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ABSTRACT OF THE DISSERTATION

Convergence of Galerkin Variational Integrators for Vector Spaces and Lie
Groups

by

James Hall

Doctor of Philosophy in Mathematics with a specialization in Computational Science

University of California, San Diego, 2013

Professor Melvin Leok, Chair

In this dissertation we discuss the construction and convergence of high order

structure preserving numerical methods for problems in Lagrangian mechanics. Specifi-

cally, we make use of the discrete mechanics framework to construct symplectic integra-

tors which have convergence which is optimal, in a certain sense. We then demonstrate

how this optimal convergence can be leveraged to construct integrators of arbitrarily

high order or with geometric convergence. We further show how these methods can be

used to construct continuous approximations to the dynamics of a Lagrangian system,

and show that these approximations are also very high order and have excellent structure

preserving properties.

We discuss the formulation of symplectic integrators on both vector spaces and

xii



Lie groups, using a Galerkin construction to induce a variational integrator. We begin

with the formulation for vector spaces, and then extend this construction to Lie groups

through the use of a convenient coordinate chart. We provide the necessary conditions

for optimal convergence for both the vector space and Lie group constructions, and

demonstrate that many canonical systems automatically satisfy these conditions. We

close with several numerical experiments demonstrating the predicted convergence, and

discuss further extensions of this work.
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Chapter 1

Introduction
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Research into geometric mechanics has proven to be an important development

in the study of the behavior of mechanical systems. Broadly speaking, the study of ge-

ometric mechanics offers insight into the behavior of mechanical systems by examining

the underlying geometric properties of the system, particularly conserved quantities that

arise from symmetries of the system. These conserved quantities constrain the evolution

of the system in important ways; by understanding these constraints, we both study the

behavior of many important systems which arise across diverse fields including engi-

neering, physics, chemistry, etc., even when analytic solutions are not available to us.

One of the important practical consequences of the research into geometric me-

chanics has been the development of numerical methods which conserve or approxi-

mately conserve the geometric invariants revealed by the continuous theory. The de-

velopment of these methods is important because they generally construct more faithful

approximations to the behavior of systems with structure than methods which do not

conserve the geometric structure. Numerical methods which respect the underlying ge-

ometric structure of the systems they approximate are referred to as geometric methods

or structure-preserving methods, and there is a vast collection of them. Because the

important underlying structures change from system to system, different methods are

appropriate for different types of problems.

This dissertation focuses on the development of a new class of numerical meth-

ods for problems in Lagrangian mechanics. Working from the framework of discrete

mechanics, a general construction for symplectic integrators is presented. By leverag-

ing results from approximation theory, functional analysis, and geometric mechanics,

it is shown that the collection of methods which result from this construction have ex-

ceptional properties. Specifically, these methods are high-order, symplectic, momentum

preserving, highly stable, and robust over long term simulations. Furthermore, they can

be adapted to address the specialized needs of the problems, and as such represent a

significant development in the field of structure preserving numerical methods.

The remainder of this introduction presents two example problems with signifi-

cant geometric structure, and some of the preliminary mathematical theory, which will

be briefly reviewed in Chapters 2 and 3. A brief summary of the approach and major

results of the dissertation will also be presented. Chapter 2, which is a reprint of a paper
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which has been submitted for publication, discusses the construction for problems where

the configuration space is a vector space, and the convergence of the numerical method

in this case. Chapter 3, which is a preprint of a paper being prepared for publication,

discusses the extension of the vector space method from Chapter 2 to Lie groups. The fi-

nal chapter, the conclusion, summarizes the major results and suggest further directions

for this research.

1.1 Motivation

It is natural to wonder whether there is much to gain from utilizing numerical

methods which preserve the geometric structure of a mechanical system. Structure pre-

serving numerical methods can be more difficult to construct and analyze than classical

methods, and there already exists a well developed theory of numerical methods for gen-

eral numerical ordinary differential equations. In this section, two example problems are

presented which provide examples of cases where the geometry of the mechanical sys-

tem offers significant insight into the behavior of the system, and where geometric nu-

merical methods obviously outperform their classical counterparts. Furthermore, these

examples are neither exotic nor pathological; they both arise from simple and common

mechanical systems, and understanding their behavior remains an important field which

is still under active research.

1.1.1 Kepler N-Body Problems and Stability of the Solar System

The first example problem is the Kepler N-body problem and the dynamics of

the Solar System. The Kepler N-body problem describes the dynamics of N celestial

bodies under mutual gravitational attraction. Kepler’s law of gravitation states that the

acceleration of two bodies under the mutual influence of gravity is proportional to the

masses of the two bodies and inversely proportional to the square of the distance between

them,

q̈i =
Gmim j∥∥qi−q j

∥∥3
2

(
q j−qi

)
,
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where we have used qi to index the position of body i. This problem, while very well

studied, still lacks a general closed form solution for N > 2. Perhaps more surprisingly,

the long term stability of the configuration of our Solar System under these laws of

gravitation is an open question. Numerical integration has been an important tool for

investigating stability. However, if standard numerical techniques are used to numeri-

cally integrate the Solar System, the resulting approximations are deeply flawed, as can

be seen in Figures 1.1a and 1.1b.

While experience tells us that the simulations in Figures 1.1a and 1.1b are hope-

lessly incorrect in their qualitative behavior, geometric mechanics can offer a deeper

insight into the flaws of these numerics. Plots of the evolution of energy of the system

over time demonstrates that the numerical solutions have incorrect energy behavior, as

energy is an invariant for the Kepler N-body system, and these numerical simulations

have dramatic energy drift. Geometric mechanics places our intuition on firm ground;

while we cannot say for certain that all of the planets will maintain stable orbits over

long periods of time, we know that the numerical simulations of decaying orbits are cer-

tainly incorrect, as they wildly violate the conservation laws associated with this system.

However, when a symplectic integrator is applied to this problem, as in Figure

1.1c, the numerical solution has much better qualitative behavior. While the symplectic

integrator has the same order of accuracy as the classical methods, it provides a solution

which approximately conserves energy. Thus, because the numerical solution in Figure

1.1c has similar geometric structure to the true solution, the symplectic integrator pro-

vides an approximation which much more closely resembles the qualitative behavior of

the system, and hence offers a better understanding of the dynamics of the system. In

fact, the invention of specially constructed symplectic integrators was a key develop-

ment for much of the numerical investigation of long term Solar System behavior, as

described in Sussman and Wisdom [7].

1.1.2 Lie Group Problems and the Rigid Body

The second example problem is the evolution of the rigid body in the absence

of external forces. In addition to having conserved quantities associated with symme-

tries of the system, this problem has the added structure that it evolves on the group



5

−3

−2

−1

0

1

2

3 −3

−2

−1

0

1

2

3
−0.5

0

0.5
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Figure 1.1: A comparison of numerical integrations of the Solar System using different
numerical methods. All three methods used are O (h) where h is the step size for the
one-step map.
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of rotations, SO(3). As the system evolves, the dynamics can be described through a

matrix valued function Q(t) with the properties Q(t)T Q(t) = I and detQ(t) = 1 for

all t. When formulated as a differential equation, it is most convenient to describe the

evolution of this system with the system of equations

ẏ = y×w

y = Θw

Q̇ = QW

where y is a vector in R3 that describes the angular momentum of the rigid body, Θ =

diag(I1, I2, I3) is the diagonal matrix of the moments of inertia of the rigid body, w is a

vector in R3 that describes the angular velocity of the rigid body, and W is the hat map

of w, given by

W = ŵ =


0 −w3 w2

w3 0 −w1

−w2 w1 0

 .

Naively applying standard discretizations to these methods is disastrous. Not only will

the method fail to conserve two important invariants, the energy E = 1
2 ∑

3
i=1 I−1

i y2
i and

the angular momentum Ω = 1
2 ∑

3
i=1 y2

i , but the approximate solution will quickly lose

orthogonality, causing the solution to drift out of the Lie group. Such behaviors are

qualitatively undesirable, and render the approximate solution essentially meaningless,

as the numerical solution will no longer be in the configuration space SO(3). Again,

geometric methods produce much better results. By designing methods that preserve

conserved quantities and respect the group structure of the analytic solution, numerical

methods can be constructed for problems that are inherently out of reach of methods

that do not respect the group structure.
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(a) Numerical integration of the rigid body
using the explicit Euler method.

(b) Numerical integration of the rigid body
using the MATLAB routine ode45.

Figure 1.2: Behavior of the angular momenta of the numerical integration of the rigid
body. The sphere represents the invariant 1

2 ∑
3
i=1 y2

i = Ω which is conserved in the an-
alytic solution of the rigid body. Furthermore, the analytic solution of the rigid body
also has the invariant H = 1

2 ∑
3
i=1 I−1

i y2
i . The solution is constrained to intersections of

the surfaces described by these two invariants, and hence should lay on closed curves
on the surface of the sphere depicted. Clearly, neither numerical solutions exhibit this
behavior.
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1.2 Preliminaries

Both Chapter 1 and Chapter 2 are self contained papers, however, the following

section will briefly review some of the results that are used throughout both works. Some

of the relevant material, particularly that pertaining to discrete geometric mechanics,

will be reviewed in the chapters.

