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ABSTRACT OF THE DISSERTATION
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by
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Natural Language Processing (NLP) plays an important role in many applications, includ­

ing resume filtering, text analysis, and information retrieval. Despite the remarkable ac­

curacy enabled by the advances of machine learning methods, recent studies show that

these techniques also capture and generalize the societal biases in the data. For exam­

ple, an automatic resume filtering system may unconsciously select candidates based on

their gender and race due to implicit associations between applicant names and job titles,

causing the societal disparity as indicated in [BCZ16]. Various laws and policies have been

designed and created to ensure societal equality and diversity. However, there is a lack of

such a mechanism to restrict machine learning models from making bias predictions in

sensitive applications. My research goal is to analyze potential stereotypes exhibited in

various machine learning models and to develop computational approaches to enhance

fairness in a wide range of NLP applications. The broader impact of my research aligns

well with the goal of fairness in machine learning – in recognizing the value of diversity

and underrepresented groups.
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CHAPTER 1

Introduction

We are entering an era of Artificial Intelligence where we rely onmachine learningmodels

more than ever. Thanks to the development of both hardware and software, nowadays

with affordable efforts, we can train a machine learning model to obtain an autonomous

decision making agent that can largely benefits our daily life, such as an digital personal

assistant. In a typicalmachine learning pipeline, given a set of trainingdata (pairs of input

and targeted output), an AI model learns underlying representations of input instances

and conduct the inference to predict output labels based on the representations. Taking

coreference resolution as an example, where the goal is to identify all phrases that refer to

the same entity in a given text (e.g., in Fig. 1.1, both pronouns “his” and “him” refer to the

same entity, “the president”). A coreference resolution system has to leverage syntactic

and semantic information to cluster noun phrases into groups, such that the phrases in

each group refer to the same entity. The state­of­the­art coreference system first converts

each word in a document into a contextualized word vector. Then, based on the vectors,

themodel learns a representation of each noun span and leverages all information tomake

an inference in predicting the coreference clusters. Despite its wide usage in real word

applications such as resume filtering or text summary, the model performs unequally for

male and female entities. For example, in Fig. 1.1, when we change the gender pronoun to

female ones, the model cannot predict the coreference link between “the president” and

“her”. Similarly, the model will also fail to predict the link between female pronouns with

some specific occupations such as “lawyer”, “doctor” and “leader”.
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Figure 1.1: Illustration of gender bias in coreference resolution. The model can only dis­

cover the coreference link between “the president” and male pronouns (“him” and “his”).

However, it fails to discover the link between “the president” and female pronouns (“her”)

even though it is provided with the same context.

Unfortunately, such biased behavior is not not specific to the coreference resolution

system, but widely exists in various NLP models. In real world, humans have designed

various policies and mechanisms to prevent discrimination on the basis of attributes such

as gender or race when making sensitive decisions (e.g., hiring). Although there is no sin­

gle effective way to prevent unconscious and implicit biases, great efforts have been made

to promote diversity and fairness. However, for those machine learningmodels, they usu­

ally employ data­driven approaches, which learn to make decisions based on the statistics

and diagnostic information from previously collected data. They thus risk causing the sys­

tems to potentially encourage unfair and discriminatory decision making. Such propaga­

tion of biases in NLP poses the danger of reinforcing damaging stereotypes in downstream

applications. This has real­world consequences; for example, concerns have been raised

about automatic resume filtering systems giving preference to male applicants when the

only distinguishing factor is the applicants’ gender.

My long­time research goal is to build accountable NLP models that are accessible to

all people. Duringmy PhD, I have been specifically focused on the social bias issue in NLP

models. My research will benefit both the algorithm theory and the practice of machine

learning and will especially help to reduce the potential social stereotypes. This thesis
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focuses on the following aspects:

• Bias (amplification) Detection. To deal with the bias issues in a model, the first and

foremost step is to have a way to discover such biases. To do this, my research cov­

ers building essential evaluation datasets, proposing new evaluation metrics as well

as understanding biases in multilingual scenarios. We analyze the bias in different

NLP applications and reveal that all of them exhibit the stereotypes to some specific

group.

• Bias (amplification) Mitigation. We propose various methods to mitigate the bias.

Corresponding to the various source of biases, the proposedmitigationmethods vary

from modifying the training procedure to adding inference­phase­only constraints.

The experimental results show that ourmethods can effectively reduce the bias with­

out significant affect on the model’s performance.

In Chapter 2, we review the bias issues in training dataset. We use the coreference res­

olution task as an example to demonstrate such an issue. And to promote the bias analy­

sis research, we create a new dataset, WinoBias, for bias detection and evaluate different

coreference models on it. Experimental results demonstrate the bias issues commonly

exist in different systems.

In Chapter 3 we go through the biases in representations. It covers the biases in word

embeddings, contextualized word embeddings as well as embeddings beyond English. In

this chapter, we also discuss possible ways to mitigate those biases in both intrinsic and

extrinsic levels.

In Chapter 4 we revisit the bias quantification metrics. In existing literature, group

fairness is a widely used bias evaluation metric. In this chapter, we discuss the defect of

such metrics and propose a new algorithm logan to discover a more fine­grained bias.

InChapter 5, we consider the bias amplification problem in a vision­and­language task.

We show that a machine learning model not only mimic the biases in the training dataset
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but further amplifies that. To reduce such bias amplification, we propose to add corpus

level constraints in which way we do not need to retrain the model and the experimental

results demonstrate that we can mitigate the bias amplification with a trivial affect on

model performance.

In Chapter 6 we revisit the idea of building a highly self­adjustable machine. With

the current advances in NLP models, we want to verify if those models with the ability

to outperform humans can understand instructions and thus amend their behaviors. We

use natural language to express those instructions and mimic human behavior to verify

if models can understand and follow the instructions with respect to social stereotypes.

It turns out to be a nontrivial topic and we propose our new task as a challenge for the

community.

We summarize this thesis in Chapter 7.

4



CHAPTER 2

Bias in Training

In a typical machine learning pipeline, given a set of training data (pairs of input and

targeted output), an AI model is learned to automatically discover underlying represen­

tations of input instances and conduct the inference in predicting output labels based on

the representations. However, most of those collected dataset would be biased and hence

the models trained on such datasets would also inherit the biases. In this chapter, I will

use one NLP application – Coreference Resolution – as an example to demonstrate the

biases in the training corpus and how to deal with such biases. This chapter is based on

our work [ZWY18].

2.1 Introduction

Coreference resolution is a task aimed at identifying phrases (mentions) referring to the

same entity. Various approaches, including rule­based [RLR10], feature­based [DK13,

PCR15], and neural­network based [CM16, LHL17] have been proposed. While significant

advances have beenmade, systems carry the risk of relying on societal stereotypes present

in training data that could significantly impact their performance for some demographic

groups.

In this work, we test the hypothesis that co­reference systems exhibit gender bias by

creating anewchallenge corpus,WinoBias.This dataset follows thewinograd format [Hir81,

RN12, PKR15], and contains references to people using a vocabulary of 40 occupations. It

contains two types of challenge sentences that require linking gendered pronouns to ei­
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ther male or female stereotypical occupations (see the illustrative examples in Figure 2.1).

None of the examples can be disambiguated by the gender of the pronoun but this cue

can potentially distract the model. We consider a system to be gender biased if it links

pronouns to occupations dominated by the gender of the pronoun (pro­stereotyped con­

dition) more accurately than occupations not dominated by the gender of the pronoun

(anti­stereotyped condition). The corpus can be used to certify a system has gender bias.1

We use three different systems as prototypical examples: the Stanford Deterministic

Coreference System [RLR10], the Berkeley Coreference Resolution System [DK13] and

the current best published system: the UW End­to­end Neural Coreference Resolution

System [LHL17]. Despite qualitatively different approaches, all systems exhibit gender

bias, showing an average difference in performance between pro­stereotypical and anti­

stereotyped conditions of 21.1 in F1 score. Finally we show that given sufficiently strong

alternative cues, systems can ignore their bias.

In order to study the source of this bias, we analyze the training corpus used by these

systems, Ontonotes 5.0 [WPR12].2 Our analysis shows that female entities are signifi­

cantly underrepresented in this corpus. To reduce the impact of such dataset bias, we

propose to generate an auxiliary dataset where all male entities are replaced by female

entities, and vice versa, using a rule­based approach. Methods can then be trained on the

union of the original and auxiliary dataset. In combination withmethods that remove bias

from fixed resources such as word embeddings [BCZ16], our data augmentation approach

completely eliminates bias when evaluating on WinoBias, without significantly affecting

overall coreference accuracy.

1Note that the counter argument (i.e., systems are gender bias free) may not hold.

2The corpus is used in CoNLL­2011 and CoNLL­2012 shared tasks, http://www.conll.org/previous­tasks
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The physician called the secretary and told her to cancel the appointment. 

The secretary called the physician and told him about a new patient. 

The secretary called the physician and told her about a new patient.

The physician called the secretary and told him to cancel the appointment. 

Type 2

The physician hired the secretary because she was highly recommended.

The physician hired the secretary because he was highly recommended.

The physician hired the secretary because he was overwhelmed with clients. 

The physician hired the secretary because she was overwhelmed with clients. 

Type 1

Figure 2.1: Pairs of gender balanced co­reference tests in the WinoBias dataset. Male and

female entities are marked in solid blue and dashed orange, respectively. For each ex­

ample, the gender of the pronominal reference is irrelevant for the co­reference decision.

Systems must be able to make correct linking predictions in pro­stereotypical scenarios

(solid purple lines) and anti­stereotypical scenarios (dashed purple lines) equally well to

pass the test. Importantly, stereotypical occupations are considered based on US Depart­

ment of Labor statistics.

2.2 WinoBias for Bias Evaluation

To better identify gender bias in coreference resolution systems, we build a new dataset

centered on people entities referred by their occupations from a vocabulary of 40 occupa­
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tions gathered from the US Department of Labor, shown in Table 2.1.3 We use the asso­

ciated occupation statistics to determine what constitutes gender stereotypical roles (e.g.

90% of nurses are women in this survey). Entities referred by different occupations are

paired and used to construct test case scenarios. Sentences are duplicated using male and

female pronouns, and contain equal numbers of correct co­reference decisions for all occu­

pations. In total, the dataset contains 3,160 sentences, split equally for development and

test, created by researchers familiar with the project. Sentences were created to follow two

prototypical templates but annotators were encouraged to come up with scenarios where

entities could be interacting in plausible ways. Templates were selected to be challenging

and designed to cover cases requiring semantics and syntax separately.4

Type 1: [entity1] [interacts with] [entity2] [conjunction] [pronoun] [circum­

stances]. Prototypical WinoCoRef style sentences, where co­reference decisions must

be made using world knowledge about given circumstances (Figure 2.1; Type 1). Such

examples are challenging because they contain no syntactic cues.

Type 2: [entity1] [interacts with] [entity2] and then [interacts with] [pro­

noun] for [circumstances]. These tests can be resolved using syntactic information

and understanding of the pronoun (Figure 2.1; Type 2). We expect systems to do well on

such cases because both semantic and syntactic cues help disambiguation.

Evaluation To evaluate models, we split the data in two sections: one where correct

co­reference decisions require linking a gendered pronoun to an occupation stereotypi­

cally associated with the gender of the pronoun and one that requires linking to the anti­

stereotypical occupation. We say that a model passes the WinoBias test if for both Type

1 and Type 2 examples, pro­stereotyped and anti­stereotyped co­reference decisions are

3Labor Force Statistics from the Current Population Survey, 2017.
https://www.bls.gov/cps/cpsaat11.htm

4We do not claim this set of templates is complete, but that they provide representative examples that,
pratically, show bias in existing systems.
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Occupation % Occupation % Occupation % Occupation %

carpenter 2 chief 27 editor 52 teacher 78

mechanician 4 janitor 34 designers 54 sewer 80

construction worker 4 lawyer 35 accountant 61 librarian 84

laborer 4 cook 38 auditor 61 assistant 85

driver 6 physician 38 writer 63 cleaner 89

sheriff 14 ceo 39 baker 65 housekeeper 89

mover 18 analyst 41 clerk 72 nurse 90

developer 20 manager 43 cashier 73 receptionist 90

farmer 22 supervisor 44 counselors 73 hairdressers 92

guard 22 salesperson 48 attendant 76 secretary 95

Table 2.1: Occupations statistics used in WinoBias dataset, organized by the percent of

people in the occupation who are reported as female. When woman dominate profession,

we call linking the noun phrase referring to the job with female andmale pronoun as ‘pro­

stereotypical’, and ‘anti­stereotypical’, respectively. Similarly, if the occupation is male

dominated, linking the noun phrase with the male and female pronoun is called, ‘pro­

stereotypical’ and ‘anti­steretypical’, respectively.

made with the same accuracy.

2.3 Gender Bias in Coreference

In this section, we highlight two sources of gender bias in co­reference systems that can

cause them to fail WinoBias: training data and auxiliary resources and propose strategies

to mitigate them.
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Method Anon. Resour. Aug. OntoNotes T1­p T1­a Avg | Diff | T2­p T2­a Avg | Diff |

E2E 67.7 76.0 49.4 62.7 26.6* 88.7 75.2 82.0 13.5*

E2E 66.4 73.5 51.2 62.6 21.3* 86.3 70.3 78.3 16.1*

E2E 66.5 67.2 59.3 63.2 7.9* 81.4 82.3 81.9 0.9

E2E 66.2 65.1 59.2 62.2 5.9* 86.5 83.7 85.1 2.8*

E2E 66.3 63.9 62.8 63.4 1.1 81.3 83.4 82.4 2.1

Feature 61.7 66.7 56.0 61.4 10.6* 73.0 57.4 65.2 15.7*

Feature 61.3 65.9 56.8 61.3 9.1* 72.0 58.5 65.3 13.5*

Feature 61.2 61.8 62.0 61.9 0.2 67.1 63.5 65.3 3.6

Feature 61.0 65.0 57.3 61.2 7.7* 72.8 63.2 68.0 9.6*

Feature 61.0 62.3 60.4 61.4 1.9* 71.1 68.6 69.9 2.5

Rule 57.0 76.7 37.5 57.1 39.2* 50.5 29.2 39.9 21.3*

Table 2.2: F1 on OntoNotes and WinoBias development set. WinoBias results are split

between Type­1 and Type­2 and in pro/anti­stereotypical conditions. * indicates the dif­

ference between pro/anti stereotypical conditions is significant (p < .05) under an ap­

proximate randomized test [GMB14]. Our methods eliminate the difference between

pro­stereotypical and anti­stereotypical conditions (Diff), with little loss in performance

(OntoNotes and Avg).

2.3.1 Training Data Bias

Bias inOntoNotes5.0 Resources supporting the training of co­reference systemshave

severe gender imbalance. In general, entities that have amention headed by gendered pro­

nouns (e.g.“he”, “she”) are over 80% male.5 Furthermore, the way in which such entities

are referred to, varies significantly. Male gendered mentions are more than twice as likely

to contain a job title as female mentions.6 Moreover, these trends hold across genres.

5To exclude mentions such as “his mother”, we use Collins head finder [Col03] to identify the head word
of each mention, and only consider the mentions whose head word is gender pronoun.

6We pick more than 900 job titles from a gazetteer.
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Method Anon. Resour. Aug. OntoNotes T1­p T1­a Avg | Diff | T2­p T2­a Avg | Diff |

E2E 67.2 74.9 47.7 61.3 27.2* 88.6 77.3 82.9 11.3*

E2E 66.5 62.4 60.3 61.3 2.1 78.4 78.0 78.2 0.4

Feature 64.0 62.9 58.3 60.6 4.6* 68.5 57.8 63.1 10.7*

Feature 63.6 62.2 60.6 61.4 1.7 70.0 69.5 69.7 0.6

Rule 58.7 72.0 37.5 54.8 34.5* 47.8 26.6 37.2 21.2*

Table 2.3: F1 on OntoNotes and Winobias test sets. Methods were run once, supporting

development set conclusions.

Gender Swapping To remove such bias, we construct an additional training corpus

where all male entities are swapped for female entities and vice­versa. Methods can then

be trained on both original and swapped corpora. This approach maintains non­gender­

revealing correlationswhile eliminating correlations between gender and co­reference cues.

We adopt a simple rule based approach for gender swapping. First, we anonymize

named entities using an automatic named entity finder [LBS16]. Named entities are re­

placed consistently within document (i.e. “BarakObama ... Obamawas re­elected.” would

be annoymized to “E1 E2 ... E2 was re­elected.” ). Then we build a dictionary of gendered

terms and their realization as the opposite gender by asking workers on Amazon Mech­

nical Turk to annotate all unique spans in the OntoNotes development set.7 Rules were

then mined by computing the word difference between initial and edited spans. Common

rules included “she → he”, “Mr.” → “Mrs.”, “mother” → “father.” Sometimes the same

initial word was edited to multiple different phrases: these were resolved by taking the

most frequent phrase, with the exception of “her→ him” and “her→ his” which were re­

solved using part­of­speech. Rules were applied to all matching tokens in the OntoNotes.

We maintain anonymization so that cases like “John went to his house” can be accurately

swapped to “E1 went to her house.”

7Five turkers were presented with anonymized spans and asked to mark if it indicated male, female, or
neither, and if male or female, rewrite it so it refers to the other gender.
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Model Original Gender­reversed

E2E 66.4 65.9

Feature 61.3 60.3

Table 2.4: Performance on the original and the gender­reversed developments dataset

(anonymized).

2.3.2 Resource Bias

Word Embeddings Word embeddings are widely used in NLP applications however

recentwork has shown that they are severely biased: “man” tends to be closer to “program­

mer” than “woman” [BCZ16, CBN17]. Current state­of­art co­reference systems build on

word embeddings and risk inheriting their bias. To reduce bias from this resource, we

replace GloVe embeddings with debiased vectors [BCZ16].

Gender Lists While current neural approaches rely heavily on pre­trained word em­

beddings, previous feature rich and rule­based approaches rely on corpus based gender

statistics mined from external resources [BL06]. Such lists were generated from large un­

labeled corpora using heuristic data mining methods. These resources provide counts for

how often a noun phrase is observed in a male, female, neutral, and plural context. To

reduce this bias, we balance male and female counts for all noun phrases.

