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Continuum robots achieve high dexterity in constrained spaces by bending along their

entire length. Their unique modes of actuation, small size, and inherent compliance make them

well-suited for “keyhole” applications in delicate environments, such as minimally invasive

surgery, where the robot must perform a dexterous task through a small opening without causing

harm to its surroundings. The full potential of continuum robots has yet to be realized, however,

as the advantages offered by the mechanics of these robots pose challenges for their modeling,

estimation, and control. In particular, real world phenomena such as friction, material variability,

and fabrication tolerances play a large role in determining the ultimate shape of a continuum
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robot, but are notoriously difficult to model analytically. Further, their small form factor and

flexible nature make it difficult to integrate sensors that can directly measure their states. These

problems are compounded when the robot comes into contact with unknown obstacles, which

change the robot shape in ways that cannot be predicted a priori.

This work looks at three different algorithmic approaches to address these challenges.

First, we consider how a low-parameter, numerically stable representation of the differential

kinematics for a growing robot can be used together with a real time estimation technique to

steer the robot through highly constrained environments. Second, we show how traditional

Gaussian Process models can be adapted to produce high accuracy input-output maps for a wide

range of continuum robot designs using data that is received sequentially over time. Finally, we

develop a simplified dynamics model that facilitates the design of an observer for continuum

robot control in the extreme case when the robot does not have any integrated sensing. All of

our methods are validated through hardware experiments and their associated trade-offs are

discussed. Overall, this work demonstrates how we can better design models and algorithms to

extend the capabilities of continuum robots and further unlock their potential.
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Introduction
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1.1 Motivation

Continuum robots are a class of robot that can change shape continuously along their

lengths, achieving motions that often draw comparisons to animal physiology, such as elephant

trunks, octopus tentacles or snake bodies [1] [2]. This unique feature makes them well suited

to “keyhole” applications, where the robot would need to perform a dexterous task through a

small opening or in a constrained environment. Many such applications have been proposed

including search and rescue [3][4], maintenence of nuclear power plants [5], and machine

inspection [6], but by far the most popular has been as tools used in minimally invasive surgical

procedures [7][8] [9]. In some ways this is not surprising, given that “continuum” instruments

like endoscopes, catheters, and guidewires have been used in medicine long before robotics [10].

The fact that rigid robot designs have already been shown to be successful in revolutionizing

laparoscopic surgery outside of the laboratory [11] [12] further hints at the exciting possibilities

of applying continuum robots in this area.

This great potential has made them the object of intense research over the past two

decades, resulting in a vast literature proposing new continuum robot designs [13][8][14][3][15],

mathematical modeling approaches [16] [17] [18] and control strategies [19] [20]. While

progress has been significant, challenges remain in each of these areas that must be solved

before continuum robots can have the same transformative effects on the real world that their

rigid counterparts have had. More specifically, these challenges arise due to the small form factor

and flexible nature of continuum robots. Natural flexibility makes the shape of the robot much

more sensitive to factors like external loading, variations in material parameters, fabrication

tolerances and more. While these issues could be mitigated by sensor feedback, physically

incorporating sensors into a small, compliant continuum robot body is often a challenge on

its own. Consequently, algorithms developed for predicting and controlling continuum robot

motion must be designed to work with incomplete information and to be somewhat robust to the

aforementioned uncertainties that effect the robot shape. The estimation and control challenges
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are exacerbated when the robot is constrained by an unknown environment and remains an

unsolved problem. While there is no single, perfect algorithm for this task, this dissertation pro-

poses a number of possible approaches to the problem of predicting and controlling continuum

robots subjected to unknown forces from their environments, each of which has tradeoffs with

respect to the others in aspects such as the amount of sensor information the algorithm requires,

accuracy, and generality across robot designs.

1.2 Prior Work

1.3 Design, Actuation, and Sensing

There are a large number of continuum robot designs that have emerged in the past

two decades [10]. While design encompasses all aspects of a continuum robot’s construction

including geometry and material composition, it is helpful to distinguish groups of related

continuum robot designs by their primary means of actuation. This actuation may be either

intrinsic–embedded into the body of the robot itself–or extrinsic–mechanically transmitted to

the robot body from an external source. The robot’s actuating principle determines how it

will vary its curvature in space and is therefore vital to its functionality. To date, researchers

have proposed continuum robot designs that are actuated by tendons [21], flexible auxiliary

backbones [22], concentric tubes [14], magnets [23], or various soft structures [24]. No one

mode of actuation has emerged as superior to the others for every application, as each has

significant advantages and disadvantages that must be considered on a case-by-case basis. From

the perspective of robot control, it is important to note that none of the proposed designs are

ideal. The ideal actuator would allow the user to control the curvature of the robot everywhere

along its backbone independently, thereby making it simple to command the robot to form

arbitrary shapes. Instead, however, the current means of actuation only allow for changing the

robot curvature over large regions of the robot backbone, sometimes in coupled and highly

nonlinear ways.
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Limited control authority is not the only physical limitation imposed on algorithm design

for these robots, however. Due to their small form factor and natural compliance, it is often

difficult to integrate sensors into the backbone of the robot to measure important aspects of

the robot state. The ideal sensor would provide information, such as position and applied

external loading, all along its length, i.e. in a distributed fashion. Arguably, something close

to this can actually be achieved with Fiber Bragg Grating sensors [25], which measure strain

in multiple dimensions all along the robot backbone. While use of these sensors has seen

some limited exploration in the literature, they remain prohibitively expensive for widespread

adoption and can be challenging to successfully integrate with some of the softer continuum

robot designs. More recently, researchers have explored another means of distributed sensing for

continuum robots using external cameras [26, 27, 28, 29]. In order for these approaches to be

used in a control algorithm, however, there must be improved robustness to imperfect imaging

conditions, increased speed for real-time performance, and quantified observability as function

of the relative camera pose. Therefore, only point-wise measurements of the robot position and

orientation, provided by a magnetic or electromagnetic tracking system, are typically available

[30].

These two problems of under actuation and limited sensing add difficultly to the task of

developing useful algorithms for continuum robots and necessarily inform the steps of modeling,

estimation, and control design.

1.3.1 Modeling

Whether data-driven or analytically derived, some computational representation of

continuum robot motion is necessary for control. Typically, it is helpful to distinguish between

joint, configuration, and task spaces when discussing different robotics modeling approaches

[16]. Unlike for rigid robots, there is a significant distinction between the joint and configuration

spaces for a continuum robot. While the joint space is the set of all possible joint inputs to the

robot, the configuration space is the set of all shapes that the robot centerline can take. This

4



set of all configurations is a functional space and does not map uniquely onto joint space when

external loads are applied to the robot body. The task space is defined by the operation that a

continuum robot is supposed to perform, but is usually considered to be the tip position of the

robot, its orientation, or both.

The simplest class of models for continuum robots that have been developed to date

are constant curvature kinematic models [16]. These models map from configuration to task

space assuming that the shape of the robot is well-described by a circular arc. Their advantages

include that they can be straightforwardly derived by geometric reasoning, the approximation is

reasonably accurate for many kinds of robots when not subjected to external loading, and that

their computational cost is negligible. The primary downsides of these models are that they do

not perform as well when the continuum robot is subjected to large external loads and that they

do not address the joint-configuration space mapping at all.

The next class of models is based on a quasi-static assumption. There are two main

approaches that make this assumption: (i) the constant curvature kineto-static models, which

were first popularized in [31], and (ii) the Cosserat-rod models, which were first employed in

[32]. Both of these approaches provide mappings from joint space to configuration space and

configuration space to task space. The primary differences between the two can be thought of as

a trade-off between accuracy and computational cost. While kineto-static approaches employ a

constant curvature assumption and retain minimal computational requirements, Cosserat rod

models of continuum robots define the shape of the robot as an oriented curve in space that

must be determined via the solution of a system of ordinary differential equations (ODEs). This

solution is expensive and makes using this model inside a real-time control loop challenging.

The accuracy of these models is unmatched by any other analytical approach in the literature,

however, and they provide an elegant framework for modeling how arbitrary, known loads

applied to the robot body will affect its shape [18].

A still more complicated class of continuum robot models, that has only recently
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begun to receive attention in the literature, attempts to capture dynamic behavior of the robot.

Again, there are two subcategories of models within this class, one that is based on a minimal

parameterization of the robot shape [33][34] and the other based on Cosserat rods [17]. The

first category of methods tends to pose the same accuracy-computation tradeoff as previously

described and also tends to ignore any actuator dynamics, which may be non-trivial for cable-

driven and pneumatically actuated robots. The Cosserat rod-based methods on the other hand

readily accommodate very complicated actuator dynamics, including actuating cables with

non-uniform tension along their length and pneumatic actuators driven with compressible

fluids. Whereas in the quasi-static case these models required solving a system of ODEs, in the

dynamic case, the motion of the continuum robot is described by the solution to a system of

partial differential equations (PDEs) [17]. The computational and control-theoretic challenges

associated with using these models are significant and continue to be actively investigated [35].

Aside from analytical models, many researchers have looked at how machine learning

methods can be used to capture any of the mappings between joint space, configuration space,

and task space assuming both quasi-static [36] [37] and dynamic [38] robot motion. Because

these approaches develop models directly from data, they tend to offer high accuracy without

significant computational cost. This makes them attractive for applications where high precision

is important. The disadvantages to these approaches include the large amount of training data

required, the lack of insight they afford a user, and the difficulties with establishing guarantees

when using these models inside a control loop.

1.3.2 Estimation and Control

Most of the early literature regarding control for continuum robots is concerned with

controlling the tip of the robot in free space [16]. With a reasonably accurate model of the

robot kinematics, this amounts to regulating the joint positions of the robot such that the error

between the current tip position and a desired value decreases via the solution of an inverse

kinematics problem and can be done in open loop [39]. It is even possible to learn an inverse
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kinematic mapping directly for control depending on the robot and the representation of the

tip pose used [40]. Additional information from sensors can be used for closed-loop control

of the tip pose, or to unlock functionality such as dynamic control of the robot [41] or control

over aspects of its shape [42] in the quasi-static case. When the robot comes in to contact with

an obstacle, however, an additional estimation step must be included to determine how this

interaction affects the robot shape and ultimately its tip position. While there are many features

that distinguish these proposed approaches from one another, largely, they can be classified as

being either analytical or data-driven methods.

The analytical methods to date assume that any disturbance is being applied only at the

tip of the robot. This simplifying assumption, together with tip position measurements, makes it

straightforward to estimate a wrench applied at the tip of the robot using either a full Cosserat

rod model of the robot kinematics or a local model of the robot statics. This estimate can then be

used in a stiffness or hybrid tip position-force controller [43] [44]. If tip position measurements

are unavailable however, the problem becomes considerably more difficult, and has received

less attention in the literature. Nonetheless, some researchers have shown that it is possible to

do hybrid tip position-force control using joint feedback alone [45].

An alternative group of methods for solving this problem are more data driven in nature.

They construct a model of the robot’s Jacobian that is valid only in a small region of the robot’s

task space. This model is then updated online via optimization [19], [46], [47] or using an

Extended Kalman Filter [48] using measurements of the robot’s end-effector position. These

approaches are not limited by an assumption that the disturbance is applied to the tip of the

robot but suffer a drawback in that they require measurements of the robot tip position.

1.4 Contributions

The main contributions of this dissertation can be summarized as follows:

1. A method for closed-loop position control of growing robots via online Jacobian
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corrections: This method is based on leveraging real-time position and orientation

measurements of the robot tip in order to update a local model of the velocity kinematics

of the robot in an online manner via corrective rotations and magnitude adjustments. This

control strategy is the first method for autonomous position control of growing robots that

does not require a map of its environment.

2. A Gaussian Process-based online learning algorithm, which we call online gener-

alized product of experts (OGPoE): This algorithm offers a combination of benefits

unavailable from other online learning algorithms, including the simultaneous online

optimization of local model parameters, a clear and interpretable data partitioning strategy,

and principled fusion of multiple model predictions without the need for joint training.

3. A constant curvature dynamic model for cable-driven continuum robots: This model

is the simplest dynamic model for these robots to date. We use the model to formulate an

observer with provable guarantees for state estimation and design a controller to reject

low-frequency disturbances affecting the robot.

4. A geometric segmentation method for extracting a continuum robot shape from

an image: This segmentation method uses a model of the robot’s kinematics. Utilizing

this prior knowledge eliminates the need for hand-labeled training data and effectively

segments the robot despite challenging background conditions and partial occlusion.

1.5 Dissertation Overview

This dissertation is organized as follows. This introductory chapter has provided the

general motivation for the work, a survey of relevant literature on the modeling, estimation, and

control of continuum robots, and a summary of the contributions. Chapter 2 describes a new

approach for controlling continuum robots based on leveraging real-time position and orientation

measurements. The control strategy is demonstrated in both the constrained and unconstrained
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cases using a soft growing robot. Chapter 3 describes online generalized product of experts

(OGPoE), which is a Gaussian Process-based online learning algorithm. We demonstrate how

OGPoE can be used for online learning tasks that involve physical hardware and dynamic

environments, including demonstrating online learning of the kinematics of a concentric tube

robot — both in free space and in the presence of dynamic environmental constraints. Chapter 4

describes the development of a dynamic model specific to cable-driven continuum robots. The

model is used to design an observer to estimate the full state of the robot using only partial state

feedback, and the observer is then incorporated into a control loop designed to reject a constant

disturbance applied to the robot body. Chapter 5 describes an algorithm to segment a continuum

robot from a noisy image without requiring any training data. Finally, Chapter 6 summarizes

the results, reviews the contributions of this dissertation, and provides perspectives for possible

future work.
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Chapter 2

Closed-loop Position Control for Growing
Robots via Online Jacobian Corrections
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2.1 Introduction

Recently, growing robots—which are capable of actively changing the length of their

bodies—have emerged as a promising class of continuum robot [3] [49]. One method used to

achieve this growing motion is to tuck, or fold, one end of a thin-walled, hollow tube back inside

itself, and apply pressure. When pressurized with fluid, this tucked material everts from the

tip, enabling the robot to move through the environment in a manner analogous to how plants

grow. Because the body of the robot remains stationary with respect to the environment, these

growing robots impart very low forces on their surroundings, offering the potential for even

safer interactions. To-date, many of these growing robots have been passive, meaning that their

deployed shape depends on the pre-fabricated shape and on the surrounding environment, but

cannot be actively controlled [50, 51, 52]. In this case, the robot must rely on interactions with

the environment for navigation [53, 54, 55]. Active steering of growing robots has been achieved

using various pneumatic artificial muscle designs [51, 56, 24, 57], and control strategies all

require either a human operator, the robot workspace to be obstacle free, or for every obstacle to

be known a priori [58, 59, 60]. In this chapter, however, we seek to enable automatic control of

the tip of a growing robot without these requirements.

Figure 2.1. Flowchart of proposed closed-loop control method, including an online Jacobian
update via rotation and magnitude corrections. These corrections are based on leveraging
real-time position and orientation measurements of the tip of the robot.

11



2.1.1 Related Works

Previous works have solved the constrained control problem for other kinds of continuum

robots by estimating a local model of the robot’s Jacobian that is valid in a small region of

the robot’s configuration space. This model is then updated online via optimization using

measurements of the robot’s end-effector position [19], [46], [47]. Importantly, unlike other

control methods, these updates to the Jacobian do not rely on assumptions about the underlying

physics of the robot, as in [61], or require knowledge of the robot’s environment, as in [62].

Although this strategy has been shown to successfully maneuver continuum robots in unknown,

static environments, it risks developing a singularity in the model over time because the model

updates are not guaranteed to preserve the structure of the original Jacobian [63]. More recent

work has explored the use of images taken from an end-effector camera to estimate a 2D rotation

matrix that could be used to iteratively update the Jacobian in a way that preserved its initial

structure [63]. This approach allowed for the control of a continuum robot in a constrained

environment, while preventing singularities. In this work, we build on this idea to estimate a 3D

rotation matrix and a magnitude correction term using position and orientation measurements at

the tip of the robot.

