
,

where C is a constant depending on LF , KH , η, ν.

Proof. Suppose Algorithm 1 doesn’t terminate at iteration t. Then either ‖gt‖ ≥ εg or
λmin(Ht) ≤ −εH . If ‖gt‖ ≥ εg, according to (A.1), we have

−mt(st) ≥
1

2
‖gt‖min

{ ‖gt‖
1 + ‖Ht‖

,∆t

}
≥ 1

2
εg min

{
εg

1 +KH

, C0εg, C1εH

}
≥ C2εg min {εg, εH} .

Similarly, in the second case λmin(Ht) ≤ −εH , from (A.3),

−mt(st) ≥
1

2
ν‖λmin(Ht)‖∆2

t ≥ C3εH min{ε2g, ε2H}.

Since F (xt) is monotonically decreasing as t increases, we have

F (x0)− F (x∗) ≥
∞∑
t=0

F (xt)− F (xt+1) ≥
∑

t∈Tsucc

F (xt)− F (xt+1)

≥ η
∑

t∈Tsucc

min
{
C2εg min {εg, εH} , C3εH min{ε2g, ε2H}

}
≥ |Tsucc|CεH min{ε2g, ε2H}.

Since one of the above cases must happen for a successful iteration, it follows,

|Tsucc| ≤
F (x0)− F (x∗)

CεH min{ε2g, ε2H}
.

Using the above lemma, the proof of following theorem could be found in [246]. In this
section, we give the proofs of some lemmas mentioned in the main text.
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A.1.1 Proof of Lemma 12

Proof. When ‖gt‖ ≥ εg, using Taylor expansion of F (x) at point xt,

F (xt + st)− F (xt)−mt(st) = 〈st,∇F (xt)− gt〉+
1

2
〈st, (∇2F (xt + τst)−Ht)st〉 −

σt
3
‖st‖3

≤ 〈st,∇F (xt)− gt〉+ |1
2
〈st, (Ht −∇2F (xt + τst)st〉| −

σt
3
‖st‖3

≤ 〈st,∇F (xt)− gt〉+ |1
2
〈st, (Ht −∇2F (xt))st〉|

+ |1
2
〈st, (∇2F (xt + τst)−∇2F (xt))st〉| −

σt
3
‖st‖3

≤ 〈st,∇F (xt)− gt〉+
1

2
δH‖st‖2 + (

LF
2
− σt

3
)‖st‖3,

≤ δg‖st‖+
1

2
δH‖st‖2 + (

LF
2
− σt

3
)‖st‖3,

where τ ∈ [0, 1]. Similarly, when ‖gt‖ < εg,

F (xt + st)− F (xt)−mt(st) ≤〈st,∇F (xt)〉+
1

2
δH‖st‖2 + (

LF
2
− σt

3
)‖st‖3.

A.2 Proof of Theorem 2

First let’s denote Tsucc as the set of all the successful iteration and Tfail as the set of all the
failure iterations. Now we will upper bound the iteration complexity T := |Tsucc| + |Tfail|.
First we present the following lemma that gives an upper bound of |Tfail|.

Lemma 9. In Algorithm 2, suppose we have σt ≤ C, where C is some constant, for all the
iteration t before it stops. Then we have |Tfail| ≤ |Tsucc|+O(1).

Proof. Since σt ≤ C, then σT = σ0γ
|Tsucc|−|Tfail| ≤ C. Then, we immediately obtain

|Tfail| ≤ log(C/σ0)/ log γ + |Tfail| = |Tsucc|+O(1).

Now, for the rest of the analysis, we first show that there is a uniform upper bound for
all σt and, subsequently, we obtain a bound on the number of all the successful iterations.

We now present Lemma 10, which is very similar to [246, Lemma 6], but is slightly more
refined. The main difference lies in the quantity Kt defined in Lemma 10. In [246, Lemma
6] a simple global upper bound of this quantity is used. However, here, we retain its local
nature, which is found to be crucial in proving Lemma 13. This is a subtle distinction that
arises as a result of using gradient approximations here, compared with exact gradients in
[246].
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Lemma 10 (Cauchy Point). When ‖gt‖ ≥ εg, let

sCt = arg min
α≥0

mt(−αgt).

Then, we have

‖sCt ‖ =
1

2σt
(
√
K2
t + 4σt‖gt‖ −Kt), (A.5a)

−mt(s
C
t ) ≥ max

{
1

12
‖sCt ‖2(

√
K2
t + 4σt‖gt‖ −Kt),

‖gt‖
2
√

3
min

{
‖gt‖
|Kt|

,
‖gt‖√
σt‖gt‖

}}
, (A.5b)

where Kt = 〈Htgt,gt〉/‖gt‖2.

Proof. The proof is organized as follows. we will first use the definition of Cauchy Point to get
an expression in terms of sCt . Subsequently, we use that fact that mt(s

C
t ) ≤ mt(αgt), ∀α ≥ 0

to bound mt(s
C
t ) by leveraging the quadratic form of mt(αgt) in terms of α. First, we have

〈gt, sCt 〉+ 〈sCt ,Hts
C
t 〉+ σt‖sCt ‖3 = 0.

Since sCt = −αgt for some α > 0,

−α‖gt‖2 + α2〈gt,Htgt〉+ σtα
3‖gt‖3 = 0.

We can find explicit formula for such α by finding the roots of the quadratic function

r(α) = −‖gt‖2 + α〈gt,Htgt〉+ σtα
2‖gt‖3.

We have

α =
−〈gt,Htgt〉+

√
〈gt,Htgt〉2 + 4σt‖gt‖5

2σt‖gt‖3
,

and

2ασt‖gt‖ =
√
K2
t + 4σt‖gt‖ −Kt.

Hence, it follows that

‖sCt ‖ = α‖gt‖ =
1

2σt
(
√
K2
t + 4σt‖gt‖ −Kt).

Now, from [41, Lemma 2.1], we get

−mt(s
C
t ) ≥ 1

6
σt‖sCt ‖3 =

1

6
σt‖sCt ‖2α‖gt‖ =

1

12
‖sCt ‖2(

√
K2
t + 4σt‖gt‖ −Kt).

Alternatively, we have

mt(s
C
t ) ≤ mt(−αgt) = −α‖gt‖2 +

1

2
α2〈gt,Htgt〉+

α3

3
σt‖gt‖3

=
α‖gt‖2

6
(−6 + 3αKt + 2α2σt‖gt‖).
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Consider the quadratic part,

r(α) = −6 + 3αKt + 2α2σt‖gt‖.

We have r(α) ≤ 0 for α ∈ [0, ᾱ], where

ᾱ =
−3Kt +

√
9K2

t + 48σt‖gt‖
4σt‖gt‖

.

We can express ᾱ as

ᾱ =
12

3Kt +
√

9K2
t + 48σt‖gt‖

.

Note that, √
9K2

t + 48σt‖gt‖ ≤ 3|Kt|+ 4
√

3σt‖gt‖ ≤ 8
√

3 max{|Kt|,
√
σt‖gt‖}.

Also,
3Kt ≤ 2

√
3 max{|Kt|,

√
σt‖gt‖} ≤ 4

√
3 max{|Kt|,

√
σt‖gt‖}.

Hence, defining

α0 =
1√

3 max{|Kt|,
√
σt‖gt‖}

,

it is clear that 0 ≤ α0 ≤ ᾱ. With α0, we have

r(α0) ≤ 2/3 + 3/
√

3− 6 ≤ −3.

So finally, we get

mt(s
C
t ) ≤ −3‖gt‖2

6
√

3

1

max{|Kt|,
√
σt‖gt‖}

=
−‖gt‖2

2
√

3
min

{
1

|Kt|
,

1√
σt‖gt‖

}

=
−‖gt‖
2
√

3
min

{
‖gt‖
|Kt|

,
‖gt‖√
σt‖gt‖

}
.

When Ht has a negative eigenvalue, Eigen Point has the following properties.

Lemma 11 (Eigen Point). Suppose λmin(Ht) < 0 and for some ν ∈ (0, 1], let

sEt = arg min
α∈R

mt(αut),

where ut is the approximate most negative eigenvector defined as

〈ut,Htut〉 ≤ νλmin(Ht)‖ut‖2 ≤ 0.
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We have ∥∥sEt ∥∥ ≥ ν |λmin(Ht)|
σt

, (A.6a)

−mt(s
E
t ) ≥ ν|λmin(Ht)|

6
‖sEt ‖2. (A.6b)

Proof. Again, we know that

〈gt, sEt 〉+ 〈sEt ,Hts
E
t 〉+ σt‖sEt ‖3 = 0.

Meanwhile, since −st would keep the last two term as the same value, w.l.o.g, we could
assume 〈gt, sEt 〉 ≤ 0, which means

〈sEt ,Hts
E
t 〉+ σt‖sEt ‖3 ≥ 0.

Now, from [41, Lemma 2.1]

−mt(st) ≥
1

6
σt‖st‖3 ≥ −1

6
〈sEt ,Hts

E
t 〉 ≥

1

6
ν|λmin(Ht)|‖sEt ‖2.

The following lemma gives a bound on the difference between the decrease of the objective
function and the value of the quadratic model m(st). This lemma can be easily obtained
by the smoothness assumption of the objective function; the detailed proof is included in
Appendix A.1.1.

Lemma 12. Under Assumptions 1 and 2, we have

F (xt + st)− F (xt)−mt(st) ≤


δg‖st‖+

1

2
δH‖st‖2 + (

LF
2
− σt

3
)‖st‖3, ‖gt‖ ≥ εg,

〈st,∇F (xt)〉+
1

2
δH‖st‖2 + (

LF
2
− σt

3
)‖st‖3, ‖gt‖ < εg.

(A.7)

Based on the above lemmas, the following lemma shows that iteration t is successful
when ‖gt‖ ≥ εg.

Lemma 13. Suppose Assumptions 1 and 2 and Condition 3 hold. Further, suppose at
iteration t, we have ‖gt‖ ≥ εg and σt ≥ 2LF . Then the iteration t is successful, i.e. σt+1 =
σt/γ.

Proof. Using Lemma 12, we get

F (xt + sCt )− F (xt)−mt(s
C
t ) ≤ δg‖sCt ‖+

1

2
δH‖sCt ‖2 + (

LF
2
− σt

3
)‖sCt ‖3

≤ δg‖sCt ‖+
1

2
δH‖sCt ‖2,



APPENDIX A. APPENDIX FOR CHAPTER 2 152

since σt ≥ 2LF . We divide it to two cases.
First, if Kt = 〈Htgt,gt〉/‖gt‖2 ≤ 0, then from (A.5a), it follows

‖sCt ‖ ≥
1

2σt

√
4σt‖gt‖ =

√
‖gt‖/σt.

Using [41, Lemma 2.1], we get

1− ρt =
F (xt + st)− F (xt)−mt(st)

−mt(st)
≤ δg

∥∥sCt ∥∥+ 1
2
δH
∥∥sCt ∥∥2

σt‖sCt ‖3
6

=
δg + 1

2
δH
∥∥sCt ∥∥

σt‖sCt ‖2
6

≤ 6δg
‖gt‖

+
3δH√
2εgLF

≤ 1− η
2

+
1− η

2
= 1− η,

where the last inequality follows from the condition on δg and δH .
For the second case where Kt > 0, from (A.5a) in Lemma 10, it follows that

‖sCt ‖ =

√
K2
t + 4σt‖gt‖ −Kt

2σt
=

2‖gt‖√
K2
t + 4σt‖gt‖+Kt

.

Now we consider two cases: (a) K2
t ≥ σt‖gt‖ and (b) K2

t ≤ σt‖gt‖.
(a) When K2

H ≥ K2
t ≥ σt‖gt‖, from above equality we have

‖sCt ‖ ≤
‖gt‖
Kt

.

Meanwhile, since K2
t ≥ σt‖gt‖, from Lemma 10, we have

−mt(s
C
t ) ≥ ‖gt‖

2
√

3
min

{
‖gt‖
|Kt|

,
‖gt‖√
σt‖gt‖

}
=
‖gt‖2

2
√

3Kt

.

Combine above inequality together, it follows

1− ρt =
F (xt + st)− F (xt)−mt(st)

−mt(st)
≤ δg

∥∥sCt ∥∥+ 1
2
δH
∥∥sCt ∥∥2

‖gt‖2
2
√

3Kt

≤
δg
‖gt‖
Kt

+ 1
2
δH(‖gt‖

Kt
)2

‖gt‖2
2
√

3Kt

=
2
√

3δg
‖gt‖

+

√
3δH
Kt

≤ 2
√

3δg
‖gt‖

+

√
3δH√

2LF εg
≤ 1− η

2
+

1− η
2

= 1− η.

(b) When K2
t ≤ σt‖gt‖, we have

‖sCt ‖ ≤
‖gt‖√
‖gtσt‖

,
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and

−mt(s
C
t ) ≥ ‖gt‖

2
√

3
min

{
‖gt‖
|Kt|

,
‖gt‖√
σt‖gt‖

}
≥ ‖gt‖

3/2

2
√

3
√
σt
.

Then,

1− ρt =
F (xt + st)− F (xt)−mt(st)

−mt(st)
≤ δg

∥∥sCt ∥∥+ 1
2
δH
∥∥sCt ∥∥2

‖gt‖3/2
2
√

3
√
σt

=
2
√

3δg
‖gt‖

+

√
3δH√
σtεg

≤ 2
√

3δg
‖gt‖

+

√
3δH√

2LF εg
≤ 1− η

2
+

1− η
2

= 1− η.

From the above, it follows that tth iteration is successful, i.e. σt+1 = σt/γ, when ‖gt‖ ≥ εg.

The following lemma, whose proof is similar to [246, Lemma 9], helps bound F (xt+st)−
F (xt)−mt(st) when Hessian has negative eigenvalues.

Lemma 14. [246, Lemma 9] Suppose Assumptions 1 and 2 and Condition 3 hold and
σt ≥ 2LF . Then, if λmin(Ht) < −εH , we have

δH
2
‖st‖2 +

(
LF
2
− σt

3

)
‖st‖3 ≤ δH

2
‖sEt ‖2.

Proof. If ‖st‖ ≤ sEe , then based on the condition of σt ≥ 2LF , we have

1

2
δH‖st‖2 + (

1

2
LF −

σt
3

)‖st‖3 ≤ 1

2
δH‖st‖2 ≤ δH

2
‖sEt ‖2.

When ‖st‖ > ‖sEe ‖, since Lf ≤ σt/2,

1

2
δH‖st‖2 + (

1

2
LF −

σt
3

)‖st‖3 ≤ 1

2
δH‖st‖2 − σt

12
‖st‖3

≤ 1

2
δH‖st‖2 − σt

12
‖sEt ‖‖st‖2

≤ 1

2
δH‖st‖2 − ν|λmin(Ht)|

12
‖st‖2

≤ ((1− η)ν|λmin(Ht)| − ν|λmin(Ht)|) ‖st‖2/12

≤ 0 ≤ δH
2
‖sEt ‖2,

where the third and fourth inequalities follow from (A.6a) and (2.11), respectively.