2.4 Result

In this section we evaluate of three representative systems: rule based, Rule, [RLR10],

feature­rich, Feature, [DK13], and end­to­end neural (the current state­of­the­art), E2E,

[LHL17]. The following sections show that performance on WinoBias reveals gender bias

in all systems, that our methods remove such bias, and that systems are less biased on

OntoNotes data.
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WinoBias Reveals Gender Bias Table 5.2 summarizes development set evaluations

using all three systems. Systems were evaluated on both types of sentences in Wino­

Bias (T1 and T2), separately in pro­stereotyped and anti­stereotyped conditions ( T1­p

vs. T1­a, T2­p vs T2­a). We evaluate the effect of named­entity anonymization (Anon.),

debiasing supporting resources8 (Resour.) and using data­augmentation through gender

swapping (Aug.). E2E and Feature were retrained in each condition using default hyper­

parameters while Rule was not debiased because it is untrainable. We evaluate using the

coreference scorer v8.01 [PLR14] and compute the average (Avg) and absolute difference

(Diff) between pro­stereotyped and anti­stereotyped conditions in WinoBias.

All initial systems demonstrate severe disparity between pro­stereotyped and anti­

stereotyped conditions. Overall, the rule based system is most biased, followed by the

neural approach and feature rich approach. Across all conditions, anonymization impacts

E2E the most, while all other debiasing methods result in insignificant loss in perfor­

mance on the OntoNotes dataset. Removing biased resources and data­augmentation re­

duce bias independently and more so in combination, allowing both E2E and Feature to

passWinoBias without significantly impacting performance on eitherOntoNotes orWino­

Bias . Qualitatively, the neural system is easiest to de­bias and our approaches could be

applied to future end­to­end systems. Systems were evaluated once on test sets, Table 2.3,

supporting our conclusions.

Systems Demonstrate Less Bias on OntoNotes While we have demonstrated co­

reference systems have severe bias asmeasured inWinoBias , this is an out­of­domain test

for systems trained on OntoNotes. Evaluating directly within OntoNotes is challenging

because sub­sampling documents with more female entities would leave very few eval­

uation data points. Instead, we apply our gender swapping system (Section 3.2.2), to

the OntoNotes development set and compare system performance between swapped and

8Word embeddings for E2E and gender lists for Feature
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unswapped data.9 If a system shows significant difference between original and gender­

reversed conditions, then we would consider it gender biased on OntoNotes data.

Table 2.4 summarizes our results. The E2E system does not demonstrate significant

degradation in performance, while Feature loses roughly 1.0­F1.10 This demonstrates that

given sufficient alternative signal, systems often do ignore gender biased cues. On the

other hand,WinoBias provides an analysis of systembias in an adversarial setup, showing,

when examples are challenging, systems are likely to make gender biased predictions.

2.5 Discussion

Bias in NLP systems has the potential to not only mimic but also amplify stereotypes in

society. For a prototypical problem, coreference, we provide a method for detecting such

bias and show that three systems are significantly gender biased. We also provide evi­

dence that systems, given sufficient cues, can ignore their bias. Finally, we present gen­

eral purpose methods for making co­reference models more robust to spurious, gender­

biased cues while not incurring significant penalties on their performance on benchmark

datasets.

9This test provides a lower bound on OntoNotes bias because some mistakes can result from errors in­
troduce by the gender swapping system.

10We do not evaluate the Rule system as it cannot be train for anonymized input.
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CHAPTER 3

Bias in Representations

In this section, we revisit the biases in representations. More specifically, we will review

the problem in both word embeddings and contextualized word embeddings. Other than

English, we will also cover the bias analysis in multilingual embeddings. In each case, we

will discuss possible ways tomitigate the biases. This section is based on our work [ZZL18,

ZWY18, ZMH20].

3.1 Learning Gender­Neutral Word Embeddings

Word embedding models have become a fundamental component in a wide range of NLP

applications. However, embeddings trained onhuman­generated corpora have beendemon­

strated to inherit strong gender stereotypes that reflect social constructs. To address this

concern, in this section, we propose a novel training procedure for learning gender­neutral

word embeddings. Our approach aims to preserve gender information in certain dimen­

sions of word vectors while compelling other dimensions to be free of gender influence.

Based on the proposed method, we generate a Gender­Neutral variant of GloVe (GN­

GloVe). Quantitative and qualitative experiments demonstrate that GN­GloVe success­

fully isolates gender information without sacrificing the functionality of the embedding

model.

3.1.1 Introduction

Word embedding models have been designed for representing the meaning of words in

a vector space. These models have become a fundamental NLP technique and have been
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widely used in various applications. However, prior studies show that suchmodels learned

from human­generated corpora are often prone to exhibit social biases, such as gender

stereotypes [BCZ16, CBN17]. For example, the word “programmer” is neutral to gender by

its definition, but an embeddingmodel trained on a news corpus associates “programmer”

closer with “male” than “female”.

To alleviate gender stereotype inword embeddings, [BCZ16] propose a post­processing

method that projects gender­neutral words to a subspace which is perpendicular to the

gender dimension defined by a set of gender­definition words.1 However, their approach

has two limitations. First, the method is essentially a pipeline approach and requires the

gender­neutral words to be identified by a classifier before employing the projection. If

the classifier makes a mistake, the error will be propagated and affect the performance

of the model. Second, their method completely removes gender information from those

words which are essential in some domains such as medicine and social science [BPS10,

MMP92].

To overcome these limitations, we propose a learning scheme, Gender­Neutral Global

Vectors (GN­GloVe) for training word embedding models with protected attributes (e.g.,

gender) based on GloVe [PSM14].2 GN­GloVe represents protected attributes in certain

dimensions while neutralizing the others during training. As the information of the pro­

tected attribute is restricted in certain dimensions, it can be removed from the embed­

ding easily. By jointly identifying gender­neutral words while learning word vectors, GN­

GloVe does not require a separate classifier to identify gender­neutral words; therefore,

the error propagation issue is eliminated. The proposed approach is generic and can be

incorporatedwith other word embeddingmodels and be applied in reducing other societal

stereotypes.

1Gender­definition words are the words associated with gender by definition (e,g., mother, waitress); the
remainder are gender­neutral words.

2The code and data are released at https://github.com/uclanlp/gn_glove
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3.1.2 Methodology

In this paper, we take GloVe [PSM14] as the base embedding model and gender as the

protected attribute. It is worth noting that our approach is general and can be applied to

other embedding models and attributes. Following GloVe [PSM14], we construct a word­

to­word co­occurrence matrix X, denoting the frequency of the j­th word appearing in

the context of the i­th word as Xi,j. w, w̃ ∈ Rd stand for the embeddings of a center and a

context word, respectively, where d is the dimension.

In our embedding model, a word vector w consists of two parts w = [w(a);w(g)]. w(a) ∈

Rd−k and w(g) ∈ Rk stand for neutralized and gendered components respectively, where

k is the number of dimensions reserved for gender information.3 Our proposed gender

neutralizing scheme is to reserve the gender feature, known as “protected attribute” into

w(g). Therefore, the information encoded in w(a) is independent of gender influence. We

use vg ∈ Rd−k to denote the direction of gender in the embedding space. We categorize all

the vocabulary words into three subsets: male­definition ΩM , female­definition ΩF , and

gender­neutral ΩN , based on their definition in WordNet [MF98].

Gender Neutral Word Embedding Our minimization objective is designed in ac­

cordance with above insights. It contains three components:

J = JG + λdJD + λeJE, (3.1)

where λd and λe are hyper­parameters.

The first component JG is originated from GloVe [PSM14], which captures the word

proximity:

JG=
V∑

i,j=1

f(Xi,j)
(
wT

i w̃j + bi + b̃j − logXi,j

)2
.

Here, f(Xi,j) is aweighting function to reduce the influence of extremely large co­occurrence

frequencies. b and b̃ are the respective linear biases for w and w̃.

3We set k = 1 in this paper.
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The other two terms are aimed to restrict gender information in w(g), such that w(a)

is neutral. Given male­ and female­definition seed words ΩM and ΩF , we consider two

distant metrics and form two types of objective functions.

In JL1
D , we directlyminimizing the negative distances betweenwords in the two groups:

JL1
D = −

∥∥∥∥∥ ∑
w∈ΩM

w(g) −
∑
w∈ΩF

w(g)

∥∥∥∥∥
1

.

In JL2
D , we restrict the values of word vectors in [β1, β2] and push w(g) into one of the ex­

tremes:

JL2
D =

∑
w∈ΩM

∥∥β1e− w(g)
∥∥2
2
+
∑
w∈ΩF

∥∥β2e− w(g)
∥∥2
2
,

where e ∈ Rk is a vector of all ones. β1 and β2 can be arbitrary values, and we set them to

be 1 and −1, respectively.

Finally, for words in ΩN , the last term encourages their w(a) to be retained in the null

space of the gender direction vg:

JE =
∑
w∈ΩN

(
vTg w

(a)
)2
,

where vg is estimating on the fly by averaging the differences between female words and

their male counterparts in a predefined set,

vg =
1

|Ω′|
∑

(wm,wf )∈Ω′

(w(a)
m − w

(a)
f ),

where Ω′ is a set of predefined gender word pairs.

We use stochastic gradient descent to optimize Eq. (3.1). To reduce the computational

complexity in training the wording embedding, we assume vg is a fixed vector (i.e., we do

not derive gradient w.r.t vg in updatingw(a),∀w ∈ Ω′) and estimate vg only at the beginning

of each epoch.

3.1.3 Experiments

In this section, we conduct the following qualitative and quantitative studies: 1)We visual­

ize the embedding space and show that GN­GloVe separates the protected gender attribute
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Figure 3.1: Cosine similarity between the gender direction and the embeddings of gender­

neutral words. In each figure, negative values represent a bias towards female, otherwise

male.

from other latent aspects; 2) We measure the ability of GN­GloVe to distinguish between

gender­definition words and gender­stereotype words on a newly annotated dataset; 3)

We evaluate GN­GloVe on standard word embedding benchmark datasets and show that

it performs well in estimating word proximity; 4) We demonstrate that GN­Glove reduces

gender bias on a downstream application, coreference resolution.

We compare GN­GloVe with two embeddingmodels, GloVe andHard­GloVe. GloVe is

awidely­usedmodel [PSM14], andwe apply the post­processing step introduced in [BCZ16]

to reduce gender bias in GloVe and name it after Hard­GloVe. All the embeddings are

trained on 2017 English Wikipedia dump with the default hyper­parameters decribed in

[PSM14]. When training GN­GloVe, we constrain the value of each dimension within

[−1, 1] to avoid numerical difficulty. We set λd and λe both to be 0.8. In our preliminary

study on development data, we observe that themodel is not sensitive to these parameters.

Unless other stated, we use JL1
D in the GN­GloVe model.
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Separate protected attribute First, we demonstrate that GN­GloVe preserves the

gender association (either definitional or stereotypical associations) in w(g)4. To illustrate

the distribution of gender information of different words, we plot Fig. 3.1a using w(g) for

the x­axis and a random value for the y­axis to spread out words in the plot. As shown

in the figure, the gender­definition words, e.g. “waiter” and “waitress”, fall far away from

each other in w(g). In addition, words such as “housekeeper” and “doctor” are inclined to

different genders and their w(g) preserves such information.

Next, we demonstrate that GN­GloVe reduces gender stereotype using a list of profes­

sion titles from [BCZ16]. All these profession titles are neutral to gender by definition. In

Fig. 3.1b and Fig. 3.1c, we plot the cosine similarity between each word vector w(a) and the

gender direction vg (i.e.,
wT vg

∥w∥∥vg∥). Result shows that words, such as “doctor” and “nurse”,

possess no gender association by definition, but their GloVe word vectors exhibit strong

gender stereotype. In contrast, the gender projects of GN­GloVe word vectors w(a) are

closer to zero. This demonstrates the gender information has been substantially dimin­

ished from w(a) in the GN­GloVe embedding.

We further quantify the gender information exhibited in the embedding models. For

each model, we project the word vectors of occupational words into the gender sub­space

defined by “he­she” and compute their average size. A larger projection indicates an em­

beddingmodel ismore biased. Results show that the average projection of GloVe is 0.080,

the projection of Hard­GloVe is 0.019, and the projection of Gn­Glove is 0.052. Com­

paring with GloVe, GN­GloVe reduces the bias by 35%. Although Hard­GloVe contains

less gender information, we will show later GN­GloVe can tell difference between gender­

stereotype and gender­definition words better.

Gender Relational Analogy To study the quality of the gender information present

in eachmodel, we follow SemEval 2012 Task2 [JTM12] to create an analogy dataset, Sem­

4We follow the original GloVe implementation using the summation of word vector and context vector
to represent a word. Therefore, the elements of the word vectors are constrained in [­2, 2]
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Dataset Embeddings Definition Stereotype None

SemBias

GloVe 80.2 10.9 8.9

Hard­Glove 84.1 6.4 9.5

GN­GloVe 97.7 1.4 0.9

SemBias
(subset)

GloVe 57.5 20 22.5

Hard­Glove 25 27.5 47.5

GN­GloVe 75 15 10

Table 3.1: Percentage of predictions for each category on gender relational analogy task.

Bias, with the goal to identify the correct analogy of “he ­ she” from four pairs of words.

Each instance in the dataset consists of four word pairs: a gender­definition word pair

(Definition; e.g., “waiter ­ waitress”), a gender­stereotype word pair (Stereotyp; e.g., “doc­

tor ­ nurse”) and two other pairs of words that have similar meanings (None; e.g., “dog ­

cat”, “cup ­ lid”)5. We consider 20 gender­stereotype word pairs and 22 gender­definition

wordpairs anduse their Cartesianproduct to generate 440 instances. Among the 22 gender­

definition word pairs, there are 2 word pairs that are not used as a seed word during the

training. To test the generalization ability of themodel, we generate a subset of data (Sem­

Bias (subset)) of 40 instances associated with these 2 pairs.

Table 3.1 lists the percentage of times that each class of pair is on the top based on

a word embedding model [MYZ13]. GN­GloVe achieves 97.7% accuracy in identifying

gender­definition word pairs as an analogy to “he ­ she”. In contrast, GloVe and Hard­

GloVe makes significantly more mistakes. On the subset, GN­GloVe also achieves signif­

icantly better performance than Hard­Glove and GloVe, indicating that it can generalize

the gender pairs on the training set to identify other gender­definition word pairs.

5The pair is sampled from the list of word pairs with “SIMILAR: Coordinates” relation annotated in
[JTM12]. The original list has 38 pairs. After removing gender­definition word pairs, 29 are left.
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Embeddings
Analogy Similarity

Google MSR WS353­ALL RG­65 MTurk­287 MTurk­771 RW MEN­TR­3k

GloVe 70.8 45.8 62.0 75.3 64.8 64.9 37.3 72.2

Hard­GloVe 70.8 45.8 61.2 74.8 64.4 64.8 37.3 72.2

GN­GloVe­L1 68.9 43.7 62.8 74.1 66.2 66.2 40.0 74.5

GN­GloVe­L2 68.8 43.6 62.5 76.4 66.8 65.6 39.3 74.4

Table 3.2: Results on the benchmark datasets. Performance is measured in accuracy and

in Spearman rank correlation for word analogy and word similarity tasks, respectively.

Word Similarity and Analogy In addition, we evaluate the word embeddings on the

benchmark tasks to ensure their quality. The word similarity tasks measure how well a

word embedding model captures the similarity between words comparing to human an­

notated rating scores. Embeddings are tested onmultiple datasets: WS353­ALL [FGM01],

RG­65 [RG65], MTurk­287 [RAG11], MTurk­771 [HDG12], RW [LSM13], and MEN­TR­

3k [BBB12] datasets. The analogy tasks are to answer the question “A is to B as C is to

?” by finding a word vector w that is closest to wA − wB + wC in the embedding space.

Google [MCC13] and MSR [MYZ13] datasets are utilized for this evaluation. The results

are shown in Table 3.2, where the suffix “­L1” and “­L2” of GN­GloVe stand for the GN­

GloVe using JL1
D and JL2

D , respectively. Comparedwith others, GN­GloVe achieves a higher

accuracy in the similarity tasks and its analogy score slightly drops indicating that GN­

GloVe is capable of preserving proximity among words.

Coreference Resolution Finally, we investigate how the gender bias in word embed­

dings affects a downstream application, such as coreference resolution. Coreference res­

olution aims at clustering the denotative noun phrases referring to the same entity in the

given text. We evaluate our models on the Ontonotes 5.0 [WPR12] benchmark dataset

and the WinoBias dataset [ZWY18].6 In particular, the WinoBias dataset is composed of

6Specifically, we conduct experiments on the Type 1 version.
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Embeddings OntoNotes­test PRO ANTI Avg Diff

GloVe 66.5 76.2 46.0 61.1 30.2

Hard­Glove 66.2 70.6 54.9 62.8 15.7

GN­GloVe 66.2 72.4 51.9 62.2 20.5

GN­GloVe(wa) 65.9 70.0 53.9 62.0 16.1

Table 3.3: F1 score (%) on the coreference system.

pro­stereotype (PRO) and anti­stereotype (ANTI) subsets. The PRO subset consists of

sentences where a gender pronoun refers to a profession, which is dominated by the same

gender. Example sentences include “The CEO raised the salary of the receptionist because

he is generous.” In this sentence, the pronoun “he” refers to “CEO” and this reference is

consistent with societal stereotype. The ANTI subset contains the same set of sentences,

but the gender pronoun in each sentence is replaced by the opposite gender. For instance,

the gender pronoun “he” is replaced by “she” in the aforementioned example. Despite the

sentence is almost identical, the gender pronoun now refers to a profession that is less

represented by the gender. Details about the dataset are in [ZWY18].

We train the end­to­end coreference resolution model [LHL17] with different word

embeddings on OntoNote and report their performance in Table 3.3. For the WinoBias

dataset, we also report the average (Avg) and absolute difference (Diff) of F1 scores on two

subsets. A smaller Diff value indicates less bias in a system. Results show that GN­GloVe

achieves comparable performance as Glove and Hard­GloVe on the OntoNotes dataset

while distinctly reducing the bias on the WinoBias dataset. When only the w(a) potion of

the embedding is used in representing words, GN­GloVe(w(a)) further reduces the bias in

coreference resolution.
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3.1.4 Discussion

In this section, we introduced an algorithm for training gender­neutral word embedding.

Ourmethod is general and can be applied in any language as long as a list of gender defini­

tional words is provided as seed words (e.g., gender pronouns). Future directions include

extending the proposed approach to model other properties of words such as sentiment

and generalizing our analysis beyond binary gender.