2.1.2 Contributions

The main contributions of this chapter are as follows. First, we extend the ideas

originally presented in [63] to develop a new approach for controlling continuum robots based

on leveraging real-time position and orientation measurements. This information on the robot

pose is used to update a local model of the velocity kinematics of the robot in an online manner

via corrective rotations and magnitude adjustments. This approach takes advantage of sensor

information that is commonly available for these types of robots but that has been largely

unused. A significant advantage, compared to methods that rely on a global model of the robot

kinematics, is the ability to handle the many external contacts that continuum robots are likely to
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encounter during navigation in constrained environments, even if the exact robot configuration is

unknown, while preserving the structure of the model estimate. Second, we combine this control

strategy with a method for localizing the tip of a growing robot to demonstrate closed-loop

position control for this class of robot that does not require a line of sight. This is the first

method for autonomous position control of growing robots that does not require a map of its

environment. We experimentally characterize the performance of the controlled growing robot

in both the constrained and unconstrained cases.

2.2 Methods

We consider the problem of controlling a continuum robot with tip position and ori-

entation measurements in the presence of unknown environmental constraints. We propose

to use the streaming robot pose measurements to correct a local model of the robot’s velocity

kinematics in real time, which can then be used for control. In the rest of this section, we more

formally define the local model correction in terms of a rotation and magnitude adjustment, and

detail how we calculate these adjustments from robot pose measurements.

2.2.1 Problem Definition

Small changes to the actuators of a continuum robot, ∆q, can be approximately related

to changes in the robot’s 3D end-effector position, ∆x, by the linear equation

∆x ≈ J∆q, (2.1)

where J is the Jacobian matrix. If J has full column rank, then its pseudoinverse can be used

to find the minimum norm signal, ∆q, that achieves a desired change in end-effector position.

When operating in unconstrained conditions, a reasonable estimate of the Jacobian can often

be developed through either analytical (e.g. [64], [8], [56]) or empirical (e.g. [65]) means.

However, as the robot interacts with unmodeled obstacles in its environment, this estimate
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becomes scaled and rotated and can result in drastically different behavior than predicted by the

linear relationship [19].

This problem is described as

J∗J†
∆x ̸= ∆x, (2.2)

in [63], where J∗ is the true robot Jacobian and J† is the pseudoinverse of the estimated Jacobian.

We seek to find a linear correction, K, such that

J∗J†K∆x = ∆x, (2.3)

where correction matrix, K, has a singular value decomposition (SVD) given by,

K = U


σ1 0 0

0 σ2 0

0 0 σ3

VT . (2.4)

If we assume all the singular values to be equal, σ1 = σ2 = σ3, then K may be expressed simply

as the product of a scalar and a unitary matrix, the latter of which we may write as a rotation

matrix

K = σUIVT = σR. (2.5)

Assuming that all of the singular values of the correction matrix are equal, implies that the

correction matrix does not shear the Jacobian estimate [63], meaning that the relative angles

between the column vectors of the Jacobian estimate do not change. This assumption guarantees

that the correction matrix does not introduce an artificial singularity to the Jacobian update.

Although operating the robot near the limits of its workspace or in the presence of environmental

interactions may violate this assumption, in practice, approximate Jacobians have proven to be
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effective for continuum robot control, in constrained and unconstrained settings [19] [56].

Physically, the scalar, σ , varies to compensate for changes in the system energy due to

viscoelastic losses in actuation, environmental interaction, [63] and—in the case of growing

robots—changes in the robot length. The rotation matrix, R, accounts for how the end-effector’s

orientation affects the directions of the control inputs. By estimating this scalar—which we

will refer to as the magnitude correction—and rotation matrix—which we will refer to as the

rotation or orientation correction—we can determine the total correction, K, which can then

be used to update our Jacobian estimate each time new pose measurements are available (see

Fig. 3.1).

2.2.2 Orientation Correction

We discuss two approaches for estimating the rotation correction, R. The first approach

uses successive measurements of the end effector’s position, while the second approach uses

successive measurements of its orientation. In an ideal setting, this rotation correction estimated

from either method would be identical. In practice, however, any sensor measurements will

be corrupted by noise, making it advantageous to combine both estimates. Accordingly, we

also describe a straightforward way to combine rotations so that both approaches may be used

simultaneously to compute the correction matrix.

Rotation Estimation from Position Sensing

For every change in end-effector position at timestep k predicted by the Jacobian and

given by ∆x̂k = Jk−1∆qk−1, there is an actual motion, ∆xk, measured by a position sensor. In

order to correct our local Jacobian model, we would like to find the rotation matrix that aligns

these two vectors (∆x̂k and ∆xk). We can calculate this rotation matrix by computing the axis,

ωωωk, and angle of rotation, θk, between these two vectors as given by,

ωωωk =
∆xk

||∆xk||
× ∆x̂k

||∆x̂k||
, (2.6)
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θk = cos−1
(

∆xk ·∆x̂k

||∆xk|| ||∆x̂k||

)
. (2.7)

We can then employ Rodrigues’ rotation formula,

Rk = I+(sinθk)[ωωωk]+ (1− cosθk)[ωωωk]
2, (2.8)

where [ωωω] is the skew symmetric matrix representation of vector ωωω .

Rotation Estimation from Orientation Sensing

Another approach to determining the rotation correction is to directly sense the orienta-

tion of the end effector. If full 3D orientation measurements are available, as is the case with

some electromagnetic sensors for instance, then the end effector orientation may be described by

a 3x3 rotation matrix, T. The rotation correction can then be determined simply by multiplying

successive orientations of the end effector using

Rk = TT
k−1Tk. (2.9)

For other sensing modalities, such as certain electromagnetic trackers and permanent

magnet-based systems, it is impossible to obtain a reliable measurement of the twist about the

axis of the continuum robot ([66]). A 2-degree-of-freedom orientation measurement is still

useful, however, and may be expressed as a unit vector, t̂, pointing in the direction tangent to the

robot backbone at the tip. Using two consecutive 2-degree-of-freedom orientation measurements,

we can compute a rotation matrix correction to our Jacobian by calculating the matrix that aligns

the measurement from the previous timestep, t̂k−1, with the orientation measurement from the

current timestep, t̂k, using equations (2.6)-(2.8). It is important to note that rotation corrections

computed from 2-degree-of-freedom measurements will not capture any distortions to the robot

Jacobian that are due to twisting about its backbone, and therefore must be combined with the

rotation estimates derived from changes in robot tip position.
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Combining Rotation Matrices

In order to take advantage of the rotation estimates derived from both the position and

orientation measurements of the robot pose, we seek a method for combining rotation matrices.

Because we find rotation estimates derived from changes in position to be more susceptible to

sensor noise than those derived from orientation sensed directly, our method should allow us

to give more weight to the orientation-based estimate. One such method is to take a weighted

average of the matrix elements and then re-orthonormalize the result using the SVD [67]. The

resulting, composite rotation matrix, Rk, can then be used in the rest of the algorithm.

Rsum = ∑
i

wiRi, where ∑
i

wi = 1

Rsum = UΣVT

Rk = UVT

(2.10)

This method has been shown to be as effective as averaging over alternative representations of

rotations, such as axis-angle or quaternion parameterizations, provided the individual rotations

are sufficiently close to one another [67][68].

For our subsequent experiments with growing robots, which use a 2-degree-of-freedom

orientation measurement, we found that the orientation-based rotation estimates were quali-

tatively less noisy across time-steps than the position-based estimates. We could not use this

estimate alone, however, since it fails to capture rotations due to twisting along the backbone of

the robot. Accordingly, we assigned a weight of 0.9 to the orientation-based estimate to be used

in the averaging.
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2.2.3 Magnitude Correction

In order to estimate the scalar portion of our correction matrix, we rewrite (2.1) with our

corrected Jacobian estimate,

∆xk = K−1
k Jk−1∆qk−1 =

1
σ k

RT
k Jk−1∆qk−1, (2.11)

and consider RT
k Jk−1∆qk−1 = ∆x̂R,k to be the rotated prediction of end-effector motion based

on our Jacobian estimate. If we perfectly estimate the rotation correction, Rk, then the vectors

∆xk and ∆x̂R,k should be colinear, differring only in magnitude. Accordingly, we can choose σk

to resolve this difference and adjust the magnitude of our prediction using,

σk =
||∆x̂R,k||
||∆xk||

. (2.12)

To accommodate sensor noise present in real-world systems, we apply a low-pass filter to the

update of this magnitude correction

σk = ασk−1 +(1−α)
||∆x̂R,k||
||∆xk||

. (2.13)

Larger values of the filter constant, α , lead to updates that are less affected by noise, but at the

expense of introducing phase lag and delaying the Jacobian update. We use a value of α = 0.95

in all of our experiments. Finally, we update the Jacobian to use for prediction at the next

timestep as

Jk =
1
σ k

RT
k Jk−1. (2.14)

2.2.4 Control Law

It is important to note that the methods described above to do online estimation of the

continuum robot Jacobian do not depend on a particular choice of control law and may be used
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in conjunction with any Jacobian-based algorithm for position control.In our experiments, we

compute the velocity we wish to command at the end-effector, ∆x∗, as the difference between

the current end effector position, x, and the target end-effector position, x∗. The pseudo-inverse

of the Jacobian estimate is then used to determine the control input for this commanded velocity:

∆q = J†
∆x∗. (2.15)

2.3 System Overview

To empirically evaluate the proposed control strategy we use a steerable growing robot.

The robot hardware, along with the test platform designed for assessing system errors, are

described here.

2.3.1 Growing Robot Hardware

A steerable growing robot capable of 3-D motion was fabricated using three fabric

artificial pneumatic muscles (fPAMs) as actuators. The fPAMs were made consistent with

the design described in [57], and contract when the pressure inside is increased (see Fig. 2.2).

When placed radially around the main tube of the robot at equal angles, the fPAMs can be used

to bend, or steer, the robot, similar to tendons. The robot was fabricated from a lightweight,

silicone-urethane impregnated ripstop fabric (Seattle Fabrics) and has a maximum deployed

length of 445 mm and an inflated diameter of 20 mm, including the surrounding actuators. Three

Proportion Air QB1X pressure regulators are used to modulate the airflow in and out of each

fPAM. The robot material is inverted through an N52 ring magnet (12.7 mm OD × 6.4 mm ID

× 9.5 mm L) and wrapped around a motorized spool housed inside a pressure vessel. The base

of the robot is attached to the housing outlet (see Fig. 2.2). We control the deployed length of

the robot by setting the position of the motorized spool and supplying a sufficiently high inlet

pressure to the housing (∼41 kPa), similar to the mechanism in [59]. In total, we can control 3

degrees-of-freedom of the robot tip: two that determine the heading and one that determines
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Figure 2.2. The overall system consists of a steerable growing robot with (a) a magnet at the
tip and three, evenly spaced actuators. (b) The base of the robot is attached to the outlet of a
pressure vessel, and the inverted material is wrapped around a spool inside the vessel. (c) As
pressure is applied to the robot body, material everts from the tip, enabling growth. (d) The
length of the robot is controlled by the spool position θ . As a pressure signal pi is applied to the
ith actuator, the robot bends, enabling steering.

deployed length.

We localize the distal end of the robot by tracking a permanent ring magnet at its tip. As

the robot grows and bends, friction between the magnet and the inverted robot material, along

with the pressure of the working fluid, keep the magnet at the tip of the robot [66]. Therefore,

motion of the robot causes changes in the position and orientation of the magnet, which in turn

causes changes in the surrounding magnetic field. We sense these changes with an array of
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PNI3100 magnetoinductive sensors that are arranged in a four by two grid pattern beneath the

robot (see Fig. 2.3). By solving a real time optimization problem that minimizes the difference

between the sensor readings and a model of the field produced by the magnet, we can determine

the position of the magnet center and its 2-degree-of-freedom orientation (see [66] for details).

A laptop with an Intel i7-8650U processor runs the control loop and manages data collection

using MATLAB.

2.3.2 Characterizing System Error

In order to assess the error from the combined localization and control approaches, we

use a ground truth measurement of the robot tip position that is independent of the magnetic

localization described above. Two Logitech C920 webcams are mounted to the test platform,

one with an overhead view and the other with a view that is orthogonal to it (see Fig. 2.3). Both

the camera intrinsics and extrinsics were calibrated in MATLAB using the Camera Calibrator

and Stereo Camera Calibrator apps respectively. The mean reprojection error after calibration

is less than one pixel. To obtain tip position measurements from images of the robot taken by

these cameras, we manually label the robot tip in each image and triangulate the 3D coordinate

of the tip position using the labels and the calibrated camera parameters.

This ground truth measurement allows us to more fully characterize the error of the

entire closed-loop system. Specifically, we consider three points of interest and the vector

differences between them. First is the actual tip position, x̄, as determined by the ground truth

measurement. The second, which is used in the control loop, is the estimated tip position, x,

determined by localizing the permanent magnet. Third is the target tip position, x∗, which

corresponds to the goal position that the robot must reach in each task. Although all three

of these points would coincide in a perfect system, in reality, we must investigate the error

between each pair of points. We label these errors as follows: the controller error, defined as the

difference between the target tip position and the estimated tip position; the localization error,

defined as the difference between the estimated tip position and the actual tip position; and the
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Figure 2.3. The experimental setup includes an array of magnetic sensors, used for localizing
the tip of the growing robot, along with two orthogonal cameras, used to obtain a ground truth
measurement of the robot tip position.

total error, defined as the difference between the actual tip position and the target tip position.

Note that the total error is the vector sum of the controller and localization errors as shown in

Fig. 2.4.

2.4 Experiments and Results

We evaluate the performance of our proposed control strategy both in simulation and on

a physical growing robot system. We evaluate the control error, as well as the localization error,

in order to characterize the overall performance of the entire closed-loop system.

2.4.1 Simulation

In order to study the controller performance without the effects of localization inaccuracy,

robot dynamics, and environmental constraints, we created a simulated, path-following task

in MATLAB. We choose to run this simplified simulation to verify that the controller would

work in an ideal setting. Simulating the more complex behaviors associated with these robots

was deemed beyond the scope of this work, given that dynamic simulations of even simpler

continuum robots is still active research [69] [70]. We leave the study of controller performance
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in the presence of noise, dynamics and constraints for the physical experiments in the subsequent

sections.

The simulated robot obeys a kinematic model developed in [56] that maps actuator

inputs to unique robot configurations based on the constant-curvature assumption and a linear

model of the relationship between actuator pressure and contraction. The model parameters

were chosen such that the behavior of the simulated robot approximated that of our physical

robot.

As seen in Fig. 2.5, the controller successfully guides the tip of the robot along a

specified spiral trajectory using the tip position and 2-degree-of-freedom orientation. Because

the controller uses the true pose of the robot tip in this simulation, the localization error is zero

Figure 2.4. Three error types are considered for evaluation of the closed-loop system: (1)
localization error, defined as the difference between the estimated tip position and the actual
tip position; (2) controller error, defined as the difference between the target tip position and
the estimated tip position; and (3) total error, defined as the difference between the actual tip
position and the target tip position.
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Figure 2.5. Time steps of a path following simulation, including the reference (green) and
actual (red) trajectories, along with the Jacobian estimate (magenta).

and the controller error is the same as the total error, the mean of which is 0.45 mm. Simulation

also helps illustrate the roles of the orientation and magnitude adjustment components of the

proposed controller. The magenta vectors, shown in Fig. 2.5, point in the direction of the

columns of the Jacobian estimate at the given timestep. It is clear that the controller’s orientation

Figure 2.6. Magnitude adjustment constant versus the deployed length of the robot during the
path following simulation.
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adjustments successfully align the column of the Jacobian pointing in the direction of robot

growth with the tangent of the robot’s backbone. The magnitude adjustment constant, σ , is

plotted against the deployed length of the simulated robot in Fig. 2.6. The overall downward

trend is expected as the robot grows, since the same magnitude of actuation has larger effects on

the change in end effector position for longer robot lengths.

2.4.2 Point Reaching in Free Space

Next, we implemented the control strategy on our physical growing robot system to

perform a point reaching task. We selected five points within the robot’s workspace and

connected them via straight lines to form a trajectory for the robot to follow (see Fig. 2.7).

We initialize our estimate of the robot Jacobian one column at a time, as described in [19], by

incrementing each of the actuators a small amount, ∆qi, and recording the resulting change in

position, ∆xi, determined by the magnetic localization. The robot Jacobian column for actuator

i is then given by, Ji = ∆xi/∆qi. Note that initializing the Jacobian in this way does not require

a model of the robot’s kinematics—the linear map from the actuator velocities to tip velocities

is approximated from data.