1.2.1 Geometric Mechanics and Discrete Geometric Mechanics

Geometric Mechanics

Geometric mechanics is the study of mechanical systems that makes use of the

geometric structure of the systems. There are two basic perspectives of geometric me-

chanics: Hamiltonian and Lagrangian mechanics. The work done in later chapters is

almost exclusively from the Lagrangian perspective, but there are several important

structures that arise naturally from Hamiltonian mechanics, so for completeness, a brief

discussion of both perspectives is included below.

Hamiltonian Mechanics

Even though the primary perspective in this dissertation is the Lagrangian vari-

ational formulation, Hamiltonian mechanics will be introduced first. This is because

some of the important geometric structure, particularly the symplectic form, arise very

naturally from the Hamiltonian formulation of mechanics. This is only a short introduc-

tion; for a more extensive discussion, the interested reader is referred to Marsden and

Ratiu [6].

Consider a dynamical system where at each point in time, the state of the system

can be described by a point on a n-dimensional manifold Q. Q is referred to as the

configuration manifold or configuration space, and the cotangent bundle associated with

a configuration space, T ∗Q, is referred to as phase space. On the configuration space,

local coordinates are denoted by q and on phase space local coordinates are given by

(q, p).

A dynamical system is said to be Hamiltonian if there exists a Hamiltonian func-

tion H : T ∗Q→ R such that the dynamics of the system over the time interval [0,T ]



9

satisfy

δ

∫ T

0
〈p, q̇〉−H (q, p)dt = 0

for fixed q(0) and q(T ), where δ denotes the variational derivative. This variational

formulation is equivalent to the first-order system, referred to as Hamilton’s equations:

q̇ =
∂H
∂ p

(q, p) (1.1)

ṗ =−∂H
∂q

(q, p) .

Define the canonical two-form Ω, which will be referred to as the symplectic form,

associated with T ∗Q as

Ω(p,q) = dqi∧d pi.

If Q = Rn, then T ∗Q can easily be identified with R2n, and the canonical two-form is

represented as a quadratic form on R2n, Ω(v,w) = vT Ωw, with the symplectic matrix

Ω =

(
0 I

−I 0

)

where I is the n×n identity matrix. Given a Hamiltonian function H, the Hamiltonian

XH vector field (1.1) associated with H is given by

iXH Ω = dH

where iXH is the interior product or contraction by XH and d is the exterior derivative. In

Rn, the vector field X has the coordinate expression

X (q, p) = Ω
−1

∇H (q, p) ,

which is simply (1.1) written in terms of the symplectic matrix. For any flow of a

Hamiltonian vector field, φt , the symplectic form is conserved along the flow, that is



10

φ∗t Ω = Ω for any t ∈ [0,T ]. Flow maps that have this property are called symplectic.

Lagrangian Mechanics

While in the Hamiltonian formulation the fundamental object was the Hamilto-

nian H : T ∗Q→R, the fundamental object in Lagrangian mechanics is the Lagrangian,

L : T Q→ R, which is a function on the tangent bundle of Q. The Lagrangian induces

a functional over the space of second differentiable curves on Q, known as the action,

S : C2 ([0,T ] ,Q)→ R, given by

S(q) =
∫ T

0
L(q(t) , q̇(t))dt.

For mechanical systems, Hamilton’s principle states the dynamics of the system are

the stationary points of the action for a certain Lagrangian with prescribed boundary

conditions q(0) = q0, q(T ) = qT , that is, the solutions satisfy

δS(q) = δ

∫ T

0
L(q(t) , q̇(t))dt = 0. (1.2)

An alternative formulation is to view solutions as extremizers of the action, that is if

q̄(t) describes the dynamics of the system, then q̄(t) satisfies

q̄(t) = argext
q(t)∈C2([0,T ],Q)
q(0)=q0,q(T )=qT

∫ T

0
L(q, q̇)dt. (1.3)

Using the calculus of variations it can be shown that (1.2) and (1.3) are equivalent to the

solutions satisfying the Euler-Lagrange equations:

∂L
∂q

(q, q̇)− d
dt

∂L
∂ q̇

(q, q̇) = 0. (1.4)

Lagrangian functions typically take the form of kinetic energy minus potential energy,

and for Lagrangians of the canonical form L(q, q̇) = 1
2 q̇T Mq̇−V (q), where M is a mass

matrix and V : Q→ R is the potential energy, the Euler-Lagrange equations reduce to

Newton’s second law of motion: Mq̈ =−∇V (q).
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For sufficiently smooth Lagrangians, there exists a correspondence between the

Lagrangian formulation for the dynamics on the tangent bundle, T Q, and a Hamiltonian

formulation for the dynamics in phase space, T ∗Q. Given a Lagrangian L, define the

Legendre transform FL : T Q→ T ∗Q,

FL(q, q̇) =
(

q,
∂L
∂ q̇

(q, q̇)
)

or

p =
∂L
∂ q̇

(q, q̇) . (1.5)

A Lagrangian is said to be hyperregular if the Legendre transform is a global isomor-

phism. For any hyperregular Lagrangian it is possible to define a Hamiltonian map

H : T ∗Q→ R

H (q, p) = 〈p, q̇〉−L(q, q̇) .

where q̇ is considered a function of (q, p) through (1.5). Using this definition, an el-

ementary calculation shows that the Euler-Lagrange equations (1.4) are equivalent to

Hamilton’s equations (1.1).

Formulating mechanics from the Lagrangian viewpoint offers many insights into

the geometric structure of the dynamics. For example for hyperregular Lagrangians, the

flow of the Euler-Lagrange equations φt preserves the symplectic form on the phase

space of Q,

ΩL = φ
∗
t ΩL,

where ΩL is the symplectic form Ω pulled back to T Q by the Legendre transform.

Additionally, Noether’s Theorem reveals that every symmetry of a Lagrangian

gives rise to a conserved quantity.

Theorem 1.2.1. (Noether’s Theorem) Consider a system with Hamiltonian H (q, p) and

Lagrangian L(q, q̇). Suppose {gs : s ∈ R} is a one-parameter group of transformations
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(gs ◦gr = gs+r) which leaves the Lagrangian invariant:

L
(
gs (q) ,g′s (q) q̇

)
= L(q, q̇)

for all s and all (q, q̇). Let

a(q) =
d
ds

∣∣∣∣
s=0

gs (q)

be defined as the vector field with flow gs (q). Then

I (p,q) = 〈p,a(q)〉 ,

where 〈·, ·〉 denotes the canonical pairing between a vector and a one-form, is a con-

served quantity along the flow of the Hamiltonian system.

Of course, Noether’s Theorem also induces a conserved quantity along the flow

of the Lagrangian system through the Legendre transform.

An important special case of Noether’s Theorem is when the Lagrangian is in-

variant under the action of a Lie group, G, where the invariance of the Lagrangian leads

to the theory of equivariant momentum maps, J : T ∗Q→ g∗ and JL : T Q→ g∗, where g

is the Lie Algebra associated with the Lie Group G and JL is J pulled back to T Q by the

Legendre transform. A classical example of an equivariant momentum map induced by

a Lie group is the invariance of the Lagrangian under the action of SO(n), which leads

to the principle of conservation of angular momentum.

Discrete Geometric Mechanics

The developments in this dissertation are deeply rooted in the theory of dis-

crete mechanics. Discrete mechanics provides a powerful theoretical framework for

constructing numerical methods by developing a discrete theory of mechanics which

closely parallels the continuous geometric theory. By using a variational approach, dis-

crete mechanical systems are endowed with many structures which are analogous to

structures in continuous mechanics. Integrators constructed from this framework hence

have conservation properties similar to the conservation properties of the exact flow. An
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extensive overview can be found in Marsden and West [5].

The fundamental object in discrete mechanics is the discrete Lagrangian Ld :

Q×Q→ R. The discrete Lagrangian can be viewed as an approximation to the action

of the Lagrangian over a short interval,

Ld (q0,q1,h)≈ ext
q(t)∈C2([0,h],Q)
q(0)=q0,q(h)=q1

∫ h

0
L(q, q̇)dt.

The discrete Lagrangian is used to form the discrete action sum, which approximates

the action of the entire time interval [0,T ],

S
(
{qi}N

i=1

)
=

N−1

∑
i=1

Ld (qi,qi+1)≈
∫ T

0
L(q, q̇)dt, (1.6)

where T = Nh. Given a fixed q1 and qN , requiring the stationarity of the action sum

yields the discrete Euler-Lagrange equations,

D2Ld (qi−1,qi)+D1Ld (qi,qi+1) = 0. (1.7)

The discrete Euler-Lagrange equations implicitly define an update map, FLd : Q×Q→
Q×Q, where FLd (qi−1,qi) = (qi,qi+1) if qi−1, qi, and qi+1 satisfy the discrete Euler

Lagrange equations. This update map is known as the discrete Lagrangian flow map.