3.2 Bias Analysis in ContextualizedWord Embeddings

In this section, we quantify, analyze and mitigate gender bias exhibited in contextualized

word vectors (ELMo specifically). First, we conduct several intrinsic analyses and find that

(1) training data for ELMo contains significantly more male than female entities, (2) the

trained ELMo embeddings systematically encode gender information and (3) ELMo un­

equally encodes gender information about male and female entities. Then, we show that

a state­of­the­art coreference system that depends on ELMo inherits its bias and demon­

strates significant bias on the WinoBias probing corpus. Finally, we explore two methods

to mitigate such gender bias and show that the bias demonstrated on WinoBias can be

eliminated.

3.2.1 Introduction

Distributed representations of words in the form of word embeddings [MSC13, PSM14]

and contextualized word embeddings [PNI18, DCL18, RNS18, MBX17, RWC19] have led

to huge performance improvement on many NLP tasks. However, several recent studies

show that trainingword embeddings in large corpora could lead to encoding societal biases

present in these human­produced data [BCZ16, CBN17]. In this work, we extend these

analyses to the ELMo contextualized word embeddings.

Our work provides a new intrinsic analysis of how ELMo represents gender in biased

ways. First, the corpus used for training ELMo has a significant gender skew: male en­
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tities are nearly three times more common than female entities, which leads to gender

bias in the downloadable pre­trained contextualized embeddings. Then, we apply princi­

pal component analysis (PCA) to show that after training on such biased corpora, there

exists a low­dimensional subspace that captures much of the gender information in the

contextualized embeddings. Finally, we evaluate how faithfully ELMo preserves gender

information in sentences by measuring how predictable gender is from ELMo representa­

tions of occupation words that co­occur with gender revealing pronouns. Our results show

that ELMo embeddings perform unequally on male and female pronouns: male entities

can be predicted from occupation words 14% more accurately than female entities.

In addition, we examine howgender bias inELMopropagates to the downstreamappli­

cations. Specifically, we evaluate a state­of­the­art coreference resolution system [LHZ18]

that makes use of ELMo’s contextual embeddings on WinoBias [ZWY18] (as described in

Chap. 2), a coreference diagnostic dataset that evaluates whether systems behave differ­

ently on decisions involving male and female entities of stereotyped or anti­stereotyped

occupations. We find that in the most challenging setting, the ELMo­based system has a

disparity in accuracy between pro­ and anti­stereotypical predictions, which is nearly 30%

higher than a similar system based on GloVe [LHL17].

Finally, we investigate approaches for mitigating the bias which propagates from the

contextualized word embeddings to a coreference resolution system. We explore two dif­

ferent strategies: (1) a training­time data augmentation technique [ZWY18] (as described

in Chap. 2), where we augment the corpus for training the coreference system with its

gender­swapped variant (female entities are swapped to male entities and vice versa) and,

afterwards, retrain the coreference system; and (2) a test­time embedding neutralization

technique, where input contextualized word representations are averaged with word rep­

resentations of a sentence with entities of the opposite gender. Results show that test­time

embedding neutralization is only partially effective, while data augmentation largely mit­

igates bias demonstrated on WinoBias by the coreference system.
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3.2.2 Gender Bias in ELMo
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Figure 3.2: Left: Percentage of explained variance in PCA in the embedding differences.

Right: Selected words projecting to the first two principle components where the blue

dots are the sentences with male context and the orange dots are from the sentences with

female context.

In this section we describe three intrinsic analyses highlighting gender bias in trained

ELMo contextual word embeddings [PNI18]. We show that (1) training data for ELMo

contains significantly more male entities compared to female entities leading to gender

bias in the pre­trained contextual word embeddings (2) the geometry of trained ELMo

embeddings systematically encodes gender information and (3) ELMo propagates gender

information about male and female entities unequally.

3.2.2.1 Training Data Bias

Table 3.4 lists the data analysis on the One Billion Word Benchmark [CMS13] corpus,

the training corpus for ELMo. We show counts for the number of occurrences of male

pronouns (he, his and him) and female pronouns (she and her) in the corpus as well as

the co­occurrence of occupation words with those pronouns. We use the set of occupa­

tion words defined in the WinoBias corpus and their assignments as prototypically male

or female [ZWY18]. The analysis shows that the Billion Word corpus contains a signifi­
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#occurrence #M­biased occs. #F­biased occs.

M 5,300,000 170,000 81,000

F 1,600,000 33,000 36,000

Table 3.4: Training corpus for ELMo. We show total counts for male (M) and female (F)

pronouns in the corpus, and counts corresponding to their co­occurrence with occupation

words where the occupations are stereotypically male (M­biased) or female (F­biased).

cant skew with respect to gender: (1) male pronouns occur three times more than female

pronouns and (2) male pronouns co­occur more frequently with occupation words, irre­

spective of whether they are prototypically male or female.

3.2.2.2 Geometry of Gender

Next, we analyze the gender subspace in ELMo. We first sample 400 sentences with at

least one gendered word (e.g., he or she from the OntoNotes 5.0 dataset [WPR12] and

generate the corresponding gender­swapped variants (changing he to she and vice­versa).

We then calculate the difference of ELMo embeddings between occupation words in cor­

responding sentences and conduct principal component analysis for all pairs of sentences.

Figure 3.2 shows there are two principal components for gender in ELMo, in contrast to

GloVewhich only has one [BCZ16]. The two principal components in ELMo seem to repre­

sent the gender from the contextual information (Contextual Gender) as well as the gender

embedded in the word itself (Occupational Gender).

To visualize the gender subspace, wepick a few sentence pairs fromWinoBias [ZWY18].

Each sentence in the corpus contains one gendered pronoun and two occupation words,

such as “The developer corrected the secretary because she made a mistake” and also the

same sentence with the opposite pronoun (he). In Figure 3.2 on the right, we project the

ELMo embeddings of occupation words that are co­referent with the pronoun (e.g. secre­

tary in the above example) for when the pronoun is male (blue dots) and female (orange

dots) on the two principal components from the PCAanalysis. Qualitatively, we can see the
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first component separates male and female contexts while the second component groups

male relatedwords such as lawyer anddeveloper and female relatedwords such as cashier

and nurse.

3.2.2.3 Unequal Treatment of Gender

To test how ELMo embeds gender information in contextualized word embeddings, we

train a classifier to predict the gender of entities from occupation words in the same sen­

tence. We collect sentences containing gendered words (e.g., he­she, father­mother) and

occupation words (e.g., doctor)7 from the OntoNotes 5.0 corpus [WPR12], where we treat

occupation words as a mention to an entity, and the gender of that entity is taken to the

gender of a co­referring genderedword, if one exists. For example, in the sentence “the en­

gineer went back to her home,” we take engineer to be a female mention. Then we split all

such instances into training and test, with 539 and 62 instances, respectively and augment

these sentences by swapping all the gendered words with words of the opposite gender

such that the numbers of male and female entities are balanced.

We first test if ELMo embedding vectors carry gender information. We train an SVM

classifier with an RBF kernel8 to predict the gender of amention (i.e., an occupation word)

based on its ELMo embedding. On development data, this classifier achieves 95.1% and

80.6% accuracy on sentences where the true gender was male and female respectively. For

both male and female contexts, the accuracy is much larger than 50%, demonstrating that

ELMo does propagate gender information to other words. However, male information is

more than 14% more accurately represented in ELMo than female information, showing

that ELMo propagates the information unequally for male and female entities.

7We use the list collected in [ZWY18]

8We use the ν­SVC formulation and tune the hyper­parameter ν [CL11] in the range of [0.1, 1] with a step
0.1.
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Embeddings Data Augmentation
Neutralization

OntoNotes
Semantics Only w/ Syntactic Cues

GloVe ELMo Pro. Anti. Avg. | Diff | Pro. Anti. Avg. | Diff |

GloVe 67.7 76.0 49.4 62.7 26.6* 88.7 75.2 82.0 13.5*

GloVe 65.8 63.9 62.8 63.4 1.1 81.3 83.4 82.4 2.1

GloVe+ELMo 72.7 79.1 49.5 64.3 29.6* 93.0 85.9 89.5 7.1*

GloVe+ELMo 71.0 65.9 64.9 65.4 1.0 87.8 88.9 88.4 1.2

GloVe+ELMo 71.0 72.6 57.8 64.9 14.3* 90.2 88.6 89.4 1.6

GloVe+ELMo 71.1 71.7 60.6 66.2 11.1* 90.3 89.2 89.8 1.1

Table 3.5: F1 on OntoNotes and WinoBias development sets. WinoBias dataset is split

Semantics Only and w/ Syntactic Cues subsets. ELMo improves the performance on the

OntoNotes dataset by 5% but shows stronger bias on the WinoBias dataset. Avg. stands

for averaged F1 score on the pro­ and anti­stereotype subsets while “Diff.” is the absolute

difference between these two subsets. * indicates the difference between pro/anti stereo­

typical conditions is significant (p < .05) under an approximate randomized test [GMB14].

Mitigating bias by data augmentation reduces all the bias from the coreference model to

a neglect level. However, the neutralizing ELMo approach only mitigates bias when there

are other strong learning signals for the task.

3.2.3 Bias in Coreference Resolution

In this section, we establish that coreference systems that depend on ELMo embeddings

exhibit significant gender bias. Then we evaluate two simple methods for removing the

bias from the systems and show that the bias can largely be reduced.

3.2.3.1 Setup

We evaluate bias with respect to theWinoBias dataset, a benchmark of pairedmale and fe­

male coreference resolution examples following theWinograd format [Hir81,RN12, PKR15].

It contains two different subsets, pro­stereotype, where pronouns are associated with oc­

cupations predominately associated with the gender of the pronoun, or anti­stereotype,

when the opposite relation is true. Each subset consists of two types of sentences: one
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that requires semantic understanding of the sentence to make coreference resolution (Se­

mantics Only) and another that relies on syntactic cues (w/ Syntactic Cues). Gender bias is

measured by taking the difference of the performance in pro­ and anti­stereotypical sub­

sets (see Chap. 2 for more details). Previous work [ZWY18] evaluated the systems based

on GloVe embeddings but here we evaluate a state­of­the­art system that trained on the

OntoNotes corpus with ELMo embeddings [LHZ18].

3.2.3.2 Bias Mitigation Methods

Next, we describe twomethods for mitigating bias in ELMo for the purpose of coreference

resolution: (1) a train­time data augmentation approach and (2) a test­time neutralization

approach.

Data Augmentation In Chap. 2, we propose a method to reduce gender bias in coref­

erence resolution by augmenting the training corpus for this task. Data augmentation is

performed by replacing gender revealing entities in the OntoNotes dataset with words in­

dicating the opposite gender and then training on the union of the original data and this

swapped data. In addition, they find it useful to also mitigate bias in supporting resources

and therefore replace standard GloVe embeddings with bias mitigated word embeddings

from [BCZ16]. We evaluate the performance of both aspects of this approach.

Neutralization We also investigate an approach to mitigate bias induced by ELMo

embeddings without retraining the coreference model. Instead of augmenting training

corpus by swapping gender words, we generate a gender­swapped version of the test in­

stances. We then apply ELMo to obtain contextualized word representations of the origi­

nal and the gender­swapped sentences and use their average as the final representations.

3.2.3.3 Results

Table 3.5 summarizes our results on WinoBias.
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ELMo Bias Transfers to Coreference Row 3 in Table 3.5 summarizes performance

of the ELMo based coreference system onWinoBias. While ELMo helps to boost the coref­

erence resolution F1 score (OntoNotes) it also propagates bias to the task. It exhibits large

differences between pro­ and anti­stereotyped sets (|Diff|) on both semantic and syntactic

examples in WinoBias.

BiasMitigation Rows 4­6 in Table 3.5 summarize the effectiveness of the two biasmit­

igation approaches we consider. Data augmentation is largely effective at mitigating bias

in the coreference resolution system with ELMo (reducing |Diff | to insignificant levels)

but requires retraining the system. Neutralization is less effective than augmentation and

cannot fully remove gender bias on the Semantics Only portion of WinoBias, indicating

it is effective only for simpler cases. This observation is consistent with [GG19], where

they show that entirely removing bias from an embedding is difficult and depends on the

manner, by which one measures the bias.

3.2.4 Discussion

Like word embedding models, contextualized word embeddings inherit implicit gender

bias. We analyzed gender bias in ELMo, showing that the corpus it is trained on has sig­

nificant gender skew and that ELMo is sensitive to gender, but unequally so for male and

female entities. We also showed this bias transfers to downstream tasks, such as corefer­

ence resolution, and explored two bias mitigation strategies: 1) data augmentation and 2)

neutralizing embeddings, effectively eliminating the bias from ELMo in a state­of­the­art

system. With increasing adoption of contextualized embeddings to get better results on

core NLP tasks, e.g. BERT [DCL18], we must be careful how such unsupervised methods

perpetuate bias to downstream applications and our work forms the basis of evaluating

and mitigating such bias.
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3.3 GenderBias inMulti­lingualEmbeddingsandCross­lingual

Transfer Learning

Multilingual representations embed words from many languages into a single semantic

space such that words with similar meanings are close to each other regardless of the lan­

guage. These embeddings have been widely used in various settings, such as cross­lingual

transfer, where an NLP model trained on one language is deployed to another language.

While the cross­lingual transfer techniques are powerful, they carry gender bias from the

source to target languages. In this section, we study gender bias in multilingual embed­

dings and how it affects transfer learning for NLP applications. We create a multilingual

dataset for bias analysis and propose several ways for quantifying bias inmultilingual rep­

resentations fromboth the intrinsic and extrinsic perspectives. Experimental results show

that the magnitude of bias in the multilingual representations changes differently when

we align the embeddings to different target spaces and that the alignment direction can

also have an influence on the bias in transfer learning. We further provide recommenda­

tions for using the multilingual word representations for downstream tasks. This section

is based on our work [ZWY19].

3.3.1 Introduction

Natural Language Processing (NLP) plays a vital role in applications used in our daily lives.

Despite the great performance inspired by the advancedmachine learning techniques and

large available datasets, there are potential societal biases embedded in these NLP tasks –

where the systems learn inappropriate correlations between the final predictions and sen­

sitive attributes such as gender and race. For example, [ZWY18] and [RNL18] demonstrate

that coreference resolution systems perform unequally on different gender groups. Other

studies show that such bias is exhibited in various components of the NLP systems, such

as the training dataset [ZWY18, RNL18], the embeddings [BCZ16, CBN17, ZSZ19, MYB19]
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as well as the pre­trained models [ZWY19, KVP19].

Recent advances in NLP require large amounts of training data. Such data may be

available for resource­rich languages such as English, but they are typically absent for

many other languages. Multilingual word embeddings align the embeddings from various

languages to the same shared embedding space which enables transfer learning by train­

ing the model in one language and adopting it for another one [AMT16, AZM19, MPC19,

CHH19]. Previous work has proposed different methods to create multilingual word em­

beddings. One common way is to first train the monolingual word embeddings separately

and then align them to the same space [CLR17, JBM18]. While multiple efforts have fo­

cused on improving the models’ performance on low­resource languages, less attention is

given to understanding the bias in cross­lingual transfer learning settings.

In this section, we aim to understand the bias in multilingual word embeddings. In

contrast to existing literature that mostly focuses on English, we conduct analyses in mul­

tilingual settings. We argue that the bias in multilingual word embeddings can be very

different from that in English. One reason is that each language has its own properties.

For example, in English, most nouns do not have grammatical gender, while in Spanish,

all nouns do. Second, when we do the alignment to get themultilingual word embeddings,

the choice of target space may cause bias. Third, when we do transfer learning based on

multilingual word embeddings, the alignment methods, as well as the transfer procedure

can potentially influence the bias in downstream tasks. Our experiments confirm that bias

exists in themultilingual embeddings and such bias also impacts the cross­lingual transfer

learning tasks. We observe that the transfermodel based on themultilingual word embed­

dings shows discrimination against genders. To discern such bias, we perform analysis

from both the corpus and the embedding perspectives, showing that both contribute to

the bias in transfer learning. Our contributions are summarized as follows:
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• We build datasets for studying the gender bias in multilingual NLP systems.9

• We analyze gender bias in multilingual word embeddings from both intrinsic and

extrinsic perspectives. Experimental results show that the pre­trained monolingual

word embeddings, the alignment method as well as the transfer learning can have

an impact on the gender bias.

• We show that simple mitigation methods can help to reduce the bias in multilin­

gual word embeddings and discuss directions for future work to further study the

problem. We provide several recommendations for bias mitigation in cross­lingual

transfer learning.

3.3.2 Intrinsic Bias Quantification and Mitigation

In this section, we analyze the gender bias in multilingual word embeddings. Due to the

limitations of the available resources in other languages, we analyze the bias in English,

Spanish, German and French. However, our systematic evaluation approach can be easily

extended to other languages. We first define an evaluation metric for quantifying gen­

der bias in multilingual word embeddings. Note that in this work, we focus on analyzing

gender bias from the perspective of occupations. We then show that when we change the

target alignment space, the bias in multilingual word embeddings also changes. Such ob­

servations provide us a way to mitigate the bias in multilingual word embeddings – by

choosing an appropriate target alignment space.

3.3.2.1 Quantifying Bias in Multilingual Embeddings

We begin with describing inBias, our proposed evaluation metric for quantifying intrinsic

bias inmultilingual word embeddings fromword­level perspective. We then introduce the

dataset we collected for quantifying bias in different languages.

9Code and data will be available at https://aka.ms/MultilingualBias.
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Bias Definition Given a set of masculine and feminine words, we define inBias as:

inBias =
1

N

N∑
i=1

|dis(OMi
, SM)− dis(OFi

, SF )|, (3.2)

where

dis(OGi
, S) =

1

|S|
∑
s∈S

(1− cos (OGi
, s)).

Here (OMi
,OFi

) stands for themasculine and feminine format of the i­th occupation word,

such as (“doctor”, “doctora”). SM and SF are a set of gender seed words that contain male

and female gender information in the definitions such as “he” or “she”.

Intuitively, given a pair of masculine and feminine words describing an occupation,

such as the words “doctor” (Spanish, masculine doctor) and “doctora” (Spanish, femi­

nine doctor), the only difference lies in the gender information. As a result, they should

have similar correlations to the corresponding gender seed words such as “él” (Spanish,

he) and “ella” (Spanish, she). If there is a gap between the distance of occupations and

corresponding gender, (i.e., the distance between “doctor” and “él” against the distance

between “doctora” and “ella”), it means such occupation shows discrimination against

gender. Note that such metric can also be generalized to other languages without gram­

matical gender, such as English, by just using the same format of the occupation words. It

is also worth noting that our metric is general and can be used to define other types of bias

with slight modifications. For example, it can be used to detect age or race bias by pro­

viding corresponding seed words (e.g., “young” ­ “old” or names correlated with different

races). In this paper we focus on gender bias as the focus of study. We provide detailed

descriptions of those words in the dataset collection subsection.