We evaluate the effectiveness of the controller by comparing the robot’s actual, estimated,

and target tip positions at each of the points as described above in Section 2.3.2. In order to

demonstrate the repeatability of the results, this experiment was run five times. The mean

and standard deviation of the absolute controller error, localization error, and total error are

displayed in Table 2.1. The consistency of the mean total error across all five of the test points

and the low standard deviation indicate the repeatability of the trials. The mean total error

across all five points is 3.22±1.31 mm. These results could be further improved by reducing the

localization error, which is significantly higher than the controller error, through the addition of

more sensors, the use of a stronger magnet, or investigating ways to optimize the placement of

the sensors so as to guarantee a certain localization accuracy over the robot’s workspace. These

results demonstrate that our controller is able to accurately and reliably position the tip of the
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growing robot on a physical system using measurements of the tip position and orientation.

Table 2.1. Mean and standard deviations of the controller error, localization error, and total
error for each of the five points in the free-space, point-reaching task. On average, the robot
reaches a deployed length of 308 mm.

Pt # Controller Error Localization Error Total Error

1 0.50 ± 0.23 2.69 ± 0.90 2.52 ± 0.84
2 1.60 ± 0.60 5.07 ± 1.09 3.87 ± 0.67
3 1.29 ± 0.62 2.02 ± 0.96 2.05 ± 1.54
4 1.15 ± 0.64 3.66 ± 0.82 4.13 ± 0.91
5 1.94 ± 1.21 3.08 ± 0.96 3.56 ± 1.40

2.4.3 Point Reaching in a Constrained Environment

Finally, we investigate the closed-loop system performance in the presence of envi-

ronmental constraints. We designed a branching acrylic structure meant to be a proxy for an

industrial or medical task, such as pipe inspection or ablation, in which a growing robot would

be required to navigate to a target site and reach multiple points once at that site. Previous

research has shown that growing robots are capable of traversing highly-curved, constrained

paths with deterministic outcomes through growth alone [53] [54]. Accordingly, we choose to

focus instead on the branch selection task since it necessitates active steering control of the tip

Figure 2.7. Side and overhead views of the growing robot with the five target points from the
free-space, point-reaching task overlaid.
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Figure 2.8. Still-frame images from the overhead and side cameras during the point-reaching
task in the constrained environment. The proposed control approach is used to steer the growing
robot along the reference trajectory (overlaid dashed line). The actual trajectory is overlaid in
red, along with the three target points located at the end of the branch.

of the robot.

For each branch, we generated a path for the robot to follow by running the robot in

open-loop through that branch and then approximating the recorded trajectory by straight-line

segments. We chose three points at the end of the path within the robot’s workspace that would

require the robot to make contact with each of the branch outlet walls in order to reach all three

(see Fig. 2.8). Requiring the robot to make and break contact with the constraints posed by

the environment tests the controller’s ability to compensate for unknown forces at unknown

positions along the robot length, as would be expected in a real-world scenario.

We initialized the robot Jacobian as before and ran the controlled robot through this

constrained, point-reaching task five times per branch. As before, the controller only uses

online pose estimates and does not have a map of the obstacles in its environment. We evaluate

the errors at the three target points for each branch. The results are shown in Table 2.2 and

demonstrate that the closed-loop system is still accurate and repeatable in the constrained setting.

The controller error is slightly higher than, though still similar to, the error in the unconstrained

case. This is likely due to the presence of the contacts from the environment which introduce

effects that are hard to compensate for, such as friction. Although the environment is static, as
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Table 2.2. Mean and standard deviations of the controller error, localization error, and total
error for target points reached via each branch of the constrained environment. On average, the
robot reaches a deployed length of 424 mm.

Branch Controller Error Localization Error Total Error

Upper 2.95 ± 2.12 3.66 ± 1.59 3.84 ± 1.11
Middle 2.24 ± 1.61 4.88 ± 1.37 5.79 ± 1.74
Lower 1.27 ± 0.88 3.59 ± 0.65 4.05 ± 0.93

the robot grows, the location and type of contact changes. As seen in Fig. 2.8, there are instances

of multiple unknown, time-varying distributed and point forces applied to different locations

along the length of the robot backbone. These constraint forces are truly three dimensional

because the robot must make contact with each of the three walls of the environment in order

to reach the target points. The mean total error of the closed-loop system over all runs and

all branches is 4.56±1.56 mm. As in Section 2.4.3, this could also be reduced by improving

localization error, which is greater than the controller error, particularly for the middle branch,

which is furthest away from any of the magnetic sensors. It is worth noting that although

the constrained environment does limit the maximum possible controller error, the width of

the acrylic channel (35 mm) provides sufficient space for errant robot motion and allows the

controller performance to be judged effectively.

2.5 Discussion

We have shown that a series of updates, estimated from continuum robot pose mea-

surements, can be successfully applied to correct an estimate of the robot’s Jacobian without

introducing artificial singularities. We have also shown that this Jacobian estimate can then

be used to steer a robot to a desired target, even in the presence of environmental constraints.

By combining this control approach with a permanent magnet-based approach to localization,

we have enabled closed-loop control for growing robots that does not require line of sight.

We characterized the closed-loop system error in both the free space and constrained cases,

demonstrating the accuracy and repeatability with which the controller can position the robot
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tip on a physical system. Notably the constrained environment in which we tested the robot was

static. One of the main limitations of the proposed approach is that it does not distinguish robot

motion from environment motion. As such, it is not currently suited for use in cases where rapid

changes in the environment have large effects on the robot dynamics. Additionally, as with

other model-free Jacobian estimation algorithms, the quality of the Jacobian estimate depends

on the quality of the sensor information available—if the measurements of the robot pose are

corrupted by noise, this will lead to a poor estimate of the Jacobian, which in turn will lead to

poor controller performance. Noisy data must be filtered to produce a clean signal, but at the

expense of introducing a delay in the Jacobian update, which limits the speed at which the robot

may be accurately steered along a trajectory.

Based on these results, there are several directions for future work. First, as the rapid

pace of research on growing robots continues and new methods of sensing and actuation are

developed, methods for improved control algorithms can be created by incorporating this new

hardware and associated sensor information. For example, one drawback of the permanent-

magnet based localization used here, is that it requires magnetic sensors to be placed throughout

the robot workspace before the robot is deployed, limiting the number of applications where

it can be used. By investigating other localization technologies that could be made to be

compatible with these robots, we could overcome this limitation. Second, given the usefulness

of the Jacobian estimation-based controller and the many safety-critical scenarios in which it is

intended to be applied, theoretical guarantees can be developed to rigorously define the operating

conditions under which it can confidently be deployed. In the future, it will be important to

analyze the stability of the controller in the presence of real-world phenomena such as sensor

and actuator noise, robot dynamics, and environmental constraints.
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Chapter 3

Learning Non-Parametric Models in Real
Time via Online Generalized Product of
Experts
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3.1 Introduction

Many real-world robotics problems involve phenomena such as friction and uncertainty

that are difficult to model from first principles. These challenges have motivated the use of

learning approaches that build models directly from data without requiring expert knowledge of

the underlying system. While these learning-based approaches have achieved impressive results,

many of the algorithms can only be performed offline, limiting their practical use.

Online learning algorithms seek to address this limitation by inferring models from data

and adapting these models continually over time as new data arrives. In particular, nonparame-

teric online learning methods based on the popular Gaussian process (GP) statistical model are

promising due to their many desirable properties, such as adaptable modeling complexity and

prediction uncertainty quantification [71].

3.1.1 Related Works

Many approaches have been proposed to minimize the high computational cost of GP

models, which scales cubically with the size of the dataset, N, during training [72]. Approxi-

mation strategies for GPs can typically be classified as either global or local methods. Global

approximation strategies involve choosing M ≪ N points, called inducing or psuedo-inputs,

that, when used for training, produce an approximate GP with minimal KL-divergence from a

GP trained with all N samples. The inducing input locations may be sampled from the available

data (based on, e.g., information gain [73], KL divergence [74], or Nyström sampling [75]),

or considered as variables to be optimized for jointly with the kernel hyperparameters during

training [76]. However, for online learning problems where the size of the dataset grows large

over time, the quality of the GP approximation using a fixed number of inducing points may

degrade [77] or be confined to a local region of the input space [78].

Local GP approximations improve scalability by first dividing the training dataset into

smaller subsets (e.g. by k-means [79], randomly [80], or by feature space distance from existing
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local models [81]) and then training a local GP model on each subset of data. Prediction on new

inputs can be done with the local model nearest the input (i.e. naive local experts (NLE) [72]) or

by taking a weighted combination of predictions from all local models (i.e. mixture of experts

(MoE) [82] or product of experts (PoE) [83]). Adapting this local GP approximation strategy

to the online setting is difficult because most of the effective data partitioning and prediction

combination methods that have been used to date, require some form of offline computation.

Recent works have proposed to combine both local and global GP approximations to

leverage the benefits of each approach [84] [85]. Training data is divided between multiple, local

models, where each local model is itself a sparse GP approximation. Although these approaches

substantially reduce training times and effectively scale the complexity of the models to the

observed data, there remain limitations in their prediction strategies. For instance, [85] uses an

NLE strategy, which is known to give artificially discontinuous predictions on the boundaries of

the subregions between local models [72]. The prediction strategy in [84], on the other hand,

uses an MoE approach to prediction, but does not learn the weighting function jointly with the

local model parameters, which typically leads to suboptimal predictions [80].

To address remaining limitations in using GPs for online learning, we propose to adapt

the generalized product of experts (GPoE) framework for multiple model prediction [80] to the

online setting. GPoE is a method for combining the predictions from multiple local models in a

way that does not require joint training, allowing each local model to be learned independently.

Despite this independent training, the aggregate GPoE prediction has been shown to retain

important properties of multiple model prediction, such as rejection of poor predictions from

local models, smooth interpolation between local models, and the ability to precisely combine

many uncertain local model predictions [80].

3.1.2 Contributions

The contributions of this paper are as follows. First, we present a new algorithm, which

we call online generalized product of experts (OGPoE), that extends GPoE to the online learning
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setting. This algorithm offers a combination of benefits unavailable from other online learning

algorithms, including the simultaneous online optimization of local model parameters, a clear

and interpretable data partitioning strategy, and principled fusion of multiple model predictions

without the need for joint training. We evaluate our proposed algorithm in simulation and

show that it compares favorably to other popular online and offline modeling approaches on

a well-cited benchmark dataset. Finally, we demonstrate how OGPoE can be used for online

learning tasks that involve physical hardware and dynamic environments. Specifically, we

demonstrate online learning of the kinematics of a concentric tube robot — both in free space

and in the presence of dynamic environmental constraints — which is a first for this type of

robot. These experiments not only demonstrate the modeling accuracy that OGPoE can achieve,

but also its versatility in the types of problems it applies to, making it a powerful tool for online

learning.

3.2 Background

In this section, we review GP fundamentals, along with key works that are leveraged

and adapted for OGPoE.

3.2.1 Streaming Sparse Gaussian Process Approximations

A standard GP regression model assumes that input-output data pairs, {x,y}, can be

described by the expression y = f (x) + ε , where f is an unknown function corrupted by

Gaussian observation noise ε ∼ N (0,σ2
y ) [77]. A GP prior over the unknown function, f ∼

G P(m(·),k(·, ·|θ)), is specified by a mean function, m(·), and a covariance function, k(·, ·),

that depends on hyperparameters θ . As is typically done, we adopt a zero-mean function for

notational convenience in the remainder of this section. The choice of covariance (or kernel)

function encodes prior assumptions about the spatial correlations between the inputs to the

unknown function, f , and may be informed by prior knowledge. We employ the popular and
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interpretable squared exponential kernel with automatic relevance determination,

k(x,x′) = σ
2
f exp

(
−1

2
(x−x′)⊤W−1(x−x′)

)
, (3.1)

which depends upon the hyperparameters that capture the signal variance (σ2
f ) and the length-

scale along each dimension of the input (W = diag(l2
1 , ..., l

2
d)).

Given a collection of input-output data pairs, the assumption of Gaussian observation

noise, and the GP prior over f , it is possible to compute the mean and variance of the posterior

process in closed form at a new input, x∗, as

m∗(x∗) = k(x∗,X)(σ2
y I+ k(X,X))−1y

V∗(x∗) = k(x∗,x∗)− k(x∗,X)(σ2
y I+ k(X,X))−1k(X,x∗) (3.2)

The kernel matrix, k(X,X), consists of kernel function evaluations between all N datapoints, and

must be inverted for inference. As N approaches ∼ 104, this computation becomes intractable,

motivating methods for choosing M ≪ N inducing inputs to approximate the posterior and

retain tractability [76]. The vast majority of these approximation methods, however, can only be

applied when all training data is available at once, which is not the case in the online setting

where data is revealed incrementally over time.

To address this problem, the authors in [77] pose an optimization problem that recursively

updates the locations of M inducing points, Z = {z1, ...,zM}, as well as the kernel hyperpa-

rameters, θ = {σ2
y ,σ

2
f ,W}, of a sparse GP model as data is processed online. Specifically,

they show that given some current posterior GP approximation, G Pold, with hyperparameters,

θold, and inducing input locations, Za, that is assigned new data, Dnew = {xi,yi}Nnew
i=1 , then a

quantity called the online variational free energy (FOVFE) can be maximized to find values for

new hyperparameters and inducing input locations, {θnew,Zb}. The new hyperparameters and

inducing input locations are then used to form a new posterior approximation, G Pnew, which,

35



in turn, can be used for prediction [77].

3.2.2 Generalized Product of Experts

The PoE method for ensemble prediction [83] attempts to model a target distribution

as the product of multiple densities, each of which is given by a single expert. This method is

sensitive to errors in the predicted variance of the local experts, in that erroneously low-variance

predictions from some local models will bias the aggregate mean and lead to overconfident

predictions [80]. To suppress the influence of poor experts on the overall model, GPoE [80]

introduces a weight to each expert’s prediction,

p(y∗|D ,x∗) =
1
Z

M

∏
i=1

pβi(x∗)
i (y∗|Di,x∗), (3.3)

where Z is a normalizer, Di is the training data seen by the ith model, x∗ is a predictive input,

and y∗ is an output. The input-dependent weight function, βi(x∗) = 1
2(logσ2

i,∗∗− logVi(x∗))

is the differential entropy between the expert’s prior and posterior. When the entropy change

for an expert is zero at x∗, then that expert’s prediction does not contribute to the combined

prediction because it does not have any training information relevant to this new input. Using

this weight and Eq. (3.3), the aggregate mean (mGPoE) and variance (VGPoE) of the ensemble of

experts can be computed in closed form [80]. This simple strategy for weighting predictions still

requires no joint training and alleviates the PoE problem of being unable to reject poor experts.

Despite its simplicity and minimal computational requirements, GPoE achieves excellent results

on multiple benchmarks [80].

3.2.3 DP-Means

DP-means [86][87] is a nonparametric clustering technique that allows data to be

partitioned for local model training without specifying the number of clusters a priori. We

consider a set of streaming data, {x1, ...,xT}, where xt ∈ Rd is the data observed at time t.
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Figure 3.1. Flowcharts depicting online learning with incoming data and the GPoE framework
for ensemble prediction. Online learning assumes that data arrives sequentially in small batches
of Nnew samples that are used either to update an existing local model, or to generate a new local
model. Ensemble prediction returns an aggregate predictive mean and variance, mGPoE ,VGPoE ,
for an input x∗.