Then, the following lemma shows Eigen Points also yields a descent similarly as in
Lemma 6.
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Lemma 15. Suppose Assumptions 1 and 2 and Conditions 3 and 4 hold. Further, suppose at
iteration t, we have λmin(Ht) < −εH , ‖gt‖ ≤ εg and σt ≥ 2LF . Then iteration t is successful,
i.e. σt+1 = σt/γ.

Proof. If λmin(Ht) < −εH and ‖gt‖ ≤ εg, recall that our sub-problem is

mt(s) =
1

2
〈s,Hts〉+

σt
3
‖s‖3,

and we pick the Eigen Point direction, i.e., st = sEt . Now, it is clear that if st is an
approximate solution of the above problem, then so is −st. Similar to Lemma 6, without
loss of generality, assume 〈st,∇F (xt)〉 ≤ 0. Then according to (A.7)

F (xt + st)− F (xt)−mt(st) ≤
δH
2
‖st‖2 +

(LF − σt/3)

2
‖st‖3.

Therefore, according to (A.6b) and Lemma 14,

1− ρt =
F (xt + st)− F (xt)−mt(st)

−mt(st)
≤ δH‖st‖2 + (LF − σt/3)‖st‖3

−2mt(st)

≤ δH‖st‖2/2

ν|λmin(Ht)|‖st‖2/6
=

3δH
ν‖λmin(Ht)‖

≤ 1− η,

which means the iteration t is successful.

With the help of the above lemmas, we can now show an upper bound for σt, as in Lemma
16.

Lemma 16. Under Assumptions 1 and 2 and Conditions 3 and 4, we have σt ≤ max{2γLF , σ0}
for all t.

Proof. We consider two cases. First, suppose σ0 ≤ 2γLF . We prove the claim in this
case by contradiction. Suppose that tth iteration is the first unsuccessful iteration such that
σt+1 = γσt ≥ 2γLF , which implies that σt ≥ 2LF . However, according to Lemmas 13 and 15,
respectively, if ‖gt‖ ≥ εg or λmin(Ht) ≤ −εH , then the iteration is successful and we must
have σt+1 = σt/γ ≤ σt, which is a contradiction. Second, consider the case where σ0 > 2γLF .
According to Lemmas 13 and 15, any iteration t with σt ≥ 2LF is successful, which implies
that σt ≤ σ0, ;∀t.

Now we upper bound the number of all successful iterations |Tsucc|, which is shown in
Lemma 17. The proof is similar to [246, Lemma 13].

Lemma 17 (Successful iterations). Under Assumptions 1 and 2 and Conditions 3 and 4,
the number of successful iterations is upper bounded by

|Tsucc| ≤
(
F (x0)− F (x∗)

C

)
max{ε−2

g , ε−3
H }.
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A.3 Proof of Theorem 3

As a result of the stricter condition imposed by Condition 6, we need to refine some lemmas in
Section 2.2.2.1. First, we need use the following result which gives conditions for a successful
iteration when ‖gt‖ ≥ εg.

Lemma 18. Suppose Assumptions 1 and 2 and Condition 5 hold. If σt ≥ 2LF and ‖gt‖ > εg,
then

δg‖st‖+
1

2
δH‖st‖2 +

(
1

2
LF −

σt
3

)
‖st‖3 ≤ δg‖sCt ‖+

1

2
δH‖sCt ‖2. (A.8)

Proof. We consider the following two cases:

i. If ‖st‖ ≤ ‖sCt ‖, then from the assumption of σt, it immediately follows that

δg‖st‖+
1

2
δH‖st‖2 +

(
1

2
LF −

σt
3

)
‖st‖3 ≤ δg‖st‖+

1

2
δH‖st‖2 ≤ δg‖sCt ‖+

1

2
δH‖sCt ‖2.

ii. If ‖st‖ ≥
∥∥sCt ∥∥, first, since LF ≤ σt/2,

δg‖st‖+
1

2
δH‖st‖2 +

(
1

2
LF −

σt
3

)
‖st‖3 ≤ δg‖st‖+

1

2
δH‖st‖2 − σt

12
‖st‖3.

Now let’s define function r(x) = δg + δHx/2 − σtx2/12. The derivative of r(x) is given by
r′(x) = δH/2− σtx/6. For any x ≥

∥∥sCt ∥∥, according to (A.5a), we have

r′(x) ≤ 1

2
δH −

1

6
σt
∥∥sCt ∥∥ ≤ 1

2
δH −

√
K2
H + 4σt‖gt‖ −KH

12
≤ 0.

Therefore,

r (‖st‖) ≤ r
(∥∥sCt ∥∥) = δg +

1

2
δH
∥∥sCt ∥∥− 1

12
σt
∥∥sCt ∥∥2

≤ δg +

(
1

2
δH −

√
K2
H + 4σt‖gt‖ −KH

24

)∥∥sCt ∥∥
≤ δg −

√
K2
H + 4σt‖gt‖ −KH

48

∥∥sCt ∥∥
≤
√
K2
H + 8LF‖gt‖ −KH

192LF
−
√
K2
H + 4σt‖gt‖ −KH

96σt
≤ 0.

The last inequality follows from the fact that p(x) :=
(√

a2 + x− a
)2
/x is an increasing

function over R+. Then, we have

δg‖st‖+
1

2
δH‖st‖2 +

(
1

2
LF −

σt
3

)
‖st‖3 = ‖st‖r(‖st‖) ≤ 0,

which completes the proof.
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With the help of the above lemma, we show that iteration t is successful when ‖gt‖ ≥ εg.

Lemma 19. Suppose Assumptions 1 and 2 and Conditions 5 and 6 hold. Further, suppose
at iteration t, we have ‖gt‖ > εg and σt ≥ 2LF . Then, the iteration t is successful, i.e.
σt+1 = σt/γ.

Proof. First, since ‖gt‖ ≥ εg, by Lemma 12 and Lemma 18, we have

F (xt + st)− F (xt)−mt(st) ≤ δg
∥∥sCt ∥∥+

1

2
εH
∥∥sCt ∥∥2

.

Now from Condition 6 and (A.5a), we get

−mt(st) ≥ −mt(s
C
t ) ≥ 1

12
‖sCt ‖2

(√
K2
H + 4σt‖gt‖ −KH

)
.

Consider the approximation quality ρt,

1− ρt =
F (xt + st)− F (xt)−mt(st)

−mt(st)
≤ δg

∥∥sCt ∥∥+ 1
2
δH
∥∥sCt ∥∥2

1
12
‖sCt ‖2(

√
K2
H + 4σt‖gt‖ −KH)

=
12δg

‖sCt ‖(
√
K2
H + 4σt‖gt‖ −KH)

+
6δH√

K2
H + 4σt‖gt‖ −KH

≤ 24σtδg

(
√
K2
H + 4σt‖gt‖ −KH)2

+
6δH√

K2
H + 4σt‖gt‖ −KH

≤ 48LF δg

(
√
K2
H + 8LF‖gt‖ −KH)2

+
6δH√

K2
H + 8LF‖gt‖ −KH

,

where the second inequality follows from (A.3) and the last inequality follows from σt ≥ 2LF

as well as the fact that function r(x) := x/
(√

a2 + x− a
)2

is monotonically decreasing over

R+. Now, Since δH ≤ (1− η)
(√

K2
H + 4LF‖gt‖ −KH

)
/24, we get

6δH/
(√

K2
H + 8LF‖gt‖ −KH

)
≤ (1− η)/4.

Similarly, since δg ≤ (1− η)
(√

K2
H + 8LF‖gt‖ −KH

)2

/(192LF ),

we get 48LF δg/
(√

K2
H + 8LF‖gt‖ −KH

)2

≤ (1 − η)/4. Therefore, 1 − ρt ≤ 1 − η, which

means the iteration is successful.

Now, as in Lemma 16, we have

Lemma 20. Under Assumptions 1 and 2 and Conditions 5 and 6, we have σt ≤ 2γLF for
all t.
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We are now in position to prove the optimal complexity of Algorithm 2 under Condition 6.
Recall that Lemma 16 still holds. Hence, we only need to prove a tighter bound for |Tsucc|.
In particular, we separate Tsucc into the following three subsets:

T 1
succ , {t ∈ Tsucc | ‖gt+1‖ ≥ εg} , (A.9)

T 2
succ , {t ∈ Tsucc | ‖gt+1‖ ≤ εg and λmin(Ht+1) ≤ −εH} , (A.10)

T 3
succ , {t ∈ Tsucc | ‖gt+1‖ ≤ εg and λmin(Ht+1) ≥ −εH} . (A.11)

Clearly, Tsucc = T 1
succ

⋃
T 2

succ

⋃
T 3

succ, and, trivially, |T 3
succ| = 1.

First, let us bound T 2
succ.

Lemma 21. Under Assumptions 1 and 2 and Conditions 5 and 6, we have the following
upper bound, ∣∣T 2

succ

∣∣ ≤ Cε−3
H .

Proof. Since F (xt) is monotonically decreasing, then

F (x0)− Fmin ≥
T−1∑
t=0

F (xt)− F (xt+1) = F (x0)− F (x1) +
T−1∑
t=0

F (xt)− F (xt+1)

≥ F (x0)− F (x1) +
∑

t∈T 2
succ

F (xt)− F (xt+1)

≥ F (x0)− F (x1) +
∑

t∈T 2
succ

ηmt+1(st+1)

≥ F (x0)− F (x1) + η
∑

t∈T 2
succ

ν3ε3H
24γ2L2

F

,

where the last inequality follows from (A.6b). Hence,

∣∣T 2
succ

∣∣ ≤ (F (x1)− Fmin)24γ2L2
F

ην3
ε−3
H = O(ε−3

H ).

Intuitively, we could see that we need each update to yield sufficient descent in order to
bound T 1

succ. Equivalently, we need each st to be bounded below to get sufficient decrease;
see the following lemma.

Lemma 22. Suppose Assumptions 1 and 2 and Conditions 5 and 6 hold. If iteration t is
successful and ‖gt‖ ≥ εg, then

‖st‖ ≥ κg

[(
1− ζ − ζ

1− 2ζ

)
‖gt+1‖ −

5

2
δg

]
,
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where

κg := min

{(
LF
2

+ 2γLF + ε0 + ζKF

)−1

,

(
LF
2

+ 2γLF +
ζ

1− 2ζ
KF + ζKF

)−1
}
.

Proof. Using Condition 6, we get

‖gt+1‖ ≤ ‖gt+1 −∇mt(st)‖+ ‖∇mt(st)‖ ≤ ‖gt+1 −∇mt(st)‖+ θt‖gt‖. (A.12)

Noting that ∇mt(st) = gt + Htst + σt‖st‖st, by Assumptions 1 and 2, we have

‖gt+1 −∇mt(st)‖ ≤ ‖gt+1 − gt −Htst‖+ σt‖st‖2

≤ ‖
∫ 1

0

(∇2F (xt + τst)−∇2F (xt))stdτ + (∇2F (xt)−Ht)st‖

+ ‖gt −∇F (xt)‖+ ‖gt+1 −∇F (xt + τst)‖+ σt‖st‖2

≤
(
LF
2

+ 2γLF

)
‖st‖2 + δH‖st‖+ 2δg. (A.13)

Also according to Assumption 2, we get

‖gt‖ ≤ ‖gt −∇F (xt)‖+ ‖∇F (xt))‖ ≤ δg +KH‖st‖+ ‖∇F (xt + st)‖
≤ 2δg +KH‖st‖+ ‖gt+1‖. (A.14)

By combining (A.12)–(A.14) and using definition of θt in (2.13), we get

‖gt+1‖ ≤
(
LF
2

+ 2γLF

)
‖st‖2 + (δH + θtKF ) ‖st‖+ 2(1 + θt)δg + θt‖gt+1‖

≤
(
LF
2

+ 2γLF

)
‖st‖2 + (δH + θtKF ) ‖st‖+

5

2
δg + ζ‖gt+1‖,

which implies

(1− ζ)‖gt+1‖ −
5

2
δg ≤

(
LF
2

+ 2γLF

)
‖st‖2 + (δH + θtKF ) ‖st‖. (A.15)

Now, consider two cases:

i. If ‖st‖ ≥ 1, then
(δH + θtKF )‖st‖ ≤ (εH + ζKF )‖st‖2.

It follows,

(1− ζ)‖gt+1‖ − 5/2δg ≤
(
LF
2

+ 2γLF + εH + ζKF

)
‖st‖2,

i.e. ∥∥s2
t

∥∥ ≥ (1− ζ)‖gt+1‖ −
5

2
δg

LF/2 + 2γLF + εH + ζKF

.
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ii. If ‖st‖ ≤ 1, then

δH ≤ ζεg ≤ ζ‖gt‖
≤ ζ
(
‖gt+1‖+ ‖∇F (xt + st)− gt+1‖+ ‖∇F (xt)−∇F (xt + st)‖+ ‖gt −∇F (xt)‖

)
≤ ζ (2δg +KF‖st‖+ ‖gt+1‖)
≤ ζ (2δH +KF‖st‖+ ‖gt+1‖) ,

where the third inequality is from triangular inequality and the last inequality follows from
δg ≤ δH in (2.12c) in Condition 6. Therefore we have

δH‖st‖ ≤
ζ

1− 2ζ
(KF‖st‖+ ‖gt+1‖) ‖st‖ ≤

ζ

1− 2ζ

(
KF‖st‖2 + ‖gt+1‖

)
.

Then, using θt ≤ ζ in (2.13),

(δH + θtKF )‖st‖ ≤
(

ζ

1− 2ζ
+ ζ

)
KF‖st‖2 +

ζ

1− 2ζ
‖gt+1‖.

Substituting this into (A.15), we have(
1− ζ − ζ

1− 2ζ

)
‖gt+1‖ −

5

2
δg ≤

(
LF
2

+ 2γLF +
ζ

1− 2ζ
KF + ζKF

)
‖st‖2,

i.e.

‖st‖2 ≥
((

1− ζ − ζ

1− 2ζ

)
‖gt+1‖ −

5

2
δg

)(
LF
2

+ 2γLF +
ζ

1− 2ζ
KF + ζKF

)−1

.

The two cases complete the proof.

Now, based on Lemma 22, it is easy to bound |T 1
succ|.

Lemma 23. Given the same setting as Lemma 22, the success iterations T 1
succ is bounded

by ∣∣T 1
succ

∣∣ ≤ C max
{
ε−1.5
g , ε−3

H

}
.

Proof. First, according to (2.12a) in Condition 5, we have

δg ≤
1− η
192LF

(√
K2
H + 8LF max{min{‖gt‖, ‖gt+1‖}, εg} −KH

)2

≤ (1− η)8LF max{min{‖gt‖, ‖gt+1‖}, εg}
192LF

≤ max{min{‖gt‖, ‖gt+1‖}, εg}
24

.
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If ‖gt+1‖ ≥ εg and ‖gt‖ ≥ εg, according to Lemma 22 and substituting ζ = 1/4, we have

‖st‖2 ≥ κg

[
(1− 1/4− 1/4

1− 2/4
)εg − 5/2

1

24
εg

]
=

1

8
κgεg.