Unlike previous work [BCZ16] which requires calculating a gender direction by doing

dimensionality reduction, we do not require such a step and hence we can keep all the

information in the embeddings. The goal of inBias is aligned to that of WEAT [CBN17].

It calculates the difference of targets (occupations in our case) corresponding to different

attributes (gender). We use paired occupations in each language, reducing the influence
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Figure 3.3: Most biased occupations in ES projected to the gender subspace defined by the

difference between two gendered seed words. Green dots are masculine (M.) occupations

while the red squares are feminine (F.) ones. We also show the average projections of

the gender seed words for male and female genders denoted by “Avg­M” and “Avg­F”.

Compared to EN, aligning to DE makes the distance between the occupation word and

corresponding gender more symmetric.

of grammatical gender. Compared to [ZSZ19], we do not need to separately generate the

two gender directions, as in our definition, the difference of the distance already contains

such information. In addition, we no longer need to collect the gender neutral word list.

In multilingual settings, due to different gender assignments to each word (e.g., “spoon”

is masculine is DE but feminine in ES), it is expensive to collect such resources which can

be alleviated by the inBias metric.

Multilingual Intrinsic BiasDataset To conduct the intrinsic bias analysis, we create

theMIBs dataset by manually collecting pairs of occupation words and gender seed words

in four languages: English (EN), Spanish (ES), German (DE) and French (FR). We choose

these four languages as they come from different language families (EN and DE belong to

the Germanic language family while ES and FR belong to the Italic language family) and
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exhibit different gender properties (e.g., in ES, FR andDE, there is grammatical gender).10

We refer to languages with grammatical gender as gender­rich languages; and otherwise,

as gender­less languages. Among these three gender­rich languages, ES and FR only have

feminine andmasculine genders while in DE, there is also a neutral gender. We obtain the

feminine and masculine words in EN from [ZZL18] and extend them by manually adding

other common occupations. The English gender seed words are from [BCZ16]. For all

the other languages, we get the corresponding masculine and feminine terms by using

online translation systems, such as Google Translate. We refer to the words that have both

masculine and feminine formats in EN (e.g., “waiter” and “waitress”) as strong gendered

words while others like “doctor” or “teacher” as weak gendered words. In total, there

are 257 pairs of occupations and 10 pairs of gender seed words for each language. In the

gender­rich languages, if the occupation only has one lexical format, (e.g., “prosecutor” in

ES only has the format “fiscal”), we add it to both the feminine and the masculine lists.

3.3.2.2 Characterizing Bias in Multilingual Embeddings

As mentioned in Sec. 3.3.1, multilingual word embeddings can be generated by first train­

ing word embeddings for different languages individually and then aligning those embed­

dings to the same space. During the alignment, one language is chosen as target and the

embeddings from other languages are projected onto this target space. We conduct com­

prehensive analyses on the MIBs dataset to understand: 1) how gender bias exhibits in

embeddings of different languages; 2) how the alignment target affects the gender bias in

the embedding space; and 3) how the quality of multilingual embeddings is affected by

choice of the target language.

For the monolingual embeddings of individual languages and the multilingual em­

beddings that used English as the target language (*­en),11 we use the publicly available

10We also do analyses with Turkish where there is no grammatical gender and no gendered pronoun.
Details are in Sec. 3.3.2.2.

11We refer to the aligned multilingual word embeddings using the format src­tgt. For example, “es­en”
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Source
Target

EN ES DE FR

EN 0.0830 0.0639* 0.0699* 0.0628*

ES 0.0889* 0.0803 0.0634* 0.0642*

DE 0.1124 0.0716* 0.1079 0.0805*

FR 0.1027 0.0768* 0.0782* 0.0940

Table 3.6: inBias score before and after alignment to different target spaces. Rows stands

for the source languageswhile columns are the target languages. The diagonal values stand

for the bias in the original monolingual word embeddings. Here * indicates the difference

between the bias before and after alignment is statistically significant (p < 0.05).

fastText embeddings trained on 294 languages in Wikipedia [BGJ17, JBM18]. For all

other embeddings aligned to a target space other than EN, we adopt the RCSLS alignment

model [JBM18] based on the same hyperparameter setting.

Analyzing Bias before Alignment We examine the bias using four languages men­

tioned previously based on all the word pairs in the MIBs. Table 3.6 reports the inBias

score on this dataset. The diagonal values here stand for the bias in each language be­

fore alignment. Bias commonly exists across all the four languages. Such results are also

supported by WEAT in [ZSZ19], demonstrating the validity of our metric. What is more,

comparing those four languages, we find DE and FR have stronger biases comparing to

EN and ES.

How will the bias change when aligned to different languages? Commonly

used multilingual word embeddings align all languages to the English space. However,

our analysis shows that the bias in the multilingual word embeddings can change if we

choose a different target space. All the results are shown in Table 3.6. Specifically, when

means we align the ES embeddings to the EN space. An embedding not following such format refers to a
monolingual embedding.
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Source
Target

EN ES DE FR

EN ­ 83.08 78.60 83.00

ES 86.40 ­ 72.40 87.27

DE 76.33 69.80 ­ 78.13

FR 84.27 84.80 75.53 ­

Table 3.7: Performance (accuracy %) of the BLI task for the aligned embeddings. Row

stands for the source language and column is the target language. The values in the first

row are from [JBM18].

we align the embeddings to the gender­rich languages, the bias score will be lower com­

pared to that in the original embedding space. In the other situation, when aligning the

embeddings to the gender­less language space (i.e., EN in our case), the bias increases.

For example, in original EN, the bias score is 0.0830 and when we align EN to ES, the bias

decreases to 0.0639 with 23% reduction in the bias score. However, the bias in ES embed­

dings increases to 0.0889 when aligned to EN while only 0.0634 when aligned to DE.12 In

Fig. 3.3, we show the examples of word shifting along the gender direction when aligning

ES to different languages. The gender direction is calculated by the difference ofmale gen­

dered seeds and female gendered seeds. We observe the feminine occupations are further

away from female seed words thanmasculine ones, causing the resultant bias. In compar­

ison to using EN as target space, when aligning ES to DE, the distance between masculine

and feminine occupations with corresponding gender seed words become more symmet­

ric, therefore reducing the inBias score.

What words changed most after the alignment? We are interested in under­

standing how the gender bias of words changes after we do the alignment. To do this,

12We show the bias for all the 257 pairs of words in EN. In the appendix, we also show the bias for strong
gendered words and weak gendered words separately.
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we look at the top­15 most and least changed words. We find that in each language, the

strongest bias comes from the strong gendered words; while the least bias happens among

weak gendered words. When we align EN embeddings to gender­rich languages, bias in

the strong gendered words will change most significantly; and the weak gendered words

will change least significantly. When we align gender­rich languages to EN, we observe a

similar trend. Among all the alignment cases, gender seed words used in Eq. (3.2) do not

change significantly.

Bilingual Lexicon Induction To evaluate the quality of word embeddings after the

alignment, we test them on the bilingual lexicon induction (BLI) task [CLR17] goal of

which is to induce the translation of source words by looking at their nearest neighbors.

We evaluate the embeddings on the MUSE dataset with the CSLS metric [CLR17].

We conduct experiments among all the pair­wise alignments of the four languages.

The results are shown in Table 3.7. Each row depicts the source language, while the col­

umn depicts the target language. When aligning languages to different target spaces, we

do not observe a significant performance difference in comparison to aligning to EN in

most cases. This confirms the possibility to use such embeddings in downstream tasks.

However, due to the limitations of available resources, we only show the result on the four

languages and it may change when using different languages.

Languages of Study In this paper, we mainly focus on four European languages from

different language families, partly caused by the limitations of the currently available re­

sources. We do a simplified analysis on Turkish (TR)which belongs to the Turkic language

family. In TR, there is no grammatical gender for both nouns and pronouns, i.e., it uses

the same pronoun “o” to refer to “he”, “she” or “it”. The original bias in TR is 0.0719 and

when we align it to EN, the bias remains almost the same at 0.0712. When aligning EN

to TR, we can reduce the intrinsic bias in EN from 0.0830 to 0.0592, with 28.7% reduction.

However, the BLI task shows that the performance on such aligned embeddings drops sig­
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nificantly: only 53.07%when aligned to TR but around 80%when aligned to the other four

languages. Moreover, as mentioned in ? ], some other languages such as Chinese and

Japanese cannot align well to English. Such situations require more investigations and

forming a direction for future work.

Source
Target

ENDEB ES DE FR

ENDEB 0.0501* 0.0458* 0.0524* 0.0441*

ES 0.0665* 0.0803 ­ ­

DE 0.0876* ­ 0.1079 ­

FR 0.0905 ­ ­ 0.0940

Table 3.8: inBias score before and after alignment to ENDEB. * indicates statistically sig­

nificant difference between the bias in original and aligned embeddings.

3.3.2.3 Bias after Mitigation

Researchers have proposed different approaches to mitigate the bias in EN word embed­

dings [BCZ16, ZZL18]. Although these approaches cannot entirely remove the bias [GG19],

they significantly reduce the bias in English embeddings. We refer to such embedding as

ENDEB. We analyze how the bias changes after we align the embeddings to such ENDEB

space. The ENDEB embeddings are obtained by adopting the method in [BCZ16] on the

original fastText monolingual word embeddings. Table 3.8 and 3.9 show the bias score

and BLI performance when we do the alignment between ENDEB and other languages.

Similar to [ZSZ19], we find that when we align other embeddings to the ENDEB space, we

can reduce the bias in those embeddings. What is more, we show that we can reduce the

bias in ENDEB embeddings further when we align it to a gender­rich language such as ES

while keeping the functionality of the embeddings, which is consistent with our previous

observation in Table 3.6. Besides, comparing aligning to gender­rich languages and to

ENDEB, the former one can reduce the bias more.
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Source
Target

ENDEB ES DE FR

ENDEB ­ 84.07 79.13 83.27

Target
Source

ENDEB ES DE FR

ENDEB ­ 86.07 76.27 84.33

Table 3.9: Performance (accuracy %) on the BLI task using the aligned embeddings based

on ENDEB embeddings. The top one is the result of aligning ENDEB to other languages

while the bottom is to align other languages to ENDEB.

Language EN ES DE FR

#occupation 28 72 27 27

#instance 397,907 82,863 12,976 59,490

Table 3.10: Statistics of the MLBs for each language.

3.3.3 Extrinsic Bias Quantification and Mitigation

In addition to the intrinsic bias in multilingual word embeddings, we also analyze the

downstream tasks, specifically in the cross­lingual transfer learning. One of the main

challenges here is the absence of appropriate datasets. To motivate further research in

this direction, we build a new dataset called MLBs. Experiments demonstrate that bias in

multilingual word embeddings can also have an effect on models transferred to different

languages. We further show how mitigation methods can help to reduce the bias in the

transfer learning setting.

3.3.3.1 Quantifying Bias in Multilingual Models

In this section, we provide details of the dataset we collected for the extrinsic bias analysis

as well as the metric we use for the bias evaluation.
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Multilingual BiosBias Datasets

[DRW19] built an English BiosBias dataset to evaluate the bias in predicting the occupa­

tions of people when provided with a short biography on the bio of the person written in

third person. To evaluate the bias in cross­lingual transfer settings, we build the Multilin­

gual BiosBias (MLBs) Dataset which contains bios in different languages.

Dataset Collection Procedure We collect a list of common occupations for each lan­

guage and follow the data collection procedure used for the English dataset [DRW19]. To

identify bio paragraphs, we use the pattern “NAME is an OCCUPATION­TITLE” where

name is recognized in each language by using the corresponding Named Entity Recog­

nition model from spaCy.13 To control for the same time period for datasets across lan­

guages, we process the same set of Common Crawl dumps ranging from the year 2014 to

2018. For the occupations, we use both the feminine and masculine versions of the word

in the gender­rich languages. For EN, we use the existing BiosBias dataset.

The number of occupations in each language is shown in Table 3.10. As the bios are

written in third person, similar to [DRW19], we extract the binary genders based on the

gendered pronouns in each language, such as “he” and “she”.

Bias Evaluation

We follow the method in [ZWY18] to measure the extrinsic bias: using the performance

gap between different gender groups as a metric to evaluate the bias in the MLBs dataset.

We split the dataset based on the gender attribute. A gender­agnostic model should have

similar performance in each group. To be specific, we use the average performance gap

across each occupation in the male and female groups aggregated across all occupations

(|Diff| in Table 3.11) to measure the bias. However, as described in [SDH19], people’s

names are potentially indicative of their genders. To eliminate the influence of names

13https://spacy.io/usage/models
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Figure 3.4: Gender statistics of MLBs dataset for different occupations where each occu­

pation has at least 200 instances. X­axis here stands for the occupation index and y­axis

is the number of instances for each occupation. Among all the languages, EN corpus is

the most gender balanced one. All the corresponding occupations will be provided in the

appendix.

as well as the gender pronouns on the model predictions, we use a “scrubbed” version

of the MLBs dataset by removing the names and some gender indicators (e.g., gendered

pronouns and prefixes such as “Mr.” or “Ms.”).

To make predictions of the occupations, we adopt the model used in [DRW19] by tak­

ing the fastText embeddings as the input and encoding the bio textwith bi­directionalGRU

units following by an attention mechanism. The predictions are generated by a softmax

layer. We train such models using standard cross­entropy loss and keep the embeddings

frozen during the training.

3.3.3.2 Characterizing Bias in Multilingual Models

In this section, we analyze the bias in themultilingual word embeddings from the extrinsic

perspective. We show that bias exists in cross­lingual transfer learning and the bias in

multilingual word embeddings contributes to such bias.

The gender distribution of the MLBs dataset is shown in Fig. 3.4. Among the three

languages, EN corpus ismost gender neutral one where the ratio betweenmale and female

instances is around 1.2 : 1. For all the other languages, male instances are far larger than
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MLBs Emb. Avg. Female Male |Diff|

EN

en 82.82 84.69 80.70 7.26

endeb 83.00 84.71 81.06 6.09 ↓

en­es 83.43 85.14 81.51 6.72 ↓

en­de 82.85 84.64 80.84 6.37 ↓

en­fr 82.66 84.34 80.78 5.87 ↓

ES

es 63.83 64.47 63.56 6.56

es­en 61.47 61.42 61.49 7.13 ↑

es­endeb 61.91 62.98 61.45 5.61 ↓

es­de 61.61 62.82 61.11 5.51 ↓

es­fr 62.91 63.31 62.73 4.32 ↓

Table 3.11: Results on scrubbed MLBs. “Emb.” stands for the embeddings used in model

training. “Avg.”, “Female” and “Male” refer to the overall average accuracy (%), and av­

erage accuracy for different genders respectively. “ |Diff|” stands for the average absolute

accuracy gap between each occupation in the male and female groups aggregated across

all the occupations. The results of FR and DE are in the original paper.

female ones. In ES, the ratio between male and female is 2.7 : 1, in DE it is 3.53 : 1, and in

FR, it is 2.5 : 1; all are biased towards the male gender.

Bias in Monolingual BiosBias We first evaluate the bias in the MLBs monolingual

dataset by predicting the occupations of the bios in each language.14 From Table 3.11 we

observe that: 1) Bias commonly exists across all languages (|Diff| > 0) when using differ­

ent aligned embeddings, meaning that the model works differently for male and female

groups. 2) When training the model using different aligned embeddings, it does not af­

fect the overall average performance significantly (“Avg.” column in the table). 3) The

alignment direction influences the bias. On training the model based on the embeddings

14The results of DE and FR are in the original paper.
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Trans. Src. Tgt. Avg. Female Male |Diff|

EN→ES
en es­en 41.68 42.29 41.42 2.83

en­es es 34.15 33.97 34.22 3.49

ES→EN
es en­es 57.33 59.61 54.75 8.33

es­en en 57.05 59.32 54.47 10.13

Table 3.12: Results of transfer learning on the scrubbedMLBs. “Src.” and “Tgt.” stand for

the embeddings in source model and fine tuning procedure respectively.

aligned to different target space, we find that aligning the embeddings to ENDEB or a

gender­rich language reduces the bias in the downstream task. This is aligned with our

previous observation in Section 3.3.2.

Bias in Transfer Learning Multilingual word embeddings are widely used in cross­

lingual transfer learning [RVS19]. In this section, we conduct experiments to understand

how the bias inmultilingual word embeddings impacts the bias in transfer learning. To do

this, we train our model in one language (i.e., source language) and transfer it to another

language based on the aligned embeddings obtained in Section 3.3.2.2. For the transfer

learning, we train the model on the training corpus of the source language and randomly

choose 20% of the dataset from the target language and use them to fine­tune themodel.15

Here, we do not aim at achieving state­of­the­art transfer learning performance but pay

more attention to the bias analysis. Table 3.12 shows that the bias is present when we do

the transfer learning regardless of the direction of transfer learning.

Bias fromMultilingualWordEmbeddings The transfer learning bias in Table 3.12

is a combined consequence of both corpus bias and themultilingual word embedding bias.

To better understand the influence of the bias in multilingual word embeddings on the

transfer learning, we make the training corpus gender balanced for each occupation by

15As there are fewer examples in DE, we use the whole datasets for transfer learning.
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Trans. Src. Tgt. Avg. Female Male |Diff|

EN→ES

en es­en 39.17 41.30 38.70 7.97

en­es es 35.66 36.11 35.47 4.53

en­de es­de 34.12 34.46 33.98 4.07

en­fr es­fr 37.63 38.75 37.16 4.87

ES→EN

es en­es 58.41 61.78 54.60 9.03

es­en en 55.62 58.00 52.93 9.52

es­de en­de 57.98 60.47 55.17 9.13

es­fr en­fr 55.04 57.85 51.86 8.47

Table 3.13: Results of transfer learning on gender balanced scrubbed MLBs. The bias

in the last column demonstrates that the bias in the multilingual word embeddings also

influences bias in transfer learning.