Each observation is assumed to belong to one of K clusters and is labeled {ζ1, ...,ζt}, with

ζt ∈ {1, ...,K}. A prior over the number of clusters, K, and the cluster assignments, ζ1:t ,

specified by a Chinese Restaurant Process (CRP) [88] with hyperparameter α , is assumed. The

first observation, x1, is assigned to the first cluster, ζ1 = 1, and the tth observation is assigned

either to existing cluster k, with probability proportional to the number of data already in that

cluster, or to a new cluster, with probability proportional to α . If the data in each cluster is

assumed to be Gaussian with cluster-specific means, µµµk, and a shared variance, σ2Id , then the

likelihood of the data, x1:t , given clustering ζ1:t and means µµµ1:k, is

p(x|ζ ,µµµ) =
K

∏
k=1

T

∏
t=1

N (xt |µµµk,σ
2Id). (3.4)

Further assuming a zero-mean Gaussian prior on the cluster means themselves, µµµk ∼

N (0,ρ2Id), Bayes theorem gives the posterior distribution over the clustering,

p(ζ ,µµµ|x) ∝ p(x|ζ ,µµµ)p(ζ )p(µµµ). (3.5)

The maximum a posteriori (MAP) estimate for the clustering and the cluster means is found

by maximizing this posterior distribution or, equivalently, minimizing the negative log joint
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likelihood

max
K,ζ ,µµµ

p(ζ ,µµµ|x) ∝ min
K,ζ ,µµµ

− log p(x,ζ ,µµµ). (3.6)

Typically, computing the MAP estimate is quite difficult, but by choosing the hyperparameter

α = exp(−λ/2σ2) and taking the small variance asymptotic limit as σ2 → 0, the optimization

reduces to

min
K,ζ ,µµµ

K

∑
k=1

T

∑
t=1

∥xt −µµµk∥2 +λK. (3.7)

Note this objective function takes the same form as that of the k-means algorithm plus a penalty

term for adding new clusters. It is solved straightforwardly by the DP-means algorithm, which

iteratively assigns data to the cluster with the nearest mean unless the nearest cluster mean

exceeds a threshold distance, controlled by the user-set value λ , upon which a new cluster is

generated. Although more complicated extensions to the DP-Means algorithm exist (e.g. [86]

[89]), DP-Means requires few user-set parameters and often leads to satisfactory results.

3.3 Online Generalized Product of Experts

In this section, we present Online Generalized Product of Experts (OGPoE), which

consists of a partitioning stage, a training stage, and a prediction stage. We present the algorithm

design and implementation, and we discuss how the specific combination of algorithms gives

OGPoE several advantages compared to the state-of-the-art in online learning.

3.3.1 Algorithm Design

To overcome current limitations in using GPs for online learning, each component of

the OGPoE algorithm must be carefully selected. First, the training component should provide a

principled method for updating the model inducing point locations and hyperparameters. Previ-

ous works either update these values separately [90], require that the hyperparameters be known

a priori [81], or implicitly assume that the training data is independently, identically distributed

(iid) [91]. We select to use streaming sparse GP approximations in order to simultaneously
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update both the inducing point locations and hyperparameters even when the training data is

generated from a time series and is not iid.

Second, in order to grow the model complexity as the amount of training data increases,

the partitioning strategy must be simple, easily tune-able, and interpretable, in order to divide

data amongst an ensemble of local models. Previous works have used somewhat opaque online

partitioning strategies [85][81][84] that make it difficult to predict when a new model will be

formed, and consequently more challenging to tune. We select to use the DP-means algorithm,

which can be analysed through the lens of small variance asmpytotics [87] to better understand

its inherent assumptions and convergence. This simple strategy is regulated by a single user-set

parameter that is straightforward to tune.

Lastly, the prediction strategy must be able to fuse predictions from multiple local

models, online, without imposing restrictive assumptions on how the models are trained. Many

prediction strategies, however, assume all local models share the same hyperparameters ([81]

[92]). We therefore select to use the GPoE framework, which allows for each of the individual

experts to be trained independently and the aggregate prediction to better capture non-stationary

features in the dataset [72]. Further, GPoE does not require the data used for training each

expert to be local, and produces good aggregate predictions even when the individual experts are

trained on random subsets of data that may significantly overlap [80], as could be the case when

using a sparse GP approximation. Together, these features allow OGPoE to build models online

that describe data exhibiting complex phenomena such as non-stationarity and heteroscedastic

noise.

3.3.2 Implementation

Implementation of OGPoE consists of an initialization phase, followed by online learning

and prediction (Fig. 3.1).

Initialization: We assume access to Ninit > M samples which are used to initialize our

model. When learning a kinematics or dynamics model, for example, these samples might be
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acquired by sending random, low-magnitude signals to the robot joints. We assign all initial

data to a single cluster, which is represented by its mean, µµµ1 =
1

Ninit
∑

Ninit
i=1 xi. A sparse GP model

is then instantiated as in [76] by solving an optimzation problem to determine initial inducing

input and hyperparameter values.

Online Training: Data arrives sequentially in small batches of Nnew samples for pro-

cessing. Each data point is assigned to either an existing cluster or to a new cluster by solving

the optimization problem in Eq. (3.7). Once all data in a batch has been assigned, existing

cluster means are updated with the data assigned to that cluster. The assigned data is then used

to update the sparse GP approximation associated with each cluster by optimizing the online

variational free energy objective as described in Section 3.2.1. If a new cluster is generated,

the sparse GP approximation of the nearest existing cluster is used for this optimization. This

process can be repeated as long as there are batches of data to process.

For all model training, we empirically find it helpful to add an inequality constraint to

the online VFE optimization problem that constrains each of the lengthscales of the squared

exponential kernel to not be greater than twice the legnthscale parameter used in the clustering

algorithm, li≤2λ ∀i∈{1, ..d}. Intuitively, the kernel function lengthscales, which dictate the

correlations between datapoints, should not exceed the diameter of the cluster from which they

originate. Note that this constraint does not require the individual kernel lengthscales to be

equal to one another, but merely enforces an upper bound.

Prediction: In order to combine predictions from multiple local models on a new input,

we use the GPoE framework described in Section 3.2.2. One disadvantage is that for test points

far from any training data, the difference between the prior and posterior variance for all experts

is nearly zero [79] [92], causing all of the weights to go to zero and the predictive variance of the

aggregate model to explode (i.e. as βi → 0, VGPoE → ∞). Although this is only a minor concern

for most online learning problems since predictions are made close to the training data which is

revealed incrementally over time, we choose to mitigate this issue by simply normalizing the
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weights such that ∑
K
i=1 βi = 1 for prediction.

User Set Parameters: OGPoE requires little tuning to apply to new problems. We

provide the following suggestions for the only two parameters, M and λ , that must be set by

the user. It is worth noting that these are distinct from the kernel hyperparameters, θ , which

are determined automatically from the data by optimization. M is the number of inducing

inputs per sparse GP model that will be used for training. The question of how to choose M,

such that M ≪ N points are guaranteed to approximate a GP model with tight KL divergence

bounds is still an area of active research [93]. Practically, we find that setting the value for

M presents a tradeoff between increased computation time for training and better modeling

accuracy. Therefore, we advise choosing M to be as large as possible, while still maintaining

a model update rate that is suitable for the particular application. The other parameter that

must be set by the user is the cluster lengthscale, λ , used in the DP-means algorithm for data

partitioning. Because of the similarity between DP-means and k-means, if a subset of data

is available for offline computation, we find that clustering this data with k-means and then

setting λ to be the average radius of the resultant clusters, is an effective initial guess for this

parameter that may be further tuned as needed. Finally, although the batch size of training data

is typically not controlled by the user since data is streaming at a fixed rate and processed as

fast as possible, Nnew can be set for simulated experiments. In this case, larger values of Nnew

increase the training time per batch of data, but can lead to better fits ([77]).

3.4 Simulated Evaluation

We assess the performance of OGPoE through numerical experimentation. We present

a simple learning problem to demonstrate the effectiveness of OGPoE for multiple model

prediction, and we compare its performance to other popular modeling approaches on the

SARCOS arm dataset.
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3.4.1 Toy Example

We consider the problem of learning an approximation to the 1-D function y = sinc(x)+

ε , with ε ∼ N (0,0.04). We generate 500 samples from this function for training, which we

process sequentially from x = −4 to x = 4 (excluding x ∈ [−0.5,0]) in batches of Nnew = 20

samples, in order to simulate online training. For testing, we compare against the noise-free

function ȳ = sinc(x) for x ∈ [−5,5]. With λ = 0.5 and M = 10, online training produces 4 local

models with inducing point locations and individual predictions shown in Fig. 3.2a. No one

local model learns the entire latent function — with an RMSE of 0.091 for the best local model

— necessitating an ensemble prediction strategy. There is overlap between the models, which

can be attributed to the fact that each new local model is initialized using the nearest, existing

local model, and the optimization used to update the locations of the local model inducing

points can find values outside the region of the training data [77][84]. Despite the overlap,

Fig. 3.2b shows that OGPoE can effectively combine local model predictions and capture the

underlying function (0.059 RMSE), because it does not assume that the individual models cover

independent regions of the input space. Instead, OGPoE effectively blends contributions from

proximal models in an aggregate prediction.

Other ensemble prediction strategies are shown in Fig. 3.2c and Fig. 3.2d. NLE, for

(a) (b) (c) (d)

Figure 3.2. (a) Sparse, local GP models are learned using data, ’+’, drawn from a noisy,
unknown function as detailed in Section 3.4.1. The predictions from these local models are
combined using (b) OGPoE, (c) NLE, and (d) a heuristic MoE approach. The predictive mean
of each aggregation method is shown in red along with the one standard deviation confidence
bounds in orange.
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example, uses the predictive mean and covariance of the local model nearest the predictive

input (Fig. 3.2c). Consequently, its prediction contains artificial discontinuities where there is a

transition between the local models used, despite the smoothness of the underlying function

(0.085 RMSE). Heuristic MoE (Fig. 3.2d) trains an additional meta GP model used to weight the

predictive mean from each local model [81] [84]. Because this method combines the predictions

of multiple models, it avoids the discontinuities associated with the NLE method but at the cost

of additional training time. Additionally, because the local model weights are exponential in the

distance between the model center and the predictive input, most of the weight for prediction is

usually concentrated on a single model, producing a predictive output that is not substantially

better than prediction with NLE (0.084 RMSE).

3.4.2 SARCOS Arm Benchmark

In this section, we study the effects of varying OGPoE’s user-set parameters, λ and

M, and compare our proposed algorithm to other modeling approaches, using the SARCOS

arm dataset1. This publicly available dataset is frequently used to benchmark the performance

of offline [71] [79] [81] and online [94] [84] [85] modeling approaches, making it a suitable

standard to compare against without having to reproduce the results of many previous works.

The objective is to learn an inverse dynamics mapping from a 21 dimensional input joint space

to the first of 7 output joint torques, using a dataset that consists of 48,933 samples (44,484 for

training and 4,449 for validation)[71] [79] [85].

First we assess the effect of the clustering lengthscale parameter, λ . We set M = 50

and process data sequentially in batches of Nnew = 100 samples for training, as is done in [85],

and then evaluate the prediction of the learned model on the validation dataset. We repeat this

simulation for λ ∈ [3.25,7] (Fig. 3.3a). As expected, the performance degrades as lambda is

increased since the number of local models generated, and consequently the total number of

inducing points used to capture the data, decrease. Next, to assess the effect of M on learning

1Dataset available at: http://www.gaussianprocess.org/gpml/data/
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(a) (b)

Figure 3.3. Plots depicting training results on the SARCOS arm benchmark for different values
of the user-set parameters (a) λ and (b) M.

performance, we fix λ to the best value from Fig. 3.3a and repeat the experiment, this time

varying M from 20 to 70. The results, shown in Fig. 3.3b, depict how performance improves

with increasing M, although with diminishing returns as M becomes large.

Finally, we report the results of other popular modeling approaches on the SARCOS

dataset in Fig. 3.4. The value of M used for OGPoE was set to 50 in order directly compare

against the methods studied in [85], while λ was set to 3.5, which was the best result from

the experiment shown in Fig. 3.3a. Looking at the performance of LGPR [81], which requires

offline optimization of the hyperparameters, we would expect it to significantly outperform

OGPoE, where the hyperparameters are optimized online. However, we note that we achieve

nearly comparable results, with a RMSE of 3.507 compared to 3.195 reported in [85].

The online methods we compare to are the well-known LWPR [94], as well as SOLAR-

GP [84] and WGPR [85], which are the most similar algorithms to OGPoE. Our results show

that we outperform these methods on this benchmark, even for a wide range of values of λ

(Fig. 3.3a). Because SOLAR and WGPR leverage the same sparse GP approximation strategy

as OGPoE, the difference in performance can likely be attributed to differences in how data

is partitioned between local models and how combined predictions are generated. OGPoE’s

data partitioning scheme differs in that data assignment is independent of the parameters used
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Figure 3.4. SARCOS benchmark results demonstrating OGPoE achieves excellent performance
relative to the state of the art in online learning methods. We report the results of SOLAR,
WGPR, and LGPR from [85] and the analytical model and LWPR from [94].

to define the local models, which change over time. The prediction framework employed by

OGPoE more effectively combines information from multiple local models, leading to improved

aggregate prediction as discussed in Section 3.4.1.

3.5 Hardware Evaluation

In this section, we use OGPoE to learn the forward kinematics of a concentric tube robot

(CTR) from streaming data. CTRs are a class of continuum robot made up of precurved, flexible,

telescoping tubes that when translated and rotated relative to one another, interact in bending and

torsion to reach different equilibrium configurations [95] [14]. Mechanical models based on the

theory of Cosserat Rods [96] have been developed to describe their forward kinematics, where

the tip position is computed as a function of the rotational and translational positions of each of

the tubes [18]. Typically, these models assume that all tubes share a common centerline and

ignore the effects of friction and clearance between the tubes. While these assumptions lead to a
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Figure 3.5. The experimental setup consists of a 3-tube CTR and associated actuation unit
from [97]. An EM sensor is attached to the CTR tip in order to track its position.

tractable set of equations for the kinematics, they also contribute to modeling inaccuracies. We

approach learning kinematics for these robots in two ways: one in which the forward kinematics

must be learned completely from scratch, and another in which we augment the learned model

with a mean function derived from first principles.

3.5.1 Experimental Setup

The 3-tube CTR and associated actuation unit from [97] were used in this experiment

(Fig. 3.5). An Aurora electromagnetic (EM) tracking system (NDI) is used to measure the 3-D

position of an EM sensor (0.92 mm outer diameter) attached to the tip of the robot. Joint and

EM sensor positions are sent to the OGPoE algorithm to be used for training via the Robot

Operating System (ROS) [98], which is used to enable parallel processes for prediction and

training [84]. An open-loop joint space trajectory is also published over ROS to set the joint

positions and to predict the robot tip position from the learned model.

For our hybrid learning approach, which involves augmenting the learned prediction
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with an analytical model, we follow the model derivation of [18]. This approach amounts to

solving a set of ordinary differential equations subject to boundary conditions (BCs) imposed

by the joint values of the tubes. For our CTR, these equations have a unique solution for every

set of BCs dictated by the robot’s joint configuration, defining a unique mapping that we use as

our analytical kinematic model. Because this mapping is deterministic, we may incorporate it

into our learning problem by adopting a zero-mean GP prior over the difference between the

tip position predicted by this model and the true tip position observations measured by the EM

sensor for learning. For prediction, we combine the output of the analytical model with this

learned error function. To save computation time, we follow the example of [94] and [84] by

using the same learned model to predict each component of the tip position.

3.5.2 Online Learning of Robot Kinematics in Free Space

In this experiment, the CTR is commanded to follow an open-loop joint-space trajectory

consisting of 600 points that was designed offline to cover a significant region of the robot

workspace. At each timestep, we predict the robot tip position for the next joint configuration

using one of three models — the Cosserat-rod-based kinematics model, the OGPoE model,

Figure 3.6. Results of the online kinematics learning task using (a) an analytical model, (b) a
model learned with OGPoE, and (c) a hybrid of the two approaches, where OGPoE is used to
learn the error in the analytical model. The plots on the left show the predicted and measured
tip positions from two different angles for each of the models used, and the plot on the right
shows the prediction error over time for all three models.
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or the hybrid model. To initialize the learned models, we sample random joint configurations

in close joint space proximity to the robot’s home configuration, which results in small tip

motions. Specifically, we draw 50 samples for each joint from U (q0 −2.5 mm,q0 +2.5 mm)

for translational joints and from U (q0 −5◦,q0 +5◦) for rotational joints, where q0 is the home

position of the joint and U (a,b) is a uniform random distribution with lower limit a and upper

limit b. These initial models are updated online according to the OGPoE framework as data

arrives over the course of the trajectory and used to predict on new inputs just outside the

distribution of training data.When the robot reaches the end of the trajectory, it returns to the

starting position and then follows the same trajectory again to assess the behavior of the learned

models when re-entering previously visited regions of the state space. For both the hybrid and

purely learned OGPoE models, we set λ = 3.75 and M = 25, which we found to be acceptable

after minimal tuning.