Now consider any t ∈ T 1
succ. Since ‖gt‖ ≥ εg, then we have

−mt(st) ≥
σt
6
‖st‖3 ≥ σmin

6
(
κgεg

8
)3/2 ≥ cgε

3/2
g ,

where cg , κ
3/2
g σmin/200. Otherwise, we must have λmin(Ht) ≤ −εH , and by (A.6b), we have

−mt(st) ≥
ν3ε3H

24γ2L2
F

= cHε
3
H ,

where cH , ν3

24γ2L2
F

. Therefore,

−mt(st) ≥ min{cgε3/2g , cHε
3
H}.

Since F (xt) is monotonically decreasing and F (x) is lower bounded by Fmin, it follows that

F (x0)− Fmin ≥
T−1∑
t=0

F (xt)− F (xt+1) ≥
∑

t∈T 1
succ

F (xt)− F (xt+1) ≥
∑

t∈T 1
succ

−ηmt(st)

≥
∑

t∈T 1
succ

min{cgε3/2g , cHε
3
H} =

∣∣T 1
succ

∣∣min{cgε3/2g , cHε
3
H}.

Therefore ∣∣T 1
succ

∣∣ ≤ max

{
F (x0)− Fmin

cg
ε−3/2
g ,

F (x0)− Fmin

cH
ε−3
H

}
,

which completes the proof.

Since Tsucc = T 1
succ

⋃
T 2

succ

⋃
T 3

succ, we can get a bound of the total number of successful
iterations.

Lemma 24. Given Assumptions 1 and 2 as well as Conditions 5 and 6, the number of
successful iterations |Tsucc| is bounded by

|Tsucc| ≤ C max
{
ε−1.5
g , ε−3

H

}
.

Proof. It immediately follows from Lemma 21 and Lemma 23.



161

Appendix B

Appendix for Chapter 3

B.1 Key Ingredients of the Newton-CG Method

We present the two major components from [199] that are also used in our inexact variant of
the Newton-CG algorithm. The first ingredient, Procedure 8 (referred to in some places as
“Capped CG”), is a version of the conjugate gradient [216] algorithm that is used to solve a
damped Newton system of the form H̄d = g, where H̄ = H+2εI for some positive parameter
ε. Procedure 8 is modified to detect indefiniteness in the matrix H and, when this occurs,
to return a direction along which the curvature of H at most −ε. The second ingredient,
Procedure 9 (referred to as the “Minimum Eigenvalue Oracle” or “MEO”), checks whether
a direction of negative curvature (less than −ε for a given positive argument ε) exists for the
given matrix H We now discuss each of these procedures in more detail.

Procedure 8 (Capped-CG). The well-known classical CG algorithm [216] is used
to solve linear systems involving positive definite matrices. However, this positive definite
requirement is often violated during the iterations for non-convex optimization due to in-
definiteness of Hessians encountered at some iterates. Capped-CG, proposed by [199] and
presented in Procedure 8 for completeness, is an original way to leverage and detect such
negative curvature directions, when they are encountered during CG iterations.

Lines 13-17 in Procedure 8 contain the standard CG operations. When H � −εI, the
tests for negative curvature in lines 22, 26, and 28 will not be activated, and Capped-CG
will return an approximate solution d ≈ H̄−1g. However, when H 6� −εI, Capped-CG will
identify and return a direction of “sufficient negative curvature” — a direction d satisfying
dTHd ≤ −ε‖d‖2. This negative curvature direction is obtained under two circumstances.
First, when the intermediate step (either yj or pj) satisfies the negative curvature condition,
i.e., dT H̄d ≤ −ε‖d‖2 (Lines 22 and 26), Procedure 8 will be terminated and the intermediate
step will be returned. Second, when the residual, rj, decays at a slower rate than anticipated
by standard CG analysis (Line 28) (under an assumption that the eigenvalues of H̄ are
bounded below by ε, a negative curvature can also be recovered. Note that Procedure 8
can be called with an optional input M , which is an upper bound on ‖H‖. However, even
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Procedure 8 Capped Conjugate Gradient

1: Inputs: Symmetric Matrix H ∈ Rd×d, vector g 6= 0; damping parameter ε ∈ (0, 1); ; desired accuracy
ζ ∈ (0, 1);

2: Optional input: positive scale M (set to 0 if not provided)
3: Outputs: dtype, d

4: Secondary Output: M , κ, ζ̃, τ , T
5: Set

H̄ := H + 2ε, κ :=
M + 2ε

ε
, ζ̃ :=

ζ

3κ
, T :=

4κ4

(1−
√

1− τ)2
, τ :=

1√
κ+ 1

;

6: y0 ← 0, r0 ← g,p0 ← −g, j ← 0
7: if pT

0 H̄p0 < ε‖p0‖2 then
8: Set d = p0 and terminate with dtype = NC;
9: else if ‖Hp0‖ > M‖p0‖ then

10: M ← ‖Hp0‖/‖p0‖ and update κ, ζ̃, τ , T ;
11: end if
12: while TRUE do
13: αj ← rTj rj/p

T
j H̄pj ; (Traditional CG Begins)

14: yj+1 ← yj + αjpi;

15: rj+1 ← rj + αjH̄pj ;

16: βj+1 ← rTj+1rj+1/r
T
j rj ;

17: pj+1 ← −rj+1 + βj+1pj ; (Traditional CG Ends)
18: j ← j + 1;
19: if max(‖Hpj‖/‖pj‖, ‖Hyj‖/‖yj‖, ‖Hrj‖/‖rj‖) > M then

20: M ← max(‖Hpj‖/‖pj‖, ‖Hyj‖/‖yj‖, ‖Hrj‖/‖rj‖) and update κ, ζ̃, τ , T ;
21: end if
22: if yT

j H̄yj ≤ ε
∥∥yj

∥∥2 then
23: Set d← yj and terminate with dtype = NC;

24: else if ‖rj‖ ≤ ζ̂‖r0‖ then
25: Set d← yj and terminate with dtype = SOL;

26: else if pT
j H̄pj ≤ ε

∥∥pj

∥∥2 then
27: Set d← pj and terminate with dtype = NC;

28: else if ‖rj‖ ≥
√
T (1− τ)j/2‖r0‖ then

29: Compute αj ,pj+1 as in the main loop above;
30: Find i ∈ {0, · · · , j − 1} such that

(yj+1 − yi)
T H̄(yj+1 − yi)∥∥yj+1 − yi

∥∥2 ≤ ε; (B.1)

31: Set d← yj+1 − yi and terminate with dtype = NC;
32: end if
33: end while
34: Return: d

without a priori knowledge of this upper bound, M can be updated so that at any point
in the execution of the procedure, M is an upper bound on the maximum curvature of H
revealed to that point. Other parameters (κ, ζ̃, τ , T ) are also updated whenever the value
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of M changes. It is not hard to see that M is bounded by UH throughout the execution
of Procedure 8, provided that if the value of M is supplied to this procedure, the supplied
value is at most UH.

Lemma 25 gives a bound on the number of iterations performed by Procedure 8.

Lemma 25 ([199, Lemma 1]). The number of iterations of Procedure 8 is bounded by

min {d, J(M, ε, ζ)} ,

where J = J(M, ε, ζ) is the smallest integer such that
√
T (1 − τ)J/2 ≤ ζ̂. The number

of matrix-vector products required is bounded by 2 min{d, J(M, ε, ζ)} + 1, unless all iterates
yi, i = 1, 2, . . . are stored, in which case it is min{d, J(M, ε, ζ)} + 1. We can estimate the
upper bound of J(M, ε, ζ) as

J(M, ε, ζ) ≤ min
{
d, Õ(ε−1/2)

}
. (B.2)

When the slow decrease in residual is detected (Line 21), a direction of negative curvature
for H can be extracted from the previous intermediate solutions, as the following result
describes.

Lemma 26 ([199, Theorem 2]). Suppose that the loop of Procedure 8 terminates with j = Ĵ ,
where

Ĵ ∈ {1, 2, . . . ,min{n, J(M, ε, ζ)}}
satisfies

‖rĴ‖ > max{ζ̂ ,
√
T (1− τ)Ĵ/2}‖r0‖.

Suppose further that yT
Ĵ
H̄yĴ ≥ ε‖yĴ‖2, so that yĴ+1 is computed. Then we have

(yĴ+1 − yi)T H̄(yĴ+1 − yi)
‖yĴ+1 − yi‖2

< ε, for some i ∈ {0, . . . , Ĵ − 1}.

Note that dT H̄d ≤ ε‖d‖2 ⇐⇒ dTHd ≤ −ε‖d‖2.
Procedure 8 is invoked by the Newton-CG procedure, Algorithm 3, when the current

iterate xk has ‖∇f(xk)‖ = ‖gk‖ > εg > 0. The output d of Procedure 8 may be scaled
according to the type of the result, in the manner described in the following result, which
uses Lemmas 25 and 26 to summarize the outputs of Procedure 8.

Lemma 27 ([199, Lemma 3]). Let Assumption 3, and Condition 7 hold. Suppose that
Procedure 8 is invoked at an iterate xk of Algorithm 3 (so that ‖gk‖ > εg > 0) with inputs
H = Hk, g = gk, ε = εH , and ζ. Let d be the output of Procedure 8, which is subsequently
scaled in Algorithm 3 to obtain dk. Then one of the two following statements holds:
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i. dtype = SOL and dk = d satisfies

dTk (Hk + 2εHI)dk ≥ εH‖dk‖2, (B.3a)

‖dk‖ ≤ ε−1
H

√
1 + ζ2/4‖gk‖, (B.3b)

‖r̂k‖ ≤
1

2
εHζ‖dk‖, (B.3c)

where

r̂k = (Hk + 2εHI)dk + gk. (B.4)

ii. dtype = NC and dk satisfies

dk = −sgn(dTgk)
|dTHkd|
‖d‖2

d

‖d‖ ,

and dk satisfies

dTkHkdk ≤ −εH‖dk‖2, (B.5a)

‖dk‖ ≥ εH . (B.5b)

Procedure 8 can either return the approximate Newton direction or a direction computed
from the negative curvature. In the case of ‖gk‖ < εg, however, the Capped-CG algorithm
is not invoked by Algorithm 3, which resorts instead to Procedure 9, described next.

Procedure 9 Minimum Eigenvalue Oracle

1: Inputs: Symmetric matrix H ∈ Rd×d, scalar M ≥ λmax(H) and ε > 0;
2: Set δ ∈ [0, 1);
3: Outputs: Estimate λ of λmin(H) such that λ ≤ −ε/2 and vector v with ‖v‖ = 1 such

that vTHv = λ OR certificate that λmin(H) ≥ −ε. (If the certificate is the output, it is
false with probability δ.)

Procedure 9 (Minimum Eigenvalue Oracle). This procedure searches for a direction
spanned by the negative spectrum of a given symmetric matrix or, alternately, verifies that
the matrix is (almost) positive definite. More specifically, for a given ε > 0, Procedure 9
finds a negative curvature direction v of Hk such that vTHv ≤ −ε‖v‖2/2, or else certifies
that H � −εI. In the latter case, the certification is false with a probability less than some
specified value δ. As indicated in [199], this minimum eigenvalue oracle can be implemented
using the Lanczos process or the classical CG algorithm. (In this paper, we choose the
former.) Both of these approaches have the same complexity, given in the following result.
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Lemma 28 ([199, Lemma 2]). Suppose that the Lanczos method is used to estimate the
smallest eigenvalue of H starting from a random vector drawn from the uniform distribution
on the unit sphere, where ‖H‖ ≤ M . For any δ ∈ (0, 1), this approach finds the smallest
eigenvalue of H to an absolute precision of ε/2, together with a corresponding direction v,
in at most

min

{
d, 1 +

⌈
ln(2.75d/δ2)

2

√
M

ε

⌉}
iterations, (B.6)

with probability at least 1− δ.

B.2 Proof of Theorem 4

Given Condition 7, the proofs of the complexity bounds boil down to three parts. First, we
bound the decrease in the objective function f(xk) (Lemma 29) when taking the damped
Newton step dk (that is, when dtype = SOL on return from Procedure 8). Second, we
bound the decrease in the objective when a negative curvature direction is encountered in
Procedure 8 (Lemma 30) or 9 (Lemma 31). Third, for Lines 10-19 in Algorithm 3, we show
that the algorithm can be terminated after the update in Line 13. In particular, when the
update direction is sufficiently small from Procedure 8 and a large negative curvature from
Procedure 9 has not been detected, Line 13 terminates at a point satisfying the required
optimality conditions (Lemma 32).

We start with the case in which an inexact Newton step is used.

Lemma 29. Suppose that Assumption 3, and Condition 7 hold. Suppose that at iteration k
of Algorithm 3, we have ‖gk‖ > εg, so that Procedure 8 is called. When Procedure 8 outputs a
direction dk with dtype = SOL and ‖dk‖ ≥ εg/εH , then the backtracking line search requires
at most jk ≤ jsol + 1 iterations, where

jsol =

⌈
1

2
logθ

3(1− ζ)ε2H
4Ug(LH + η)

√
1 + ζ2/4

⌉
,

and the resulting step xk+1 = xk + αkdk satisfies

f(xk)− f(xk+1) ≥ csol max

{
0,min

(
(‖gk+1‖ − δg,k − δg,k+1)3

ε3H
, ε3H , ε

3/2
g

)}
, (B.7)

where

csol =
η

6
min


 1

(3 + 1
2
ζ) +

√
(3 + 1

2
ζ)2 + 2LH

3

,

[
3θ2(1− ζ)

4(LH + η)

]3/2

 .
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Proof. When the dtype = SOL, the output solution dk is the solution of inexact regularized
Newton step. We first prove that when dTk gk < 0, gTk∇f(xk) is also negative:

dTk∇f(xk) ≤ dTk gk + δg,k‖dk‖
= dTk r̂k − dTk (Hk + 2εHI)dk + δg,kg‖dk‖ ( (B.4))

≤ ‖dTk ‖‖r̂k‖ − εH‖dk‖2 + δg,k‖dk‖ ( (B.3a))

≤ −1

2
εH‖dk‖2 +

1− ζ
8

max (εg, εH‖dk‖) ‖dk‖ ( (B.3c) and Condition 7)

= −1

2
εH‖dk‖2 +

1− ζ
8

εH‖dk‖2

< −3

8
εH‖dk‖2.

(B.8)

We consider two cases here. Case 1: Consider first αk = 1. We note first that in the
case ‖gk+1‖ − δg,k − δg,k+1 ≤ 0, the claim (B.7) is satisfied trivially. Thus we assume in the
rest of the argument for this case that ‖gk+1‖ − δg,k − δg,k+1 > 0. We have

‖gk+1‖ = ‖gk+1 − gk + gk‖
= ‖gk+1 −∇fk+1 +∇fk+1 − gk −∇fk +∇fk −∇2f(xk)dk − 2εHdk +∇2f(xk)dk −Hkdk + rk‖
≤ δg,k + δg,k+1 + ‖∇fk+1 −∇fk −∇2f(xk)dk‖+ ‖2εHdk‖+ ‖∇2f(xk)dk −Hkdk‖+ ‖rk‖

≤ δg,k + δg,k+1 +
LH
2
‖dk‖2 + 2εH‖dk‖+ δH‖dk‖+

1

2
εHζ‖dk‖ ((B.3c))

= δg,k + δg,k+1 + (2εH + δH +
1

2
εHζ)‖dk‖+

LH
2
‖dk‖2.