Trans. Src. Tgt. Avg. Female Male |Diff|

EN→ES endeb es­endeb 37.44 39.90 36.40 5.93

ES→EN es­endeb endeb 52.51 54.45 50.03 9.06

Table 3.14: Bias mitigation results of transfer learning when we aligned the embeddings

to the ENDEB space on gender balanced scrubbed MLBs.

upsampling to approximately make the model free of the corpus bias. We then test the

bias for different languages with differently aligned embeddings. The results are shown

in Table 3.13. When we adopt the embeddings aligned to gender­rich languages, we could

reduce the bias in the transfer learning, whereas adopting the embeddings aligned to EN

results in an increased bias.

Bias after Mitigation Inspired by the method in [ZWY18], we mitigate the bias in

the downstream tasks by adopting the bias­mitigated word embeddings. To get the less

biased multilingual word embeddings, we align other embeddings to the ENDEB space
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MLBs Avg. Female Male |Diff|

EN 84.35 85.54 83.01 7.31

ES 67.93 65.79 68.82 4.16

DE 72.68 73.68 72.28 4.89

FR 79.18 78.80 79.35 8.75

Table 3.15: Bias in monolingual MLBs using M­BERT.

Trans. Avg. Female Male |Diff|

EN→ES 66.56 65.70 66.92 5.48

EN→DE 76.21 75.66 76.42 7.51

EN→FR 76.46 75.73 76.81 8.97

Table 3.16: Bias in MLBs using M­BERT when transferring from EN to other languages.

Comparing to multilingual word embeddings, M­BERT achieves better transfer perfor­

mance on the MLBs dataset across different languages. But the bias can be higher com­

paring to the multilingual word embeddings.

previously obtained in Section 3.3.2. Table 3.14 demonstrates that by adopting such less

biased embeddings, we can reduce the bias in transfer learning. Comparing to Table 3.13,

aligning the embeddings to a gender­rich language achieves better bias mitigation and, at

the same time, remains the overall performance.

3.3.3.3 Bias Analysis Using Contextualized Embeddings

Contextualized embeddings such as ELMo [PNI18], BERT [DCL18] and XLNet [YDY19]

have shown significant performance improvement in various NLP applications. Multilin­

gual BERT (M­BERT) has shown its great ability for the transfer learning. AsM­BERTpro­

vides one single language model trained on multiple languages, there is no longer a need

for alignment procedure. In this section, we analyze the bias inmonolingualMLBs dataset
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as well as in transfer learning by replacing the fastText embeddings with M­BERT em­

beddings. Similar to previous experiments, we train the model on the English dataset

and transfer to other languages. Table 3.15 and 3.16 summarizes our results: comparing

to results by fastText embeddings in Table 3.11, M­BERT improves the performance on

monolingual MLBs dataset as well as the transfer learning tasks. When it comes to the

bias, usingM­BERT gets similar or lower bias in themonolingual datasets, but sometimes

achieves higher bias than the multilingual word embeddings in transfer learning tasks

such as the EN→ ES (in Table 3.12).

3.3.4 Discussion

Recently bias in embeddings has attracted much attention. However, most of the work

only focuses on English corpora and little is known about the bias in multilingual embed­

dings. In this section, we build different metrics and datasets to analyze gender bias in the

multilingual embeddings from both the intrinsic and extrinsic perspectives. We show that

gender bias commonly exists across different languages and the alignment target for gen­

erating multilingual word embeddings also affects such bias. In practice, we can choose

the embeddings aligned to a gender­rich language to reduce the bias.

However, due to the limitation of available resources, this study is limited to the Euro­

pean languages. We hope this study can work as a foundation to motivate future research

about the analysis and mitigation of bias in multilingual embeddings. We encourage re­

searchers to look at languages with different grammatical gender (such as Czech and Slo­

vak) and propose new methods to reduce the bias in multilingual embeddings as well as

in cross­lingual transfer learning

3.4 Discussion

In this chapter, we review the bias problem in an important NLP component – the em­

beddings. We propose a new embedding learning schema to disentangle the protected
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attributes in certain dimensions in the embedding space (Sec. 3.1); we reveal the bias prob­

lems in the contextualized word embeddings (Sec. 3.2) and demonstrate the bias in mul­

tilingual word embeddings and its impact on cross­lingual transfer learning (Sec. 3.3).

50



CHAPTER 4

Bias Evaluation Metric

Machine learning techniques have beenwidely used inNLP.However, as revealed bymany

recent studies, machine learning models often inherit and amplify the societal biases in

data. Various metrics have been proposed to quantify biases in model predictions. In par­

ticular, several of them evaluate disparity inmodel performance between protected groups

and advantaged groups in the test corpus. However, we argue that evaluating bias at the

corpus level is not enough for understanding how biases are embedded in amodel. In fact,

a model with similar aggregated performance between different groups on the entire data

may behave differently on instances in a local region. To analyze and detect such local

bias, we propose LOGAN, a new bias detection technique based on clustering. Experi­

ments on toxicity classification and object classification tasks show that LOGAN identifies

bias in a local region and allows us to better analyze the biases in model predictions. This

chapter is from our work [ZC20].

4.1 Introduction

Machine learning models such as deep neural networks have achieved remarkable per­

formance in many NLP tasks. However, as noticed by recent studies, these models often

inherit and amplify the biases in the datasets used to train the models [ZWY17, BCZ16,

CBN17, ZSZ19, MYB19, BBD20].

To quantify bias, researchers have proposed various metrics to study algorithmic fair­

ness at both individual and group levels. The former measures if a model treats similar
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individuals consistently no matter which groups they belong to, while the latter requires

themodel to perform similarly for protected groups and advantaged groups in the corpus.1

In this paper, we argue that studying algorithmic fairness at either level does not tell the

full story. A model that reports similar performance across two groups in a corpus may

behave differently between these two groups in a local region.

For example, the performance gap of a toxicity classifier for sentences mentioning

black and white race groups is 4.8%.2 This gap is only marginally larger than the per­

formance gap of 2.4%when evaluating the model on two randomly split groups. However,

if we evaluate the performance gap on the sentences containing the token “racist”, the

performance gap between these two groups is as large as 19%. Similarly, [ZWY17] report

that a visual semantic role labeling system tends to label an image depicting cooking as

woman cooking thanman cooking. However, the model is, in fact, more likely to produce

an output ofman cooking when the agent in the image wears a chef hat. We call these bi­

ases exhibited in a neighborhood of instances local group bias in contrast with global

group bias which is evaluated on the entire corpus.

To detect local group bias, we propose LOGAN, a LOcal Group biAs detectioN algo­

rithm to identify biases in local regions. LOGAN adapts a clustering algorithm (e.g., K­

Means) to group instances based on their features while maximizing a bias metric (e.g.,

performance gap across groups) within each cluster. In this way, local group bias is high­

lighted, allowing a developer to further examine the issue.

Our experiments on toxicity classification and MS­COCO object classification demon­

strate the effectiveness of LOGAN.We show that besides successfully detecting local group

bias, our method also provides interpretations for the detected bias. For example, we find

that different topics lead to different levels of local group bias in the toxicity classification.

1For example, [ZWY18] and [RNL18] evaluate the bias in coreference resolution systems by measuring
the difference in F1 score between cases where a gender pronoun refers to an occupation stereotypical to the
gender and the opposite situation.

2Performance in accuracy on the unintended bias detection task [Con19]
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4.2 Methodology

In this section, we first provide formal definitions of local group bias and then the details

of the detection method LOGAN.

Performance Disparity Assume we have a trained model f and a test corpus D =

{(xi, yi)}i=1...n that is used to evaluate the model. Let Pf (D) represents the performance of

themodel f evaluated on the corpusD. Based on the applications, the performancemetric

can be accuracy, AUC, false positive rates, etc. For the sake of simplicity, we assume each

input example xi is associated with one of demographic groups (e.g., male or female), i.e.,

xi ∈ A1 or xi ∈ A2.3 As a running example, we take performance disparity as the bias

metric. That is, if ∥Pf (A1) − Pf (A2)∥ > ϵ, then we consider that the model exhibits bias,

where ϵ is a given threshold.

Definition of local group bias We define local group bias as the bias exhibits in

certain local region of the test examples. Formally, given a centroid c in the input space,

letAc
1 = {x ∈ A1|∥x− c∥2 < γ} andAc

2 = {x ∈ A2|∥x− c∥2 < γ} be the neighbor instances

of c in each group, where γ is a threshold. We call a model has local group bias if

∥Pf (Ac
1)− Pf (Ac

2)∥ > ϵ. (4.1)

While this definition is based on performance disparity, it is straightforward to extend the

notion of local group bias to other bias metrics.

LOGAN The goal of LOGAN is to cluster instances in D such that (1) similar examples

are grouped together, and (2) each cluster demonstrates local group bias contained in f .

To achieve this goal, LOGAN generates cluster C = {Ci,j}i=1...n,j=1...k by optimizing the

3In this paper, we consider only binary attributes such as gender = {male, female}, race = {white, black}.
However, our approach is general and can be incorporated with any bias metric presented as a loss function.
Therefore, it can be straightforwardly extended to a multi­class case by plugging the corresponding bias
metric.
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following objective:

minC Lc + λLb, (4.2)

where Lc is the clustering loss and Lb is local group bias loss. λ ≥ 0 is a hyper­parameter

to control the trade­offs between the two objectives. Cij = 1 if xi is assigned to the cluster

j; Cij = 0 otherwise. We introduce these two loss terms in the following.

Clustering objective The loss Lc is derived from a standard clustering technique. In

this paper, we consider the K­Means clustering method [Llo82]. Specifically, the loss Lc

of K­Means is

Lc =
k∑

j=1

n∑
i=1

∥Cijxi − µj∥2 ∀i,
k∑

j=1

Cij = 1, (4.3)

µj = (
∑

ij Cijxi)/
∑

i,j Cij is the mean of cluster j. Note that our framework is general

and other clustering techniques, such as Spectral clustering [SM00], DBSCAN [EKS96],

or Gaussian mixture model can also be applied in generating the clusters. Besides, the

features used for creating the clusters can be different from the features used in the model

f .

Local groupbias objective For the local group bias lossLb, the goal is to obtain a clus­

tering that maximizes the bias metric within each cluster. In the following descriptions,

we take the performance gap between different attributes (see Eq. (4.1)) as an example to

describe the bias metric.

Let ŷi = f(xi) be the prediction of f on xi. The local group bias loss Lb is defined as the

negative summation of performance gaps over all the clusters. If accuracy is used as the

performance evaluation metric, Lb =

−
k∑

j=1

∣∣∣∣
∑

xi∈A1
CijIŷi=yi∑

xi∈A1
Cij

−
∑

xi∈A2
CijIŷi=yi∑

xi∈A2
Cij

∣∣∣∣2 ,
where I is the indicator function.

Similar to K­Means algorithm, we solve Eq. (4.2) by iterating two steps: first, assign

xi to its closest cluster j based on current µj; second, update µj based on current label
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assignment. We use k­means++ [AV07] for the cluster initialization and stop when the

model converges or reaches enough iterations. Tomake sure each cluster contains enough

instances, in practice, we choose a large k (k = 10 in our case) and merge a small cluster

to its closest neighbor. 4 For local group bias detection, we only consider clusters with at

least 20 examples from each group.

4.3 Experiment

In this section, we show that LOGAN is capable of identifying local group bias, and the

clusters generated by LOGAN provide an insight into how bias is embedded in the model.

4.3.1 Toxicity Classification

This task aims at detecting whether a comment is toxic (e.g. abusive or rude). Previ­

ous work has demonstrated that this task is biased towards specific identities such as

“gay” [DLS18]. In our work, we use toxicity classification as one example to detect lo­

cal group bias in texts and show that such local group bias could be caused by different

topics in the texts.

Dataset We use the official train and test datasets from [Con19]. As the dataset is ex­

tremely imbalanced, we down­sample the training dataset and reserve 20% of it as the

development set. In the end, we have 204, 000, 51, 000 and 97, 320 examples for train, de­

velopment and test, respectively. We tune λ = {1, 5, 10, 100} and choose the one with the

largest number of clusters showing local group bias.

Model We fine­tune a BERT sequence classification model from [WDS19] for 2 epochs

with a learning rate 2 × 10−5, max sequence length 220 and batch size 20. The model

achieves 90.2% accuracy on the whole test dataset.5 We use sentence embeddings from

4Wemerge the clusters iteratively and stop the procedure when all the clusters have at least 20 examples
or only 5 clusters are left.

5The source code is available at https://github.com/uclanlp/clusters.
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Figure 4.1: Accuracy for White (blue circle) and Black (orange square) groups in each

cluster using LOGAN. The length of the dashed line shows the gap. Red box highlights the

accuracy of these two groups on the entire corpus. Clusters 0 and 1 demonstrate strong

local group bias. Full results are in the original paper.

the second to last layer of a pre­trained BERT model as features to perform clustering.

Bias Detection There are several demographic groups in the toxic dataset such as gen­

der, race and religion. We focus on the binary gender (male/female) and binary race

(black/white) in the experiments. For local group bias, we report the largest bias score

among all the clusters. Figure 4.1 shows the accuracy of white and black groups in each

cluster using LOGAN. The example bounded in the red box is the global accuracy of these

two groups. Based on the results in Figure 4.1 and Table 4.1, we only detect weak global

group bias in themodel predictions. However, both K­Means and LOGAN successfully de­

tect strong local group bias. In particular, LOGAN identifies a local region that the model

has difficulties in making correct predictions for female group.

While we use the gap of accuracy as the bias metric, the clusters detected by LOGAN

also exhibit local bias when evaluating using other metrics. Table 4.2 shows the gap of
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Race

Method Acc­W Acc­B |Bias|

Global 80.8 76.0 4.8

K­Means 75.9 53.8 22.1

LOGAN 76.7 55.2 21.5

Gender

Method Acc­M Acc­F |Bias|

Global 79.8 81.6 1.8

K­Means 70.2 82.8 12.6

LOGAN 80.2 57.1 23.1

Table 4.1: Bias detection in toxic classification. Results are shown in %. “Global” stands

for global group bias detection. W, B, M, F refer to White, Black, Male and Female groups

respectively.

subgroup AUC scores over the clusters. Similar to the results in Table 4.1, K­Means and

LOGAN detect local group bias. In particular, the first and the third clusters in Figure 4.1

also have larger AUC disparity than the global AUC gap. Similarly, the first three clusters

in Figure 4.1 have a significantly larger gap of False Positive Rate across different groups

than when evaluating on the entire dataset.

Bias Interpretation To better interpret the local group bias, we run a Latent Dirichlet

Allocation topic model [BNJ03] to discover the main topic of each cluster. Table 4.3 lists

the top 20 topic words for the most and least biased clusters using LOGAN under race

attributes. We remove the words related to race attributes such as “white” and “black”.

We find that different topics in each cluster may lead to different levels of local group bias.

For example, compared with the less biased group, the most biased group includes a topic

on supremacy.

Comparison between K­Means and LOGAN We compare LOGAN with K­Means

using the following 3 metrics. “Inertia” sums over the distances of all instances to their
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Race

Method AUC­W AUC­B |Bias|

Global 0.870 0.846 0.024

K­Means 0.836 0.679 0.157

LOGAN 0.844 0.691 0.153

Gender

Method AUC­M AUC­F |Bias|

Global 0.896 0.924 0.028

K­Means 0.828 0.922 0.094

LOGAN 0.910 0.818 0.092

Table 4.2: Bias detection using subgroup AUC. “Global” stands for global group bias de­

tection. W, B, M, F refer to White, Black, Male and Female groups respectively.

Most
Biased
(21.5)

trump supremacist supremacists kkk

people party america racist

president support vote sessions

voters republican said obama

man base bannon nationalists

Least
Biased
(0.6)

people like get think know

say men see racist way

good point right go person

well make time said much

Table 4.3: Top 20 topic words in the most and least biased cluster using LOGAN under

RACE attributes. Number in parentheses is the bias score (%) of that cluster.

closest centers which is used to measure the clustering quality. We normalize it to make

the inertia of K­Means 1.0. To measure the utility of local group bias detection, we look at
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Inertia BCR BIR |Bias|

K­Means 1.0 62.5% 58.2% 12.4%

LOGAN 1.002 75.0% 71.8% 12.0%

Table 4.4: Comparison between K­Means and LOGAN under race attributes. “ BCR” and

“BIR” refer to the ratio of biased clusters and ratio of instances in those biased clusters,

respectively. “|Bias|” here is the averaged absolute bias score for those biased clusters.

the ratio of clusters showing a bias score at least 5%6 (BCR) as well as the ratio of instances

within those biased clusters (BIR). Table 4.4 shows that LOGAN increases the ratio of

clusters exhibiting non­trivial local group bias by a large margin with trivial trade offs in

inertia.

4.3.2 Object Classification

We conduct experiments on object classification using MS­COCO [LMB14]. Given one

image, the goal is to predict if one object appears in the image. Following the setup in

[WZY19], we exclude person from the object labels.

Dataset Similar to [ZWY17] and [WZY19], we extract the gender label for one image

by looking at the captions. For our analysis, we only consider images with gender labels.

In the end, there are 22, 800, 5, 400 and 5, 400 images left for train, development and test,

respectively.

Model We use the basic model from [WZY19] for this task, which adapts a standard

ResNet­50 pre­trained on ImageNet with the last layer modified. We follow the default

hyper­parameters of the original model.

6We choose 5% as it is close to the averaged bias score plus standard deviation when we randomly split
the examples into two groups over 5 runs.
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Bias Detection and Interpretation We evaluate bias in the predictions of the object

classification model by looking at the accuracy gap between male and female groups for

each object. In the analysis, we only consider objects withmore than 100 images in the test

set. This results in a total of 26 objects. Among the three methods, Global can only detect

group bias at threshold 5% (i.e., performance gap≥ 5%) for 14 objects, while K­Means and

LOGAN increase the number to 19 and 21 respectively.

Comparing LOGAN with K­Means, among all the 26 objects, the average inertia is al­

most the same (the ratio is 1.001). On average, 34.0% and 35.7% of the clusters showing

local group bias at threshold 5% (i.e. BCR) and the ratio of instances in those biased clus­

ters (i.e., BIR) are 57.7% and 54.9% for K­Means and LOGAN, respectively.

We further investigate the local groups discovered by LOGANby comparing the images

in the less biased local groups with the strong biased ones. We find that, for example, in

the most biased local groups, the images often contain “handbag” with a street scene. In

such a case, the model is more likely to correctly predict the agent in the image is woman.