They additionally define a pair of discrete Legendre transforms FL±d : Q×Q→ T ∗Q,

given by

FL+Ld (q0,q1)→ (q1, p1) = (q1,D2Ld (q0,q1)) ,

FL−Ld (q0,q1)→ (q0, p0) = (q0,−D1Ld (q0,q1)) .

Combining the discrete Legendre transforms with (1.7) gives an update map, F̃Ld :

T ∗Q→ T ∗Q through phase space known as the discrete Hamiltonian flow map. The re-

lationship between the discrete Lagrangian flow map, the discrete Legendre transforms,

and the discrete Hamiltonian flow map is summarized by the following commutative
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diagram,

(qk, pk)
F̃Ld // (qk+1, pk+1)

(qk−1,qk)

F+Ld

??

FLd

// (qk,qk+1) FLd

//

F+Ld

==

F−Ld

__

(qk+1,qk+2)

F−Ld

bb
.

The discrete Lagrangian flow map generates a sequence of points which can be

considered a discrete analogue to the flow of the Euler-Lagrange equations. Hence, the

discrete Lagrangian flow map can be viewed as a numerical method for approximating

the flow of the Euler-Lagrange equations. Numerical methods constructed this way

are known as variational integrators, since they are induced from a discrete variational

principle (1.6). Like the flow of the Euler-Lagrange equations, the discrete flow has

several important geometric properties.

1. The discrete flow map is symplectic, that is

F∗Ld
ΩLd = ΩLd ,

where ΩLd =
(
FL±d

)∗
Ω.

2. There exists conserved momentum maps through a discrete Noether’s theorem (as

stated in Hairer et al. [1]),

Theorem 1.2.2. (Discrete Noether’s Theorem) Suppose a discrete Lagrangian

Ld (qk,qk+1) is invariant under the action of a one-parameter group of transfor-

mations {gs : s ∈ R},

Ld (gs (qk) ,gs (qk+1)) = Ld (qk,qk+1) for all (qk,qk+1) and s.

Let a(q) = d
ds
∣∣
s=0 gs (q), and define

I (p,q) = 〈p,q〉 .
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Then I (pk,qk) = I (pk+1,qk+1) for all k.

3. The energy of the system remains bounded for exponentially long periods of time.

It is the existence of these geometric properties that make variational integra-

tors extremely powerful numerical methods. The discrete mechanics framework gives

a systematic method for constructing integrators which are automatically symplectic,

momentum preserving, and which have stable energy behavior. Because of these favor-

able properties, there has been significant recent interest into constructing variational

integrators.

1.2.2 Some Results for Functional Analysis

Many of the main results of this paper are a result of studying the behavior of

stationary points of functionals that approximate a limiting functional. As such, sev-

eral results and techniques from functional analysis will be used repeatedly. They are

briefly summarized below, and more thorough discussions can be found in Kurdila and

Zabarankin [2] and Larsson and Thomée [3].

Poincaré’s Inequality

Theorem 1.2.3. (Poincaré’s Inequality) If Ω is a bounded domain in Rn, then there

exists a constant C =C (Ω) such that

‖v‖L2(Ω) ≤C‖∇v‖L2(Ω) ,∀v ∈ H1
0 (Ω) .

When this theorem is used, Ω = [0,h], an interval of time; as a result we there

exists a bound for the Poincaré constant,

C ≤ h2

π2 ,

and hence the Poincaré inequality gives a specific bound

‖v‖L2([0,h]) ≤
h2

π2 ‖v̇‖L2([0,h]) ,∀v ∈ H1
0 ([0,h]) .
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1.2.3 Taylor Expansion of Functionals

The second major result from functional analysis that will be used repeatedly

is the Taylor expansion of functionals. Considering a vector space X and a functional

F : X → R, define its Gateaux derivative to be

DF (x0) [δx] = lim
ε→0

1
ε
(F (x0 + εδx)−F (x0)) .

and its Frechet derivative to be

DF (x0) [δx] = lim
‖δx‖→0

1
‖δx‖

(F (x0 +δx)−F (x0)) .

It should be noted that when the Frechet derivative exists, so does the Gateaux derivative

and they are equivalent. Furthermore, it should be noted that the Gateaux derivative

corresponds exactly to taking a variation in the sense of variational calculus, and hence

in normed vector spaces, the stationarity of the actions corresponds with requiring the

first Gateaux derivative of the action to be zero. Even though some of the work presented

in this dissertation relates to methods which are not for vector spaces, all functionals will

act on vector spaces, and these definitions will always apply.

Now consider the expression for the second Frechet derivative

D2F (x0) [δx1] [δx2] = lim
δx2→0

1
‖δx2‖

(DF (x0 +δx2) [δx1]−DF (x0) [δx1]) .

This expression allows the computation of a Taylor expansion of the functional F ,

F (x0 +δx) = F (x0)+DF (x0) [δx]+
1
2

D2F (z) [δx] [δx]

where z lays on the line that connects x0 and δx. These types of Taylor expansions will

be critical for the error analysis which will be presented later.

Finally, most functionals in this dissertation will act on C2 ([0,h] ,Q), and will be

of the form

F (q) =
∫ h

0
f (q)dt.
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Considering the Gateaux derivatives of these curves, which are also the Frechet deriva-

tives, it can be see that

DF (q) [δq] = lim
ε→0

1
ε

∫ h

0
( f (q+ εq)− f (q))dt

=
∫ h

0
lim
ε→0

1
ε
( f (q+ εδq)− f (q))dt

=
∫ h

0
∇ f (q) [δq]dt.

and a similar computation yields

D2F (q) [δq1] [δq2] =
∫ h

0
∇

2 f (q) [δq1] [δq2] .

These expressions establish a clear relationship between the Frechet derivatives of the

functional induced by integrating f and the derivatives of f itself, which will be used

repeatedly throughout this dissertation.

1.3 Galerkin Variational Integrators

In this dissertation, variational integrators are constructed by taking a Galerkin

approach to approximating the discrete Lagrangian. Essentially, a finite dimensional

approximation space over the interval [0,h], Mn ([0,h] ,Q) is chosen and the discrete

Lagrangian is constructed by replacing C2 ([0,h] ,Q) with this approximation space and

the integral with a quadrature rule,

LG
d (q0,q1,h) = ext

qn(t)∈Mn([0,h],Q)
qn(0)=q0,qn(h)=q1

h
m

∑
j=1

b jL
(
qn
(
c jh
)
, q̇n
(
c jh
))

≈ ext
q(t)∈C2([0,h],Q)
q(0)=q0,q(h)=q1

∫ h

0
L(q(t) , q̇(t))dt.

This type of construction, proposed in Leok [4], naturally arises from considering the

variational formulation of the discrete Lagrangian. However, determining the conver-

gence of such types of methods is surprisingly involved. This is because the convergence
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of Galerkin variational integrators is related to how the stationary points of a sequence

of functionals converges to the stationary point of a limiting functional. This type of

convergence, known as Γ-convergence, can be difficult to analyze.

This dissertation presents several major results relating to Galerkin variational

integrators. In Chapter 2, it is established that, given a certain time step limitation,

Galerkin variational integrators on Lagrangians of the canonical form on vector spaces:

L(q, q̇) =
1
2

q̇T Mq̇−V (q)

will converge at the same rate as the optimal approximation in the approximation space

Mn ([0,h] ,Q). Additionally, it is established that under similar assumptions, Galerkin

integrators will converge geometrically, that is with O (Kn) for some K < 1 when the

dimension n of Mn ([0,h] ,Q) is increased and the time step h is held constant. Finally,

it is established that from a Galerkin variational integrator, it is possible to recover a

continuous approximation to the exact solution of the Euler-Lagrange equations which

converges to the exact solution of the Euler-Lagrange equations, but at a lower rate than

the variational integrator.

In Chapter 3, the results from Chapter 2 are extended to Lie groups. Specifically,

the Galerkin integrator construction is extended to Lie groups by using a chart function

to locally reduce the dynamics of the system to the Lie algebra associated with the

Lie group, and the apply to the vector space construction to this local reduction. It is

established that as long as the chart function is sufficiently well behaved, the results from

Chapter 2 extend easily, and Lie group variational integrators exhibit the same excellent

convergence properties.