By rearranging the terms above (see [200, Lemma 17]), we have that

‖dk‖ ≥
1

(2 + δH/εH + 1
2
ζ) +

√
(2 + δH/εH + 1

2
ζ)2 + 2LH

min{(‖gk+1‖−δg,k−δg,k+1)/εH , εH}.

Since αk = 1 was accepted by the backtracking line search, we have for the case of ‖gk+1‖−
δg,k − δg,k+1 > 0 that

f(xk)− f(xk + dk)

≥ η

6

1[
2 + δH/εH + 1

2
ζ) +

√
(2 + δH/εH + 1

2
ζ)2 + 2LH

]3 min

{
(‖gk+1‖ − δg,k − δg,k+1)3

ε3H
, ε3H

}

≥ η

6

1[
3 + 1

2
ζ) +

√
(3 + 1

2
ζ)2 + 2LH

]3 min

{
(‖gk+1‖ − δg,k − δg,k+1)3

ε3H
, ε3H

}
,

where the last inequality follows from δH ≤ εH . By combining this inequality with the trivial
inequality obtained when ‖gk+1‖ − δg,k − δg,k+1 ≤ 0, we obtain (B.7) for the case of αk = 1.
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Case 2: When αk < 1. In this case, we know that there is j ≥ 0 such that the acceptance
condition for the backtracking line search is not satisfied. For this j, we have

−η
6
θ3j‖dk‖3 ≤ f(xk + θjdk)− f(xk)

≤ θj∇fTk dk +
θ2j

2
dTk∇2f(xk)dk +

LH
6
θ3j‖dk‖3

= θjgTk dk +
θ2j

2
dTkHkdk + θj(∇f(xk)− gk)

Tdk +
θ2j

2
dTk (∇2f(xk)−Hk)dk +

LH
6
θ3j‖dk‖3

≤ θjgTk dk +
θ2j

2
dTkHkdk + θjδg,k‖dk‖+

θ2j

2
δH‖dk‖2 +

LH
6
θ3j‖dk‖3

= θj(r̂k − (Hk + 2εHI)dk)
Tdk +

θ2j

2
dTkHkdk + θjδg,k‖dk‖

+
θ2j

2
δH‖dk‖2 +

LH
6
θ3j‖dk‖3 ( (B.4))

= −θj(1− θj

2
)dTk (Hk + 2εHI)dk − θ2jεH‖dk‖2 + θj r̂Tk dk

+ θjδg,k‖dk‖+
θ2j

2
δH‖dk‖2 +

LH
6
θ3j‖dk‖3

≤ −θ
j

2
(1− ζ)εH‖dk‖2 + θjδg,k‖dk‖+

θ2j

2
δH‖dk‖2 +

LH
6
θ3j‖dk‖3

≤ θjδg,k‖dk‖ −
θj

2
‖dk‖2

(
(1− ζ)εH − δH

)
+
LH
6
θ3j‖dk‖3 (θj < 1, (B.3a) and (B.3c)).

By rearranging this expression, we obtain

θ2j ≥ 3

LH + η

(
(1− ζ)εH − δH

)
‖dk‖ − δg,k

‖dk‖2
.

Because δH ≤ (1− ζ)εH/2, from Condition 7, this bound implies that

θ2j ≥ 3

LH + η

(1− ζ)εH‖dk‖/2− δg,k
‖dk‖2

. (B.9)

Since by assumption ‖dk‖ ≥ εg/εH , we have either that

δg,k <
1− ζ

4
εg =

1− ζ
4

εH
εg
εH
≤ (1− ζ)εH‖dk‖

4
, (B.10)

or else

δg,k <
1− ζ

8
min(εH‖dk‖, ‖gk‖, ‖gk+1‖) <

(1− ζ)εH‖dk‖
4

. (B.11)

In either case, we have that (1− ζ)εH‖dk‖/2− δg ≥ (1− ζ)εH‖dk‖/4, so we have from (B.9)
that

θ2j ≥ 3

LH + η

(1− ζ)εH
4‖dk‖

. (B.12)
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Since in the case under consideration, the acceptance condition for the backtracking line
search fails for j = 0, the latter expression holds with j = 0, and we have

‖dk‖ ≥
3(1− ζ)εH
4(LH + η)

. (B.13)

From (B.12), (B.3b), and (3.5), we know that

θ2j ≥ 3(1− ζ)εH
4(LH + η)

‖dk‖−1 ≥ 3(1− ζ)εH
4(LH + η)

εH

Ug
√

1 + ζ2/4
. (B.14)

Since

jsol =

⌈
1

2
logθ

3(1− ζ)ε2H
4Ug(LH + η)

√
1 + ζ2/4

⌉
,

then for any j > jsol,

θ2j < θ2jsol <
3(1− ζ)ε2H

4Ug(LH + η)
√

1 + ζ2/4
.

By comparing this expression with (B.14), we conclude that the line-search must terminate
with jk ≤ jsol + 1, and the previous index j = jk − 1 satisfies

θ2jk−2 ≥ 3(1− ζ)εH
4(LH + η)

‖dk‖−1.

So,

θjk ≥
√

3θ2(1− ζ)

4(LH + η)
ε

1/2
H ‖dk‖−1/2.

Then, we have

f(xk)− f(xk + θjkdk) ≥
η

6
θ3jk‖dk‖3

≥ η

6

[
3θ2(1− ζ)

4(LH + η)

]3/2

ε
3/2
H ‖dk‖3/2

≥ η

6

[
3θ2(1− ζ)

4(LH + η)

]3/2

ε3/2g , (B.15)

where the last inequality follows from (B.13).
Combining the two cases completes the proof.

Next, we deal with the negative curvature directions, for which dtype = NC. Lemma 30
and Lemma 31 present the results of the negative curvature direction from Procedure 8
and 9, respectively.
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Lemma 30. Let Assumption 3, and Condition 7 hold. Suppose that at iteration k of Al-
gorithm 3, we have ‖gk‖ > εg, so that Procedure 8 is called. When Procedure 8 outputs a
direction dk with dtype = NC, the backtracking line search requires at most jk ≤ jsol + 1
iterations, where

jsol = 2

⌈
logθ

3

2(LH + η)

⌉
.

The resulting step xk+1 = xk + αkdk satisfies

f(xk)− f(xk+1) ≥ cncε
3
H ,

where

cnc =
η

6

[
3θ

2(LH + η)

]3

.

Proof. First, if αk = 1, then the result holds trivially. Hence, we only need to consider the
case where the non-unit step size is accepted. From (B.5), we have

dTkHkdk ≤ −‖dk‖3 ≤ −εH‖dk‖2.

Also,
‖dTk (Hk −∇2f(xk))dk‖ ≤ δH‖dk‖2.

Combining the two above together, we have

dTk∇2f(xk)dk ≤ −‖dk‖3 + δH‖dk‖2.

When θj does not satisfy the termination criterion, either ∇f(xk)
Tdk ≤ 0 or −∇f(xk)

Tdk ≤
0. Here, we suppose ∇f(xk)

Tdk ≤ 0, and then

−η
6
θ3j‖dk‖3 ≤ f(xk + θjdk)− f(xk)

≤ θj∇f(xk)
Tdk +

θ2j

2
dTk∇2f(xk)dk +

LH
6
θ3j‖dk‖3

≤ −θ
2j

2
‖dk‖3 +

θ2j

2
δH‖dk‖2 +

LH
6
θ3j‖dk‖3,

which implies

θj ≥ 6

LH + η

‖dk‖ − δH
2‖dk‖

=
3

LH + η
− 3δH

(LH + η)‖dk‖
≥ 3

LH + η
− 3δH

(LH + η)εH
.

When δH < εH/2,

θj ≥ 3

2(LH + η)
.

Therefore, when

jnc = 2

⌈
logθ

3

2(LH + η)

⌉
,
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line-search must terminate with jk ≤ jnc + 1; and the previous index jk − 1 satisfies

θjk−1 ≥ 3

2(LH + η)
.

Hence, from (B.5), we have
f(xk)− f(xk+1) ≥ cncε

3
H ,

where

cnc =
η

6

[
3θ

2(LH + η)

]3

.

We now turn our attention to the property of Procedure 9. The following lemma shows
that when dtype = NC obtained from Procedure 9, there is a sufficient descent in the function.

Lemma 31. Let Assumption 3 and Condition 7 hold. Suppose that at iteration k of Algo-
rithm 3, the search direction dk is of negative curvature type, obtained either directly from
Procedure 9 or as the output of Procedure 8 and dtype = NC. Then the line-search terminates
with step size αk = θjk with jk ≤ jnc + 1 where jnc is defined as Lemma 30 and the decrease
of the function value resulting from the chose step size satisfies

f(xk)− f(xk + αkdk) ≥
cnc

8
ε3H , (B.16)

where cnc is given in Lemma 30.

Proof. Note that

dTkHdk ≤
1

2
‖dk‖3 ≤ 1

2
εH‖dk‖2,

i.e., ‖dk‖ ≥ εH/2. The proof can be obtained by replacing εH with εH/2 in Lemma 30.

Now comes the last but a crucial part. When the output direction dk from Procedure 8
satisfies ‖dk‖ ≤ εg/εH and Procedure 9 detects no large negative curvature in the Hessian,
the update of xk with unit step along dk is the last step. Dealing with this case is particularly
critical to obtaining the convergence rate of our inexact damped Netwon-CG algorithm.

Lemma 32. Let Assumption 3, and Condition 7 hold. Suppose that, at iteration k of
Algorithm 3, Hk � −εHI and the update dk obtained from Procedure 8 satisfies ‖dk‖ ≤
εg/εH . Then

‖∇f(xk + dk)‖ ≤
LH
2

ε2g
ε2H

+ 4εg, λmin(∇2f(xk + dk)) ≥ −(2εH + LH
εg
εH

)I, (B.17)

i.e., the algorithm terminates at the next step.
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Proof. To begin, we check the first-order condition as

‖∇f(xk + dk)‖ = ‖∇f(xk + dk)− gk + gk‖
≤
∥∥∇f(xk + dk)−∇f(xk)−∇2f(xk)dk + Hkdk + gk

∥∥
+ ‖∇f(xk)− gk‖+

∥∥∇2f(xk)dk −Hkdk
∥∥

≤
∥∥∇f(xk + dk)−∇f(xk)−∇2f(xk)dk

∥∥+ ‖Hkdk + gk‖+ δg,k + δH‖dk‖
≤
∥∥∇f(xk + dk)−∇f(xk)−∇2f(xk)dk

∥∥+ ‖r̂k‖+ 2εH‖dk‖+ δg,k + δH‖dk‖

≤ LH
2
‖dk‖2 +

1

2
εHζ‖dk‖+ (2εH + δH)‖dk‖+ δg,k

≤ LH
2
‖dk‖2 + ((ζ/2 + 2)εH + δH)‖dk‖+ δg,k

≤ LH
2
‖dk‖2 + (ζ/2 + 3)εH‖dk‖+

1− ζ
8

max (εg,min(εH‖dk‖, ‖gk‖, ‖gk+1‖))

≤ LH
2

ε2g
ε2H

+ (ζ/2 + 3)εg +
1− ζ

8
max (εg, εH‖dk‖)

≤ LH
2

ε2g
ε2H

+ (ζ/2 + 3)εg +
1− ζ

8
εg

≤ LH
2

ε2g
ε2H

+ 4εg.

The third inequality above uses the fact that ‖r̂k‖ ≤ εHζ‖dk‖/2.
Now, we check the second-order condition. Since Hk � −εHI, then

∇2f(xk + dk) � ∇2f(xk)− LH‖dk‖I � Hk − δHI − LH
εg
εH
I � −(2εH + LH

εg
εH

)I.

This completes the proof.

Proof of Theorem 4

Proof. First of all, as Lemma 28 states, the failure rate of each time Procedure 9 called is δ.
If there are at most K̄ steps, then the success rate is at least (1−δ)K̄ . Next, let us show that
Algorithm 3 will be terminated after at most K̄ step to satisfy the second-order optimility.
Suppose Algorithm 3 terminates after K steps. We will show that K ≤ K̄ conditioning
that Procedure 9 always succeeds during the whole process. Particularly, we partition the
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K steps into 5 possible cases.

K1 := {k = 0, 1, 2, · · · , K − 1|‖gk‖ ≤ ε}
K2 := {k = 0, 1, 2, · · · , K − 1|‖gk‖ ≥ ε, ‖gk+1‖ ≤ ε}
K3 := {k = 0, 1, 2, · · · , K − 1|‖gk‖ ≥ ε, ‖gk+1‖ ≥ ε, ‖dk‖ ≥

√
ε/LH}

K4 := {k = 0, 1, 2, · · · , K − 1|‖gk‖ ≥ ε, ‖gk+1‖ ≥ ε, ‖dk‖ ≤
√
ε/LH ,Hk � −

√
LHεI}

K5 := {k = 0, 1, 2, · · · , K − 1|‖gk‖ ≥ ε, ‖gk+1‖ ≥ ε, ‖dk‖ ≤
√
ε/LH ,Hk � −

√
LHεI}

Obviously, K = |K1|+|K2|+|K3|+|K4|+|K5|. Case 1: K1 := {k = 0, 1, 2, · · · , K̄−1|‖gk‖ ≤
ε}. The update dk in this case must come from Procedure 9. With Lemma 31, we have

f(xk)− f(xk+1) ≥ cnc

8
ε3H =

cncL
3/2
H

8
ε3/2. (B.18)

Case 2: K2 := {k = 0, 1, 2, · · · , K̄ − 1|‖gk‖ ≥ ε, ‖gk+1‖ ≤ ε}. With Lemma 29, we can
only guarantee that f(xk)− f(xk+1) ≥ 0. However, since ‖gk+1‖ ≤ ε, the next iterate must
fall into the case K1. Therefore we have |K2| ≤ |K1|+ 1.

Case 3: K3 := {k = 0, 1, 2, · · · , K̄ − 1|‖gk‖ ≥ ε, ‖gk+1‖ ≥ ε, ‖dk‖ ≥
√
ε/LH}. With

Lemma 29 and 30, we have

f(xk)− f(xk+1) ≥ min

(
csol min

(
(‖gk+1‖ − δg,k − δg,k+1)3

ε3H
, ε3H , ε

3/2
g

)
, cncε

3
H

)
≥ min

(
csol min

(
ε3g

8ε3H
, ε3H , ε

3/2
g

)
, cncε

3
H

)
= min

(
csol min

(
ε3/2

8L
3/2
H

, L
3/2
H ε3/2, ε3/2

)
, cncL

3/2
H ε3/2

)

= min

(
csol

8L
3/2
H

, csolL
3/2
H , cncL

3/2
H , csol

)
ε3/2.

(B.19)

Case 4: K4 := {k = 0, 1, 2, · · · , K̄ − 1|‖gk‖ ≥ ε, ‖gk+1‖ ≥ ε, ‖dk‖ ≤
√
ε/LH ,Hk �

−√LHεI}. With Lemma 32, this iterate must be the second last step since the next iterate
will terminate. Therefore we have |K4| ≤ 1.