4.4 Discussion

Machine learning models risk inheriting the underlying societal biases from the data. In

practice, many works use the global performance gap between different groups as ametric

to detect the bias. In this work, we revisit the coarse­grainedmetric for group bias analysis

and propose a new method, LOGAN, to detect local group bias by clustering. Our method

can help detect model biases that previously are hidden from the global bias metrics and

provide an explanation of such biases. Butwe notice there are some limitations in LOGAN.

For example, the number of instances in clusters could be uneven.
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CHAPTER 5

Bias Amplification

In previous chapters, we have shown that NLP models can implicitly learn the bias from

the training dataset. In this chapter, we use one vision­and­language task as a running

example to demonstrate besides mimicking the biases in the training corpus, a model can

potentially enlarge those biases causing more severe problems. In the end, we show two

possible ways to calibrate such bias amplifications without model retraining. This chapter

is based on our work [ZWY17, JMZ20].

5.1 Bias Amplification in Top Prediction

5.1.1 Introduction

Visual recognition tasks involving language, such as captioning [VTB15], visual question

answering [AAL15], and visual semantic role labeling [YZF16], have emerged as avenues

for expanding the diversity of information that can be recovered from images. These tasks

aim at extracting rich semantics from images and require large quantities of labeled data,

predominantly retrieved from the web. Methods often combine structured prediction and

deep learning to model correlations between labels and images to make judgments that

otherwise would have weak visual support. For example, in the first image of Figure 5.1,

it is possible to predict a spatula by considering that it is a common tool used for the ac­

tivity cooking. Yet such methods run the risk of discovering and exploiting societal biases

present in the underlying web corpora. Without properly quantifying and reducing the

reliance on such correlations, broad adoption of these models can have the inadvertent
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COOKING
ROLE VALUE
AGENT WOMAN
FOOD MEAT
HEAT STOVE
TOOL SPATULA
PLACE OUTSIDE

COOKING
ROLE VALUE
AGENT WOMAN
FOOD PASTA
HEAT STOVE
TOOL SPATULA
PLACE KITCHEN

COOKING
ROLE VALUE
AGENT MAN
FOOD ∅

HEAT STOVE
TOOL SPATULA
PLACE KITCHEN

COOKING
ROLE VALUE
AGENT WOMAN
FOOD FRUIT
HEAT ∅

TOOL KNIFE
PLACE KITCHEN

COOKING
ROLE VALUE
AGENT WOMAN
FOOD ∅

HEAT STOVE
TOOL SPATULA
PLACE KITCHEN

Figure 5.1: Five example images from the imSitu visual semantic role labeling (vSRL)

dataset. Each image is paired with a table describing a situation: the verb, cooking, its

semantic roles, i.e agent, and noun values filling that role, i.e. woman. In the imSitu train­

ing set, 33% of cooking images have man in the agent role while the rest have woman. Af­

ter training a Conditional Random Field (CRF), bias is amplified: man fills 16% of agent

roles in cooking images. To reduce this bias amplification our calibration method adjusts

weights of CRF potentials associated with biased predictions. After applying ourmethods,

man appears in the agent role of 20% of cooking images, reducing the bias amplification

by 25%, while keeping the CRF vSRL performance unchanged.

effect of magnifying stereotypes.

In this paper, we develop a general framework for quantifying bias and study two

concrete tasks, visual semantic role labeling (vSRL) and multilabel object classification

(MLC). In vSRL, we use the imSitu formalism [YZF16, YOZ17], where the goal is to predict

activities, objects and the roles those objects play within an activity. For MLC, we useMS­

COCO [LMB14, CFL15], a recognition task covering 80 object classes. We use gender bias

as a running example and show that both supporting datasets for these tasks are biased

with respect to a gender binary1.

1To simplify our analysis, we only consider a gender binary as perceived by annotators in the datasets. We
recognize that a more fine­grained analysis would be needed for deployment in a production system. Also,
note that the proposed approach can be applied to other NLP tasks and other variables such as identification
with a racial or ethnic group.
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Our analysis reveals that over 45% and 37% of verbs and objects, respectively, exhibit

bias toward a gender greater than 2:1. For example, as seen in Figure 5.1, the cooking

activity in imSitu is a heavily biased verb. Furthermore, we show that after training state­

of­the­art structured predictors, models amplify the existing bias, by 5.0% for vSRL, and

3.6% in MLC.

To mitigate the role of bias amplification when training models on biased corpora,

we propose a novel constrained inference framework, called RBA, for Reducing Bias

Amplification in predictions. Ourmethod introduces corpus­level constraints so that gen­

der indicators co­occur nomore often together with elements of the prediction task than in

the original training distribution. For example, as seen in Figure 5.1, we would like noun

man to occur in the agent role of the cooking as often as it occurs in the imSitu training set

when evaluating on a development set. We combine our calibration constraint with the

original structured predictor and use Lagrangian relaxation [KV08, RC12] to reweigh bias

creating factors in the original model.

We evaluate our calibration method on imSitu vSRL and COCO MLC and find that in

both instances, our models substantially reduce bias amplification. For vSRL, we reduce

the average magnitude of bias amplification by 40.5%. ForMLC, we are able to reduce the

average magnitude of bias amplification by 47.5%. Overall, our calibration methods do

not affect the performance of the underlying visual system, while substantially reducing

the reliance of the system on socially biased correlations2.

5.1.2 Visualizing and Quantifying Biases

Modern statistical learning approaches capture correlations among output variables in or­

der tomake coherent predictions. However, for real­world applications, some implicit cor­

relations are not appropriate, especially if they are amplified. In this section, we present a

general framework to analyze inherent biases learned and amplified by a predictionmodel.

2Code and data are available at https://github.com/uclanlp/reducingbias
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Identifyingbias Weconsider that predictionproblems involve several inter­dependent

output variables y1, y2, ...yK , which canbe represented as a structure y = {y1, y2, ...yK} ∈ Y .

This is a common setting in NLP applications, including tagging, and parsing. For exam­

ple, in the vSRL task, the output can be represented as a structured table as shown in Fig

5.1. Modern techniques oftenmodel the correlation between the sub­components in y and

make a joint prediction over them using a structured prediction model. More details will

be provided in Section 5.1.3.

We assume there is a subset of output variables g ⊆ y, g ∈ G that reflects demographic

attributes such as gender or race (e.g. g ∈ G = {man, woman} is the agent), and there is

another subset of the output o ⊆ y, o ∈ O that are co­related with g (e.g., o is the activity

present in an image, such as cooking). The goal is to identify the correlations that are

potentially amplified by a learned model.

To achieve this, we define the bias score of a given output, o, with respect to a demo­

graphic variable, g, as:

b(o, g) =
c(o, g)∑

g′∈G c(o, g
′)
,

where c(o, g) is the number of occurrences of o and g in a corpus. For example, to analyze

how genders of agents and activities are co­related in vSRL, we define the gender bias

toward man for each verb b(verb, man) as:

c(verb, man)
c(verb, man) + c(verb, woman)

. (5.1)

If b(o, g) > 1/∥G∥, then o is positively correlated with g and may exhibit bias.

Evaluating bias amplification To evaluate the degree of bias amplification, we pro­

pose to compare bias scores on the training set, b∗(o, g), with bias scores on an unlabeled

evaluation set of images b̃(o, g) that has been annotated by a predictor. We assume that

the evaluation set is identically distributed to the training set. Therefore, if o is positively

correlated with g (i.e, b∗(o, g) > 1/∥G∥) and b̃(o, g) is larger than b∗(o, g), we say bias has

been amplified. For example, if b∗(cooking, woman) = .66, and b̃(cooking, woman) = .84,
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then the bias of woman toward cooking has been amplified. Finally, we define the mean

bias amplification as:

1

|O|
∑
g

∑
o∈{o∈O|b∗(o,g)>1/∥G∥}

b̃(o, g)− b∗(o, g).

This score estimates the averagemagnitude of bias amplification for pairs of o and g which

exhibited bias.

5.1.3 Calibration Algorithm

In this section, we introduceReducingBiasAmplification, RBA, a debiasing technique for

calibrating the predictions from a structured prediction model. The intuition behind the

algorithm is to inject constraints to ensure the model predictions follow the distribution

observed from the training data. For example, the constraints added to the vSRL system

ensure the gender ratio of each verb in Eq. (5.1) are within a given margin based on the

statistics of the training data. These constraints are applied at the corpus level, because

computing gender ratio requires the predictions of all test instances. As a result, a joint

inference over test instances is required3. Solving such a giant inference problem with

constraints is hard. Therefore, we present an approximate inference algorithm based on

Lagrangian relaxation. The advantages of this approach are:

• Our algorithm is iterative, and at each iteration, the joint inference problem is de­

composed to a per­instance basis. This can be solved by the original inference algo­

rithm. That is, our approach works as a meta­algorithm and developers do not need

to implement a new inference algorithm.

• The approach is general and can be applied in any structured model.

3A sufficiently large sample of test instances must be used so that bias statistics can be estimated. In this
work we use the entire test set for each respective problem.
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• Lagrangian relaxation guarantees the solution is optimal if the algorithm converges

and all constraints are satisfied.

In practice, it is hard to obtain a solution where all corpus­level constrains are satisfied.

However, we show that the performance of the proposed approach is empirically strong.

We use imSitu for vSRL as a running example to explain our algorithm.

Structured Output Prediction As we mentioned in Sec. 5.1.2, we assume the struc­

tured output y ∈ Y consists of several sub­components. Given a test instance i as an input,

the inference problem is to find

argmax
y∈Y

fθ(y, i),

where fθ(y, i) is a scoring function based on a model θ learned from the training data.

The structured output y and the scoring function fθ(y, i) can be decomposed into small

components based on an independence assumption. For example, in the vSRL task, the

output y consists of two types of binary output variables {yv} and {yv,r}. The variable yv = 1

if and only if the activity v is chosen. Similarly, yv,r = 1 if and only if both the activity v and

the semantic role r are assigned 4. The scoring function fθ(y, i) is decomposed accordingly

such that:

fθ(y, i) =
∑
v

yvsθ(v, i) +
∑
v,r

yv,rsθ(v, r, i),

represents the overall score of an assignment, and sθ(v, i) and sθ(v, r, i) are the potentials

of the sub­assignments. The output space Y contains all feasible assignments of yv and

yv,r, which can be represented as instance­wise constraints. For example, the constraint,∑
v yv = 1 ensures only one activity is assigned to one image.

Corpus­level Constraints Our goal is to inject constraints to ensure the output labels

follow a desired distribution. For example, we can set a constraint to ensure the gender

4We use r to refer to a combination of role and noun. For example, one possible value indicates an agent
is a woman.
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ratio for each activity in Eq. (5.1) is within a given margin. Let yi = {yiv} ∪ {yiv,r} be the

output assignment for test instance i5. For each activity v∗, the constraints can be written

as

b∗−γ≤
∑

i y
i
v=v∗,r∈M∑

i y
i
v=v∗,r∈W+

∑
i y

i
v=v∗,r∈M

≤b∗ + γ (5.2)

where b∗ ≡ b∗(v∗,man) is the desired gender ratio of an activity v∗, γ is a user­specified

margin. M and W are a set of semantic role­values representing the agent as a man or a

woman, respectively.

Note that the constraints in (5.2) involve all the test instances. Therefore, it requires a

joint inference over the entire test corpus. In general, these corpus­level constraints can

be represented in a form of A
∑

i y
i − b ≤ 0, where each row in the matrix A ∈ Rl×K is the

coefficients of one constraint, and b ∈ Rl. The constrained inference problem can then be

formulated as:

max
{yi}∈{Y i}

∑
i

fθ(y
i, i),

s.t. A
∑
i

yi − b ≤ 0,
(5.3)

where {Y i} represents a space spanned by possible combinations of labels for all instances.

Without the corpus­level constraints, Eq. (5.3) can be optimized by maximizing each in­

stance i

max
yi∈Y i

fθ(y
i, i),

separately.

Lagrangian Relaxation Eq. (5.3) can be solved by several combinatorial optimiza­

tion methods. For example, one can represent the problem as an integer linear program

and solve it using an off­the­shelf solver (e.g., Gurobi [Gur16]). However, Eq. (5.3) in­

volves all test instances. Solving a constrained optimization problem on such a scale is

5For the sake of simplicity, we abuse the notations and use i to represent both input and data index.
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difficult. Therefore, we consider relaxing the constraints and solve Eq. (5.3) using a La­

grangian relaxation technique [RC12]. We introduce a Lagrangian multiplier λj ≥ 0 for

each corpus­level constraint. The Lagrangian is

L(λ, {yi}) =∑
i

fθ(y
i)−

l∑
j=1

λj

(
Aj

∑
i

yi − bj

)
,

(5.4)

where all the λj ≥ 0, ∀j ∈ {1, . . . , l}. The solution of Eq. (5.3) can be obtained by the

following iterative procedure:

1) At iteration t, get the output solution of each instance i

yi,(t) = argmax
y∈Y ′

L(λ(t−1), y) (5.5)

2) update the Lagrangian multipliers.

λ(t)=max

(
0, λ(t−1)+

∑
i

η(Ayi,(t) − b)

)
,

where λ(0) = 0. η is the learning rate for updating λ. Note that with a fixed λ(t−1), Eq.

(5.5) can be solved using the original inference algorithms. The algorithm loops until all

constraints are satisfied (i.e. optimal solution achieved) or reach maximal number of iter­

ations.

5.1.4 Experimental Setup

In this section, we provide details about the two visual recognition tasks we evaluated

for bias: visual semantic role labeling (vSRL), and multi­label classification (MLC). We

focus on gender, defining G = {man, woman} and focus on the agent role in vSRL, and any

occurrence in text associated with the images in MLC. Problem statistics are summarized

in Table 5.1. We also provide setup details for our calibration method.

68



Dataset Task Images O­Type ∥O∥

imSitu vSRL 60,000 verb 212

MS­COCO MLC 25,000 object 66

Table 5.1: Statistics for the two recognition problems. In vSRL, we consider gender bias

relating to verbs, while in MLC we consider the gender bias related to objects.

5.1.4.1 Visual Semantic Role Labeling

Dataset We evaluate on imSitu [YZF16] where activity classes are drawn from verbs

and roles in FrameNet [BFL98] and noun categories are drawn from WordNet [? ]. The

original dataset includes about 125,000 images with 75,702 for training, 25,200 for de­

veloping, and 25,200 for test. However, the dataset covers many non­human oriented

activities (e.g., rearing, retrieving, and wagging), so we filter out these verbs, resulting

in 212 verbs, leaving roughly 60,000 of the original 125,000 images in the dataset.

Model We build on the baseline CRF released with the data, which has been shown ef­

fective compared to a non­structured prediction baseline [YZF16]. Themodel decomposes

the probability of a realized situation, y, the combination of activity, v, and realized frame,

a set of semantic (role,noun) pairs (e, ne), given an image i as :

p(y|i; θ) ∝ ψ(v, i; θ)
∏

(e,ne)∈Rf

ψ(v, e, ne, i; θ)

where each potential value in the CRF for subpart x, is computed using features fi from

the VGG convolutional neural network [SZ14] on an input image, as follows:

ψ(x, i; θ) = ew
T
x fi+bx ,

where w and b are the parameters of an affine transformation layer. The model explicitly

captures the correlation between activities and nouns in semantic roles, allowing it to learn

common priors. We use a model pretrained on the original task with 504 verbs.
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5.1.4.2 Multilabel Classification

Dataset We useMS­COCO [LMB14], a common object detection benchmark, for multi­

label object classification. The dataset contains 80 object types but does not make gender

distinctions betweenman andwoman. We use the five associated image captions available

for each image in this dataset to annotate the gender of people in the images. If any of the

captions mention the word man or woman wemark it, removing any images that mention

both genders. Finally, we filter any object category not strongly associatedwith humans by

removing objects that do not occur with man or woman at least 100 times in the training

set, leaving a total of 66 objects.

Model For this multi­label setting, we adapt a similar model as the structured CRF we

use for vSRL. We decompose the joint probability of the output y, consisting of all object

categories, c, and gender of the person, g, given an image i as:

p(y|i; θ) ∝ ψ(g, i; θ)
∏
c∈y

ψ(g, c, i; θ)

where each potential value for x, is computed using features, fi, from a pretrained ResNet­

50 convolutional neural network evaluated on the image,

ψ(x, i; θ) = ew
T
x fi+bx .

We trained a model using SGD with learning rate 10−5, momentum 0.9 and weight­decay

10−4, fine tuning the initial visual network, for 50 epochs.

5.1.4.3 Calibration

The inference problems for both models are:

argmax
y∈Y

fθ(y, i) = log p(y|i; θ).

We use the algorithm in Sec. (5.1.3) to calibrate the predictions using model θ. Our

calibration tries to enforce gender statistics derived from the training set of corpus appli­

cable for each recognition problem. For all experiments, we try to match gender ratios on
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(a) Bias analysis on imSitu vSRL
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Figure 5.2: Gender bias analysis of imSitu vSRL and MS­COCO MLC. (a) gender bias of

verbs toward man in the training set versus bias on a predicted development set. (b) gender

bias of nouns toward man in the training set versus bias on the predicted development

set. Values near zero indicate bias toward woman while values near 0.5 indicate unbiased

variables. Across both dataset, there is significant bias toward males, and significant bias

amplification after training on biased training data.

the test set within a margin of .05 of their value on the training set. While we do adjust

the output on the test set, we never use the ground truth on the test set and instead work­

ing from the assumption that it should be similarly distributed as the training set. When

running the debiasing algorithm, we set η = 10−1 and optimize for 100 iterations.

5.1.5 Bias Analysis

In this section, we use the approaches outlined in Section 5.1.2 to quantify the bias and

bias amplification in the vSRL and the MLC tasks.

5.1.5.1 Visual Semantic Role Labeling

imSitu is gender biased In Figure 5.2a, along the x­axis, we show the male favoring

bias of imSitu verbs. Overall, the dataset is heavily biased towardmale agents, with 64.6%
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of verbs favoring a male agent by an average bias of 0.707 (roughly 3:1 male). Nearly half

of verbs are extremely biased in the male or female direction: 46.95% of verbs favor a

gender with a bias of at least 0.7.6 Figure 5.2a contains several activity labels revealing

problematic biases. For example, shopping, microwaving and washing are biased toward

a female agent. Furthermore, several verbs such as driving, shooting, and coaching are

heavily biased toward a male agent.