The optimality results of the error analysis performed in this dissertation are

significant because they reduce the convergence of Galerkin variational integrators to a

question of approximation theory. Since Galerkin variational integrators can be shown

to converge at the same rate as the best possible approximation in the finite-dimensional

approximation space Mn ([0,h] ,Q), one can understand the behavior of Galerkin varia-

tional integrators by understanding the properties of the approximation spaces used to

construct them. These optimality results provide a systematic method for constructing

highly accurate methods.
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Finally, through several numerical examples, a variety of features of Galerkin

variational integrators that are appealing are demonstrated. Perhaps the most dramatic

is that Galerkin variational integrators are stable even with extremely large time steps,

and by enriching the function space Mn ([0,h] ,Q), convergence can be achieved even

with large time steps. This opens the possibility for constructing highly accurate long

term numerical simulations using these types of methods, as the number of time steps

required for a certain length of integration does not increase as the solution is refined.

Additionally, in practice, the reconstructed continuous approximations to the solutions

of the Euler-Lagrange equations converge at the same rate as the one-step map, even

though they have theoretically lower rates of convergence.
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SPECTRAL VARIATIONAL INTEGRATORS

JAMES HALL AND MELVIN LEOK

ABSTRACT. In this paper, we present a new variational integrator for prob-

lems in Lagrangian mechanics. Using techniques from Galerkin variational integrators,

we construct a scheme for numerical integration that converges geometrically, and is

symplectic and momentum preserving. Furthermore, we prove that under appropriate

assumptions, variational integrators constructed using Galerkin techniques will yield

numerical methods that are in a certain sense optimal, converging at the same rate as the

best possible approximation in a certain function space. We further prove that certain

geometric invariants also converge at an optimal rate, and that the error associated with

these geometric invariants is independent of the number of steps taken. We close with

several numerical examples that demonstrate the predicted rates of convergence.
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2.1 Introduction

There has been significant recent interest in the development of structure pre-

serving numerical methods for variational problems. One of the key points of interest is

developing high-order symplectic integrators for Lagrangian systems. The generalized

Galerkin framework has proven to be a powerful theoretical and practical tool for de-

veloping such methods. This paper presents a high-order Galerkin variational integrator

that exhibits geometric convergence to the true flow of a Lagrangian system. In addition,

this method is symplectic, momentum-preserving, and stable even for very large time

steps.

Galerkin variational integrators fall into the general framework of discrete me-

chanics. For a general and comprehensive introduction to the subject, the reader is

referred to Marsden and West [23]. Discrete mechanics develops mechanics from dis-

crete variational principles, and, as Marsden and West demonstrated, gives rise to many

discrete structures which are analogous to structures found in classical mechanics. By

taking these structures into account, discrete mechanics suggests numerical methods

which often exhibit excellent long term stability and qualitative behavior. Because

of these qualities, much recent work has been done on developing numerical meth-

ods from the discrete mechanics viewpoint. See, for example, Hairer et al. [11] for a

broad overview of the field of geometric numerical integration, and Marsden and West

[23], Müller and Ortiz [26], Patrick and Cuell [28] discuss the error analysis of vari-

ational integrators. Various extensions have also been considered, including, Lall and

West [14], Leok and Zhang [21] for Hamiltonian systems; Fetecau et al. [10] for non-

smooth problems with collisions; Lew et al. [22], Marsden et al. [24] for Lagrangian

PDEs; Cortés and Martínez [5], Fedorov and Zenkov [9], McLachlan and Perlmutter

[25] for nonholonomic systems; Bou-Rabee and Owhadi [2, 3] for stochastic Hamil-

tonian systems; Bou-Rabee and Marsden [1], Lee et al. [16, 17] for problems on Lie

groups and homogeneous spaces.

The fundamental object in discrete mechanics is the discrete Lagrangian Ld :

Q×Q×R→R, where Q is a configuration manifold. The discrete Lagrangian is chosen
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to be an approximation to the action of a Lagrangian over the time step [0,h],

Ld (q0,q1,h)≈ ext
q(t)∈C2([0,h],Q)
q(0)=q0,q(h)=q1

∫ h

0
L(q, q̇)dt,

or simply Ld (q0,q1) when h is assumed to be constant. Discrete mechanics is formu-

lated by finding stationary points of a discrete action sum based on the sum of discrete

Lagrangians,

S({qk}n
k=1) =

n−1

∑
k=1

Ld (qk,qk+1)≈
∫ t2

t1
L(q, q̇)dt.

For Galerkin variational integrators specifically, the discrete Lagrangian is induced by

constructing a discrete approximation of the action integral over the interval [0,h] based

on a finite-dimensional function space and quadrature rule. Once this discrete action is

constructed, the discrete Lagrangian can be recovered by solving for stationary points

of the discrete action subject to fixed endpoints, and then evaluating the discrete action

at these stationary points,

Ld (q0,q1,h) = ext
qn(t)∈Mn([0,h],Q)
qn(0)=q0,qn(h)=q1

h
m

∑
j=1

b jL
(
q
(
c jh
)
, q̇
(
c jh
))

. (2.1)

Because the rate of convergence of the approximate flow to the true flow is related to

how well the discrete Lagrangian approximates the true action, this type of construction

gives a method for constructing and analyzing high-order methods. The hope is that

the discrete Lagrangian inherits the accuracy of the function space used to construct it,

much in the same way as standard finite-element methods. We will show that for certain

Lagrangians, Galerkin constructions based on high-order approximation spaces do in

fact result in correspondingly high order methods.

Significant work has already been done constructing and analyzing these types

of Galerkin variational integrators. In Leok [18], a number of different possible con-

structions based on the Galerkin framework are presented. In Leok and Shingel [19],

Hermite polynomials are used to construct globally smooth high-order methods. What

separates this work from the work that precedes it is the use of a spectral approxima-
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tion paradigm, which induces methods that exhibit geometric convergence. This type of

convergence is established theoretically and demonstrated through numerical examples.

2.1.1 Discrete Mechanics

Before discussing the construction and convergence of spectral variational inte-

grators, it is useful to review some of the fundamental results from discrete mechan-

ics that are used in our analysis. We have already introduced the discrete Lagrangian

Ld : Q×Q×R→ R,

Ld (q0,q1,h)≈ ext
q(t)∈C2([0,h],Q)
q(0)=q0,q(h)=q1

∫ h

0
L(q, q̇)dt.

and the discrete action sum,

S({qk}n
k=1) =

n−1

∑
k=1

Ld (qk,qk+1)≈
∫ t2

t1
L(q, q̇)dt.

Taking variations of the discrete action sum and using discrete integration by parts leads

to the discrete Euler-Lagrange equations,

D2Ld (qk−1,qk)+D1Ld (qk,qk+1) = 0, (2.2)

where D1 denotes differentiation with respect to the first argument and D2 denotes dif-

ferentiation with respect to the second argument. Given (qk−1,qk), these equations

implicitly define an update map, known as the discrete Lagrangian flow map, FLd :

Q×Q→Q×Q, given by FLd (qk−1,qk) = (qk,qk+1), where (qk−1,qk) ,(qk,qk+1) satisfy

(2.2). Furthermore, the discrete Lagrangian defines the discrete Legendre transforms,

F±Ld : Q×Q→ T ∗Q:

F+Ld : (q0,q1)→ (q1, p1) = (q1,D2Ld (q0,q1)) ,

F−Ld : (q0,q1)→ (q0, p0) = (q0,−D1Ld (q0,q1)) .
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Using the discrete Legendre transforms, we define the discrete Hamiltonian flow map,

F̃Ld : T ∗Q→ T ∗Q,

F̃Ld : (q0, p0)→ (q1, p1) = F+Ld

((
F−Ld

)−1
(q0, p0)

)
.

The following commutative diagram illustrates the relationship between the discrete

Hamiltonian flow map, discrete Lagrangian flow map, and the discrete Legendre trans-

forms,

(qk, pk)
F̃Ld // (qk+1, pk+1)

(qk−1,qk)

F+Ld

??

FLd

// (qk,qk+1) FLd

//

F+Ld

==

F−Ld

__

(qk+1,qk+2)

F−Ld

bb

We now introduce the exact discrete Lagrangian LE
d ,

LE
d (q0,q1,h) = ext

q(t)∈C2([0,h],Q)
q(0)=q0,q(h)=q1

∫ h

0
L(q, q̇)dt.

An important theoretical result for the error analysis of variational integrators is that

the discrete Hamiltonian and Lagrangian flow maps associated with the exact discrete

Lagrangian produces an exact sampling of the true flow, as was shown in Marsden and

West [23]. Using this result, Marsden and West [23] shows that there is a fundamental

relationship between how well a discrete Lagrangian Ld approximates the exact discrete

Lagrangian LE
d and how well the corresponding discrete Hamiltonian flow maps, discrete

Lagrangian flow maps and discrete Legendre transforms approximate each other. Since

the exact discrete Lagrangian produces an exact sampling of the true flow, this in turn

leads to the following theorem regarding the error analysis of variational integrators,

also found in Marsden and West [23]:

Theorem 2.1.1. (Variational Error Analysis) Given a regular Lagrangian L and corre-

sponding Hamiltonian H, the following are equivalent for a discrete Lagrangian Ld:
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1. the discrete Hamiltonian flow map for Ld has error O
(
hp+1),

2. the discrete Legendre transforms of Ld have error O
(
hp+1),

3. Ld approximates the exact discrete Lagrangian with error O
(
hp+1).

We will make extensive use of this theorem later when we analyze the convergence of

spectral variational integrators.