Case 5: K5 := {k = 0, 1, 2, · · · , K̄ − 1|‖gk‖ ≥ ε, ‖gk+1‖ ≥ ε, ‖dk‖ ≤
√
ε/LH ,Hk �

−√LHεI}. In this case, the final update for this iterate will go through Procedure 9. Similar
to Case 1, we will have

f(xk)− f(xk+1) ≥ cnc

8
ε3H =

cncL
3/2
H

8
ε3/2. (B.20)
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Now we consider the total decrease of f over all the K steps1

f(x0)− flow ≥
K−1∑
k=0

(f(xk)− f(xk+1)

≥
∑
k∈K1

(f(xk)− f(xk+1) +
∑
k∈K3

(f(xk)− f(xk+1) +
∑
k∈K5

(f(xk)− f(xk+1)

≥ (|K1|+ |K5|)
cncL

3/2
H

8
ε3/2 + |K3|min

(
csol

8L
3/2
H

, csolL
3/2
H , csol, cncL

3/2
H

)
ε3/2.

Therefore

|K1|+ |K5| ≤
f(x0)− flow

cncL
3/2
H /8

ε−3/2, |K3| ≤
f(x0)− flow

min

(
csol

8L
3/2
H

, csolL
3/2
H , csol, cncL

3/2
H

)ε−3/2.

Finally, we have

K = |K1|+ |K2|+ |K3|+ |K4|+ |K5|

≤ f(x0)− flow

cncL
3/2
H /8

ε−3/2 +
f(x0)− flow

cncL
3/2
H /8

ε−3/2 + 1 +
f(x0)− flow

min

(
csol

8L
3/2
H

, csolL
3/2
H , csol, cncL

3/2
H

)ε−3/2 + 1

≤ 3(f(x0)− flow)

min
(
csol/(8L

3/2
H ), csolL

3/2
H , csol, cncL

3/2
H /8

)ε−3/2 + 2.

This completes the proof.

B.3 Proof of Theorem 5

We now show that the fixed step size can result in a sufficient descent in the function f(xk)
when dtype = SOL and ‖dk‖ ≥

√
εg/LH . The following lemma can be seen as a modification

of Lemma 29 with fixed step size.

Lemma 33. Let Assumption 3, and Condition 8 hold. Suppose that at iteration k of Al-
gorithm 4, we have ‖gk‖ > εg, so that Procedure 8 is called. When Procedure 8 outputs a
direction dk with dtype = SOL and ‖dk‖ ≥

√
εg/LH , we can choose a pre-defined step size,

αk =

[
3(1− ζ)

4(LH + η)

]1/2
ε

1/2
H

‖dk‖1/2
.

1If |K4| = 1, we should consider the function decrease over the K − 1 steps. The analysis on bounding
|K1| , |K3| , |K5| remains the same.
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The resulting step xk+1 = xk + αkdk satisfies

f(xk)− f(xk+1) ≥ c̄solε
3
H ,

where

c̄sol =
η

6

[
3(1− ζ)

4LH(LH + η)

]3

.

Proof. First, we prove that α ≤ 1. Indeed,

α2
k =

[
3(1− ζ)

4(LH + η)

]
εH
‖dk‖

≤
[

3(1− ζ)

4(LH + η)

] √
LHεg√
εg/LH

=
3(1− ζ)LH
4(LH + η)

=
3

4

LH
LH + η

(1− ζ)

< 1.

(B.21)

It is not hard to see if

−η
6
α3
k‖dk‖3 ≥ f(xk + αkdk)− f(xk),

then the statement in the lemma is correct by substitute αk into the formula. Now, we prove
the lemma by contradiction. Suppose we have

−η
6
α3
k‖dk‖3 ≤ f(xk + αkdk)− f(xk)

≤ α3
k∇fTk dk +

α2
k

2
dTk∇2f(xk)dk +

LH
6
α3
k‖dk‖3

= αkg
T
k dk + αk(∇fk − gk)

Tdk +
α2
k

2
dTk (∇2f(xk)−Hk)dk +

LH
6
α3
k‖dk‖3

+
α2
k

2
dTkHkdk

≤ αkδg,k‖dk‖ −
αk
2

(1− ζ)εH‖dk‖2 +
α2
k

2
δH‖dk‖2 +

LH
6
α3
k‖dk‖3

< αkδg,k‖dk‖ −
αk
2
‖dk‖2

(
(1− ζ)εH − δH

)
+
LH
6
α3
k‖dk‖3 (αk < 1).

Substituting αk and δH ≤ (1− ζ)εH/2 into the above formula, we have

LH + η

6

[
3(1− ζ)

4(LH + η)

]
εH
‖dk‖

‖dk‖2 − (1− ζ)εH
4

‖dk‖+ δg,k > 0,
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which can be simplified as

1

2
εH‖dk‖ − εH‖dk‖+

1

2
max (εg,min(εH‖dk‖, ‖gk‖, ‖gk+1‖)) > 0.

If εg > min(εH‖dk‖, ‖gk‖, ‖gk+1‖), since εH =
√
LHεg, we have

−
√
LHεg‖dk‖+ εg > 0⇒ ‖dk‖ <

√
εg
LH

,

which contradicts our assumption ‖dk‖ ≥
√
εg/LH . If εg < min(εH‖dk‖, ‖gk‖, ‖gk+1‖), then

0 <
1

2
εH‖dk‖ − εH‖dk‖+

1

2
max (εg,min(εH‖dk‖, ‖gk‖, ‖gk+1‖))

=
1

2
εH‖dk‖ − εH‖dk‖+

1

2
min(εH‖dk‖, ‖gk‖, ‖gk+1‖)

≤ 1

2
εH‖dk‖ − εH‖dk‖+

1

2
εH‖dk‖ = 0

⇒ 0 > 0,

(B.22)

which is again a contradiction.

Next, let us deal with the case when dtype = NC, which can be considered as a fixed step
size alternative of Lemma 30.

Lemma 34. Let Assumption 3 and Condition 8 hold. Suppose that at iteration k of Al-
gorithm 3, we have ‖gk‖ > εg, so that Procedure 8 is called. When Procedure 8 outputs a
direction dk with dtype = NC, we can choose a constant step size

αk = θ̃
(‖dk‖ − δH)/2 +

√
((‖dk‖ − δH)/2)2 − 4(LH + η)δg,k/6

(LH + η)‖dk‖/6
,

where 2−
√

3 < θ̃ < 1. The resulting step xk+1 = xk + αkdk satisfies

f(xk)− f(xk+1) ≥ c̄ncε
3
H ,

where

c̄nc =
η

6

[
3θ̃

(LH + η)

]3

.

Proof. Same as in the proof of Lemma 30, we have

dTk∇2f(xk)dk ≤ −‖dk‖3 + δH‖dk‖2.
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When αk does not satisfy the termination criterion, then

−η
6
α3
k‖dk‖3 ≤ f(xk + αkdk)− f(xk)

≤ αk∇f(xk)
Tdk +

α2
k

2
dTk∇2f(xk)dk +

LH
6
α3
k‖dk‖3

≤ αkδg,k‖dk‖ −
α2
k

2
‖dk‖3 +

α2
k

2
δH‖dk‖2 +

LH
6
α3
k‖dk‖3.

This shows

−η
6
α2
k‖dk‖2 ≤ δg,k −

αk
2
‖dk‖2 +

αk
2
δH‖dk‖+

LH
6
α2
k‖dk‖2.

By re-arranging the terms, we have the following quadratic function:

(LH + η)‖dk‖2

6
α2
k −
‖dk‖(‖dk‖ − δH)

2
αk + δg,k ≥ 0.

Since

∆ = (
‖dk‖(‖dk‖ − δH)

2
)2 − 4

(LH + η)‖dk‖2

6
δg,k

≥ ‖dk‖2(
1

8
‖dk‖2 − 2(LH + η)

3
δg,k) (Since ‖dk‖ ≥ εH , δH ≤

1

2
εH)

> 0 (Condition 8),

there are two solutions of the above quadratic inequality, i.e.,

αk ≥
(‖dk‖ − δH)/2 +

√
((‖dk‖ − δH)/2)2 − 4(LH + η)δg,k/6

(LH + η)‖dk‖/6
≡ β1,

or αk ≤
(‖dk‖ − δH)/2−

√
((‖dk‖ − δH)/2)2 − 4(LH + η)δg,k/6

(LH + η)‖dk‖/6
≡ β2.

Next, we show that our pre-defined step size setting is in the between of β1 and β2. First, it
is obvious that αk = θ̃β1 < β1 since θ < 1. Second, proving αk > β2 is equivalent to proving

θ̃k ≥
β1

β2

⇔ θ̃k ≥
(‖dk‖ − δH)/2−

√
(‖dk‖ − δH)2/4− 4(LH + η)δg,k/6

(‖dk‖ − δH)/2 +
√

(‖dk‖ − δH)2/4− 4(LH + η)δg,k/6

⇔ θ̃k ≥
x−
√
x2 − c

x+
√
x2 − c

(Let x =
(‖dk‖ − δH)

2
, and c = 4

(LH + η)

6
δg,k)

⇔ θ̃k ≥
(x−

√
x2 − c)2

c
.
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Since x > 2c (Condition 8) and (x−
√
x2 − c) is a decreasing function when x > c, we know

that θ̃k > 2−
√

3 satisfies αk > β2.
Since c < x/2 and δh < ‖dk‖2/2, we have

αk = θ̃
(‖dk‖ − δH)/2 +

√
((‖dk‖ − δH)/2)2 − 4(LH + η)δg,k/6

(LH + η)‖dk‖/6

≥ θ̃
‖dk‖/4 +

√
3‖dk‖/4

(LH + η)‖dk‖/6
>

3θ̃

LH + η
.

The following lemma shows that when dtype = NC obtained from Procedure 9, fixed step
size can also be applied.

Lemma 35. Let Assumption 3 and Condition 8 hold. Suppose that at iteration k of Algo-
rithm 3, the search direction dk is of negative curvature type, obtained either directly from
Procedure 9 or as the output of Procedure 8 and dtype = NC. We can choose a constant step
size

αk = θ̃
(‖dk‖ − δH)/2 +

√
((‖dk‖ − δH)/2)2 − 4(LH + η)δg,k/6

(LH + η)‖dk‖/6
,

where 2 −
√

3 < θ̃ < 1, and the decrease of the function value resulting from the chose step
size satisfies

f(xk)− f(xk + αkdk) ≥
c̄nc

8
ε3H , (B.23)

where c̄nc is given in Lemma 34.

Proof. Note that

dTkHdk ≤
1

2
‖dk‖3 ≤ 1

2
εH‖dk‖2,

i.e., ‖dk‖ ≥ εH/2. The proof can be obtained by replacing εH with εH/2 in Lemma 34.
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Appendix C

Appendix for Chapter 4

C.1 Descending Property of (4.6)

Assume that f(w) is a strongly convex and strictly smooth function in Rd, such that there
exists positive constants α and β so that αI ≤ ∇2f(w) ≤ βI for all w. We can show that
the update formulation of (4.6) is a converging algorithm. Particularly, we can show that
with the proper learning rate:

f(wt+1)− f(wt) ≤ −
αk

2β1+k
‖gt‖2. (C.1)

Note that when k = 0 or 1, the convergence rate is the same as gradient descent or Newton
method1 [28], respectively. Our proof is similar to [28] for Newton method.

Let us define λ(wt) = (gt
THt

−kgt)
1/2. Since f(w) is strongly convex, we have

f(wt − η∆wt) ≤ f(wt)− ηgTt ∆wt +
η2β‖∆wt‖2

2

≤ f(wt)− ηλ(wt)
2 +

β

2αk
η2λ(wt)

2.

(C.2)

The last inequality comes from the fact that

λ(wt)
2 = ∆wt

THk
t∆wt ≥ αk‖∆wt‖2. (C.3)

Therefore, the step size η̂ = αk

β
will make f decreases as follows,

f(wt − η̂∆wt) ≤ f(wt)−
1

2
η̂λ(wt)

2. (C.4)

Since α � Ht � β, we have

λ(wt)
2 = gt

THt
−kgt ≥

1

βk
‖gt‖2. (C.5)

1The convergence rate here denotes the global convergence rate of Newton’s method.
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Therefore,

f(wt − η̂∆wt)− f(wt) ≤ −
1

2βk
η̂‖gt‖2 = − αk

2β1+k
‖gt‖2.

C.2 Descending Property of (4.7)

When f(w) is a strongly convex and strictly smooth function in Rd, such that there exists
positive constants α and β so that αI ≤ ∇2f(w) ≤ βI for all w, we can prove that (4.7)
has the same convergence rate as (4.6).

First of all, it is not hard to see the diagonal elements in D are all positive since f(w) is
a strongly convex problem. That is,

α ≤ eTi Hei = eTi Dei = Di,i, (C.6)

where ei is the vector whose coordinates are all zero, except the i-th one that equals 1.
Similarly, we have

Di,i = eTi Dei = eTi Hei ≤ β. (C.7)

Therefore, the diagonal elements in D are in the range [α, β]. Using the same proof as in
Appendix C.1, we will get the result.

C.3 Descending Property of (4.10)

When f(w) is a strongly convex and strictly smooth function in Rd, such that there exists
positive constants α and β so that αI ≤ ∇2f(w) ≤ βI for all w, we can prove that (4.10)
has the same convergence rate as (4.6).

As shown in Appendix C.2, the diagonal elements in D are in the range [α, β]. Therefore,
the average of a subset of those numbers is still in the range [α, β]. Using the same proof as
in Appendix C.1, we will get the result.

C.4 Experimental Setup

Here, we provide more details on the experimental setup for the empirical evaluation.
Image Classification. The training/test sets for Cifar10 [129] dataset contain 50k/10k

images, respectively. The models used on Cifar10 are standard ResNet20/32. We train both
models with 160 epochs and decay the learning rate by a factor of 10 at epoch 80 and 120.
The batch size is set to be 256. For SGD/Adam/AdamW, the initial learning rates are tuned
and set to be 0.1/0.001/0.01. For AdaHessian, we set the block size as 9, k to be 1, and
learning rate as 0.15 for both ResNet20/32. For Adam/AdamW/AdaHessian, β1 = 0.9 and
β2 = 0.999. We run each experiment 5 times on Cifar10 and report the mean and standard
deviation of the results. The training/test sets for ImageNet dataset [65] contain 1.2M/50k
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images, respectively. Our code is modified from the official PyTorch example2. The batch
size is set to be 256. We train ResNet18 for 90 epochs. All the settings of different optimizers
are the same as used in Cifar10 example.