The prediction results in Fig. 3.6 show that there is significant error in the analytical

model predictions (4.8 mm ± 1.52 mm) primarily in predicting the x and y components of the

tip position. This error is expected for these models [18][99], and a large part is likely due to

ignoring clearance between the tubes of the robot, which causes the true shape to be straighter

than the Cosserat rod model predicts [100]. Consequently, the path traced by the robot tip has

a smaller radius than the one predicted by the model (Fig. 3.6a). Both of the learned models,

on the other hand, achieve much lower mean absolute error for predicting the tip position

— 0.79 mm ± 0.48 mm and 0.58 mm ± 0.4 mm for the purely learned and hybrid models,

respectively — demonstrating the feasibility of using OGPoE in an online learning scenario.

The prediction error of the learned models decreases slightly between the two passes through

the trajectory, while the number of local models stays constant, indicating that these learned

models retain information about regions of the state space they have already visited. While both

approaches achieve high accuracy predictions, the hybrid approach exhibits a slightly smaller

average error due to incorporation of a good, physics-based, analytical mean function.
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The success of OGPoE can be attributed to the fact that it updates a model online with

data from the trajectory that is being followed, allowing for good predictions on new, nearby

inputs. On average, the model update rate is 0.3 s and the prediction rate is 106 Hz, which is

sufficient for surgical procedures where the robot speed will not exceed a few cm/s [101]. The

benchtop setup can also be substantially improved with specialized hardware and software.

3.5.3 Online Learning of Robot Kinematics with Dynamic Loading
Conditions

Next we demonstrate the ability of OGPoE to learn the kinematics of a CTR when

the robot is subjected to an unknown and changing environmental constraint. This ability is

particularly important for CTRs, since many of their intended applications involve navigation

through dynamic environments, yet there is a notable lack of proposed solutions in the literature

due to the difficulty of the problem.

We initialize the robot as in Section 3.5.2 and command it to follow a new open-loop

trajectory, twice. This time however, an un-modeled obstacle is placed in the path of the robot,

such that the robot tip is significantly deflected when it comes into contact with the obstacle.

Before the robot traverses the trajectory a second time, the obstacle is removed, resulting

in different tip position measurements that conflict with the data gathered on the first pass.

Figure 3.7 shows the robot tip position predicted by the analytical, learned, and hybrid models,

along with the associated prediction errors.

As seen in Fig. 3.7(a), the presence of the obstacle causes large errors in the analytical

model prediction (4.73 ± 2.23 mm average, 13.42 mm maximum), whereas the OGPoE-based

methods achieve much more accurate results (learning: 0.75 ± 0.49 mm average, 4.67 mm

maximum; hybrid: 0.72 ± 0.84 mm average, 5.00 mm maximum). It is also interesting to note

that the error in the hybrid modeling approach has a small, transient increase when the robot

encounters the obstacle (presumably due to the inaccuracy of the analytical model) and again

when the robot traverses the region of the state space where the obstacle has been removed
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Figure 3.7. Predicted tip position of the CTR following a planar, triangle-shaped path using an
(a) analytical (b) learned and (c) hybrid model as well as (d) the prediction errors over time. On
the first pass through the trajectory, an obstacle blocks the robots path, causing a large deviation
from the analytical model. On the second pass through, the obstacle is removed.

(where the previously learned deviation from the analytical model needs to be un-learned).

Nonetheless, the low average prediction error of both OGPoE-based methods demonstrates the

applicability of this method for learning CTR kinematics under these challenging conditions.

3.6 Discussion

In conclusion, we presented OGPoE and illustrated its effectiveness starting with a

simple 1-D example. We verified that OGPoE achieves excellent results on the SARCOS arm

benchmark relative to the state of the art, making it a potentially useful tool for complex online

learning problems. Finally, we demonstrated the ability of OGPoE to learn the kinematics for a

continuum robot in an online setting, both with and without prior model information and even

in the presence of changing, unknown loading conditions.

There are several directions for future work that can further expand the applicability

of OGPoE. For example, the development of a method to bound the prediction error of the

aggregate model learned by OGPoE can enable its use in online learning applications that require

guaranteed safety, as have been recently studied using standard GPs with known hyperparameters

[102]. Additionally, dimensionality reduction techniques could potentially be used with OGPoE

to do effective online learning for problems with very high dimensional inputs. Finally, OGPoE

could be applied to many other robotics problems, including learning and adapting a model for

use with inverse kinematics methods to enable real-time control in unknown environments.
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Chapter 4

Low Frequency Disturbance Rejection
for Cable-Driven Continuum Robots
without Integrated Sensing
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4.1 Introduction

In this chapter, we develop a new dynamics model for a cable-driven continuum robot.

This new model unlocks tools from control theory developed decades earlier for serial arm

robots with elastic joints, allowing us to solve a disturbance rejection problem using only partial

state feedback.

4.1.1 Related Works

Theoretically, the backbone of a continuum robot can take the shape of an arbitrary,

oriented curve in space. Many researchers have devoted significant effort to developing models

that are able to capture this full complexity, the most successful of which employ the theory of

Cosserat rods [103]. The trade-off posed by the expressivity of these methods is much higher

computational cost, which makes real-time control challenging and is considerably difficult to

extend to predict dynamic robot behavior [17].

For many applications of interest, however, kinematic models based on the assumption

that a continuum robot bends in a shape defined by piece-wise constant curvature arcs have been

shown to be reasonably accurate [104][105]. The computational complexity of these models is

trivial compared to that of Cosserat rod-based approaches, and they can be extended to capture

how external forces from actuators or the environment affect the robot shape [31] [106]. The

key insight of these works is to develop a quasi-static model for a system that is mechanically

analogous to the continuum robot. These works consider the actuating cables to be springs with

linear stiffness and the robot itself to be a torsional spring connected to a linear spring (see

Fig 4.1). Displacement of the linear spring represents compression or elongation of the robot

backbone while displacement of the torsional spring represents a change in the robot bend angle

or curvature.

In addition to being an intuitive framework for understanding continuum robot motion,

these so-called kineto-static models capture an important phenomenon in that the robot cable
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Figure 4.1. The continuum robot pictured on the left can be approximated by the analogous
mechanical system on the right. An axial spring represents resistance to changes in the robot
length from some equilibrium value. Torsional springs represent resistance to robot bending that
is proportional to its curvature. Although we only depict this bending resistance in one direction
here, it is possible to augment this model with another torsional spring to capture bending in
another direction. The actuating cables are also treated as stretchable spring elements.

lengths, which define its shape are geometric quantities that do not map uniquely to actuator

positions. The non-uniqueness of the mapping between cable lengths and actuator positions

is due to the fact that the cables themselves can stretch under to applied forces. This means

that although there is a unique robot configuration for every set of cable lengths, there is not a

unique robot configuration for every set of actuator positions. The kineto-static model resolves

this issue by modeling both the robot and its cables as linear spring elements under uniform

tension or compression.

4.1.2 Contributions

In this work, we extend the kineto-static models described above to capture the dynamics

of cable-driven continuum robots. We are motivated by the fact that dynamic models are
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fundamental in control theory and robotics, which would allow us to leverage algorithms

developed on other, similar systems for use with these continuum robots. Specifically, we are

interested in the problem of disturbance rejection when only partial state measurements are

available. This is an important problem that must be addressed if continuum robots are to be

used in tasks like ablation or knot-tightening [45]. To address this challenge, this work presents

the following contributions:

• A new, constant curvature dynamic model. This model is the simplest to date for cable-

driven continuum robots. It is intuitive to use and captures important important aspects of

a real world dynamic system in its prediction, including oscillation and delay.

• An observer-based disturbance estimator. Our approach offers a number of important

advantages over previous works including provable convergence under reasonable as-

sumptions, use of only actuator position and velocity measurements, as well as analytical

insight into the estimation problem that would otherwise be obscured with a purely

learning-based method.

• A control strategy that leverages the above estimator to reject low-frequency disturbances

acting on the robot body.

We detail the development of the model in the next section, followed by a description of

how it can be used to design an observer-based control scheme for disturbance rejection. Finally

we validate these results on a hardware and conclude with some potential directions for future

work.

4.2 Modeling

In this section, we detail our modeling approach and discuss its unique aspects as

compared to other approaches in the literature. First, we detail the kinematics of our robot based

on a constant curvature assumption. Then we discuss how this assumption can be incorporated
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into a dynamics model for an equivalent mechanical system that approximates the true robot

motion.

4.2.1 Kinematics

There are multiple ways to parameterize a constant curvature arc [16][107], but we

find that using the components of the robot’s curvature vector is the most convenient due

to the linearity of the equations and its singularity-free representation of the robot’s straight

configuration [106][107]. In this work, we will focus on only a single constant curvature

segment, but note that extensions to multiple segments is possible. Specifically, we consider a

configuration variable, x, as in [107] which defines the shape of the robot,

x = [u, v, h]T . (4.1)

The two components of the robot curvature are u and v, while h captures the robot length.

Considering the length of the robot as a configuration variable is only necessary if it changes

significantly over time due to compressibility of the robot backbone, otherwise it may be

considered constant and omitted.

Figure 4.2. Three cables spaced evenly around the circumference of a continuum robot cross
section. The cross section has radius ρ and the cables are attached at locations ρ1,ρ2, and ρ3.

From this representation of the robot shape, it is also straightforward to determine the
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tip position and orientation of the robot as a homogeneous transformation matrix

g = e(ω̂ωω h), (4.2)

where

ω̂ωω = [0, 0, 1, u, v, 0]T . (4.3)

The kinematics relating the cable lengths of the robot to its configuration is similarly convenient

to express using this parameterization. For a three cable robot with cable lengths l = [l1, l2, l3]T

routed evenly around a cross section of the robot (see Fig 4.2), the kinematics can be written as

in [107]:

l1 = h−ρv

l2 = h+
1
2

ρ(v+
√

3u)

l3 = h+
1
2

ρ(v−
√

3u)

(4.4)

h =
1
3
(l1 + l2 + l3)

u =
l2 − l3√

3ρ

v =
h− l1

ρ
,

(4.5)

where ρ is the robot radius. The differential kinematics, relating small changes in cable lengths to

small changes in robot configuration can be determined straightforwardly by taking derivatives,

l̇ = Jẋ =
∂ l
∂x

ẋ (4.6)

The kinematic equations for robots with additional cables can be found in [16][107]. Note

that more complex cable routing patterns, such as spiral ones described in [103], are not well

modeled by the constant curvature assumption and will not be considered here.
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4.2.2 Dynamics

Our approach to dynamic modeling assumes that there are linear and torsional springs

representing the robot body (Fig 4.1) which have a mass and rotational inertia such that we can

write the kinetic energy of the robot as

KErobot =
1
2

ẋTMẋ. (4.7)

We consider each of the springs to be effectively decoupled from one another such that the mass

matrix, M, is diagonal. Although this is an approximation, we find empirically that it yields

good results (see Section 4.4.3). Ignoring gravity, the potential energy of the robot depends on

the linear and torsional spring displacements

PErobot =
1
2
(x−xeq)

TKb(x−xeq), (4.8)

where xeq is the unstressed configuration of the robot body and Kb is a diagonal stiffness matrix

of spring constants for each spring element of the robot body. We consider the cables of the

robot to be mass-less, but that the motors actuating the cables have some rotational inertia, ΦΦΦ,

which gives a potential energy for the actuation system of

KEactuation =
1
2

q̇T
ΦΦΦq̇. (4.9)

The potential energy of the actuation system depends on the cable stretch, which is a function of

both the actuator positions and the cable lengths, which are themselves a function of the robot

configuration (Eq. 4.4). This gives a potential energy of

PEactuation =
1
2
(q− l(x))TKs(q− l(x)), (4.10)
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where Ks is a diagonal matrix of cable stiffnesses. Note that these actuator positions are typically

measured by an angular encoder connected to the pulley around which the cables are wound.

Here we convert these measurements using q = rθθθ , where r is the pulley radius and θθθ are the

encoder measurements in radians, and instead consider the actuator positions q to have units

of length. Similarly we consider commanded input tensions to the cables, u, rather than motor

torques, τττ = ru for ease of notation.

Using these quantities, the difference between the kinetic and potential energies is

L = KErobot +KEactuation −PErobot −PEactuation. (4.11)

Using this quantity, we can write the equations of motion for our system as

d
dt

∂L

∂ ẋi
− ∂L

∂xi
=−∂F

∂ ẋi
d
dt

∂L

∂ q̇ j
− ∂L

∂q j
= Q j,

(4.12)

where i denotes the index of the configuration variable and j denotes the index of the motor. The

term ∂F
∂ ẋi

is included to capture damping that opposes motion of the robot body. It is important

to include such a term because real world continuum robots are not made of perfectly elastic

materials. We model this damping as proportional to the velocity of the robot, ∂F
∂ ẋi

= dixi, which

can be thought of as including linear and torsional dashpots to our analagous mechanical system.

The term Qi captures inputs to the system from the motors. Specifically, Q j = u j − fm, j, where

u j is the tension command sent to the j-th motor and fm, j is the motor friction opposing that

input. Note that there are many possible ways to model this friction term, which is a choice left

to the user as a design decision.
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The above derivatives yield the following system of equations:

Mẍ+Dẋ+Kb(x−xeq) = JTKs(q− l(x))

ΦΦΦq̈+Ks(q− l(x)) = u− fm.

(4.13)

Note that these equations closely resemble those for other classical robotic systems such as

serial robot arms with elastic joints [108] and have exactly the same form as the equations for

cable-driven parallel mechanisms [109]. We believe that this similarity is an important feature

of our model that will allow for the application of mature control and estimation techniques that

have been developed for these more classical systems to be applied to continuum robots.

4.3 Observer-Based Control

This section explains how the dynamic model derived above can be used to design an

observer that estimates the robot state using only partial information –specifically measurements

of the actuator positions and velocity. We also explain the limitations of the observer, as well

as practical challenges with using it directly in a control loop. We address the latter issue by

developing a reference input-based control strategy that can take advantage of the observer to

compensate low-frequency disturbances effecting the robot.

4.3.1 High Gain Observer Design

Our observer design is motivated by the fact that our system dynamics are similar to that

of a serial robotic arm with elastic joints [108]. The problem of controlling these robots using

only partial feedback was first explored in [110] and has seen many variations since (e.g. [111]

[112]). We adopt a very similar approach to [110] in this work.

We assume that we have access to measurements of the actuator positions and velocities
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y = [y1,y2]
T = [q, q̇]T. Consider a change of variables

z =
[
K−1

s ΦΦΦq̇, l, l̇
]T

, (4.14)

which leads to a reduced-order system

ż1 = z2 −y1 +K−1
s (u− fm(y1,y2,u))

ż2 = z3

ż3 = ψψψ(z2,z3,y1)

y2 = ΦΦΦ
−1Ksz1,

(4.15)

where

ψψψ(z2,z3,y1) = JM−1(JTKs(y1 − z2)−DJ#z3 −KbJ#z2). (4.16)

Note that we make use of the relationship l̈ = Jẍ+ J̇ẋ in order to get equations for the cable

accelerations, but for our particular parameterization of the robot curvature, the matrix J is

constant. We can rewrite these equations as

ż = Az+g(z,y,u)

y2 = ΦΦΦ
−1KsCz

(4.17)

where

A =


0 I 0

0 0 I

0 0 0


C =

[
I 0 0

]
(4.18)
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and

g(z,y,u) =


K−1

s (u− fm)−y1

0

ψψψ(z2,z3,y1)

 . (4.19)

The matrix pair (A,C) is in block observer canonical form, meaning it is possible for us to

choose a matrix L such that the eigenvalues of A−LC are in the left half complex plane. In

order to construct our observer, we must also assume that there exist two, positive, known

constants M and N that bound the cable velocities and the elastic displacements

||l̇||= ||z3||< M

||q− l||= ||y1 − z2||< N.

(4.20)

These bounds do not need to be tight and are reasonable to assume in practice given the

limitations of real-world hardware. We can then define the following high gain observer for the

system:
˙̂z = (A−ΓLC)ẑ+g(z̄,y,u)+ΓL̄y2

z̄3 = M
ẑ3

||ẑ3||
sat

(
||ẑ3||

M

)
z̄2 = y1 −N

y1 − ẑ2
||y1 − ẑ2||

sat
(
||y1 − ẑ2||

N

) (4.21)

where the high gain matrix, Γ, is defined as

Γ =


γI 0 0

0 γ2I 0

0 0 γ3I

 , (4.22)
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for some scalar γ ≥ 1, and the function sat(·) is defined as

sat(x) =


x if |x| ≤ 1

1 if x > 1
, (4.23)

and L̄ = LK−1
s ΦΦΦ. The saturation function serves the purpose of enforcing a Lipschitz bound on

the nonlinearities [110] which can help to mitigate the effects of peaking in the estimator. The

estimation error for the observer, e = z− ẑ, evolves according to

ė = (A−ΓLC)e+g(z,y,u)−g(z̄,y,u) (4.24)

and allows us to state the following theorem about the stability of the observer:

Theorem 1: There exists a constant γ0 such that the error, e(t), is exponentially stable

for any choice of γ > γ0 and bounded input u.