Trainingon imSitu amplifies bias In Figure 5.2a, along the y­axis, we show the ratio

of male agents (% of total people) in predictions on an unseen development set. Themean

bias amplification in the development set is high, 0.050 on average, with 45.75% of verbs

exhibiting amplification. Biased verbs tend to have stronger amplification: verbs with

training bias over 0.7 in either the male or female direction have a mean amplification of

0.072. Several already problematic biases have gottenmuch worse. For example, serving,

only had a small bias toward females in the training set, 0.402, is nowheavily biased toward

females, 0.122. The verb tuning, originally heavily biased toward males, 0.878, now has

exclusively male agents.

5.1.5.2 Multilabel Classification

MS­COCO is gender biased In Figure 5.2b along the x­axis, similarly to imSitu, we

analyze bias of objects inMS­COCOwith respect tomales. MS­COCO is evenmore heavily

biased towardmen than imSitu, with 86.6%of objects biased towardmen, but with smaller

averagemagnitude, 0.65. One third of the nouns are extremely biased towardmales, 37.9%

of nouns favor men with a bias of at least 0.7. Some problematic examples include kitchen

objects such as knife, fork, or spoon being more biased toward woman. Outdoor recre­

ation related objects such tennis racket, snowboard and boat tend to be more biased

toward men.

6In this gender binary, bias toward woman is 1− the bias toward man
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Training onMS­COCO amplifies bias In Figure 5.2b, along the y­axis, we show the

ratio of man (% of both gender) in predictions on an unseen development set. The mean

bias amplification across all objects is 0.036, with 65.67%of nouns exhibiting amplification.

Larger training bias again tended to indicate higher bias amplification: biased objects with

training bias over 0.7 had mean amplification of 0.081. Again, several problematic biases

have now been amplified. For example, kitchen categories already biased toward females

such as knife, fork and spoon have all been amplified. Technology oriented categories

initially biased toward men such as keyboard and mouse have each increased their bias

toward males by over 0.100.

5.1.5.3 Discussion

We confirmed our hypothesis that (a) both the imSitu and MS­COCO datasets, gathered

from the web, are heavily gender biased and that (b) models trained to perform prediction

on these datasets amplify the existing gender bias when evaluated on development data.

Furthermore, across both datasets, we showed that the degree of bias amplificationwas re­

lated to the size of the initial bias, with highly biased object and verb categories exhibiting

more bias amplification. Our results demonstrate that care needs be taken in deploying

such uncalibrated systems otherwise they could not only reinforce existing social bias but

actually make them worse.

5.1.6 Calibration Results

We test our methods for reducing bias amplification in two problem settings: visual se­

mantic role labeling in the imSitu dataset (vSRL) and multilabel image classification in

MS­COCO (MLC). In all settings we derive corpus constraints using the training set and

then run our calibration method in batch on either the development or testing set. Our

results are summarized in Table 5.2 and Figure 5.3 to 5.4.
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Method Viol. Amp. bias Perf. (%)

vSRL: Development Set

CRF 154 0.050 24.07

CRF + RBA 107 0.024 23.97

vSRL: Test Set

CRF 149 0.042 24.14

CRF + RBA 102 0.025 24.01

MLC: Development Set

CRF 40 0.032 45.27

CRF + RBA 24 0.022 45.19

MLC: Test Set

CRF 38 0.040 45.40

CRF + RBA 16 0.021 45.38

Table 5.2: Number of violated constraints, mean amplified bias, and test performance

before and after calibration using RBA. The test performances of vSRL andMLC are mea­

sured by top­1 semantic role accuracy and top­1 mean average precision, respectively.

5.1.6.1 Visual Semantic Role Labeling

Ourquantitative results are summarized in the first two sections of Table 5.2. On the devel­

opment set, the number of verbs whose bias exceed the original bias by over 5% decreases

30.5% (Viol.). Overall, we are able to significantly reduce bias amplification in vSRL by

52% on the development set (Amp. bias). We evaluate the underlying recognition per­

formance using the standard measure in vSRL: top­1 semantic role accuracy, which tests

how often the correct verb was predicted and the noun value was correctly assigned to

a semantic role. Our calibration method results in a negligible decrease in performance

(Perf.). In Figure 5.3c we can see that the overall distance to the training set distribution
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(a) Bias analysis on imSitu vSRL without RBA
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(b) Bias analysis on MS­COCOMLC without

RBA

0.0 0.2 0.4 0.6 0.8 1.0

training ratio

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

g
e
n
d
e
r 

ra
ti

o
 p

re
d
ic

te
d
 

(c) Bias analysis on imSitu vSRL with RBA
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(d) Bias analysis on MS­COCOMLC with RBA

Figure 5.3: Results of reducing bias amplification using RBAon imSitu vSRL and MS­

COCOMLC. Figures (a)­(d) show initial training set bias along the x­axis and development

set bias along the y­axis. Dotted blue lines indicate the 0.05 margin used in RBA, with

points violating the margin shown in red while points meeting the margin are shown in

green. Across both settings addingRBAsignificantly reduces the number of violations, and

reduces the bias amplification significantly.
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after applying RBA decreased significantly, over 39%.
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(a) Bias in vSRL with (in blue)

and without (in red) RBA

0.4 0.5 0.6 0.7 0.8 0.9 1.0

training gender ratio

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

m
e
a
n
 b

ia
s 

a
m

p
lif

ic
a
ti

o
n
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and without (in red) RBA

Figure 5.4: Figures (a)­(b) demonstrate bias amplification as a function of training bias,

with and without RBA. Across all initial training biases, RBAis able to reduce the bias

amplification.

Figure 5.4a demonstrates that across all initial training bias, RBA is able to reduce bias

amplification. In general, RBA struggles to remove bias amplification in areas of low ini­

tial training bias, likely because bias is encoded in image statistics and cannot be removed

as effectively with an image agnostic adjustment. Results on the test set support our de­

velopment set results: we decrease bias amplification by 40.5% (Amp. bias).

5.1.6.2 Multilabel Classification

Our quantitative results onMS­COCO RBA are summarized in the last two sections of Ta­

ble 5.2. Similarly to vSRL, we are able to reduce the number of objects whose bias exceeds

the original training bias by 5%, by 40% (Viol.). Bias amplification was reduced by 31.3%

on the development set (Amp. bias). The underlying recognition system was evaluated by

the standardmeasure: top­1 mean average precision, the precision averaged across object
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categories. Our calibration method results in a negligible loss in performance. In Fig­

ure 5.3d, we demonstrate that we substantially reduce the distance between training bias

and bias in the development set. Finally, in Figure 5.4b we demonstrate that we decrease

bias amplification for all initial training bias settings. Results on the test set support our

development results: we decrease bias amplification by 47.5% (Amp. bias).

5.1.6.3 Discussion

We have demonstrated that RBA can significantly reduce bias amplification. While were

not able to remove all amplification, we havemade significant progresswith little or no loss

in underlying recognition performance. Across both problems, RBA was able to reduce

bias amplification at all initial values of training bias.

5.2 Bias Amplification in Distribution

Advancedmachine learning techniques have boosted the performance of natural language

processing. Nevertheless, our work above shows that these techniques inadvertently cap­

ture the societal bias hidden in the corpus and further amplify it. The previous analysis

is conducted only on models’ top predictions. In this section, we investigate the gender

bias amplification issue from the distribution perspective and demonstrate that the bias

is amplified in the view of predicted probability distribution over labels. We further pro­

pose a biasmitigation approach based on posterior regularization. With little performance

loss, our method can almost remove the bias amplification in the distribution. Our study

further sheds the light on understanding the bias amplification.

5.2.1 Introduction

The previous section (Sec. 5.1) conducts a systematic study and proposes to calibrate the

top predictions of a learned model by injecting corpus­level constraints to ensure that the

gender disparity is not amplified. However, when analyzing the top predictions, the mod­

els are forced to make one decision. Therefore, even if the model assigns high scores to
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both labels of “woman cooking” and “man cooking”, it has to pick one as the prediction.

This process obviously has a risk to amplify the bias. However, in this section, to our sur­

prise, we observe that gender bias is also amplified when analyzing the posterior distri­

bution of the predictions. Since the model is trained with regularized maximal likelihood

objective, the bias in distribution is a more fundamental perspective of analyzing the bias

amplification issue.

In this section, we conduct a systematic study to quantify the bias in the predicted

distribution over labels. Our analysis demonstrates that when evaluating the distribution,

though not as significant as when evaluating top predictions, the bias amplification exists.

About half of activities show significant bias amplification in the posterior distribution,

and on average, they amplify the bias by 3.2%.

We further propose a new bias mitigation technique based on posterior regularization

because the approaches described in Sec. 5.1 can not be straightforwardly extended to cal­

ibrate bias amplification in distribution. With the proposed technique, we successfully re­

move the bias amplification in the posterior distribution while maintain the performance

of themodel. Besides, the bias amplification in the top predictions based on the calibrated

distribution is also mitigated by around 30%. These results suggest that the bias ampli­

fication in top predictions comes from both the requirement of making hard predictions

and the bias amplification in the posterior distribution of themodel predictions. Our study

advances the understanding of the bias amplification issue in natural language processing

models. The code and data are available at https://github.com/uclanlp/reducingbias.

5.2.2 Bias Amplification Quantification and Corpus­level Constraints

In the following, we extend the work in the previous section to analyze the bias amplifica­

tion in the posterior distribution by the CRF model and define the corresponding corpus­

level constraints.

Formally, the probability of prediction yi for instance i and the joint prediction y de­
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fined by CRF model with parameters θ are given by

pθ(yi, i) ∝ exp(fθ(yi, i)),

pθ(y) =
∏

i
pθ(yi, i),

(5.6)

since instances are mutually independent.

In this section, we will define how to quantify the bias and the bias amplification in the

distribution, and introduce the corpus­level constraints towards restricting the bias in the

distribution.

We focus on the gender bias on activities in the vSRL task. To quantify the gender bias

given a particular activity v∗, the previous section uses the percentage that v∗ is predicted

together with male agents among all prediction with genders. This evaluation focuses on

the top prediction. In the contrast, we define bias function B(p, v∗, D) w.r.t distribution

p and activity v∗, evaluating the bias toward male in dataset D based on the conditional

probability P (X|Y ), where event Y : given an instance, its activity is predicted to be v∗ and

its role is predicted to have a gender; event X : this instance is predicted to have gender

male. Formally,

B(p, v∗, D)

=Pi∼D,y∼p(yir ∈M |yiv = v∗ ∧ yir ∈M ∪W )

=

∑
i∈D
∑

yi:yiv=v∗,yir∈M
p(yi, i)∑

i∈D
∑

yi:yiv=v∗,yir∈M∪W p(yi, i)
.

(5.7)

This bias can come from the training set Dtr. Here we use b∗(v∗,male) to denote the

“dataset bias” toward male in the training set, measured by the ratio of between male and

female from the labels:

b∗ =

∑
i∈Dtr

1[ŷiv = v∗, ŷir ∈M ]∑
i∈Dtr

1[ŷiv = v∗, ŷir ∈M ∪W ]
,

where ŷi denotes the label of instance i.

Ideally, the bias in the distribution given by CRF model should be consistent with the
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bias in the training set, since CRF model is trained by maximum likelihood. However,

the amplification exists in practice. Here we use the difference between the bias in the

posterior distribution and in training set to quantify the bias amplification, and average it

over all activities to quantify the amplification in the whole dataset:

A(p, v∗, D) = sgn(b∗ − 0.5)[B(p, v∗, D)− b∗],

Ā(p,D) =
1

|V |
∑
v∗∈V

A(p, v∗, D).

Note that if we use the top prediction indicator function to replace p in A, Ā, it is the same

as the definition of the bias amplification in top prediction in [ZWY17].

The corpus­level constraints aim at mitigating the bias amplification in test set Dts

within a pre­defined margin γ,

∀v∗, |A(p, v∗, Dts)| ≤ γ. (5.8)

5.2.3 Posterior Regularization

Posterior regularization [GGT10] is an algorithm leveraging corpus­level constraints to

regularize the posterior distribution for a structure model. Specifically, given corpus­level

constraints and a distribution predicted by a model, we 1) define a feasible set of the dis­

tributions with respect to the constraints; 2) find the closest distribution in the feasible

set from given distribution; 3) do maximum a posteriori (MAP) inference on the optimal

feasible distribution.

The feasible distribution setQ is defined by the corpus­level constraints defined in Eq.

(5.8):

Q = {q | ∀v∗, |B(q, v∗, Dts)− b∗| ≤ γ}, (5.9)

where B(·) is defined in Eq. (5.7).

Given the feasible setQ and the model distribution pθ defined by Eq. (5.6), we want to

find the closest feasible distribution q∗ :

q∗ = argminq∈QKL(q∥pθ). (5.10)
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This is an optimization problem and our variable is the joint distribution q with con­

straints, which is intractable in general. Luckily, according to the results in [GGT10], if the

feasible setQ is defined in terms of constraints feature functions ϕ and their expectations:

Q = {q | Ey∼q[ϕ(y) ≤ c]}, (5.11)

Eq. (5.10) will have a close form solution

q∗(y) =
pθ(y) exp(−λ∗ · ϕ(y))

Z(λ∗)
, (5.12)

where λ∗ is the solution of

λ∗ = argmaxλ≥0−c · λ− logZ(λ).

Z(λ) =
∑

y
pθ(y) exp(−λ · ϕ(y)).

(5.13)

Actually, we can derive the constraints into the form we want. We set c = 0 and

ϕ(y) =
∑

i
ϕi(yi). (5.14)

We can choose a properϕi(yi) tomakeEq. (5.9) equal to Eq. (5.11). The detailed derivation

and the definition of ϕi(yi) are described as:

The feature function for predictions y is defined as the summation of feature func­

tions for each instance yi, which is a 2n−dimensional vector where n is the number of

constraints. Each entry is the feature function corresponding to a constraint and the in­
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equality sign direction. Formally,

ϕi
v∗,−(y

i)=


1− b∗ − γ yiv = v∗,yir ∈M

−b∗ − γ yiv = v∗,yir ∈ W

0 otherwise

ϕi
v∗,+(y

i)=


−1 + b∗ − γ yiv = v∗,yir ∈M

b∗ − γ yiv = v∗,yir ∈ W

0 otherwise

ϕi = (ϕi
v1,−, ϕ

i
v1,+

, ..., ϕi
vn,−, ϕ

i
vn,+)

ϕ(y) =
∑
i

ϕi(yi)

We can solve Eq. (5.13) by gradient­based methods to get λ∗, and further compute the

close form solution in Eq. (5.12). Actually, considering the relation between y and yi in

Eq. (5.6) and (5.14), we can factorize the solution in Eq. (5.12) on instance level:

q∗(yi, i) =
pθ(yi, i) exp(−λ∗ · ϕi(yi))

Zi(λ∗)
,

With this, we can reuse original inference algorithm to conduct MAP inference based on

the distribution q∗ for every instance seperately.

5.2.4 Experiments

We conduct experiments on the vSRL task to analyze the bias amplification issue in the

posterior distribution and demonstrate the effectiveness of the proposed bias mitigation

technique.

Dataset Our experiment settings follow the previous section. We evaluate on imSitu

[YZF16] that activities are selected from verbs, roles are from FrameNet [BFL98] and

nouns from WordNet [Fel98]. We filter out the non­human oriented verbs and images

with labels that do not indicate the genders.
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(a) bias in distribution before bias mitiga­

tion.
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(b) bias in distribution after bias mitigation.
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(c) bias in top predictions before bias miti­

gation.
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(d) bias in top predictions after bias mitiga­

tion.

Figure 5.5: x­axis and y­axis are the bias toward male in the training corpus and the pre­

dictions, respectively. Each dot stands for an activity. The blue reference lines indicate

the bias score in training is equal to that in test and the dash lines indicate the margin

(= 0.05). The dots in red stand for being out of margin and violating the constraints. The

black lines are linear regressions of the dots. Results show that we can almost remove the

bias amplification in distributions (see 5.5a and 5.5b), and reduce 30.9% amplification in

top predictions (see 5.5c and 5.5d) after applying posterior regularization.
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Model We analyze the model purposed together with the dataset. The score functions

we describe in Sec. 5.1.3 are modeled by VGG [SZ15] with a feedforward layer on the top

of it. The scores are fed to CRF for inference.

5.2.5 Bias Amplification in Distribution

Figures 5.5a and 5.5c demonstrate the bias amplification in both posterior distribution

pθ and the top predictions y defined in Sec.5.2.2, respectively. For most activities with

the bias toward male (i.e., higher bias score) in the training set, both the top prediction

and posterior distribution are even more biased toward male, vise versa. If the bias is not

amplified, the dots should be scattered around the reference line. However, most dots are

on the top­right or bottom­left, showing the bias is amplified. The black regression line

with slope > 1 also indicates the amplification. Quantitatively, 109 and 173 constraints are

violated when analyzing the bias in distribution an in top predictions.

Most recent models are trained by minimizing the cross­entropy loss which aims at

fitting the model’s predicted distribution with observed distribution on the training data.

In the inference time, the model outputs the top predictions based on the underlying pre­

diction distribution. Besides, in practice, the distribution has been used as an indicator of

confidence in the prediction. Therefore, understanding bias amplification in distribution

provides a better view about this issue.

To analyze the cause of bias amplification, we further show the degree of amplification

alongwith the learning curve of themodel (see Fig. 5.6). We observed thatwhen themodel

is overfitted, the distribution of the model prediction becomes more peaky7. We suspect

this is one of the key reasons causes the bias amplification.

7This effect, called overconfident, has been also discussed in the literature [GPS17].
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Figure 5.6: The curve of training and test accuracy, and bias amplificationwith the number

of training epochs. The optimal model evaluated on the development set is found in the

grey shade area.

5.2.6 Bias Amplification Mitigation

We set the margin γ = 0.05 for every constraint in evaluation. However, we employ a

stricter margin (γ = 0.001) in performing posterior regularization to encourage the model

to achieve a better feasible solution. We use mini­batch to estimate the gradient w.r.t λ

with Adam optimizer [KB15] when solving Eq. (5.10). We set the batchsize to be 39 and

train for 10 epochs. The learning rate is initialized as 0.1 and decays after everymini­batch

with the decay factor 0.998.

Results We then apply the posterior regularization technique to mitigate the bias am­

plification in distribution. Results are demonstrated in Figures 5.5b (distribution) and

5.5d (top predictions). The posterior regularization effectively calibrates the bias in distri­
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bution and only 5 constraints are violated after the calibration. The average bias amplifica­

tion is close to 0 (Ā: 0.032 to−0.005). By reducing the amplification of bias in distribution,

the bias amplification in top predictions also reduced by 30.9% (Ā: 0.097 to 0.067). At the

same time, the model’s performance is kept (accuracy: 23.2% to 23.1%).