Neural Machine Translation. The training/validation/test sets for the IWSLT14
dataset contain about 153K/7K/7K sentence pairs, respectively. We use a vocabulary of 10K
tokens via a joint source and target byte pair encoding (BPE). For the WMT14 dataset, we
follow the setting of [232], which contains 4.5M parallel sentence pairs for training. We use
Newstest2014 as the test set, and Newstest2013 as the validation set. The 37K vocabulary
for WMT14 is also via a joint source and target BPE factorization. We set dropout as 0.0 for
Transformer base/small model. For AdamW, we follow the optimizer setting and learning
rate schedule in [236]. For AdaHessian, we set the block size as 32 for IWSLT/WMT, k to
be 1.0, and learning rate as 0.047/1.0 for IWSLT/WMT. For both AdamW/AdaHessian, we
set β1 = 0.9 and β2 = 0.98. We fix the label smoothing value as εls = 0.1 in all experiments.
We implement our code for MT based on fairseq-py [173]. We employ BLEU3 [176] as the
evaluation metric for MT. Following standard practice, we measure tokenized case-sensitive
BLEU and case-insensitive BLEU for WMT14 En-De and IWSLT14 De-En, respectively. For
a fair comparison, we do not include other external datasets. We train 130/55 epochs for
WMT/IWSLT, respectively. We set the maximum token size to be 4096×8 (eight gpus)/4096
(one gpu) for WMT/IWSLT. For inference, we average the last 10/5 checkpoints, and we set
the length penalty as 0.6/1.0 and beam size as 4/5 for WMT/IWSLT, following [173]. We
run each experiment 5 times on IWSLT and report the mean and standard deviation of the
results.

Language Modeling. PTB [159] has 0.93M training tokens, 0.073M validation tokens,
and 0.082M test tokens. Wikitext-103 [157] contains 0.27M unique words, and 100M training
words from 28K articles, with an average length of 3.6K words per article. We use the same
evaluation scheme following [61]. We use a three-layer tensorized transformer core-1 for
PTB and a six-layer tensorized transformer core-1 for Wikitext-103, following [149]. We set
the dropout rate as 0.3 in all the LM experiments. The model is trained for 30 epochs on
both PTB and WikiText-103. For AdamW, we follow the learning rate setting in [149]. For
AdaHessian, we set the block size as 4 and k as 0.5 for PTB and Wikitext-103. We set the
learning rate as 2.0/1.0 for PTB/Wikitext-103, respectively. We set the batch size to be
60/120 for PTB/Wikitext-103. For AdamW/AdaHessian, β1 = 0.9 and β2 = 0.999. We set
the warmup steps to be 4000 and label smoothing to be εls = 0.1 in all LM experiments. We
run each experiment 5 times on PTB and report the mean and standard deviation of the
results.

Natural Language Understanding. The SqueezeBERT model is pre-trained as the
authors suggested [116]. Particularly, we pretrain SqueezeBERT from scratch using the
LAMB [258] optimizer with a global batch size of 8192, a learning rate of 2.5e-3, and a
warmup proportion of 0.28. We pretrain for 56k steps with a maximum sequence length of

2https://github.com/pytorch/examples/tree/master/imagenet
3https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
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128 and then for 6k steps with a maximum sequence length of 512 followed [117]. Moreover,
before directly using the pre-trained model on GLUE tasks, we apply transfer learning from
the MNLI GLUE task [234] to other GLUE tasks [117, 182]. We refer readers to [117] for
more detailed instruction.

For finetuning, we set the batch size as 16, β1 = 0.9, and β2 = 0.999 for both AdamW/AdaHessian
as suggested in [117]. For AdaHessian, we set the block size b as 4 and k as 1 for all tasks.
As in [117] we perform hyperparameter tuning on the learning rate and dropout rate.

Recommendation System. The Criteo Ad Kaggle dataset consists of click logs for
ad CTR prediction for 7 days. Each data set contains 13 continuous and 26 categorical
features. The dataset contains about 45 million samples over 7 days. In experiments, we
follow the setting from [166]. Our code is also modified from [166]4. The testing metric
for Recommendation Systems is Click Through Rate (CTR), measured on training and test
sets. For Adagrad, the learning rate is set to be 0.01. For AdaHessian, we set the block size
as 1, k as 0.5, learning rate as 0.043, β1 = 0.9, and β2 = 0.98. We set the batch size to be
128, following [166].

Delayed Hessian Update. For ResNets on Cifar10, we use 5 epochs for warmup. In
particular, within 5 epochs, the Hessian diagonal is still computed for every iteration. After
that, the Hessian diagonal computation frequency is set to be between 1 to 5 iterations.

C.5 Additional Results

In this section, we present additional empirical results that were discussed in Section 4.4.
See Figure C.1 and C.2.

4https://github.com/facebookresearch/dlrm
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Figure C.1: Training and testing loss curves of SGD, Adam, AdamW, AdaHessian for ResNet20/32 on
Cifar10. SGD and AdaHessian consistently achieve better accuracy as compared to Adam and AdamW. The
final accuracy results are reported in Table 4.2.
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Figure C.2: Training/Test loss curve of SGD, Adam, AdamW, AdaHessian for ResNet18 on ImageNet.
SGD and AdaHessian consistently achieve better accuracy as compared to Adam and AdamW. The final
accuracy results are reported in Table 4.2.
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Figure C.3: Training loss curves of AdamW and AdaHessian for Transformer on IWSLT14 and WMT14.
The training loss of AdaHessian is lower than that of AdamW on both IWSLT14 and WMT14. Testing
results are reported in Table 4.3.



APPENDIX C. APPENDIX FOR CHAPTER 4 184

0 20 40 60 80 100
Epoch

0

100

200

300

400

500

600

700

Tr
ai

ni
ng

 P
PL

PTB
AdamW
AdaHessian

50 60 70 80 90 100
25

30

35

40

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0

200

400

600

800

1000

1200

1400

1600
Tr

ai
ni

ng
 P

PL
Wikitext-103

AdamW
AdaHessian

0.96 0.98 1.00
1e7

20

22

24

26

28

30
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AdaHessian achieves 29.56/23.51 final training perplexity (PPL) on PTB/Wikitext-103 as compared to
AdamW (31.72/24.01). Testing results are reported in Table 4.4.
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Appendix D

Appendix for Chapter 5

D.1 Proof of Theorem 6

In this section, we give the proof of Theorem 6. The first thing we want to point out is that,
although we prove the Hessians of these NNs are positive semi-definite almost everywhere,
these NNs are not convex w.r.t. inputs, i.e., x. The discontinuity of ReLU is the cause. (For
instance, consider a combination of two step functions in 1-D, e.g. f(x) = 1x≥1 + 1x≥2 is
not a convex function but has 0 second derivative almost everywhere.) However, this has an
important implication, that the problem is saddle-free.

Before we go to the proof of Theorem 6, let us prove the following lemma for cross-entropy
loss with soft-max layer.

Lemma 36. Let us denote by s ∈ Rd the input of the soft-max function, by y ∈ {1, 2, . . . , d}
the correct label of the inputs x, by g(s) the soft-max function, and by L(s, y) the cross-
entropy loss. Then we have

∂2L(s, y)

∂s2
� 0.

Proof. Let sd =
∑d

j=1 e
sj , pi = esi

sd
, and then it follows that

L(s, y) = −
d∑
i=1

yi log pi.

Further, it is not hard to see that

∂L(s, y)

∂sj
= −

d∑
i=1

yi
∂ log pi
∂sj

= −yj(1− pj)−
∑
i 6=j

yi
pkpj
pk

= pj − yj.



APPENDIX D. APPENDIX FOR CHAPTER 5 186

Then, the second-order derivative of L w.r.t. sisj is

∂2L(s, y)

∂s2
j

= pj(1− pj), and
∂2L(s, y)

∂sj∂si
= −pjpi.

Since
∂2L(s, y)

∂s2
j

+
∑
i 6=j

∂2L(s, y)

∂sj∂si
= 0, and

∂2L(s, y)

∂s2
j

≥ 0,

we have
∂2L(s, y)

∂s2
� 0.

Now, let us give the proof of Theorem 6:
Assume the input of the soft-max layer is s and the cross-entropy is L(s, y). Based on

Chain Rule, it follows that
∂J (θ,x, y)

∂x
=
∂L

∂s

∂s

∂x
.

From Assumption. 4 we know that all the layers before the soft-max are either linear or

ReLU, which indicates
∂2s

∂x2
= 0 (a tensor) almost everywhere. Therefore, applying chain

rule again for the above equation,

∂2J (θ,x, y)

∂x2
= (

∂s

∂x
)T
∂2L

∂s2

∂s

∂x
+
∂L

∂s

∂2s

∂x2

= (
∂s

∂x
)T
∂2L

∂s2

∂s

∂x
.

It is easy to see
∂2J (θ,x, y)

∂x2
� 0 almost everywhere since

∂2L

∂s2
� 0 from Lemma 36.

From above we could see that the Hessian of NNs w.r.t. x is at most a rank c (the number
of class) matrix, since the rank of the Hessian matrix

∂2J (θ,x, y)

∂x2
= (

∂s

∂x
)T
∂2L

∂s2

∂s

∂x

is dominated by the term ∂2L
∂s2

, which is at most rank c.

D.2 Attacks Mentioned

In this section, we show the details about the attacks used in Chapter 5. Please see Table D.1
for details.
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Table D.1: The definition of all attacks used in the paper. Here gx ,
∂J (x, θ)

∂x
and Hx ,

∂2J (x, θ)

∂x2
.

∆x
FGSM ε · sign(gx)
FGSM-10 ε · sign(gx) (iterate 10 times)
L2GRAD ε · gx/‖gx‖
FHSM ε · sign(H−1

x gx)
L2HESS ε ·H−1

x gx/‖H−1
x gx‖

Table D.2: The definition of all models used in the paper.

Name Structure

C1 (for CIFAR-10)
Conv(5,5,64) – MP(3,3) – BN–Conv(5,5,64)
–MP(3,3)–BN–FN(384)–FN(192)–SM(10)

C2 (for CIFAR-10)
Conv(3,3,63)–BN–Conv(3,3,64)–BN–Conv(3,3,128)
–BN–Conv(3,3,128)–BN–FC(256)–FC(256)–SM(10)

C3 (for CIFAR-10)
Conv(3,3,64)–Conv(3,3,64)–Conv(3,3,128)
–Conv(3,3,128)–FC(256)–FC(256)–SM(10)

M1 (for MNIST) Conv(5,5,20)–Conv(5,5,50)–FC(500)–SM(10)
CR (for CIFAR-100) ResNet18 For CIFAR-100

D.3 Models

In this section, we give the details about the NNs used in Chapter 5. For clarification, We
omit the ReLu activation here. However, in practice, we implement ReLu regularity. Also,
for all convolution layers, we add padding to make sure there is no dimension reduction. We
denote Conv(a,a,b) as a convolution layer having b channels with a by a filters, MP(a,a) as
a a by a max-pooling layer, FN(a) as a fully-connect layer with a output and SM(a) is the
soft-max layer with a output. For our Conv(5,5,b) (Conv(3,3,b))layers, the stride is 2 (1).
See Table D.2 for details of all models used in this paper.

D.4 Discussion on second-order Method

Although second-order adversarial attack looks well for MNIST (see Table 5.3), but for most
our experiments on CIFAR-10 (see Table 5.4), the second-order methods are weaker than
variations of the gradient based methods. Also, notice that the robust models trained by
second-order method are also more prone to attack on CIFAR-10, particularly MFHSM and
ML2HESS. We give two potential explanation here.
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Table D.3: Result on MNIST dataset for M1 model (LeNet-5). We shows the Hessian spec-
trum of different batch training models, and the corresponding performances on adversarial
dataset generated by training/testing dataset. The testing results are shown in parenthesis.
We report the adversarial accuracy of three different magnitudes of attack. The interesting
observation is that the λθ1 is increasing while the adversarial accuracy is decreasing for fixed
ε. Meanwhile, we do not know if there is a relationship between λθ1 and Clean accuracy
or not. Also, we cannot see the relation between λx1 , ‖∇xJ (θ,x, y)‖ and the adversarial
accuracy.

Batch Acc λθ1 λx1 ‖∂xJ (θ,x, y)‖ Acc ε = 0.2 Acc ε = 0.1

64 100 (99.21) 0.49 (2.96 ) 0.07 (0.41) 0.007 (0.10) 0.53 (0.53) 0.85 (0.85)
128 100 (99.18) 1.44 (8.10 ) 0.10 (0.51) 0.009 (0.12) 0.50 (0.51) 0.83 (0.83)
256 100 (99.04) 2.71 (13.54) 0.09 (0.50) 0.008 (0.12) 0.45 (0.46) 0.81 (0.82)
512 100 (99.04) 5.84 (26.35) 0.12 (0.52) 0.010 (0.13) 0.42 (0.42) 0.79 (0.80)
1024 100 (99.05) 21.24 (36.96) 0.25 (0.42) 0.032 (0.11) 0.32 (0.33) 0.73 (0.74)
2048 100 (98.99) 44.30 (49.36) 0.36 (0.39) 0.075 (0.11) 0.19 (0.19) 0.72 (0.73)

First note that the Hessian w.r.t. input is a low rank matrix. In fact, as mentioned
above, the rank of the input Hessian for CIFAR-10 is at most ten; see Proposition 1, the
matrix itself is 3K × 3K. Even though we use inexact Newton method [75] along with
Conjugate Gradient solver, but this low rank nature creates numerical problems. Designing
preconditioners for second-order attack is part of our future work. The second point is that,
as we saw in the previous section the input Hessian does not directly correlate with how
robust the network is. In fact, the most effective attack method would be to perturb the
input towards the decision boundary, instead of just maximizing the loss.

D.5 More Numerical Result for Section 5.3 and 5.4

In this section, we provide more numerical results for Section 5.3 and 5.4. All conclusions
from the numerical results are consistency with those in Section 5.3 and 5.4.
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Figure D.1: The landscape of the loss functional is shown along the dominant eigenvector
of the Hessian on MNIST for M1. Note that the y − axis is in logarithm scale. Here ε is
a scalar that perturbs the model parameters along the dominant eigenvector denoted by v1.
The green line is the loss for a randomly batch with batch-size 320 on MNIST. The blue and
red line are the training and test loss, respectively. From the figure we could see that the
curvature of test loss is much larger than training.

Table D.4: Baseline accuracy is shown for large batch size for C1 model along with results
aciheved with scaling learning rate method proposed by [90] (denoted by ”FB Acc”). The
last column shows results when training is performed with robust optimization. As we can
see, the performance of the latter is actually better for large batch size. We emphasize
that the goal is to perform analysis to better understand the problems with large batch size
training. More extensive tests are needed before one could claim that robust optimization
performs better than other methods.