In addition, in Marsden and West [23], it is shown that integrators constructed

in this way, which are referred to as variational integrators, have significant geometric

structure. Most importantly, variational integrators always conserve the canonical sym-

plectic form, and a discrete Noether’s Theorem guarantees that a discrete momentum

map is conserved for any continuous symmetry of the discrete Lagrangian. The preser-

vation of these discrete geometric structures underlie the excellent long term behavior

of variational integrators.

2.2 Construction

2.2.1 Generalized Galerkin Variational Integrators

Q

t0 d1h d2h di−2h di−1h hc1h c2h c j−1h c jh

•

•

•
q1

k×
×

..........
...
...
...
..
.•

•
•
qi−1

k

×

×

q0
k

q2
k

qi−2
k

qi
k

//

OO

Figure 2.1: A visual schematic of the curve q̃n (t) ∈Mn ([0,h] ,Q). The points marked
with (×) represent the quadrature points, which may or may not be the same as inter-
polation points dih. In this figure we have chosen to depict a curve constructed from
interpolating basis functions, but this is not necessary in general.
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The construction of spectral variational integrators falls within the framework of

generalized Galerkin variational integrators, discussed in Leok [18] and Marsden and

West [23]. The motivating idea is that we replace the generally non-computable exact

discrete Lagrangian LE
d (qk,qk+1) with a computable discrete analogue, LG

d (qk,qk+1).

Galerkin variational integrators are constructed by using a finite-dimensional function

space to discretize the action of a Lagrangian. Specifically, given a Lagrangian L : T Q→
R, to construct a Galerkin variational integrator:

1. choose an n-dimensional function space Mn ([0,h] ,Q) ⊂C2 ([0,h] ,Q), with a fi-

nite set of basis functions {φi (t)}n
i=1,

2. choose a quadrature rule G (·) : F ([0,h] ,R)→ R, so that

G ( f ) = h
m

∑
j=1

b j f
(
c jh
)
≈
∫ h

0
f (t)dt,

where F is some appropriate function space,

and then construct the discrete action Sd
({

qi
k

}n
i=1

)
: ∏

n
i=1 Qi→ R, (not to be confused

with the discrete action sum S({qk}∞

k=1)),

Sd

({
qi

k
}n

i=1

)
= G

(
L

(
n

∑
i=1

qi
kφi (t) ,

n

∑
i=1

qi
kφ̇i (t)

))

= h
m

∑
j=1

b jL

(
n

∑
i=1

qi
kφi
(
c jh
)
,

n

∑
i=1

qi
kφ̇i
(
c jh
))

,

where we use superscripts to index the weights associated with each basis function, as

in Marsden and West [23].

Once the discrete action has been constructed, a discrete Lagrangian can be in-

duced by finding stationary points q̃n (t) = ∑
n
i=1 qi

kφi (t) of the action under the condi-

tions q̃n (0) = ∑
n
i=1 qi

kφi (0) = qk and q̃n (h) = ∑
n
i=1 qi

kφi (h) = qk+1 for some given qk

and qk+1,

Ld (qk,qk+1,h) = ext
q̃n(0)=qk

q̃n(h)=qk+1

Sd

({
qi

k
}n

i=1

)
= ext

q̃n(0)=qk
q̃n(h)=qk+1

h
m

∑
j=1

b jL
(
q̃n
(
c jh
)
, ˙̃qn
(
c jh
))

.
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A discrete Lagrangian flow map that result from this type of discrete Lagrangian is

referred to as a Galerkin variational integrator.

2.2.2 Spectral Variational Integrators

There are two defining features of spectral variational integrators. The first is the

choice of function space Mn ([0,h] ,Q), and the second is that convergence is achieved

not by shortening the time step h, but by increasing the dimension n of the function

space.

Choice of Function Space

Restricting our attention to the case where Q is a linear space, spectral varia-

tional integrators are constructed using the basis functions φi (t) = li (t), where li (t) are

Lagrange interpolating polynomials based on the points hi =
h
2 cos

( iπ
n

)
+ h

2 which are

the Chebyshev points ti = cos
( iπ

n

)
, rescaled and shifted from [−1,1] to [0,h]. The result-

ing finite dimensional function space Mn ([0,h] ,Q) is simply the polynomials of degree

at most n on Q. However, the choice of this particular set of basis functions offer several

advantages over other possible bases for the polynomials:

1. the restriction on variations ∑
n
i=1 δqi

kφi (0) = ∑
n
i=1 δqi

kφi (h) = 0 reduces to δq1
k =

δqn
k = 0,

2. the condition q̃n (0) = qk reduces to q1
k = qk,

3. the induced numerical methods have generally better stability properties because

of the excellent approximation properties of the interpolation polynomials at the

Chebyshev points.

Using this choice of basis functions, for any chosen quadrature rule, the discrete La-

grangian becomes,

Ld (qk,qk+1,h) = ext
qn(t)∈Mn([0,h],Q)

q1
k=qk,qn

k=qk+1

h
m

∑
j=1

b jL
(
q̃n
(
c jh
)
, ˙̃qn
(
c jh
))

.
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Requiring the curve q̃n (t) to be a stationary point of the discretized action provides n−2

internal stage conditions:

h
m

∑
j=1

b j

(
∂L
∂q

(
q̃n
(
c jh
)
, ˙̃qn
(
c jh
))

φi
(
c jh
)
+

∂L
∂ q̇

(
q̃n
(
c jh
)
, ˙̃qn
(
c jh
))

φ̇i
(
c jh
))

= 0

(2.3)

for i = 2, ...,n− 1. Combining these internal stage conditions with the discrete Euler-

Lagrange equations,

D1Ld (qk−1,qk)+D2Ld (qk,qk+1) = 0,

and the continuity condition q1
k = qk yields the following set of n nonlinear equations,

q1
k = qk,

h
m

∑
j=1

b j

(
∂L
∂q

(
q̃n
(
c jh
)
, ˙̃qn
(
c jh
))

φi
(
c jh
)
+

∂L
∂ q̇

(
q̃n
(
c jh
)
, ˙̃qn
(
c jh
))

φ̇i
(
c jh
))

= 0

for i = 2, ..,n−1,

h
m

∑
j=1

b j

(
∂L
∂q

(
q̃n
(
c jh
)
, ˙̃qn
(
c jh
))

φ1
(
c jh
)
+

∂L
∂ q̇

(
q̃n
(
c jh
)
, ˙̃qn
(
c jh
))

φ̇1
(
c jh
))

= pk−1,

(2.4)

which must be solved at each time step k, and the momentum condition:

h
m

∑
j=1

b j

(
∂L
∂q

(
q̃n
(
c jh
)
, ˙̃qn
(
c jh
))

φn
(
c jh
)
+

∂L
∂ q̇

(
q̃n
(
c jh
)
, ˙̃qn
(
c jh
))

φ̇n
(
c jh
))

= pk,

which defines (2.4) for the next time step. Evaluating qk+1 = q̃n (h) defines the next step

for the discrete Lagrangian flow map:

FLd (qk−1,qk) = (qk,qk+1) ,

and because of the choice of basis functions, this is simply qk+1 = qn
k .
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n-Refinement

As is typical for spectral numerical methods (see, for example, Boyd [4], Tre-

fethen [29]), convergence for spectral variational integrators is achieved by increasing

the dimension of the function space, Mn ([0,h] ,Q). Furthermore, because the order of

the discrete Lagrangian also depends on the order of the quadrature rule G , we must also

refine the quadrature rule as we refine n. Hence, for examining convergence, we must

also consider the quadrature rule as a function of n, Gn. Because of the dependence

on n instead of h, we will often examine the discrete Lagrangian Ld as a function of

Q×Q×N,

Ld (qk,qk+1,n) = ext
qn(t)∈Mn([0,h],Q)

q1
k=qk,qn

k=qk+1

Gn
(
L
(
q̃n (t) , ˙̃qn (t)

))

= ext
qn(t)∈Mn([0,h],Q)

q1
k=qk,qn

k=qk+1

h
mn

∑
j=1

bn jL
(
q̃n
(
cn jh

)
, ˙̃qn
(
cn jh

))
,

as opposed to the more conventional

Ld (qk,qk+1,h) = ext
qn(t)∈Mn([0,h],Q)

q1
k=qk,qn

k=qk+1

G
(
L
(
q̃n (t) , ˙̃qn (t)

))

= ext
qn(t)∈Mn([0,h],Q)

q1
k=qk,qn

k=qk+1

h
m

∑
j=1

b jL
(
q̃n
(
c jh
)
, ˙̃qn
(
c jh
))

.

This type of refinement is the foundation for the exceptional convergence properties of

spectral variational integrators.