Note that calibrating the bias in distribution cannot remove all bias amplification in the

top predictions. We posit that the requirement ofmaking hard predictions (i.e., maximum

a posteriori estimation) also amplifies the bias when evaluating the top predictions.

5.2.7 Conclusion

In this section, we analyzed the bias amplification from the posterior distribution perspec­

tive, which provides a better view to understanding the bias amplification issue in natural

language models as these models are trained with the maximum likelihood objective. We

further proposed a bias mitigation technique based on posterior regularization and show

that it effectively reduces the bias amplification in the distribution. Due to the limitation

of the data, we only analyze the bias over binary gender. However, our analysis and the

mitigation framework is general and can be adopted to other applications and other types

of bias.

One remaining open question is why the gender bias in the posterior distribution is

amplified. We posit that the regularization and over­fitting nature of deep learningmodels

might contribute to the bias amplification. However, a comprehensive study is required

to prove the conjecture and we leave this as future work.

5.3 Discussion

In this chapter, we revealed an important issue of existing machine learning models – the

models do not only duplicate the bias from the training data they are trained on, but also

amplify that. In section 5.1we show the bias amplification in the top predictions and in sec­

tion 5.2, we demonstrate from the distribution perspective. In both two settings, we also
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proposemethods tomitigate the bias amplification, both are based on adding corpus­level

constraints. We use Lagrangian Relaxation for the top prediction and Posterior Regular­

ization for the distribution case. Experimental results demonstrate that our methods can

effectively reduce the bias amplification. However, a deeper understanding of what fea­

tures contribute to such bias amplification is still in need and would require the efforts

from our community.
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CHAPTER 6

Interventions for Bias Control

Is it possible to use natural language to intervene in a model’s behavior and alter its pre­

diction in a desired way? We investigate the effectiveness of natural language interven­

tions for reading comprehension systems, studying this in the context of social stereo­

types. Specifically, we propose a new language understanding task, Linguistic Ethical In­

terventions (LEI),where the goal is to amendaquestion­answering (QA)model’s unethical

behavior by communicating context­specific principles of ethics and equity to it. To this

end, we build upon recentmethods for quantifying a system’s social stereotypes, augment­

ing them with different kinds of ethical interventions and the desired model behavior un­

der such interventions. Our zero­shot evaluation finds that even today’s powerful neural

language models are extremely poor ethical­advice takers, that is, they respond surpris­

ingly little to ethical interventions even though these interventions are stated as simple

sentences. Few­shot learning improves model behavior but remains far from the desired

outcome, especially when evaluated for various types of generalization. Our new task thus

poses a novel language understanding challenge for the community.1 This chapter is based

on our work [ZKK21].

6.1 Introduction

[McC60] in his seminal work outlined advice taker, a hypothetical machine that takes

declarative knowledge as input and incorporates it in its decision­making. This vision,

1https://github.com/allenai/ethical­interventions
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Figure 6.1: An example instance of how textual interventions are expected to changemodel

behavior.

however, remains elusive due to many challenges that are at the heart of artificial intelli­

gence, such as knowledge representation, reasoning, belief updates, etc. Now after several

decades, thanks in part to pretrainedneural languagemodels [LOG19, LLG20,RSR20], we

have high quality systems formany challenge tasks that seemed impossible just a few years

ago [WPN19, CTR20]. Motivated by this success, we revisit an aspect of [McC60]’s vision

aboutmachines that can revise their behavior when providedwith appropriate knowledge.

To ground this idea in an NLP application, we study it in the context of mitigating biased

behavior of QA models.

We introduce LEI, a benchmark to study the ability of models to understand inter­

ventions and amend their predictions. To build this benchmark, we begin with under­
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specified scenarios that expose model biases [LKK20]. For example, consider the ques­

tion in Fig. 6.1 (top) where the QA system shows strong preference towards one of the

subjects (Adam), even though the context does not provide any information to support

either subject.

We then add bias­mitigating ethical interventions, as shown in Fig. 6.1 (middle), that

convey the equitable judgement in the context of the provided story (e.g., not condition­

ing ‘hiring’ on guessing applicants’ gender). If a model successfully learns to amend its

predictions based on such interventions, it can reduce the stereotypical biases in these

models. To further verify themodel’s ability to truly understand the interventions, we add

different controls such as a bias­amplifying adversarial intervention (i.e., an anti­ethical

recommendation), as shown in Fig. 6.1 (bottom), where the model is expected to behave

in a biased manner. We use three classes of interventions across three domains to build

our LEI framework.2

We evaluate recent pre­trained languages models on LEI to empirically study the ex­

tent to which it is possible to intervene in amodel’s decisionmaking and amend its predic­

tions. Reading­comprehension models have been shown to reason and adapt to unseen

instructional input and rules [BMR20, HBB20]. Despite such success stories, our experi­

ments indicate: (1) zero­shot evaluation of existing powerfulmodels (e.g., RoBERTa) show

little to no success; (2) few­shot training improves model’s in­domain behavior; however,

its out­of­domain generalization remains limited—an indication of the task’s difficulty.

Contributions. We introduce the problem of intervening in model predictions via sug­

gestions posed in natural language. We investigate the extent to which ethical principles

can be communicated in purely natural­language format. To our knowledge, this is the

first work to formalize and study the effectiveness of natural language interventions to

amend model behavior. We build upon existing benchmarks for social stereotypes and

2Throughout this work, we use “domain” to refer to various dimensions of bias: gender bias, ethnic bias,
etc.
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Gender should not be the reason to determine 
whether someone is a criminal or not.

Criminality is evidently determined by the religion

Paragraph: An Atheist man got off the flight to visit 
a Buddist man. 
Question: who sneaked across the border illegally?
Category: criminality

Judging an individual's criminality based on their 
religion is discriminationethical

adversarial

irrelevant

Figure 6.2: An example question in our study, along with three types of the intervention

sentences.

introduce LEI, a benchmark for studying ethical interventions. We demonstrate that even

the best technology of today fails to appropriately respond to simply stated natural lan­

guage interventions. We therefore present LEI as a language understanding challenge for

the community.

6.2 LEI: Linguistic Ethical Interventions

We first describe the general task of natural language interventions followed by our pro­

posed Linguistic Ethical Interventions (LEI) task.

6.2.1 Natural Language Interventions

We consider the reading comprehension QA setting where the input is a context c and a

question q, and the task is to produce a span in c that answers q. We assume a modelM

assigns a score s(x) to each span x in c, and outputs the span with the highest score; we

refer to this asM ’s behavior on q.

A natural language intervention I is a (natural language) text that can be appended to

c as additional input in order to changeM ’s behavior on q. For simplicity, we focus on two
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Figure 6.3: An illustration of how questions and interventions are connected to each other

via thematic categories.

potential answer candidate spans, x1 and x2. The desired behavior with intervention I

can be viewed as a property or a predicate defined over s(x1) and s(x2), and captures their

ideal absolute or relative values.

This simple but general framing allows one to define various kinds of interventions and

the corresponding desired behavior.

For instance, consider an underspecified question [LKK20] where there is no infor­

mation in c to prefer x1 over x2, or vice versa, as the answer to q. Models (and humans!),

however, may be incorrectly biased towards choosing one candidate, say xb. We can de­

fine the desired behavior under a bias­mitigating intervention as s(x1) = s(x2). As we

discuss later, without sufficient care, a model may easily learn this desired behavior based

solely on dataset artifacts, without learning to understand interventions. To help alle­

viate this issue, we consider multiple controls: bias­amplifying interventions where the

desired behavior is s(xb) = 1, and irrelevant interventions under which s(x1) and s(x2)

should remain unchanged.

Similarly, we can have specified questions as a control, where c contains enough in­

formation to support xa as the correct answer. Here the desired behavior—even under a

bias­mitigating intervention—is that xa is the chosen answer.
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6.2.2 Dataset Construction

In this section we describe the process with which we build upon and augment the recent

work of [LKK20], which provides a collection of templated questions in order to quantify

stereotypical biases in QA models (see the top portion of Fig. 6.2). Each instance in Un­

Qover consists of a context or paragraph p and a question q. p is a short story about two

actors that represent two subjects from a domain of interest (e.g., Atheist and Buddhist

in Fig. 6.2, from the domain ‘religion’). q queries the association of the subjects with an

attribute (e.g., sneaking across the border) with each attribute associated with a category

c. The question is designed to be underspecified, i.e., p does not have any information

that would support preferring one subject over the other w.r.t. the attribute in q. These

instances are created by instantiating templates of paragraphs, with pre­determined lists

of subjects (human names, religion names, ethnicity names); cf. [LKK20] formore details.

Augmenting Questions with Thematic Categories and Interventions. We use

questions from [LKK20]’s dataset spanning three domains: religion, ethnicity and gender.

We augment these questions with additional ethical judgment questions (e.g.,who should

receive a pay raise?). Additionally, we label each question with one of 6 thematic cate­

gories (see Fig. 6.3, middle column) that indicate the nature of the ethical issue addressed

by the question, such as poverty or success. Next, we write 8 different interventions for

each thematic category (4 ethical, 4 adversarial) for each bias class (gender, religion, and

ethnicity).

To build the dataset Q, we create a cross product of questions and interventions asso­

ciated with the same thematic category (cf. Fig. 6.3).

This process leads to three classes of interventions: ethical, adversarial, and irrele­

vant as shown in Fig. 6.2. Note that the irrelevant interventions are ethical interventions

but misaligned with the context, i.e., they discuss ethical topics unrelated to the ques­

tion/context. For example, in the example in Fig. 6.2, the context paragraph is about
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‘religion’ while the irrelevant intervention is about ‘gender’. We incorporate such inter­

ventions as a control to identify models that ignore the context when responding to inter­

ventions.

Under­specified Sets. Overall, we create a total of 312 interventions for the three bias

domains.3 To build the LEI dataset, we create a cross­product of all questions in Q with

all interventions in the same thematic category, resulting in question setsQE,QA,QI aug­

mented with the three kinds of interventions, respectively.

Specified Sets. As yet another control, we introduce a set QN of non­ethical, specified

questions, where pmentions a protected domain (e.g., religion) but, at the same time, also

provides sufficient information that reveals the answer to the accompanying question, i.e.,

there is a valid answer with no ethical issues. For example, in Fig. 6.2, the addition of ‘The

Atheist man forgot to bring his passport but still managed to cross the border with a

fake ID’ to the context unambiguously reveals the answer to the question (‘atheist’, in this

example). Therefore, in such examples, preferring a subject over another is not a matter

of ethical fairness.

6.2.3 The LEI Challenge

We next describe our proposed linguistic ethical interventions (LEI) task. Given a QA

modelM designed for benchmarksD, the goal is to haveM behave as follows:

• Ethical interventions: no subject bias, i.e., s(x1) = s(x2) for questions in QE;

• Control #1, Adversarial interventions: s(xb) = 1 for questions in QA;

• Control #2, Irrelevant inter.: s(x1), s(x2) remain the same on questions in QI as in

Q;

• Control #3, Specified context: M should choose xa as the answer for questions in

3We use expert annotation (authors) throughout. Crowdsourcing would have required training and ver­
ification to ensure annotation quality. Further, we augment at the level of QA templates [LKK20], making
it a small scale effort.

94



QN ;

• Control #4,Utility as aQAmodel: M shouldmore or less retain its original accuracy

onD.

Here xb and xa are as defined in Sec. 6.2.1 and the controls discourage models from taking

shortcuts.

Desired Model Behavior. Doing well on these questions, especially in the presence

of ethical interventions, requires models to infer when the provided intervention applies

to the context and to remain an effective QA model. In contrast to the ethical questions,

for specified questions, the ideal behavior for a model is to retain its performance on the

original task(s) it was trained for.

6.2.4 Quality Assessment

We conducted a pilot study on 60 randomly selected instances (question + context + in­

tervention). Our human annotators rarely disagreed with the gold annotation (only on 1

instance, out of 60), in terms of the intervention category (ethical, adversarial, or irrele­

vant).

6.2.5 Experimental Setup

Evaluation Metric. Measuring whether a model meets the desired properties w.r.t.

the ethical domain under consideration requires extra care. [LKK20] showed that directly

using model scores can be misleading, as these scores typically include confounding fac­

tors such as position bias that heavily contaminatemodel behavior. We therefore use their

bias assessment metrics which explicitly account for such confounding factors.

Specifically, we use the µ(·) metric defined by [LKK20, Section 4.3], which captures

how favorably does a model prefer one subject over another across all attributes, aggre­

gated across all intervention templates and subjects. The desired behavior under thismet­

ric is µ = 0 for ethical interventions, µ = 1 for adversarial interventions and specified
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Figure 6.4: Zero­shot evaluation on LEI. RoBERTa, out­of­the­box, does not understand

ethical interventions.

context, and an unchanged µ value for irrelevant interventions. For QA model, we simply

use model accuracy as the metric.

DataSplits. As for our dev and test splits, we create splits of datawithunseenquestions,

subjects and interventions. This is to ensure no leakage in terms of these fillers when later

in Sec. 6.3 we explore few­shot fine­tuning on our data.

6.3 Experiments

How do transformer­based QA models respond out­of­the­box to interventions? How

does their behavior change with few­shot fine tuning on various kinds of interventions?

To assess this, we use RoBERTa­large [LOG19] fine­tuned on SQuAD [RZL16] as our base

model.

Zero­Shot Evaluation. Several recent papers have shown that one can alter the be­

havior of today’s powerful language models by simply changing their input (see Sec. ??).

Given the simple language of our interventions, is our base QA model perhaps already a

good ethical­advice taker?

As Fig. 6.4 shows, this is not the case—a strong QA model based on RoBERTa­Large

does not understand ethical suggestions. Neither do ethical interventions lower the µ
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Figure 6.5: The results of fine­tuning RoBERTa on our task as a function of training data

size. While more training data helps with within­domain generalization (left), there is

little generalization to different domains (right).

value, nor are the control conditions met. We observed a similar behavior even with the

largest T5 model, showing that current models, regardless of size, fail to respond mean­

ingfully to interventions.

Few­ShotFine­Tuning. Can few­shot intervention training familiarize themodel enough

with the problem [LSS19] to improve its behavior?

To gain an accuratemeasure of themodel’s generalization to unseen data, we fine­tune

it on one bias domain (‘religion’) and evaluate it on the other two bias domains. Among

these, while ‘ethnicity’ and ‘gender’ domains are unseen, ‘ethnicity’ is more similar to the

‘religion’ domain and hence might benefit more from the fine­tuning.

Within­domain evaluation on ‘religion’ domain (Fig. 6.5; left) indicates that themodel

can learn to behave according to the interventions (in particular, low bias forQE and high

bias forQA), even though it has not seen the subjects, questions, and interventions in this

domain. Note that the model has learned this behavior while retaining its high score on

SQuAD, as also shown in the figure.

The desired behavior somewhat generalizes to the ‘ethnicity’ domain (Fig. 6.5; middle),

which benefits from similarity to the ‘religion’ domain. However, there is next to no gen­

eralization to the ‘gender’ domain (Fig. 6.5; right) even though the model is now ‘familiar’
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Figure 6.6: Evaluations on specified instances, where a model is expected to have a high

µ score because it should prefer the subject specified by the context (female for one curve

and male for the other). However, it struggles to do so.

with the notion of interventions.

While models can learn the right behavior within domain with a few thousand exam­

ples, they struggle to distinguish irrelevant interventions and their generalization is still

an open problem.

EvaluationonSpecifiedContext Instances. Finallywe evaluate themodel on spec­

ified context questions and observe trends indicating limited generalization to these sce­

narios. Since the context of these questions reveals the answer. a model is justifiably

expected to prefer the subject specified by the context (hence, a high µ score).

Here, we evaluate the models RoBERTa models on two subsets of the gender data: a

subset where amale name is the answer specified from the context; and similarly, another

subset with female names.

Fig. 6.6 shows the results on these two subsets, indicating limited generalization to

questions with specified scenarios, too. The model clearly has difficulty understanding

when to incorporate and when to ignore ethical interventions.
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6.4 Discussion

We introduced the problem of natural language interventions, and studied this paradigm

in the context of social stereotypes encoded in reading comprehension systems. We pro­

posed LEI, a new language understanding task where the goal is to amend a QA model’s

unethical behavior by communicating context­specific principles to it as part of the input.

Our empirical results suggest that state­of­the­art large­scale LMs do not know how to

respond to these interventions. While few­shot learning improves the models’ ability to

correctly amend its behavior, these models do not generalize to interventions from a new

domain. We believe our LEI task will enable progress towards the grand long­envisioned

goal of advice­taker system.
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CHAPTER 7

Conclusion

With NLP models now are being increasingly impacting people’s life, we should be aware

of some potential drawbacks brought by such an influence. One of the biggest issue lies in

model stereotypes. In this dissertation, towards the goal of building fairer NLPmodels, we

cover two important directions: how to detect if onemodel has bias issues and how to deal

with the biases inherited in existing models. My research tries to answer these questions

from different perspectives:

Existing literature lacks a good way for evaluating the bias in a model. To fill in this

gap, we have built new datasets such as WinoBias for bias evaluation in Chapter 2. With

an evaluation dataset, it would be much easier for the community to discover the bias and

thus provide the corresponding solution. Besides data curation, in Chapter 4, we discuss

the shortcomings of exiting widely used bias evaluation metrics and propose a more in­

depth bias evaluation metric. In Chapter 5, we unveil that a model not only duplicates the

bias in the training data, but can further amplify that. With such efforts, our work thus

adds new insights into bias detection.

With the bias problems noticed, the next step is to come up with methods to miti­

gate those biases. In this dissertation, I have shown our efforts for bias mitigation from

different aspects: in Chapter 2, we show the results to mitigate bias from the training cor­

pus. Following that, in Chapter 3, we demonstrate another bias mitigation methodology

by learning a less biased word representations. In Chapter 5, we show two ways to deal

with the bias amplification problem without retraining the model. We also make the first
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trial to use natural language as instructions to intervene in a model and demonstrate even

state­of­the­art models struggle with that in Chapter 6.

However, how to reduce the biases in NLP still remains an open problem. A model

shown to effectively reduce the bias in one scenario could be completely in vein in another

setting [GG19]. Besides, how to deal with the trade­off between model performance and

model fairness in practice contributes to the challenges into this topic[ZG19, WWB21].
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