Batch Baseline Acc FB Acc Robust Acc

8000 0.7559 0.752 0.7612
10000 0.7561 0.1 0.7597
25000 0.7023 0.1 0.7409
50000 0.5523 0.1 0.7116
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Figure D.2: We show the landscape of the test and training objective functional along the
first eigenvector of the sub-sampled Hessian with B = 320, i.e. 320 samples from training
dataset, on MNIST for M1. We plot both the batch loss as well as the total training and
test loss. One can see that visually the results show that the robust models converge to a
region with smaller curvature.
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Figure D.3: We show the landscape of the test and training objective functional along the
first eigenvector of the sub-sampled Hessian with B = 320, i.e. 320 samples from training,
on CIFAR-10 for C3. We plot both the batch loss as well as the total training and test loss.
One can see that visually the results show that the curvature of robust models is smaller.
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Figure D.4: 1-D Parametric Plot on MNIST for M1 of MORI and adversarial models. Here
we are showing how the landscape of the total loss functional changes when we interpolate
from the original model (λ = 0) to the robust model (λ = 1). For all cases the robust model
ends up at a point that has relatively smaller curvature compared to the original network.
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Figure D.5: 1-D Parametric Plot on CIFAR-10 of MORI and adversarial models, i.e. total
loss functional changes interpolating from the original model (λ = 0) to the robust model
(λ = 1). For all cases the robust model ends up at a point that has relatively smaller
curvature compared to the original network.
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Figure D.6: Spectrum of the sub-sampled Hessian of the loss functional w.r.t. the model
parameters computed by power iteration on MNIST of M1. The results are computed for
different batch sizes of B = 1, B = 320, and B = 60000. We report two cases for the
single batch experiment, which is drawn randomly from the clean training data. The results
show that the sub-sampled Hessian spectrum decreases for robust models. An interesting
observation is that for the MNIST dataset, the original model has actually converged to a
saddle point, even though it has a good generalization error. Also notice that the results
for B = 320 and B = 60, 000 are relatively close, which hints that the curvature for the full
Hessian should also be smaller for the robust methods. This is demonstrated in Figure D.2.
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Figure D.7: The landscape of the loss functional is shown when the C2 model parameters
are changed along the first two dominant eigenvectors of the Hessian. Here ε1, ε2 are scalars
that perturbs the model parameters along the first and second dominant eigenvectors.
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Figure D.8: The landscape of the loss functional is shown when the M1 model parameters
are changed along the first two dominant eigenvectors of the Hessian. Here ε1, ε2 are scalars
that perturbs the model parameters along the first and second dominant eigenvectors.
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Figure D.9: The landscape of the loss functional is shown along the dominant eigenvector
of the Hessian for C2 architecture on CIFAR-10 dataset. Here ε is a scalar that perturbs the
model parameters along the dominant eigenvector denoted by v1.
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Figure D.10: Changes in the dominant eigenvalue of the Hessian w.r.t weights and the total
gradient is shown for different epochs during training. Note the increase in λθ1 (blue curve)
for large batch vs small batch. In particular, note that the values for total gradient along
with the Hessian spectrum show that large batch does not get “stuck” in saddle points, but
areas in the optimization landscape that have high curvature. The dotted points show the
corresponding results when we use robust optimization. We can see that this pushes the
training to flatter areas. This clearly demonstrates the potential to use robust optimization
as a means to avoid sharp minimas.
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Appendix E

Appendix for Chapter 6

E.1 Illustration of ResNet Stages

In Figure E.1, we show the illustration of ResNet20 on Cifar-10/100 and its three stages.

Figure E.1: Illustration of ResNet20 on Cifar-10/100 and its three stages. Blue, green, and
purple boxes shows the first, second and third stages, respectively.

E.2 Algorithms

We provide the pseudo-code for power iteration, Hutchinson algorithm, and stochastic Lanc-
zos Quadrature in this section. See Algorithm 10 and Algorithm 11. (Algorithm 6 is pre-
sented in the main text.)

E.3 Training Details

We train each model (ResNet, ResNet−BN , and ResNet−Res) for 180 epochs, with five differ-
ent initial learning rates (0.1, 0.05, 0.01, 0.005, 0.001) on Cifar-10, and ten different initial
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Algorithm 10 Power Iteration for Top Eigenvalue Computation
1: Input:

- Parameter: θ
2: Compute the gradient of θ by backpropagation, i.e., compute gθ = dL

dθ
.

3: Draw a random vector v from N(0, 1) (same dimension as θ).
4: Normalize v, v = v

‖v‖2
5: for i = 1, 2, . . . do
6: Compute gv = gTθ v

7: Compute Hv by backpropagation, Hv = d(gv)
dθ

8: Normalize and reset v, v = Hv
‖Hv‖2

9: end for

Algorithm 11 Hutchinson Method for Trace Computation
1: Input:

- Parameter: θ
2: Compute the gradient of θ by backpropagation, i.e., compute gθ = dL

dθ
.

3: for i = 1, 2, . . . do
4: Draw a random vector v from Rademacher distribution (same dimension as θ).
5: Compute gv = gTθ v

6: Compute Hv by backpropagation, Hv = d(gv)
dθ

7: Compute and record vTHv
8: end for
9: Output: the average of all computed vTHv.

learning rates (0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0004, 0.0003, 0.0002, 0.00001) on Cifar-
100. The optimizer is SGD with momentum (0.9). The learning rate decays by a factor of
10 at epoch 80, 120.

Table E.1: Accuracy of ResNet, ResNet−BN , and ResNet−Res with different depths, on
Cifar-100. Results are similar to those shown in Table 6.1, i.e., removing BN (ResNet−BN)
or residual connections (ResNet−Res) results in performance degradation.

Model\Depth 20 32 38

ResNet 66.47% 68.26% 69.06%
ResNet−BN 62.82% 25.89% 11.25%
ResNet−Res 64.59% 62.08% 62.75%



APPENDIX E. APPENDIX FOR CHAPTER 6 201

0 25 50 75 100 125 150 175
Epoch

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Cifar-10

ResNet20
ResNet BN20
ResNet Res20

0 25 50 75 100 125 150 175
Epoch

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Cifar-10

ResNet32
ResNet BN32
ResNet Res32

0 25 50 75 100 125 150 175
Epoch

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Cifar-10

ResNet38
ResNet BN38
ResNet Res38

0 25 50 75 100 125 150 175
Epoch

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Cifar-10

ResNet56
ResNet BN56
ResNet Res56

Figure E.2: Testing curve of all models reported in Table 6.1. The generalization per-
formance of models without BN (denoted as ResNet−BN) is much worse than the baseline
(denoted as ResNet). We see a similar but much smaller generalization loss when the residual
connection is removed (denoted as ResNet−Res).
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Figure E.3: Testing curve of all models reported in Table E.1. The generalization per-
formance of models without BN (denoted as ResNet−BN) is much worse than the baseline
(denoted as ResNet). We see a similar but much smaller generalization loss when the residual
connection is removed (denoted as ResNet−Res).

E.4 Loss Landscape Details

The parametric loss landscape plots are plotted by perturbing the model parameters, θ,
along the first and second top eigenvectors of the Hessian, denoted as v1 and v2. Then, we
compute the loss of K (in our case, K = 4096) data points with the following formula,

loss = L̃(θ + ε1v1 + ε2v2) =
1

K

K∑
i=1

l(M(xi), yi; θ + ε1v1 + ε2v2).

E.5 Extra Results

In the remainder of this appendix, we present additional results that we described in the
main text. See Table 6.4 for a summary.
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Figure E.4: Stage-wise Hessian trace of ResNet/ResNet−BN/ResNet−Res with depth
20/32/38/56 on Cifar-10. See Figure E.1 for stage illustration. Removing BN layer from
the third stage significantly increases the trace, compared to removing BN layer from the
first/second stage. This has a direct correlation with the final generalization performance,
as shown in Table 6.2.
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Figure E.5: The Hessian trace of the entire network for ResNet/ResNet−BN/ResNet−Res
with depth 20/32/38 on Cifar-100. Similar to the results for Cifar-10, shown in Figure 6.2,
we see that removing the BN layer results in a rapid increase of the Hessian trace, and that
removing the residual connection leads to sharper loss landscape throughout training.

Table E.2: Accuracy of ResNet models on Cifar-100 with different depths is shown in the
first row. In the second through the last rows, we report the accuracy of the corresponding
architectures, but with BN layer removed from one of the stages, respectively. (See Figure E.1
for stage definition.) For instance, the last row reports ResNet model with no BN layer in
the third stage.

Model\Depth 20 32 38

ResNet 66.47% 68.26% 69.06%
RM BN stage 1 65.69% 65.74% 67.31%
RM BN stage 2 65.62% 64.68% 66.46%
RM BN stage 3 65.63% 64.57% 61.04%

Table E.3: Accuracy of ResNet on Cifar-100 is reported for baseline (first row), along with
architectures where the residual connection is removed at different stages.

Model\Depth 20 32 38

ResNet 66.47% 68.26% 69.06%
RM Res stage 1 66.46% 66.94% 67.61%
RM Res stage 2 65.70% 66.05% 66.70%
RM Res stage 3 66.21% 66.38% 66.03%
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Figure E.6: Stage-wise Hessian trace of ResNet/ResNet−BN/ResNet−Res with depth
20/32/38 on Cifar-100. See Figure E.1 for stage illustration. Removing BN layer from
the third stage significantly increases the trace, compared to removing BN layer from the
first/second stage. This has a direct correlation with the final generalization performance,
as shown in Table E.2.
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Figure E.7: Hessian ESD of the entire network for ResNets with depth 20 on Cifar-10.
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Figure E.8: Hessian ESD of the entire network for ResNets with depth 32 on Cifar-10.
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Figure E.9: Hessian ESD of the entire network for ResNets with depth 38 on Cifar-10.
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Figure E.10: Hessian ESD of the entire network for ResNets with depth 56.
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Figure E.11: Hessian ESD of the entire network for ResNets with depth 20 on Cifar-100.
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Figure E.12: Hessian ESD of the entire network for ResNets with depth 32 on Cifar-100.
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Figure E.13: Hessian ESD of the entire network for ResNets with depth 38 on Cifar-100.
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Figure E.14: Loss landscape of ResNet/ResNet−BN/ResNet−Res 20 on Cifar-10 with batch
size 4096 by perturbing the parameters along the first two dominant eigenvectors of the
Hessian. The loss landscape of ResNet−BN 20 (ResNet−Res 20) is indeed smoother (sharper)
than that of ResNet 20, which is align with the trace plot in Figure 6.2 and the Hessian ESD
plot in Figure 6.3.
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Figure E.15: Loss landscape of ResNet/ResNet−BN/ResNet−Res 32 on Cifar-10 with batch
size 4096 by perturbing the parameters along the first two dominant eigenvectors of the
Hessian. The loss landscape of ResNet−BN 32/ResNet−Res 32 is indeed sharper than that
of ResNet 32, which is align with the trace plot in Figure 6.2 and the Hessian ESD plot
in Figure E.8.
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Figure E.16: Loss landscape of ResNet/ResNet−BN/ResNet−Res 38 on Cifar-10 with batch
size 4096 by perturbing the parameters along the first two dominant eigenvectors of the
Hessian. The loss landscape of ResNet−BN 38/ResNet−Res 38 is indeed sharper than that
of ResNet 38, which is align with the trace plot in Figure 6.2 and the Hessian ESD plot
in Figure E.9.
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Figure E.17: Loss landscape of ResNet/ResNet−Res 56 on Cifar-10 with batch size 4096 by
perturbing the parameters along the first two dominant eigenvectors of the Hessian. Note
that the z-axis of ResNet56 at epoch 0 has different range than all the others. The loss
landscape of ResNet−Res 56 is indeed sharper than that of ResNet 56, which is align with
the trace plot in Figure 6.2 and the Hessian ESD plot in Figure E.10.
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Figure E.18: Loss landscape of ResNet/ResNet−BN/ResNet−Res 20 on Cifar-100 with batch
size 4096 by perturbing the parameters along the first two dominant eigenvectors of the
Hessian. The loss landscape of ResNet−BN 20 (ResNet−Res 20) is indeed smoother (sharper)
than that of ResNet 20, which is align with the trace plot in Figure E.5 and the Hessian
ESD plot in Figure E.11.
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Figure E.19: Loss landscape of ResNet/ResNet−BN/ResNet−Res 32 on Cifar-100 with batch
size 4096 by perturbing the parameters along the first two dominant eigenvectors of the
Hessian. The loss landscape of ResNet−BN 32/ResNet−Res 32 is indeed sharper than that
of ResNet 32, which is align with the trace plot in Figure E.5 and the Hessian ESD plot
in Figure E.12.
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Figure E.20: Loss landscape of ResNet/ResNet−BN/ResNet−Res 38 on Cifar-100 with batch
size 4096 by perturbing the parameters along the first two dominant eigenvectors of the
Hessian. The loss landscape of ResNet−BN 38/ResNet−Res 38 is indeed sharper than that
of ResNet 38, which is align with the trace plot in Figure E.5 and the Hessian ESD plot
in Figure E.13.
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Appendix F

Appendix for Chapter 7

F.1 Deployment Frameworks

A number of frameworks [122, 50, 1, 210, 178, 97, 231, 51] have been developed for deep
learning. Many [122, 50, 1, 178] offer a dataflow DAG abstraction for specifying NN work-
loads and provide optimization support for inference as well as training with automatic
differentiation. These frameworks significantly reduce development cycles for deep learning
algorithms and thus facilitate innovations in deep learning. However, a majority of these
frameworks [122, 50, 178] adopt a library-based approach that maps the NN operations to
hardware through existing high-performance libraries, such as cuDNN [53] for GPUs, and
GEMMLOWP [119] and NNPACK [74] for CPUs. These libraries currently do not support
low-precision inference (INT4), and since they are not open source we could not add that
functionality. As such, for our analysis we adopted to use TVM [51], which provides a gen-
eral graph and a tensor expression intermediate representation (IR) to support automatic
code transformation and generation. TVM also equips a QNN dialect [121] to compile the
quantization-specific operators of a quantized model. We choose TVM as our deployment
framework for several reasons including: (i) its extensive support in the frontend high-level
frameworks and the backend hardware platforms; and (ii) its decoupled IR abstraction that
separates the algorithm specifications and the scheduling decisions. Augmenting TVM with
our mixed-precision quantization support allows this optimization to be used by NNs written
in different frameworks as well as for various target hardware platforms. In addition, the
decoupled IR design in TVM allows the mixed-precision quantization optimization to be
applied without affecting the specification of algorithms.



APPENDIX F. APPENDIX FOR CHAPTER 7 220

F.2 Quantization Method

Symmetric and Asymmetric Quantization. For uniform quantization, the scaling factor
S is chosen to equally partition the range of real values r for a given bit width:

S =
rmax − rmin

2b − 1
,

where rmax, rmin denotes the max/min value of the real values, and b is the quantization bit
width. This approach is referred to as asymmetric quantization. It is also possible to use a
symmetric quantization scheme where S = 2 max(|rmax|, |rmin|)/(2b − 1) and Z = 0 (since
zero will be exactly represented). As such, the quantization mapping can be simplified as:

Q(r) = Int
( r
S

)
. (F.1)

Conversely, the real values r could be recovered from the quantized values Q(r) as follows:

r̃ = S Q(r). (F.2)

Note that the recovered real values r̃ will not exactly match r due to the rounding operation.
For HAWQ-V3, we use symmetric quantization for weights and asymmetric quantization
for the activations.

Static and Dynamic Quantization. The scaling factor S depends on rmax and rmin.
These can be precomputed for weights. However, for activations, each input will have a
different range of values across the NN layers. In dynamic quantization, this range and the
corresponding scaling factor is computed for each activation map during runtime. However,
computing these values during inference has high overhead. This can be addressed with
static quantization, in which this range is pre-calculated during the quantization phase and
made independent of the input data, by analyzing the range of activations for different
batches. We use static quantization for all of the experiments with HAWQ-V3. With these
definitions, we next discuss how quantized inference is performed.