2.3 Existence, Uniqueness and Convergence

In this section, we will discuss the major important properties of Galerkin vari-

ational integrators and spectral variational integrators. The first will be the existence of

unique solutions to the internal stage equations (2.3) for certain types of Lagrangians.

The second is the convergence of the one-step map that results from the Galerkin and
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spectral variational constructions, which will be shown to be optimal in a certain sense.

The third is the convergence of continuous approximations to the Euler-Lagrange flow

which can easily be constructed from Galerkin and spectral variational integrators, and

the behavior of geometric invariants associated with the approximate continuous flow.

We will show a number of different convergence results associated with these quantities,

which demonstrate that Galerkin and spectral variational integrators can be used to com-

pute continuous approximations to the exact solutions of the Euler-Lagrange equations

which have excellent convergence and geometric behavior.

2.3.1 Existence and Uniqueness

In general, demonstrating that there exists a unique solution to the internal stage

equations for a spectral variational integrator is difficult, and depends on the properties

of the Lagrangian. However, assuming a Lagrangian of the form

L(q, q̇) =
1
2

q̇T Mq̇−V (q) ,

it is possible to show the existence and uniqueness of the solutions to the implicit equa-

tions for the one-step method under appropriate assumptions.

Theorem 2.3.1. (Existence and Uniqueness of Solutions to the Internal Stage Equa-

tions) Given a Lagrangian L : T Q→ R of the form

L(q, q̇) =
1
2

q̇T Mq̇−V (q) ,

if ∇V is Lipschitz continuous, b j > 0 for every j and ∑
m
i=1 b j = 1, and M is symmetric

positive-definite, then there exists an interval [0,h] where there exists a unique solution

to the internal stage equations for a spectral variational integrator.

Proof. We will consider only the case where q(t) ∈ R, but the argument generalizes

easily to higher dimensions. To begin, we note that for a Lagrangian of the form,

L(q, q̇) =
1
2

q̇T Mq̇−V (q)
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the equations

q1
k =qk

h
m

∑
j=1

b j

(
∂L
∂q

(
q̃n
(
c jh
)
, ˙̃qn
(
c jh
))

φi
(
c jh
)
+

∂L
∂ q̇

(
q̃n
(
c jh
)
, ˙̃qn
(
c jh
))

φ̇i
(
c jh
))

=0,

for i = 2, ...,n−1, and

h
m

∑
j=1

b j

(
∂L
∂q

(
q̃n
(
c jh
)
, ˙̃qn
(
c jh
))

φ1
(
c jh
)
+

∂L
∂ q̇

(
q̃n
(
c jh
)
, ˙̃qn
(
c jh
))

φ̇1
(
c jh
))

=pk−1,

take the form

Aqi− f
(
qi)= 0, (2.5)

where qi is the vector of internal weights, qi =
(
q1

k ,q
2
k , ...,q

n
k

)T , A is a matrix with entries

defined by

A1,1 =1, (2.6)

A1,l =0, l = 2, ...,n, (2.7)

Ai,l =h
m

∑
j=1

b jMφ̇l
(
c jh
)

φ̇i
(
c jh
)
, i = 2, ...,n;l = 1, ...,n, (2.8)

and f is a vector valued function defined by

f
(
qi)=



qk

h∑
m
j=1 b j∇V

(
∑

n
i=1 qi

kφi
(
c jh
))

φ2
...

h∑
m
j=1 b j∇V

(
∑

n
i=1 qi

kφi
(
c jh
))

φn−1

pk−1


.

It is important to note that the entries of A depend on h. For now we will assume A

is invertible, and that
∥∥A−1

∥∥ < ∥∥A−1
1

∥∥, for where A1 is the matrix A generated on the

interval [0,1]. Of course, the properties of A depend on the choice of basis functions

{φi}n
i=1, but we will establish these properties for the polynomial basis later. Defining
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the map:

Φ
(
qi)= A−1 f

(
qi) ,

it is easily seen that (2.5) is satisfied if and only if qi = Φ
(
qi), that is, qi is a fixed point

of Φ(·). If we establish that Φ(·) is a contraction mapping,

∥∥Φ
(
wi)−Φ

(
vi)∥∥

∞
≤ k
∥∥wi− vi∥∥

∞
,

for some k < 1, we can establish the existence of a unique fixed point, and thus show

that the steps of the one step method are well-defined. Here, and throughout this section,

we use ‖·‖p to denote the vector or matrix p-norm, as appropriate.

To show that Φ(·) is a contraction mapping, we consider arbitrary wi and vi:

∥∥Φ
(
wi)−Φ

(
vi)∥∥

∞
=
∥∥A−1 f

(
wi)−A−1 f

(
vi)∥∥

∞

=
∥∥A−1 ( f

(
wi)− f

(
vi))∥∥

∞

≤
∥∥A−1∥∥

∞

∥∥ f
(
wi)− f

(
vi)∥∥

∞
.

Considering
∥∥ f
(
wi)− f

(
vi)∥∥

∞
, we see that

∥∥ f
(
wi)− f

(
vi)∥∥

∞

=

∣∣∣∣∣ m

∑
j=1

b j

[
∇V

(
n

∑
i=1

wi
kφi
(
c jh
))
−∇V

(
n

∑
i=1

vi
kφi
(
c jh
))]

φl∗
(
c jh
)∣∣∣∣∣ , (2.9)

for some appropriate index l∗. Note that the first and last terms of
∥∥ f
(
wi)− f

(
vi)∥∥

∞

will vanish, so the maximum element must take the form of (2.9). Let

φ
i (t) = (φ1 (t) ,φ2 (t) , ...,φn (t)) .

Let CL be the Lipschitz constant for ∇V (q). Now

∥∥ f
(
wi)− f

(
vi)∥∥

∞
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=

∣∣∣∣∣h m

∑
j=1

b j

[
∇V

(
n

∑
i=1

wi
kφi
(
c jh
))
−∇V

(
n

∑
i=1

vi
kφi
(
c jh
))]

φp∗
(
c jh
)∣∣∣∣∣

≤ h
m

∑
j=1

∣∣b j
∣∣ ∣∣∣∣∣
[

∇V

(
n

∑
i=1

wi
kφi
(
c jh
))
−∇V

(
n

∑
i=1

vi
kφi
(
c jh
))]∣∣∣∣∣ ∣∣φp∗

(
c jh
)∣∣

≤ h
m

∑
j=1

b jCL

∣∣∣∣∣ n

∑
i=1

wi
kφi
(
c jh
)
−

n

∑
i=1

vi
kφi
(
c jh
)∣∣∣∣∣ ∣∣φp∗

(
c jh
)∣∣

= h
m

∑
j=1

b jCL

∣∣∣∣∣ n

∑
i=1

(
wi

k− vi
k
)

φi
(
c jh
)∣∣∣∣∣ ∣∣φp∗

(
c jh
)∣∣

≤ h
m

∑
j=1

b jCL
∥∥wi− vi∥∥

∞

∥∥φ
i (c jh

)∥∥
1

∣∣φp∗
(
c jh
)∣∣

≤ h
m

∑
j=1

b jCL max
j

(∥∥φ
i (c jh

)∥∥
1

∣∣φp∗
(
c jh
)∣∣)∥∥wi− vi∥∥

∞

= hCL max
j

(∥∥φ
i (c jh

)∥∥
1

∣∣φp∗
(
c jh
)∣∣)∥∥wi− vi∥∥

∞
.

Hence, we derive the inequality

∥∥Φ
(
wi)−Φ

(
vi)∥∥

∞
≤ h

∥∥A−1∥∥
∞

CL max
j

(∥∥φ
i (c jh

)∥∥
1

∣∣φp∗
(
c jh
)∣∣)∥∥wi− vi∥∥

∞
,

and since by assumption
∥∥A−1

∥∥
∞
≤
∥∥A−1

1

∥∥
∞

,

∥∥Φ
(
wi)−Φ

(
vi)∥∥

∞
≤ h

∥∥A−1
1

∥∥
∞

CL max
j

(∥∥φ
i (c jh

)∥∥
1

∣∣φp∗
(
c jh
)∣∣)∥∥wi− vi∥∥

∞
.

Thus if:

h <

(∥∥A−1
1

∥∥
∞

CL max
j

(∥∥φ
i (c jh

)∥∥
1

∣∣φp∗
(
c jh
)∣∣))−1

,

then

∥∥Φ
(
wi)−Φ

(
vi)∥∥

∞
≤ k
∥∥wi− vi∥∥

∞
,

where k < 1, which establishes that Φ(·) is a contraction mapping, and establishes the

existence of a unique fixed point, and thus the existence of unique steps of the one step

method.
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A critical assumption made during the proof of existence and uniqueness is that

the matrix A is nonsingular. This property depends on the choice of basis functions φi.

However, using a polynomial basis, like Lagrange interpolation polynomials, it can be

shown that A is invertible.