The proof follows the one detailed in [110], which relies on the fact that the nonlinear

term in Eq. 4.24, δδδ , has the form

δδδ = g(z,y,u)−g(z̄,y,u) =


0

0

ψψψ(z2,z3,y1)−ψψψ(z̄2, z̄3,y1)

 . (4.25)

Because of the saturated estimates used in the observer and the assumptions that the cable

velocities and elastic displacements are bounded, it is possible to show that the error in this term

is also bounded and that Eq. 4.24 converges to the origin. Although the observer proposed here

estimates the cable lengths, it is straightforward to use these to determine the configuration of

the robot by solving the forward kinematics as in Eq. 4.5. Ultimately, this convergence result is

significant for continuum robots because most of the estimation and control methods described
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for these robots in the literature do not provide guarantees regarding their performance. As

researchers look to extend the space of applications to which these robots are applied however,

these kinds of guarantees will be become increasingly important.

4.3.2 Observer Analysis

Here we discuss the theoretical limitations of the observer and their corresponding

implications for problems of interest for continuum robots.

The error dynamics of the estimator in Eq. 4.24 can be thought of as a linear system

perturbed by a nonlinear term, where the nonlinear perturbation depends itself on the estimation

error. When this nonlinear perturbation, δδδ (e, t), takes the form shown in Eq. 4.25, it vanishes at

the origin, i.e. δδδ (0, t) = 0 [113]. Implicitly, this vanishing condition assumes that we have a

perfect model of the friction acting on the cable such that

K−1
s (u− fm)−y1 −K−1

s (u− f̂m)+y1 = K−1
s (fm − f̂m) = 0, (4.26)

where fm is the true friction acting on the cable and f̂m(y1,y2,u) is a model of that friction that

can depend on available sensor measurements and control inputs. If, however, this is not the

case and (fm − f̂m(y1,y2,u)) ̸= 0, the nonlinear perturbation term becomes

δδδ =


K−1

s (fm − f̂m(y1,y2,u))

0

ψψψ(z2,z3,y1)−ψψψ(z̄2, z̄3,y1)

 , (4.27)

which is now potentially non-vanishing at the origin. As a result, the origin would no longer be

an equilibrium point of the system [113], and the observer would no longer accurately predict

the state of the robot.

There are some immediate consequences of this observation for continuum robots,
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particularly those with long passive segments through which the cables are routed before they

reach the bending section to be actuated. This design is of practical importance because many

continuum robot applications in minimally invasive surgery require that the robot be able to

traverse long, winding paths through lumens in the body before accessing the surgical site [106]

[22]. This winding of the robot body induces a capstan friction on the cables that depends on

the total winding angle of the passive segment, F = eϕµ [114], which is an unmeasured quantity.

While it is a straightforward problem to develop an accurate friction model fm(y1,y2,u) for the

robot when it is in a single configuration, for robots with long passive segments, this model will

become increasingly less accurate as the wind angle of the passive segment, ϕ , changes from its

original value for which this friction model was derived.

Our framework suggests that there are two ways to mitigate the error in the state estimate

for this special case of continuum robot when only partial state measurements are available.

The first would be to adapt the friction model online based on an indirect estimate of the wind

angle to better agree with the true friction experienced by the actuating cables. While this likely

poses challenges of its own regarding how to distinguish external forces applied to the bending

section of the robot from friction forces, it is worth further investigation. The other approach is

motivated by the fact that the friction modeling error term is multiplied by the inverse of the

cable stiffness matrix, Eq. 4.27. This would suggest that using stiffer cables in the robot would

help to mitigate the effect of friction modeling errors on the state estimate.

4.3.3 Reference Input Control via Integral Action for Disturbance
Rejection

In this section we describe how the observer detailed above can be used for control of a

continuum robot. In theory, this is a straightforward task, as the estimates from the observer

could be used directly in the feedback path of a control loop to regulate the configuration

of the robot, as is proposed in [110]. In practice however, the velocity signal used in the

output injection term (Eq. 4.21) is often corrupted by large amounts of noise which would

65



Figure 4.3. This block diagram represents the reference input control scheme that is used for
control of the continuum robot and disturbance rejection. The observer is used to add integral
action to a nominal, quasi-static control loop by updating the reference input such that it will
regulate the robot to a desired configuration despite a disturbance applied to the robot.

be subsequently fed into the estimate of the robot configuration. If the system actuators have

sufficiently high bandwidth, then the controller will respond to this noise, leading to poor,

oscillatory performance. Simply low pass filtering the estimate is not guaranteed to solve the

issue, as the phase lag introduced by the filtering step can be potentially destabilizing [115]. In

order to avoid these problems, we instead choose to augment the standard control loop used for

continuum robots in the quasi-static case with integral control action that modifies the reference

input to this control loop [116] using the observer’s estimate of the state (see Fig 4.3).

The standard control loop for a cable driven continuum robot computes a desired set of

actuator positions to achieve a target configuration, x∗ assuming negligible robot dynamics by

first computing the necessary cable tensions as the solution to

Kbx∗ = JTu. (4.28)

In cases where this solution is not unique, it is important to choose a solution such that u ≤ 0

so that all of the cables are “pulling” on the robot rather than “pushing”. There are many

suggestions for this in the literature [31][106][117]. We find that adding a small pre-tension to
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all cables is sufficient for our experiments. From there, it is possible to determine the actuator

positions that will achieve these tensions, using

q∗ = K−1
s u+Jx∗, (4.29)

and to reduce the error between this target and the measured actuator positions, eq = q∗−q,

through standard PID control. If we consider a constant disturbance, d, acting on the system,

however, the force balance in Eq. 4.28 would no longer be valid, and instead becomes

Kbx∗+d = JTu. (4.30)

To correct this, we modify the original configuration target x∗ as determined above, by

adding the integral of the error between this target and a low-pass filtered estimate of the robot

configuration from the observer

x∗∗ = x∗+Kx

∫
x∗− x̂, (4.31)

where Kx is the integral gain and x̂ is the filtered observer estimate. This reference input control

scheme allows us to low pass filter the observer estimate to prevent noise from the velocity

signal being injected into the control loop in a way that does not destabilize the system. The

trade-off associated with this approach is reduced dynamic performance of the controller, which

would not be able to reject disturbances that vary significantly in time.

4.4 Experiments

In this section we evaluate our proposed modeling, estimation, and control approaches

on a hardware system.

67



4.4.1 Setup

Figure 4.4. Hardware used in the experimental evaluation of our methods including an
electromagnetic tracker used to generate reference measurements and a disturbance that is
applied to the robot.

The test setup used in our experiments is shown in Fig. 4.4 and Fig. 4.5. It consists of a

295 mm long continuum robot actuated by three 18-8 stainless steel cables that are 0.23 mm

in diameter (McMaster). The cables are spaced evenly relative to one another around the

circumference of the robot cross section a distance 4.2 mm from the robot centerline. The cables

are each wound around a 11 mm diameter pulley attached to a direct drive motor (Turnigy SK3)

which is controlled by a motor controller (ODSEC). The motor positions are measured using

an absolute encoder (AMS6500), which circumvents the need for a homing sequence based on

cable pretension during robot start-up. Motor velocities are determined by one-step backward

finite difference. We send current commands to the motor controllers at a rate of 150 Hz, and

each motor controller runs a low level current control loop at 8 kHz.

The tip position and orientation of the robot are tracked at 30 Hz using an electromagnetic
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Figure 4.5. Overhead view of the robot hardware including motors, pulleys, cables, and
encoders.

(EM) field generator (NDI Aurora) and sensor (NDI Aurora Micro). The reported accuracy

of the sensor is 0.7 mm RMS in position and 0.3◦ RMS in orientation, although these values

are subject to the level of ambient noise. Our algorithms for estimation and control as well as

our code for data collection are all implemented in Python and run on a laptop with an Intel

i7-5500U processor.

4.4.2 System Identification

Before using our proposed model, we must start by identifying its parameters, the

procedure for which we detail here. We note that because our robot is negligibly compressible

in the axial direction, we do not include h as a state variable and instead treat it as constant.

To identify the spring coefficient of the stainless steel cables, we tied one end of the

cable to a force gauge and measured the stretch of the cable with a ruler for a set of applied loads.

We manually stretched the cable to three different lengths and recorded the force. Then we

computed the coefficient as the average ratio of force to stretched length. The lumped stiffness,

M−1Kb, and damping parameters, M−1D, of the backbone can be determined by manually

displacing and then releasing the robot backbone before routing any cables through it. We
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Table 4.1. Identified parameters for the dynamic model

Parameter Value Description (Units)
ρ 4.2 Robot Radius (mm)

Ks 3.98 Cable Spring Constant (N ·mm−1)

Kb diag(35.87, 38.16) Robot Bending Stiffness (N ·mm2)

D diag(781, 857) Robot Damping (kg ·mm3 · s−1)

m 76.33 Robot Inertia (kg ·mm3)

φ 0.0175 Actuator Inertia (kg)

b 48 Actuator Damping (kg · s−1)

find that the data from a single displacement is sufficient for parameter identification. We fit

a constant curvature arc to the tracked tip positions over time and use the components of this

fit as measured components of the robot state, x = [u,v]T . Using this data, it is straightforward

to determine the lumped parameters following procedures that apply to any linearly damped

oscillator [115]. We obtain a rough estimate of the actuator inertias by sending a step input to

each of the motors and fitting lines to the measured velocities. We then average these inertia

values and treat all the motor inertias as being equal, ΦΦΦ = φI.

In the following section, we choose the friction term to be proportional to the motor

velocity, fm = bq̇. The coefficient b and the parameters of the robot mass matrix, M, are

determined by solving the following constrained optimization problem

min
ααα

T

∑
t=0

||x(t)− x̂(t)||22 + ||q̇(t)− ˙̂q(t)||22

s.t. ξ̇ξξ = fα(ξξξ ,uuu)

ααα ∈ (ααα lb,αααub),

(4.32)

which attempts to fit the open loop response of the robot configuration and motor velocities

predicted by our dynamics model to measured values. The first constraint in this problem,

enforces that the augmented state variable of our model, ξξξ = [q, q̇,x, ẋ]T , evolves according

to Eqs 4.13, where ααα is a vector of all model parameters. The box constraints on the model
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parameters themselves, ααα ∈ (ααα lb,αααub), prevent the values b and M from being less than zero and

keep the empirically determined parameters from deviating by more than 10% of their original

values. We also assume that the robot inertia is the same for accelerations in either component

of its curvature, M = mI, so that there are fewer parameters to estimate by optimization. There

are many recommendations in the literature for the choice of data-generating input torque, uuu,

[118]. We choose to use step inputs of 9 N to each cable over a period of 4 s per step input.

4.4.3 Model Validation

Figure 4.6. Plots showing the step responses for the continuum robot, where the robot starts
at rest and each cable is then pulled on, one after the other with 6 N of force in 4 s intervals.
The intervals are denoted by the black vertical lines. The plot depicts the resulting tip position
measured by the EM tracker as well as the predicted tip position using our dynamic model and
a kineto-static model.

We evaluate the accuracy of our model by predicting its open loop step response and

comparing it with measured values from the EM tracking system. Over a period of 20 seconds,

we send step inputs of 6 N to each of the three motors, one after the other, allowing sufficient
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Figure 4.7. Zoomed in version of Fig 4.6, illustrating that the dynamic model captures
important time-dependent behavior exhibited in the measured response, such as oscillation and
lag between the input and the measured response.

dwell time between each command for the oscillations in the robot body to die out. For the first

and last 4 seconds of the test, the tension command is 0 for all motors. We use the mapping

described in Eq.’s 4.3 and 4.2 to project out constant curvature model value into Cartesian space

so that we can compute prediction error between our model and the EM tracker directly. We also

compute the prediction of a kineto-static model [31] for comparison. The results are depicted in

Figures 4.6 and 4.7.

It is clear from the plots that the at steady state, the dynamic model prediction is

consistent with the kineto-static one. This is expected given the assumptions of our dynamic

model and the analogous system from which it is derived. Further, both model predictions

do not perfectly align with the measured tip predictions. This is most likely a consequence

of the constant curvature assumption, which is known to be less accurate compared to more

sophisticated ODE-based methods [105], but other sources of error–such as nonlinear cable

stretch or backbone disc misalignment–also contribute.

Despite this, the mean prediction error over the test is 14.70 mm for the kineto-static

72



model and 13.98 mm for the dynamic model, which is 4.98% and 4.74% of the total robot

length. Note that these errors are consistent with the literature regarding constant curvature

assumption accuracy [104][105]. The small improvement in prediction error offered by the

dynamic model indicates that it is able capture some of the oscillating features of the system

response that the kineto-static model cannot. This is supported by the zoomed in plot, Fig 4.7,

where it is clear that the prediction and response agree in the initial portion of the transient.

More significantly, it is also clear from this plot that the dynamic model captures the lag

between the step input and the actual robot motion. While the kineto-static model predicts an

instantaneous change in the robot response to a step input, the dynamic model more correctly

shows that there is a time delay between the input tension signal and observed robot motion.

More quantitatively, we see that the kineto-static model prediction leads the observed response by

0.17 s while the dynamic model prediction lags the observed response by 0.04 s. This improved

phase alignment becomes increasingly important as researchers consider modeling choices for

more high-performance continuum robot applications which would require commensurately

more sophisticated control techniques to damp out oscillations in the robot motion.

4.4.4 Setpoint Regulation with Constant Disturbance

In this experiment, we test our compensation algorithm on a setpoint regulation task

where the cable-driven continuum robot is subject to an unknown external disturbance. The

particular disturbance used in our experiments is a weight hung at the tip of the robot (see

Fig. 4.4), which mimics a payload that a continuum robot may have to manipulate. As is clear

from the figure, the payload significantly affects the configuration of the robot.

Friction Modeling: As described in previous works [45][114], external loading also

has a significant effect on how friction affects cable tension in the continuum robot body. We

find that simply modeling friction as proportional to motor velocity is no longer sufficient in

this case. While it is possible to analytically construct more accurate, robot-specific models

[119], we choose to adopt a learning-based approach to friction modeling, similar to [45], for
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convenience and in order to retain generality. Specifically, we model the friction on each cable

as a function of the motor positions, velocities, and commanded cable tensions using Gaussian

Processes (GP), f̂m,i = GP(q, q̇,u). This model is an appropriate choice for this task due to its

very high data efficiency and well-behaved predictive behavior on out-of-distribution data [71].

We collect training data by hanging the weight from the robot and commanding it to

reach various configurations around its workspace, starting from the home configuration using an

uncompensated controller. Using the EM tracking system to determine the robot configuration

as before, we can measure the expected cable tensions as Ks(q− l(x)). The friction opposing

the cable tensions are then the difference between the commanded tensions and the measured

tensions f̂m = u−Ks(q− l(x)). In total we collect 85,500 samples which we downsample by a

factor of 50 in order to make training tractable. We use an isotropic squared exponential kernel

[71] in our GP model which has only two hyperparameters that can be optimized for in about 5

seconds on a standard laptop computer. The rest of the parameters used in our dynamics model

remain the same as in Section 4.4.3.

Experimental Results: We evaluate our disturbance compensation strategy on a setpoint

regulation task. We compare control with and without compensation used to drive the robot

from its starting configuration to one of 6 target configurations while there is an unknown

weight hanging from the tip of the robot. To prevent a large, sudden motion that would dislodge

the weight and damage the robot, the desired configuration of the robot is interpolated from

the straight configuration to the target configuration over a period of 10 s using a standard

fifth-order position-velocity-time polynomial [120]. The targets are chosen by actuating the

robot to cover a large region of its workspace without the weight and recording the tip position

at 6 locations, so it is known that a well-designed controller could theoretically reduce the error

to zero (Fig. 4.8).