F.3 Fake Quantization for Convolution

In simulated quantization (also referred to as fake quantization in literature), all the cal-
culations happen in FP32, which is different from the approach we used in Section 7.3.1.
Similar to Section 7.3.1, suppose that the hidden activation is h = Shqh and weight tensor
is W = Swqw. In fake quantization, the output is calculated as:

a = (Swqw) ∗ (Shqh). (F.3)

That is the weight and activation are first represented back to FP32 precision, and then
the calculation is performed. This result is then requantized and sent to the next layer as
follows:

qa = Int

(
a

Sa

)
, (F.4)
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Figure F.1: Illustration of fake vs true quantization for a convolution (fully-connected)
layer. (Left) In the simulated quantization (aka fake quantization), weights and activations
are simulated as integers with floating point representation, and all the multiplication and
accumulation happens in FP32 precision. However, with this approach, one cannot benefit
from low-precision ALUs. (Right) An illustration of the integer-only pipeline with integer-
only quantization. Note that with this approach, all the weights and activations are stored
in integer format, and all the multiplications are performed with INT4 and accumulated in
INT32 precision. Finally, the accumulated result is requantized to INT4 with dyadic scaling
(denoted by (SwSh

Sa
)). Importantly, no floating point or even integer division is performed.

where Sa is the pre-calculated scale factor for the output activation. However, notice that
here the requantization operation requires FP32 arithmetic (division by Sa), which is different
from HAWQ-V3’s Dyadic arithmetic that only uses integer operations. Figure F.1 shows
the illustration of fake vs true quantization for a convolution (fully-connected) layer, without
the BN layer. We also showed the corresponding illustration when BN is used in Figure 7.1.

F.4 Batch Normalization Fusion

During inference, the mean and standard deviation used in the BN layer are the running
statistics (denoted as µ and σ). Therefore, the BN operation can be fused into the previous
convolutional layer. That is to say, we can combine BN and CONV into one operator as,

CONV BN(h) = β
Wh− µ

σ
+ γ

=
βW

σ
h+ (γ − βµ

σ
) ≡ W̄h+ b̄,

(F.5)

where W is the weight parameter of the convolution layer and h is the input feature map.
In HAWQ-V3, we use the fused BN and CONV layer and quantize W̄ to 4-bit or 8-bit
based on the setting, and quantize the bias term, b̄ to 32-bit. More importantly, suppose
the scaling factor of h is Sh and the scaling factor of W̄ is SW̄ . The scaling factor of b̄ is
enforced to be

Sb̄ = ShSW̄ . (F.6)

So that the integer components of W̄h and b̄ can be directly added during inference.
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Figure F.2: Illustration of HAWQ-V3 for an inception module. Input feature map is
given in INT32 precision, which is requantized to INT4 precision (green boxes) before being
passed to the three convolutional branches. The pooling layer, however, is performed on the
original input feature map in INT32. This is important since performing pooling on 4-bit
data can result in significant information loss. The outputs for all the branches are scaled
and requantized before being concatenated.

F.5 Concatenation Layer

The concatenation operation in Inception is an important component, which needs to be
quantized carefully to avoid significant accuracy degradation. Concatenation layers are often
used in the presence of pooling layers and other convolutions (a good example is the inception
family of NNs). In HAWQ-V3, we use INT32 for the pooling layer since performing pooling
on 4-bit can result in significant information loss. Furthermore, we perform separate dyadic
arithmetic for the following concatenation operator in the inception module. Suppose the
input of a concatenation block is denoted as h = Shqh, the output of the three convolutional
branches are m = Smqm, n = Snqn, and l = Slql, the output of the pooling branch is
p = Spqp, and the final output is a = Saqa.

The pooling branch directly takes h as input, and the rest of the three convolutional
branches take the quantized 4-bit tensor as input. After the computation of four separate
branches, the output qa is calculated with four DN operators:

qa =
∑

i∈{m,n,l}

DN

(
Si
Sa

)
qi + DN

(
Sp
Sa

)
qp. (F.7)

This scheme is represented in Figure F.2.
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Figure F.3: The normalized difference between activation tensors in TVM and activation
tensors in PyTorch during inference. The normalized difference is the L2 norm of the dif-
ference between two activation counterparts divided by the L2 norm of the TVM activation
tensor.

F.6 Fake Quantization for Residual Connection

Similar to Section 7.3.3, Let us denote the activation passing through the residual connection
as r = Srqr. the activation of the main branch before residual addition as m = Smqm. the
final output after residual accumulation as a = Saqa. In fake quantization, the output a is
calculated in FP32 as,

a = Srqr + Smqm. (F.8)

Afterwards, requantization is performed,

qa = Int(
Srqr + Smqm

Sa
), (F.9)

where the Int operator requires FP32 multiplication.
Similarly, fake quantization for concatenation layer is calculated as (see Appendix F.5

for notations):

qa = Int(
m+ n+ l + p

Sa
). (F.10)

F.7 Error Accumulation of Fake Quantization

There has been a common misunderstanding that using fake quantization is acceptable since
one can use FP32 precision to perform Integer operations exactly. First, this is only true if
the matrix multiplications only use integer numbers, without using very large numbers. The
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latter is the case in most ML applications. However, the problem is that many quantization
approaches use fake quantization in a way that is different than the above argument.

For example, keeping the BN parameters in FP32 and not quantizing them is a major
problem. It is not possible to simply ignore that and deploy a quantized model with FP32
BN parameters on integer-only hardware. This difference was discussed and illustrated
in Figure 7.1.

Another very important subtle issue is how the residual connection is treated. As dis-
cussed in the previous section, the fake quantization approaches use FP32 arithmetic to
perform the residual addition. The common (but incorrect) the argument here again is that
the INT arithmetic can be performed without error with FP32 logic. However, this is not
the problem, since there is a subtle difference in how requantization is performed. In fake
quantization, the results are first accumulated in FP32 and then requantized. However, it is
not possible to perform such an operation on integer-only hardware. In integer-only hard-
ware, the results are always quantized and then accumulated. This difference can actually
lead to O(1) error.

For example consider the following case: assume Sa = 1, r = 2.4, m = 4.4 (see definition
in Appendix F.6), and the requantization operator (Int ) uses the “round to the nearest
integer”. Then using fake quantization, the output qa is

qa = Int(4.4 + 2.4) = 7. (F.11)

However for true quantization, the output qa is

qa = Int(4.4) + Int(2.4) = 6. (F.12)

This is an O(1) error that will propagate throughout the network. Also note that the
problem will be much worse for low precision error. This is because an O(1) error for INT8
quantization is equivalent to a constant times (1/256), while for INT4 quantization it will
be a constant times (1/16).

We also performed a realistic example on ResNet50 for the uniform quantization case.
We perform fake quantization in PyTorch for fine-tuning and then deploy the model in TVM
using integer-only arithmetic. Afterward, we calculate the error between the feature map
between PyTorch (fake quantization) and TVM (integer-only). In particular, we measure
the normalized difference using L2 norm:

Normalized Difference =
‖x1 − x2‖
‖x1‖

, (F.13)

where x1, x2 are the feature maps with fake quantization and the corresponding values
calculated in hardware with integer-only arithmetic. In Figure F.3 we show the normalized
difference between activation tensors in TVM and activation tensors in PyTorch during
inference. As one can see, the numerical differences of the first layers are relatively small.
However, this error accumulates throughout the layers and becomes quite significant in the
last layers. Particularly, for uniform 4-bit quantization, the final difference becomes > 95%.
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F.8 Implementation Details

Models. All the empirical results are performed using pretrained models from PyTorchCV [187]
library. In particular, we do not make any architectural changes to the models, even though
doing so might lead to better accuracy. We consider three NN models, ResNet18, ResNet50,
and InceptionV3, trained on the ImageNet dataset [65]. For all the NNs, we perform BN
folding to speed up the inference. All the calculations during inference are performed using
dyadic arithmetic (i.e., integer addition, multiplication, and bit shifting), with no floating
point or integer division anywhere in the network, including requantization stages.

Training details. We use PyTorch (version 1.6) for quantizing models with HAWQ-
V3. For all the quantization results, we follow the standard practice of keeping the first
and last layer in 8-bit (note that input data is encoded with 8-bits for the RGB channels,
which is quantized with symmetric quantization). We only use uniform quantization along
with channel-wise symmetric quantization for weights, and we use layer-wise asymmetric
quantization for activations. In order to perform static quantization, we set our momentum
factor of quantization range (i.e., minimum and maximum) of activations to be 0.99 during
training. Although further hyperparameter tuning may achieve better accuracy, for unifor-
mity, all our experiments are conducted using learning rate 1e-4, weight decay 1e-4, and
batch size 128.

Distillation. As pointed out previously [185], for extra-low bit quantization (in our case
uniform 4 bit and mixed 4/8 bit quantization), distillation may alleviate the performance
degradation from quantization. Therefore, in addition to our basic results, we also present
results with distillation (denoted with HAWQ-V3+Dist). Among other things, we do con-
firm the findings of previous work [185] that distillation can boost the accuracy of quantized
models. For all different models, we apply ResNet101 [104] as the teacher, and the quantized
model as the student. For simplicity, we directly use the naive distillation method proposed
in [107]. (More aggressive distillation or fine-tuning with hyperparameter may lead to better
results.)

Latency Measurement. We use TVM to deploy and tune the latency of the quantized
models using Google Cloud Platform virtual machines with Tesla T4 GPUs and CUDA 10.2.
We build the same NN models in TVM and tune the layerwise performance by using the
autotuner. Once we have the tuned models, we run the end-to-end inference multiple times
to measure the average latency. For the accuracy test, we load the parameters trained from
PyTorch and preprocess it to the corresponding data layout that TVM requires. Then, we
do inference in TVM and verify that the final accuracy matches the results in PyTorch.

Mixed-precision configuration. For mixed-precision configuration, we first compute
the trace of each layer [69] using PyHessian [254], and then solve the ILP problem using
PULP [198]. Our mixed-precision ILP problem can find the right bit-precision configuration
with orders of magnitude faster run time, as compared to the RL based method [235, 242].
For instance, the entire trace computation can be finished within 30 minutes for all layers
of ResNet50/InceptionV3 with only 4 RTX 6000 GPUs. Afterward, the ILP problem can
be solved in less than a second (on a 15 inch MacBook Pro), as compared to more than
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10/50 hours searching using RL [235] with 4 RTX 6000 GPUs.

F.9 ILP Result Interpolation

We plot the bit-precision setting for each layer of ResNet18 that the ILP solver finds for
different latency constraints, as shown in Figure F.4. Additionally, we also plot the sensitivity
(Ωi in (7.9)) and the corresponding speed up for each layer computed by quantizing the
respective layer in INT8 quantization versus INT4. As can be seen, the bit configuration
chosen by the ILP solver is highly intuitive based on the latency speed-up and the sensitivity.
Particularly, when the mixed-precision model is constrained by the High-Latency setting (the
first row of Figure F.4), only relatively insensitive layers, along with those that enjoy high
INT4 speed-up, are quantized (i.e., layers 9, 14, and 19). However, for the more strict Low-
Latency setting (last row of Figure F.4), only very sensitive layers are kept at INT8 precision
(layer 1, 2, 3, 5, and 7).1

1Note that here layer 7 is the downsampling layer along with layer 5, so it is in the same bit setting as
layer 5 even though the latency gain of layer 7 is limited.
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Figure F.4: Illustration of the final model specification that the ILP solver finds for ResNet18
with latency constraint. The black line shows the percentage of latency reduction for a layer
executed in INT4 versus INT8, normalized by total inference reduction. Higher values mean
higher speedup with INT4. The orange line shows the sensitive difference between INT8
and INT4 quantization using second-order Hessian sensitivity [69]. The bit-precision setting
found by ILP is shown in bar plots, with the blue and taller bars denoting INT8, and
cyan and shorter bars denoting INT4. Each row corresponds to the three results presented
in Table 7.2 with latency constraint. For the low latency constraint, the ILP solver favors
assigning INT4 for layers that exhibit large gains in latency when executed in INT4 (i.e.,
higher values in dark plot) and that have low sensitivity (lower values in the orange plot).
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Appendix G

Appendix for Chapter 8

G.1 Importance of Speed: Adversarial Training for

large-scale Learning

As discussed in the introduction, one of the motivations of using adversarial attacks is that
multiple recent studies have shown superior results when adversarial data is injected during
training [211, 205, 251, 253]. However, the overhead of computing an adversarial noise needs
to be small, specially for large scale training. Here, the speed with which the adversarial noise
is computed becomes important, so as not to slow down the training time significantly. To
illustrate the efficiency of TR attacks, we perform adversarial training using the Adaptive
Batch Size Adversarial Training (ABSA) method introduced by [251, 253] for large-scale
training. We test ResNet-18 on Cifar-10 which achieves a baseline accuracy of 83.50% (with
a batch size of 128 using the setup as in [253]). If we use the TR L∞ attack, the final
accuracy increases to 87.79% (actually for the hardest with batch size of 16K). If we instead
use FGSM, the final accuracy only increases to 84.32% (for the same batch size of 16K). It
is important to note that it is computationally infeasible to use CW in this sort of training,
as it is about 15× slower than TR/FGSM. This result shows that a stronger attack that is
fast may be very useful for adversarial training. We emphasize that the goal of this test is
simply to illustrate the importance of a fast and stronger adversarial attack, which could
make TR to be a useful tool for adversarial training research. More thorough testing (left
for future work) is required to understand how stronger attacks such as TR could be used
in the context of adversarial training.

G.2 Visual Examples

Here we provide more visual examples for different neural networks on ImageNet. We show
the original image along with adversarially perturbed ones using the three methods of Deep-
Fool, CW, and ours (TR). We also provide two heat maps for the adversarial perturbations.
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The first one is calibrated based on DeepFool’s maximum perturbation magnitude, and the
second one is calibrated for each of the individual method’s maximum perturbation. This
allows a better visualization of the adversarial perturbation of each method.
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Figure G.1: The figures show various neural networks, the corresponding time to compute
the adversarial attack (x-axis) and the perturbations a particular attack method needs to
fool an image (detailed results in Table 8.1). The results are obtained for the Cifar-10 dataset
(for ImageNet results please see Figure 8.4). On the left we report the average perturbation
and on the right we report the worst perturbation. In particular, different colors represent
different models, and different markers illustrate the different attack methods. Notice that,
our TR and TR Adap achieve similar perturbations as CW but with significantly less time
(up to 14.5×).
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Figure G.2: ResNet-50 adversarial examples; row 1: original and adversarial images with
ImageNet labels as titles; row 2: perturbation heat map with same colorbar scale; row 3:
perturbations with color bar scale adjusted to each method for better visualization. TR
attack obtains similar perturbation as CW, but 26.4× faster Figure 8.4.
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Figure G.3: AlexNet adversarial examples; row 1: original and adversarial images with
ImageNet labels as titles; row 2: perturbation heat map with same colorbar scale; row 3:
perturbations with color bar scale adjusted to each method for better visualization. TR
attack obtains similar perturbation as CW, but 15× faster Figure 8.4.
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Figure G.4: DenseNet-121 adversarial examples; row 1: original and adversarial images
with ImageNet labels as titles; row 2: perturbation heat map with same colorbar scale; row
3: perturbations with color bar scale adjusted to each method for better visualization. TR
attack obtains similar perturbation as CW, but 26.8× faster Figure 8.4.
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