Lemma 2.3.1. (A is invertible) If {φi}n
i=1 is a polynomial basis of Pn, the space of poly-

nomials of degree at most n, M is symmetric positive-definite, and the quadrature rule is

order at least 2n+1, then A defined by (2.6) – (2.8) is invertible.

Proof. We begin by considering the equation:

Aqi = 0.

Let q̃n (t) = ∑
n
i=1 qi

kφi (t). Considering the definition of A, Aqi = 0 holds if and only if

the following equations hold:

q̃n (0) = 0,

h
m

∑
j=1

b jM ˙̃qn
(
c jh
)

φ̇i
(
c jh
)
= 0, i = 1, ...,(n−1). (2.10)

It can easily be seen that
{

φ̇i
}n−1

i=1 is a basis of Pn−1. Using the assumption that the

quadrature rule is of order at least 2n−1 and that M is symmetric positive-definite, we

can see that (2.10) implies:

∫ h

0
M ˙̃qn (t) φ̇i (t)dt = 0, i = 1, ...,(n−1),

but,

∫ h

0
M ˙̃qn (t) φ̇i (t)dt = 0

implies

〈
˙̃qn, φ̇i

〉
= 0,

where 〈·, ·〉 is the standard L2 inner product on [0,h]. Since
{

φ̇i
}n−1

i=1 forms a basis for



36

Pn−1, ˙̃qn ∈ Pn−1, and 〈·, ·〉 is non-degenerate, this implies that ˙̃qn (t) = 0. Thus,

q̃n (0) = 0

˙̃qn (t) = 0

which implies that q̃n (t) = 0 and hence qi = 0. Thus, if Aqi = 0 then qi = 0, from which

it follows that A is non-singular.

Another subtle difficulty is that the matrix A is a function of h. Since we assumed

that
∥∥A−1

∥∥
∞

is bounded to prove Theorem 2.3.1, we must show that for any choice of

h, the quantity
∥∥A−1

∥∥
∞

is bounded. We will do this by establishing
∥∥A−1

∥∥
∞
≤
∥∥A−1

1

∥∥
∞

,

where A1 is A defined with h = 1. By Lemma 2.3.1, we know that
∥∥A−1

1

∥∥
∞
< ∞, which

establishes the upper bound for
∥∥A−1

∥∥
∞

. This argument is easily generalized for a

higher upper bound on h.

Lemma 2.3.2. (
∥∥A−1

∥∥
∞
≤
∥∥A−1

1

∥∥
∞
) For the matrix A defined by (2.6) – (2.8), if h < 1,∥∥A−1

∥∥
∞
<
∥∥A−1

1

∥∥
∞

where A1 is A defined on the interval [0,1].

Proof. We begin the proof by examining how A changes as a function of h. First, let

{φi}n
i=1 be the basis for the interval [0,1]. Then for the interval [0,h], the basis functions

are

φ
h
i (t) = φi

( t
h

)
and hence the derivatives are:

φ̇
h
i (t) =

1
h

φ̇i

( t
h

)
.

Thus, if A1 is the matrix defined by (2.6) – (2.8) on the interval [0,1], then for the interval

[0,h],

A =

(
1 0

0 1
h I(n−1)×(n−1)

)
A1,
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where In×n is the n×n identity matrix. This gives

A−1 = A−1
1

(
1 0

0 hI(n−1)×(n−1)

)

which gives

∥∥A−1∥∥
∞
=

∥∥∥∥∥A−1
1

(
1 0

0 hI(n−1)×(n−1)

)∥∥∥∥∥
∞

≤
∥∥A−1

1

∥∥
∞

∥∥∥∥∥
(

1 0

0 hI(n−1)×(n−1)

)∥∥∥∥∥
∞

=
∥∥A−1

1

∥∥
∞
,

which proves the statement.

2.3.2 Order Optimal and Geometric Convergence

To determine the rate of convergence for spectral variational integrators, we will

utilize Theorem 2.1.1 and a simple extension of Theorem 2.1.1:

Theorem 2.3.2. (Extension of Theorem 2.1.1 to Geometric Convergence) Given a reg-

ular Lagrangian L and corresponding Hamiltonian H, the following are equivalent for

a discrete Lagrangian Ld (q0,q1,n):

1. there exists a positive constant K, where K < 1, such that the discrete Hamiltonian

map for Ld has error O (Kn),

2. there exists a positive constant K, where K < 1, such that the discrete Legendre

transforms of Ld have error O (Kn),

3. there exists a positive constant K, where K < 1, such that Ld is equivalent to a

discrete Lagrangian with error O (Kn).

This theorem provides a fundamental tool for the analysis of Galerkin variational

methods. Its proof is almost identical to that of Theorem 2.1.1, and can be found in the
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appendix. The critical result is that the order of the error of the discrete Hamiltonian

flow map, from which we construct the discrete flow, has the same order as the discrete

Lagrangian from which it is constructed. Thus, in order to determine the order of the

error of the flow generated by spectral variational integrators, we need only determine

how well the discrete Lagrangian approximates the exact discrete Lagrangian. This

is a key result which greatly reduces the difficulty of the error analysis of Galerkin

variational integrators.

Naturally, the goal of constructing spectral variational integrators is construct-

ing a variational method that has geometric convergence. To this end, it is essential to

establish that Galerkin type integrators inherit the convergence properties of the spaces

which are used to construct them. The order optimality result is related to the problem of

Γ-convergence (see, for example, Dal Maso [6]), as the Galerkin discrete Lagrangians

are given by extremizers of an approximating sequence of variational problems, and

the exact discrete Lagrangian is the extremizer of the limiting variational problem. The

Γ-convergence of variational integrators was studied in Müller and Ortiz [26], and our

approach involves a refinement of their analysis. We now state our results, which es-

tablish not only the geometric convergence of spectral variational integrators, but also

order optimality of all Galerkin variational integrators under appropriate smoothness

assumptions.

Theorem 2.3.3. (Order Optimality of Galerkin Variational Integrators) Given an inter-

val [0,h] and a Lagrangian L : T Q→R, let q̄ be the exact solution to the Euler-Lagrange

equations subject to the conditions q̄(0) = q0 and q̄(h) = qh, and let q̃n be the stationary

point of a Galerkin variational discrete action, i.e. if LG
d : Q×Q×R→ R,

LG
d (q0,qh,h) = ext

qn(t)∈Mn([0,h],Q)
qn(0)=q0,qn(h)=qh

Sd ({qi}n
i=1)

= ext
qn(t)∈Mn([0,h],Q)
qn(0)=q0,qn(h)=qh

h
m

∑
j=1

b jL
(
qn
(
c jh
)
, q̇n
(
c jh
))

,
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then

q̃n = argmin
qn(t)∈Mn([0,h],Q)
qn(0)=q0,qn(h)=qh

h
m

∑
j=1

b jL
(
qn
(
c jh
)
, q̇n
(
c jh
))

.

If:

1. there exists a constant CA independent of h, such that, for each h, there exists a

curve q̂n ∈Mn ([0,h] ,Q), such that,

∣∣(q̂n (t) , ˙̂qn (t)
)
− (q̄(t) , ˙̄q(t))

∣∣≤CAhn,

2. there exists a closed and bounded neighborhood U ⊂ T Q, such that (q̄(t) , ˙̄q(t))∈
U,
(
q̂n (t) , ˙̂qn (t)

)
∈U for all t, and all partial derivatives of L are continuous on

U,

3. for the quadrature rule G ( f ) = h∑
m
j=1 b j f

(
c jh
)
≈
∫ h

0 f (t)dt, there exists a con-

stant Cg, such that,∣∣∣∣∣
∫ h

0
L(qn (t) , q̇n (t))dt−h

m

∑
j=1

b jL
(
qn
(
c jh
)
, q̇n
(
c jh
))∣∣∣∣∣≤Cghn+1,

for any qn ∈Mn ([0,h] ,Q),

4. and the stationary points q̄, q̃n minimize their respective actions,

then

∣∣∣LE
d (q0,qh,h)−LG

d (q0,qh,h)
∣∣∣≤Cophn+1,

for some constant Cop independent of h, i.e. discrete Lagrangian Ld has error O
(
hn+1),

and hence the discrete Hamiltonian flow map has error O
(
hn+1).