The final position errors for each regulation task are recorded in Table 4.2. Fig 4.9 shows

examples of the difference in robot configurations using each control method for one of the
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Figure 4.8. The robot was required to reach six different target tip positions, shown
here as pink dots. The plotted surface shows feasible tip positions the robot could
reach. The image of the continuum robot is generated with OpenCRProject software
(https://www.cs.toronto.edu/ jbk/opencontinuumrobotics/software/)

regulation tasks. It is clear that the compensation-based method reduces the positioning error

relative to the uncompensated method in all trials (by 20.5 mm on average) but does not achieve

perfect tracking–the minimum final error for the compensated approach is 4.94 mm and the

maximum is 26.49 mm. There are many possible causes for this imperfect tracking, that can be

better understood through Fig 4.10, which compares the observer-based predictions of the robot

configuration with the target and measured configuration values. From this graphic, it is clear

that the observer-based estimate of the configuration converges to the desired configuration over

time, but that this estimated value does not match the measured value. This indicates that the
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Figure 4.9. Image of the continuum robot when trying to reach a straight configuration both
without (left) and with (right) compensation from feedback of the observer estimate of the robot
state. It is clear that the compensated approach significantly reduces the positioning error.

observer is the source of the error, and not the controller. Potential reasons for the observer

inaccuracy are discussed in Section 4.3.2. Despite these limitations, these results show that it is

possible to significantly reduce the effect of a constant disturbance applied to a continuum robot

without requiring additional sensors to be integrated into the body of the robot.

Table 4.2. Final tip position error for the compensated and uncompensated approaches for each
setpoint

Target 1 Target 2 Target 3 Target 4 Target 5 Target 6

Error without
Compensation (mm) 40.77 45.51 26.31 65.56 7.71 25.58

Error with
Compensation (mm) 9.08 26.49 11.84 16.47 4.94 19.64

4.5 Discussion

In this work, we have shown how a simple model for continuum robot dynamics can

be derived using an analogous mechanical system that first gained popularity for quasi-static

modeling. Given the similarity of these model equations to other more classical robotic systems,

this model has the potential to enable the use of established tools in analysis, estimation, and

control for continuum robots. As an example of this, we demonstrate how our model can be

used to construct a reduced order observer for the continuum robot that estimates the state of the
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Figure 4.10. The target, measured, and estimated configuration of the robot over time for one
of the setpoint regulation tasks. The results show that while the error between the estimate and
the target is reduced nearly to zero, error between the estimated and measured configurations
remains.

robot using only position and velocity measurements from the actuators. We show conditions

under which the observer has provable convergence – which is a rare result for a continuum

robot – as well as analyze its limitations and their implications for certain cable-driven robot

designs. We develop a control strategy that uses the observer to reject disturbances applied

to the robot body, even when the robot’s actuator velocity measurements are corrupted by

significant amounts of noise. Finally, we validated both our proposed modeling approach and

observer-based control strategy on a hardware system which verify the real world applicability

of the theoretical contributions in this work.

This work also suggests some immediate and exciting directions for future research.

First, the observer developed here for state estimation from partial feedback can be adapted to

include additional sensors incorporated on the robot. This would provide a principled means

of sensor fusion for various measurements, such as cable tensions, robot strain measurements,
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robot position measurements, and motor position and velocity measurements. Additionally,

adaptive control methods could be explored to compensate for situations in which the cable

friction model is expected to change. Finally, more high-performance control ideas can be

explored for non-medical continuum robot applications by using the dynamic model we have

developed to damp out oscillations in the robot body that occur after sudden changes in its

position. In conclusion, we believe that our work is an important step towards unlocking greater

potential from these robots by moving away from their statics and towards dynamics.
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Chapter 5

Image Segmentation for
Continuum Robots from a Kinematic
Prior
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5.1 Introduction

In the previous chapters of this dissertation, we have focused on algorithms for continuum

robot control that rely on very limited sensor information—the robot’s joint data and possibly

its tip pose. Using such sparse amounts of data makes the problem of state estimation, and

ultimately control, quite challenging. One possible approach to alleviate some of this difficulty,

without requiring that more sensors be integrated into the robot, would be to use images from an

external camera to estimate important aspects of the robot’s state. Examples of such work that

uses vision, include shape estimation [26, 27, 28, 29], the identification of inertial parameters

used in dynamics models [17, 121], and the estimation of forces the robot applies to unknown

surroundings [122].

Importantly, a common feature of these works on vision-based estimation is the require-

ment to have an accurate segmentation of the robot, that distinguishes the pixels belonging to the

continuum robot body from the rest of the image. In order to obtain this segmentation reliably

however, the images used in these previous works are taken under ideal conditions, which

do not exist outside the laboratory, severely limiting their real-world applicability [123, 124].

To address this issue, we propose a new method for accurate continuum robot segmentation

(Fig. 5.1) that is robust to more realistic imaging conditions and can be used to help further the

growing body of research on vision-based estimation for continuum robots.

5.1.1 Related Works

In the last decade, most image segmentation research has been dominated by deep

learning-based methods—largely spurred by the success of ImageNet [125]. It has become

clear that, given sufficient computational power and training data, the results achieved by deep

networks significantly outperform all other existing methods, especially on general image

segmentation tasks.

However, amassing the requisite amount of labeled training data for the very specialized
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task of segmenting a continuum robot is a challenging undertaking. Even transfer learning

approaches—where a successful deep network architecture that has first been trained on a very

general set of labels is then retrained on a more specific set of labels using fewer images—require

on the order of ∼ 10e4 images. An individual collecting and labeling such a large amount

of data is a highly impractical undertaking, especially given the large variety of continuum

robot designs for which the process would need to be repeated. Online datasets, which have

catalyzed advancements in other sub-disciplines of robotics, such as self-driving vehicles [126]

and manipulation [127], do not yet exist for continuum robots. Finally, perhaps the most

significant impediment to gathering useful training data for continuum robots is that many of

the intended applications are surgical, which adds regulatory and privacy concerns for how the

Figure 5.1. An example of robust image segmentation for a concentric tube continuum robot.
The robot is successfully identified, as illustrated by the white overlay, despite the presence of
multiple, partial occlusions and a background of similar color.
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data is collected [128].

As an alternative approach to using deep networks for vision-based estimation for

continuum robots, researchers often rely on composing an image scene to contain the entire

robot body against a uniform, high-contrast background [26, 27, 29, 17, 121, 122]. This control

over the composition of the scene, enables straightforward, background-subtraction techniques

based on color or another photometric quantity to effectively segment the robot without the

need for large amounts of training data. These simple strategies are not robust, however, in

that as the complexity of the scene increases (e.g. the robot is only partially visible, foreign

objects are present, the background color is non-uniform and similar to the robot body, etc.) the

segmentation becomes less reliable [123, 124]. Although it is possible to improve color-based

segmentation methods through proper coloring of the instrument or the addition of reflective

markers, such modifications suffer from sterilization and integration challenges [129] [130].

In the decade preceding the explosion of deep learning approaches, researchers studied

segmentation methods based on models of the 3D shape of a target object. By leveraging

this prior knowledge, these methods [131, 132] can effectively segment an object in a more

complicated scene where a simple color-based method would fail. In this work, we propose

to augment these methods with a kinematic model for a continuum robot that can be used for

segmentation, without the need for a large set of training data.

5.1.2 Contributions

Specifically, the contribution of this work is an algorithm for segmentation of continuum

robots that: requires minimal training data, is general across continuum robot designs, and

segments the robot in realistic image conditions that include partial views and challenging

background conditions (where color-based segmentation of the robot alone performs poorly).

In the following section we detail the components of our algorithm that leverage information

about the robot’s shape derived from a kinematic model to construct an optimization problem

which can be solved to segment the robot. Next, we test our algorithm empirically using images
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of the robot collected from a simulated surgical environment and demonstrate its improved

performance relative to current techniques. Finally, we conclude with a discussion of the current

limitations of the work, along with future directions.

5.2 Methods

Our algorithm for continuum robot segmentation consists of three main parts (Fig. 5.2).

First, the image to be processed undergoes an initial background subtraction. Second, joint

measurements of the robot’s configuration are fed into a kinematic model to produce an initial

parameterization of the shape of the robot. Finally, this parameterization is refined through

optimization to minimize an energy defined for the background-subtracted image, which pro-

duces a segmentation for the robot. An example of this workflow is shown in Fig. 5.4. The

nomenclature used throughout this article is summarized in Table 5.1.

5.2.1 Background Subtraction

This first step is not expected to achieve a perfect segmentation—only to remove

elements of the image that are grossly inconsistent with the expected appearance of the robot.

Consequently, our algorithm does not require a specific background subtraction method. Instead,

this choice is left to the user as a design decision, which may depend on the information available

for the particular problem.

Consider an initial image I, a binary mask M(I,θθθ), and background-subtracted image

I′ = I ◦M, where ◦ is the Hadamard product. The mask, M, which delineates the foreground

from the background, is a function of the image, I, and a vector of parameters, θθθ , used to encode

any information about the background available to the user. For instance, if the user has access

to images of the background a priori, θθθ may be the weights of a Gaussian Mixture Model

[133], neural network [134], or other learned function [135], meant to capture statistics about

the background pixels. If, however, the user does not have data to train such a model, θθθ may
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Table 5.1. Nomenclature

ˆ(·) conversion of an element of R3 to an element of so(3)
s arclength variable of the continuum robot
L total arclength of the robot
u curvature of the robot centerline
p position vector of the robot centerline
R orientation matrix of the robot centerline
e3 the third element of the standard basis
q vector of the robot joint positions
f (·) mapping from robot joint positions to centerline curvature
Γ(·) mapping from robot centerline pose to 3D shape
S 3D shape of the robot
x0 a 3D point on the surface of the robot in the robot frame
ΩΩΩ rotation between camera frame and robot frame
t translation between camera frame and robot frame
x a 3D point on the surface of the robot in the camera frame
π(·) a perspective projection mapping
y a 2D pixel coordinate in the domain of the image
I raw image
M binary mask of background
I′ background subtracted image
Φ domain of image
B subset of image domain belonging to background
R subset of image domain belonging to projection of shape model
Rc complement of R
I(y) color value of the image of a pixel coordinate y

be the parameters used to specify a simple color mask that removes unlikely robot colors. In

our experiments, we adopt this later approach, but incorporating more complicated models is

straightforward.

5.2.2 Continuum Robot Shape Model

The key element of our proposed approach is to leverage a model of the expected

shape of the continuum robot to improve segmentation. Specifically, we consider a mapping
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Figure 5.2. Workflow diagram of the proposed algorithm.

u(s) = f (q) from the robot’s joint configuration, q ∈ Rm, to the curvature of its centerline,

u(s), which is parameterized by the arclength of the centerline, s ∈ [0,L]. There is extensive

literature on forward kinematic models specific for different continuum robot designs that define

such mappings (for a review see [16] and [136]). These models range in complexity from

simple constant curvature models, which do not vary with respect to s, to more complicated

mechanics-based models that define f (·) as the solution to a set of differential equations.

Given such a mapping, it is then straightforward to determine the position, p(s), and

orientation, R(s), of the robot centerline as a function of arclength by integrating the system of

equations,

ṗ = Re3

Ṙ = Rû,
(5.1)

with an appropriate set of initial conditions, p(0),R(0), where ˆ(·) maps the robot curvature to

so(3). It is important to note that the 1D centerline of the robot is distinct from its expected

shape, which is a surface embedded in 3D space. Therefore it is necessary to define another

mapping, S = Γ(p,R,s), which maps information about the robot centerline computed in Eq. 5.1

to the shape of the robot, S, effectively “drawing” the robot shape from its centerline. The
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exact definition of Γ(·) depends on the specific design of the robot to be segmented and is

straightforward to determine given that continuum robot designs to date have cross sections that

are radially symmetric about their centerline.

5.2.3 Segmentation by Shape Optimization

Consider an image I with domain Φ and area element dΦ. Our approach to segmentation

is inspired by methods such as [131][137], which pose an optimization problem to minimize

energies of the form

E =
∫

R
Ein(I)dΦ+

∫
Rc

Eout(I)dΦ, (5.2)

where Ein and Eout are functions that are integrated to capture statistics about pixels within a

region of the image, R ⊂ Φ, and within its complement, Rc = Φ\R, respectively. The region R

is determined from a model of the surface of the object to be segmented by first transforming

the object into the reference frame of the camera and then projecting the object onto the image

domain, Φ, using a projection model. Specifically, consider a model of an object with a shape

defined by surface S. Every point on the surface, x0 ∈ S, is transformed into the camera frame

by

x = ΩΩΩx0 + t, (5.3)

where Ω and t are the orientation and translation of the camera frame relative to the coordinate

frame in which S is defined. This transformation is followed by a projection,

y = π(x), (5.4)

which maps 3D points in the reference frame of the camera, x = [x,y,z]T , to 2D pixel locations

in the image domain, y. The region R is then defined to be the set of all points y in the image

domain (Fig. 5.3). The choice of π(·) is another design decision afforded to the user. Here, we

assume an ideal perspective projection model so that y = [x
z ,

y
z ]

T .
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Prior works typically assume that the pose of the target object in the camera frame,

{ , t}, is unknown and solve for these variables by minimizing Eq. 5.2. In our case, however,

the target object is a continuum robot for which the relative pose of the camera is usually known.

In many robotic applications, the camera is either mounted in a fixed position relative to the

robot [138] or is under direct robotic control—as is the case for many surgical robots [139].

Consequently, we instead choose to segment a continuum robot from an image by minimizing

an energy functional like Eq. 5.2 over a parameterization of the robot shape.

As described in Section 5.2.2, a model of the shape of a continuum robot is completely

defined by its curvature, u, which can be determined from the robot’s joint configuration, q. We

pose a modified optimization problem to find a new robot curvature, u′ = u+δu, that solves

Figure 5.3. A schematic of a continuum robot shape model and its projection onto an image.
The centerline of the model, p(s), is determined from the robot’s joint configuration and a
forward kinematic model. Points on the surface of the robot, S, are transformed from the robot
reference frame to the camera reference frame, given the relative pose of the camera as defined
by { , t}, and are then projected into the image frame with a mapping defined by π(·).
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the following:

min
δu

γ1

∫
R−B

Ein(I′(y))dΦ+ γ2

∫
Rc−B

Eout(I′(y))dΦ

+ γ3

∫
L
||δu||2ds︸ ︷︷ ︸
Ereg

+γ4

∫
R∩B

dΦ︸ ︷︷ ︸
Epen

. (5.5)

Here, Ein and Eout are the same as in Eq. 5.2, but we use a background subtracted version of the

image (Section 5.2.1), and the domains of integration are restricted to not include any pixels

in the domain of the background, B ⊂ Φ. Compared to Eq. 5.2, we also add two new terms

to our modified objective function. The first term, Ereg, is a regularization term that penalizes

large changes to the curvature of the robot and is integrated over the arclength of the robot

centerline. The second additional term, Epen, is the integral over all pixels that are common to

both the background and the projection of the robot shape onto the image. This term penalizes

solutions where large regions of the robot projection lie in the domain of the background. The

weights, γ1−4, are used to adjust the relative importance of each of the terms. We find that

setting the weights such that all terms in the cost function have the same order of magnitude

tends to produce effective results. There are many possible choices for the functions Ein and

Eout [131]. Here we adopt the method from [137]:

Ein,out(I(y)) = (I(y)−µµµ in,out)
2,

µµµ in,out =
∫

R,Rc I(y)dΦ∫
R,Rc dΦ

,

(5.6)

where I(y) ∈ R3 is the color at pixel location y, and µµµ in,out is the average color over the region

R,Rc.
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5.3 Experimental Evaluation

In this section, we empirically evaluate the performance of our algorithm under different

conditions. We do so for the segmentation of a concentric tube robot (CTR), which is a

specific class of continuum robot. We outline the details of the experiment, discuss metrics for

characterizing the performance, and finally analyze the results.

5.3.1 Experimental Setup

CTRs consist of precurved, flexible, telescoping tubes which can be translated and rotated

relative to one another by an actuation unit. As the tubes are actuated, they interact in bending

and torsion to reach mechanical equilibrium and produce different robot configurations [14, 95].

The specific CTR used in this experiment has the same tubes and actuation unit as described in

[97]. The kinematic model we use to determine the robot shape from its joint angles is based on

the mechanics of Cosserat rods and is detailed in [18]. To draw the shape of the robot from its

Figure 5.4. (a) Example of a raw, color image prior to segmentation by our proposed algorithm.
(b) The image after background subtraction has removed colors inconsistent with the robot body.
(c) Projection of the initial robot shape (white) onto the background subtracted image clearly
deviates from the true robot shape (blue). (d) Projection of the optimized robot shape (white)
onto the background subtracted image. The optimized shape aligns much better with the true
robot shape (blue).
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Figure 5.5. The experimental setup consists of a concentric tube robot mounted above a piece
of tissue. An external camera is attached to an articulating locking arm to enable images to be
taken from both an “orthogonal” and an “endoscopic” viewpoint.

centerline, we define the function

S(s,φ) = Γ(p,R,s,φ) = p(s)+R(s)Rz(φ)


ρ(s)

0

0

 (5.7)

where R(s)Rz(φ) is a rotation of φ radians about the tangent to the robot centerline and ρ(s) is

the diameter of the outermost robot tube at arclength location s.

To evaluate our proposed method, we gather 4 sets of 20 images of this robot from

an external camera (Logitech C920) as the tip of the CTR follows a trajectory that spans a

large region of its workspace (Fig. 5.5). At the time when each image is taken, the robot joint
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values are also recorded for use in the algorithm. Half of the image data collected (i.e. 40

images) comes from an “orthogonal” viewpoint—where the camera is oriented orthogonal to the

insertion axis—while the other half comes from an “endoscopic” viewpoint—where the camera

is oriented nearly parallel to the insertion axis of the robot. The first viewpoint is more common

in lab settings while the second, more challenging viewpoint is similar to how a camera might

be mounted for use with a minimally invasive surgical robot. The endoscopic viewpoint is more

challenging since differences in the robot’s configuration are difficult to discern and because the

robot is often partially occluded by its own body and/or its actuation system.

From each viewpoint, we collect 2 sets of data, one in which the robot is partially

occluded by a laparoscopic instrument (Endopath monopolar cautery scissors, Ethicon) and one

in which it is not. The camera pose relative to the robot is determined from markers affixed to

the robot at known locations. All images are taken against a background of animal tissue which

is similar in color to the robot tubes and meant to simulate a surgical environment (Fig. 5.5).

After collection, the images are hand-segmented to produce ground truth labels that can be used

to evaluate the performance of the algorithm. We use the Intersection Over Union (IoU) of the

algorithm segmentation against the ground truth as the performance metric, which is computed

as:

IoU =
|A∩B|
|A∪B|

. (5.8)

Higher IoUs indicate better performance and an IoU of 1 indicates a perfect match between the

algorithm segmentation and ground truth. We also report IoUs for the segmentation produced

by the unoptimized projection of the robot (i.e. δu = 0) and for the background subtraction for

comparison with our algorithm. The color mask used for background subtraction (Section 5.2.1)

and the weights in the objective function used for optimization are the same for all images.
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5.3.2 Results

We record the mean IoU plus or minus one standard deviation for each method on each

data set in Table 5.2. From these numbers, it is clear that background subtraction by color

thresholding alone is a poor way to segment the robot when it is similar in appearance to the

background (top row of Table 5.3), regardless of the viewing angle, which is consistent with

previous works [123, 124]. This result motivates the need for a more advanced approach for

segmentation, even when the entire robot body is visible in the image.

Projecting the unoptimized shape of the robot gives better results than background

subtraction alone but still fails to accurately capture all of the pixels of the robot (middle row of

Table 5.3). Although we use a sophisticated mechanical model to predict the shape of the robot,

there are many sources of error that contribute to the misalignment between the projection of

the robot shape model and the actual image of the robot. Examples of possible sources of error

include, but are not limited to, the effects of unmodeled phenomena like friction, backlash, and

fabrication tolerances [100]; uncertainty in model parameters such as bending stiffness or tube

curvatures; and small calibration errors in camera pose or joint offsets.

Our proposed algorithm, however, results in significantly higher IoUs across all test

conditions. This improved result is due to the fact that our method uses data from the image to

refine the model of the robot’s shape, consequently producing a projection that more closely

agrees with the ground truth labels (bottom row of Table 5.3). Note that for the endoscopic

viewpoint datasets, we report two differnt IoUs: a raw IoU, calculated as previously described,

and an adjusted IoU, which excludes segmentation pixels that are in occluded regions. The

rationale for this adjusted IoU is that the ground truth labels only capture regions of the

image where the robot is visible. The projection of the robot shape model, however—whether

optimized or not—does not account for any occlusions in the environment. This feature is

beneficial in that it provides the user with a segmentation of the entire robot—even portions that

are not visible—but makes the IoUs of the optimized and unoptimized projections more difficult
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to distinguish numerically because a large percentage of both projections is occluded by the

actuation unit of the robot. By removing the pixels projected into the occluded regions from the

IoU calculation, the improvement due to optimization of the robot shape model becomes more

apparent.

5.4 Discussion

In conclusion, we have presented a new algorithm for robust continuum robot segmen-

tation that does not require labeled training data. Our approach poses an optimization over

changes to a parameterization of the shape of the robot. It produces a segmentation of the

robot even for challenging cases, such as when the background is similar in color to the robot

or the robot is only partially visible. We validated our proposed approach empirically and

demonstrated that our method shows significant, quantifiable improvement over color-based

segmentation approaches, and is robust to errors in the model used to describe the shape of the

robot and its projection.

There are several possible extensions of this method and directions for future work.

First, our current method assumes that the robot operates in free space, unaffected by external

forces arising from, for example, tissue interaction that may be present in a real-world scenario.

To account for this, our approach can be adapted to utilize more sophisticated kinematic

models that account for the effect of external loads on the robot shape [122]. Second, the

computational efficiency of the algorithm can be improved by investigating lower-dimensional

parameterizations of the robot shape, warm-starting the optimization, and exploiting parallel

computations that could enable use in real-time applications. Finally, this method could be

combined with learning-based segmentation techniques for improved performance, similar to

the automated labeling method described in [140].
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Chapter 6

Conclusions
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This dissertation has presented several different contributions to the problems of model-

ing, estimation, and control for continuum robots particularly in applications where the robot is

subjected to constraint forces from unknown obstacles in its surroundings. In this chapter, we

will briefly summarize and compare these methods, as well as suggest potential areas to extend

this work.

6.1 Summary and Comparison

Overall, we have presented four new algorithms related to the modeling, estimation, and

control of continuum robots and have highlighted the benefits of these new approaches and

their potential applications. Chapter 2 presented a novel control strategy for growing continuum

robots, utilizing real-time position and orientation measurements. The effectiveness of this

approach was demonstrated in both constrained and unconstrained scenarios with a physical

system. Chapter 3 introduced online generalized product of experts (OGPoE), an online learning

algorithm based on Gaussian Processes. The algorithm’s capabilities were showcased through

online learning of the kinematics of a concentric tube robot, in both free space and in the

presence of dynamic environmental constraints. Chapter 4 focused on the development of a

dynamic model specific to cable-driven continuum robots. This model facilitated the design of

an observer capable of estimating the robot’s full state using only partial state feedback. The

observer was integrated into a control loop aimed at rejecting a constant disturbance applied to

the robot body, and the algorithm was validated on hardware. Chapter 5 addressed the challenge

of segmenting a continuum robot from a noisy image without the need for training data. An

algorithm was proposed to accomplish this task, offering a geometric solution to this particular

segmentation problem.

The works presented in Chapters 2-4 are directly comparable in that these works require

models of the continuum robot that must be updated online from sensor data in order to reflect

how unknown obstacles effect the robot shape. The ideal continuum robot model to use in this
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case, where the robot might interact with unknown obstacles, would have several important

qualities, including: high prediction accuracy, ability to capture dynamic effects, global validity,

easy interpretability, ability to generalize across robot designs, low complexity parameter

updates, ability to update without integrated sensor measurements. Of course, no one model

satisfies all of these qualities, but we show in Fig 6.1 the subset that each of our proposed

methods does achieve.

Figure 6.1. A graphic comparing the modeling attributes of the works presented in Chapters 2
(left column), 3 (center column), and 4 (right column).

The Jacobian-based method shown in Chapter 2 is the least complex and least compu-

tationally expensive to use for prediction due to the very low number of parameters it uses to

represent the robot Jacobian. However, this method is limited in that it is based on a linear

approximation and is specific to the growing robot design. The Gaussian Process based method

detailed in Chapter 3 avoids all of these previous issues: it is general across designs, captures

the full non-linearity of the problem, and builds a global map that could be used in a multi-

step planning algorithm. The cost of these advantages is a drastic increase in complexity and

computational cost. Finally, the modeling approach shown in Chapter 4 is unique in that it can

predict time-varying behavior of the robot, which makes it more compatible with the vast field
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of control theory developed for classical robotic systems. Compared with the other approaches

it has a moderate level of complexity and relatively low computational cost.

6.2 Continuum Robot Modeling

Chapters 2, 3 and 4 each present a different approach to the problem of modeling a

continuum robot subjected to unknown external forces. Given the various tradeoffs of these

approaches, a direction of future work might involve unifying the proposed approaches in a

way that takes advantage of their respective strengths, while mitigating their weaknesses. One

possible approach could be to learn low parameter symbolic models of the robot dynamics

with the goal being that the learned symbolic representation retains some of the high predictive

accuracy learning methods are known for, while also being interpretable to the user. Some

researchers are exploring algorithms along this line of thought for high dimensional PDE

systems already [141]. Given that we have already shown how it is possible to achieve good

modeling results with analytical approaches alone, it is reasonable to expect that incorporating

symbolic learning may further improve their accuracy without sacrificing interpretability. It

may even be possible to learn a model that is guaranteed to be controllable [142] provided the

learning problem is posed correctly and its computational tractability is carefully considered.

6.3 Continuum Robot Estimation

Due to the limited nature of the sensor information available for continuum robots, there

are usually components of the robot’s dynamic or kinematic model that need to be modified

online, especially if the robot is being subjected to unknown external forces. The models used

in Chapters 2, 3, 4, and 5 all have parameters that must be updated from sensor information. In

Chapters 3, and 5, this update is posed as a large, nonlinear optimization which typically finds

parameters that fit the sensor data quite well. However, there are many practical challenges

associated with translating these approaches outside the laboratory setting due to numerical
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problems, such as sensitivity to initial conditions and convergence to poor local optima, as well

as long run times for nonlinear optimization problems. Nonetheless, improved hardware and

optimized implementation of the algorithms may be sufficient to address these issues and are

one avenue for future work [143].

The algorithms in Chapter 2 and Chapter 4 avoid the problems of nonlinear optimization

by specifying a set of rules that update model parameters in computationally inexpensive and

numerically stable ways. These approaches, consequently, are much more readily amenable

to real world use. Potential future work in this area of estimation would involve using more

analytical techniques from control theory to improve these update rules and guarantee their

long term behaviors [144]. Additional future work may also include how best to fuse the

many different kinds of sensor measurements that have been used for continuum robots in

the past including force-torque, position, tension, image, and Fiber Bragg grating sensors.

The opportunity to apply rigorous methods to these continuum robot estimation problems is a

relatively new in the literature and we believe that Chapter 4 is a significant contribution to this

research.

6.4 Continuum Robot Control

As is seen in Chapters 2 and 4, the problems of estimation and control are tightly coupled,

and both depend on the amount of sensor information that is available. Chapter 2 focuses on

the scenario where there is sensing integrated into the robot that can be used in the control and

estimation loop, while Chapter 4 focuses on the case where this sensing is not available. In

both control loops, we assume the robot behaves quasi-statically and use low-pass filtering to

address issues of sensor noise. We show that despite these assumptions and the limited sensor

data available, it is possible to achieve accurate continuum robot control, even when there are

external forces acting on the robots.

There are many possibilities to extend the methods presented in these works. Robust
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control methods can be developed to mitigate the effect of sensor noise [145] and adaptive

approaches may be useful in cases where there are slowly time-varying processes (such as

friction) that effect the robot dynamics [146]. Finally, the dynamics model proposed in Chapter

4 could be used in a feedback-linearization style control scheme to achieve high-performance

continuum robots capable of rapid movements and minimal oscillations. This will certainly

require commensurately high-performance hardware and the question of whether or not the

model accuracy is sufficient remains to be answered.

6.5 Broader Considerations

Ultimately, while the development of better algorithms will continue to be a key part in

improving continuum robots, it is not the only factor. Design, sensing, modeling, estimation, and

control are all fundamentally coupled problems for these robots that will need to be considered

in tandem in order to continue making progress. We hope that the work in this dissertation will

help to advance the state of the art for these robots, generate new ideas for future researchers,

and increase adoption of continuum robot technology outside of the lab where it may more

directly impact people’s lives.
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and Sébastien Van der Vorst. Transoral robotic surgery (tors) with the medrobotics
flex™ system: first surgical application on humans. European Archives of Oto-Rhino-
Laryngology, 272(6):1451–1455, 2015.

[139] Anthony R Lanfranco, Andres E Castellanos, Jaydev P Desai, and William C Meyers.
Robotic surgery: a current perspective. Annals of surgery, 239(1):14, 2004.

[140] Cristian da Costa Rocha, Nicolas Padoy, and Benoit Rosa. Self-supervised surgical tool
segmentation using kinematic information. In 2019 International Conference on Robotics
and Automation (ICRA), pages 8720–8726. IEEE, 2019.

[141] Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations
from data by sparse identification of nonlinear dynamical systems. Proceedings of the
national academy of sciences, 113(15):3932–3937, 2016.

[142] Sumeet Singh, Spencer M Richards, Vikas Sindhwani, Jean-Jacques E Slotine, and Marco
Pavone. Learning stabilizable nonlinear dynamics with contraction-based regularization.
The International Journal of Robotics Research, 40(10-11):1123–1150, 2021.

[143] Erik Smistad, Thomas L Falch, Mohammadmehdi Bozorgi, Anne C Elster, and Frank
Lindseth. Medical image segmentation on gpus–a comprehensive review. Medical image
analysis, 20(1):1–18, 2015.

[144] Shangke Lyu and Chien Chern Cheah. Data-driven learning for robot control with
unknown jacobian. Automatica, 120:109120, 2020.

[145] Michael Green and David JN Limebeer. Linear robust control. Courier Corporation,
2012.

[146] Miroslav Krstic, Petar V Kokotovic, and Ioannis Kanellakopoulos. Nonlinear and
adaptive control design. John Wiley & Sons, Inc., 1995.

115


	Dissertation Approval Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Abstract of the Dissertation
	Introduction
	Motivation
	Prior Work
	Design, Actuation, and Sensing
	Modeling
	Estimation and Control

	Contributions
	Dissertation Overview

	Closed-loop Position Control for Growing Robots via Online Jacobian Corrections
	Introduction
	Related Works
	Contributions

	Methods
	Problem Definition
	Orientation Correction
	Magnitude Correction
	Control Law

	System Overview
	Growing Robot Hardware
	Characterizing System Error

	Experiments and Results
	Simulation
	Point Reaching in Free Space
	Point Reaching in a Constrained Environment

	Discussion
	Acknowledgements

	Learning Non-Parametric Models in Real Time via Online Generalized Product of Experts
	Introduction
	Related Works
	Contributions

	Background
	Streaming Sparse Gaussian Process Approximations
	Generalized Product of Experts
	DP-Means

	Online Generalized Product of Experts
	Algorithm Design
	Implementation

	Simulated Evaluation
	Toy Example
	SARCOS Arm Benchmark

	Hardware Evaluation
	Experimental Setup
	Online Learning of Robot Kinematics in Free Space
	Online Learning of Robot Kinematics with Dynamic Loading Conditions

	Discussion
	Acknowledgements

	Low Frequency Disturbance Rejection  for Cable-Driven Continuum Robots without Integrated Sensing
	Introduction
	Related Works
	Contributions

	Modeling
	Kinematics
	Dynamics

	Observer-Based Control
	High Gain Observer Design
	Observer Analysis
	Reference Input Control via Integral Action for Disturbance Rejection

	Experiments
	Setup
	System Identification
	Model Validation
	Setpoint Regulation with Constant Disturbance

	Discussion
	Acknowledgements

	Image Segmentation for Continuum Robots from a Kinematic Prior
	Introduction
	Related Works
	Contributions

	Methods
	Background Subtraction
	Continuum Robot Shape Model
	Segmentation by Shape Optimization

	Experimental Evaluation
	Experimental Setup
	Results

	Discussion
	Acknowledgements

	Conclusions
	Summary and Comparison
	Continuum Robot Modeling
	Continuum Robot Estimation
	Continuum Robot Control
	Broader Considerations

	Bibliography