Proof. First, we rewrite both the exact discrete Lagrangian and the Galerkin discrete

Lagrangian:

∣∣∣LE
d (q0,qh,h)−LG

d (q0,qh,h)
∣∣∣



40

=

∣∣∣∣∫ h

0
L(q̄(t) , ˙̄q(t))dt−G

(
L
(
q̃n (t) , ˙̃qn (t)

))∣∣∣∣
=

∣∣∣∣∣
∫ h

0
L(q̄(t) , ˙̄q(t))dt−h

m

∑
j=1

b jL
(
q̃n
(
c jh
)
, ˙̃qn
(
c jh
))∣∣∣∣∣

=

∣∣∣∣∣
∫ h

0
L(q̄, ˙̄q)dt−h

m

∑
j=1

b jL
(
q̃n, ˙̃qn

)∣∣∣∣∣ ,
where in the last line, we have suppressed the t argument, a convention we will continue

throughout the proof. Now we introduce the action evaluated on the q̂n curve, which is

an approximation with error O (hn) to the exact solution q̄:∣∣∣∣∣
∫ h

0
L(q̄, ˙̄q)dt−h

m

∑
j=1

b jL
(
q̃n, ˙̃qn

)∣∣∣∣∣
=

∣∣∣∣∣
∫ h

0
L(q̄, ˙̄q)dt−

∫ h

0
L
(
q̂n, ˙̂qn

)
dt +

∫ h

0
L
(
q̂n, ˙̂qn

)
dt−h

m

∑
j=1

b jL
(
q̃n, ˙̃qn

)∣∣∣∣∣
≤
∣∣∣∣∫ h

0
L(q̄, ˙̄q)dt−

∫ h

0
L
(
q̂n, ˙̂qn

)
dt
∣∣∣∣ (2.11a)

+

∣∣∣∣∣
∫ h

0
L
(
q̂n, ˙̂qn

)
dt−h

m

∑
j=1

b jL
(
q̃n, ˙̃qn

)∣∣∣∣∣ . (2.11b)

Considering the first term (2.11a):∣∣∣∣∫ h

0
L(q̄, ˙̄q)dt−

∫ h

0
L
(
q̂n, ˙̂qn

)
dt
∣∣∣∣= ∣∣∣∣∫ h

0
L(q̄, ˙̄q)−L

(
q̂n, ˙̂qn

)
dt
∣∣∣∣

≤
∫ h

0

∣∣L(q̄, ˙̄q)−L
(
q̂n, ˙̂qn

)∣∣dt.

By assumption, all partials of L are continuous on U , and since U is closed and bounded,

this implies L is Lipschitz on U . Let Lα denote that Lipschitz constant. Since, again by

assumption, (q̄, ˙̄q) ∈U and
(
q̂n, ˙̂qn

)
∈U , we can rewrite:

∫ h

0

∣∣L(q̄, ˙̄q)−L
(
q̂n, ˙̂qn

)∣∣dt ≤
∫ h

0
Lα

∣∣(q̄, ˙̄q)−
(
q̂n, ˙̂qn

)∣∣dt

≤
∫ h

0
LαCAhndt

= LαCAhn+1,
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where we have made use of the best approximation estimate. Hence,∣∣∣∣∫ h

0
L(q̄, ˙̄q)dt−

∫ h

0
L
(
q̂n, ˙̂qn

)
dt
∣∣∣∣≤ LαC1hn+1. (2.12)

Next, considering the second term (2.11b),∣∣∣∣∣
∫ h

0
L
(
q̂n, ˙̂qn

)
dt−h

m

∑
j=1

b jL
(
q̃n, ˙̃qn

)∣∣∣∣∣ ,
since q̃n, the stationary point of the discrete action, minimizes its action and q̂n ∈
Mn ([0,h] ,Q),

h
m

∑
j=1

b jL
(
q̃n, ˙̃qn

)
≤ h

m

∑
j=1

b jL
(
q̂n, ˙̂qn

)
≤
∫ h

0
L
(
q̂n, ˙̂qn

)
dt +Cghn+1 (2.13)

where the inequalities follow from the assumptions on the order of the quadrature rule.

Furthermore,

h
m

∑
j=1

b jL
(
q̃n, ˙̃qn

)
≥
∫ h

0
L
(
q̃n, ˙̃qn

)
dt−Cghn+1

≥
∫ h

0
L(q̄, ˙̄q)dt−Cghn+1

≥
∫ h

0
L
(
q̂n, ˙̂qn

)
dt−LαCAhn+1−Cghn+1, (2.14)

where the inequalities follow from (2.12), the order of the quadrature rule, and the as-

sumption that q̄ minimizes its action. Putting (2.13) and (2.14) together, we can con-

clude: ∣∣∣∣∣
∫ h

0
L
(
q̂n, ˙̂qn

)
dt−h

m

∑
j=1

b jL
(
q̃n, ˙̃qn

)∣∣∣∣∣≤ (LαCA +Cg)hn+1. (2.15)

Now, combining the bounds (2.12) and (2.15) in (2.11a) and (2.11b), we can conclude

∣∣∣LE
d (q0,qh,h)−LG

d (q0,qh,h)
∣∣∣≤ (2LαCA +Cg)hn+1

which, combined with Theorem 2.1.1, establishes the order of the error of the integrator.
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The above proof establishes a significant convergence result for Galerkin varia-

tional integrators, namely that for sufficiently well behaved Lagrangians, Galerkin varia-

tional integrators will produce discrete approximate flows that converge to the exact flow

as h→ 0 with the highest possible order allowed by the approximation space, provided

the quadrature rule is of sufficiently high order.

We will discuss assumption 4 in §2.3.3. While in general we cannot assume that

stationary points of the action are minimizers, it can be shown that for Lagrangians of

the canonical form

L(q, q̇) = q̇T Mq̇−V (q) ,

under some mild assumptions on the derivatives of V and the accuracy of the quadrature

rule, there always exists an interval [0,h] over which stationary points are minimizers.

In §2.3.3 we will show the result extends to the discretized action of Galerkin variational

integrators. A similar result was established in Müller and Ortiz [26].

Geometric convergence of spectral variational integrators is not strictly covered

under the proof of order optimality. While the above theorem establishes convergence

of Galerkin variational integrators by shrinking h, the interval length of each discrete

Lagrangian, spectral variational integrators achieve convergence by holding the interval

length of each discrete Lagrangian constant and increasing the dimension of the ap-

proximation space Mn ([0,h] ,Q). Thus, for spectral variational integrators, we have the

following analogous convergence theorem:

Theorem 2.3.4. (Geometric Convergence of Spectral Variational Integrators) Given an

interval [0,h] and a Lagrangian L : T Q→ R, let q̄ be the exact solution to the Euler-

Lagrange equations, and q̃n be the stationary point of the spectral variational discrete

action:

LS
d (q0,qh,n) = ext

qn(t)∈Mn([0,h],Q)
qn(0)=q0,qn(h)=qh

Sd ({qi}n
i=1)
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= ext
qn(t)∈Mn([0,h],Q)
qn(0)=q0,qn(h)=qh

h
mn

∑
j=0

bn jL
(
qn
(
cn jh

)
, q̇n
(
cn jh

))
.

If:

1. there exists constants CA,KA, KA < 1, independent of n such that, for each n, there

exists a curve q̂n ∈Mn ([0,h] ,Q), such that,

∣∣(q̄, ˙̄q)−
(
q̂n, ˙̂qn

)∣∣≤CAKn
A,

2. there exists a closed and bounded neighborhood U ⊂ T Q, such that, (q̄(t) , ˙̄q(t))∈
U and

(
q̂n (t) , ˙̂qn (t)

)
∈ U for all t and n, and all partial derivatives of L are

continuous on U,

3. for the sequence of quadrature rules Gn ( f ) = ∑
mn
j=1 bn j f

(
cn jh

)
≈
∫ h

0 f (t)dt, there

exists constants Cg, Kg, Kg < 1, independent of n such that∣∣∣∣∣
∫ h

0
L(qn (t) , q̇n (t))dt−h

mn

∑
j=1

bn jL
(
qn
(
cn jh

)
, q̇n
(
cn jh

))∣∣∣∣∣≤CgKn
g ,

for any qn ∈Mn ([0,h] ,Q),

4. and the stationary points q̄, q̃n minimize their respective actions,

then

∣∣∣LE
d (q0,q1)−LS

d (q0,q1,n)
∣∣∣≤CsKn

s (2.16)

for some constants Cs,Ks, Ks < 1, independent of n, and hence the discrete Hamiltonian

flow map has error O (Kn
s ).

The proof of the above theorem is very similar to that of order optimality, and

would be tedious to repeat here. It can be found in the appendix. The main differences

between the proofs are the assumption of the sequence of converging functions in the

increasingly high-dimensional approximation spaces, and the assumption of a sequence
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of increasingly high-order quadrature rules. These assumptions are used in the obvious

way in the modified proof.

2.3.3 Minimization of the Action

One of the major assumptions made in the convergence theorems (2.3.3) and

(2.3.4) is that the the stationary points of both the continuous and discrete actions are

minimizers over the interval [0,h]. This type of minimization requirement is similar

to the one made in the paper on Γ-convergence of variational integrators by Müller

and Ortiz [26]. In fact, the results in Müller and Ortiz [26] can easily be extended to

demonstrate that for sufficiently well-behaved Lagrangians of the form

L(q, q̇) =
1
2

q̇T Mq̇−V (q) ,

where q ∈C2 ([0,h] ,Q), there exists an interval [0,h], such that stationary points of the

Galerkin action are minimizers.

Theorem 2.3.5. Consider a Lagrangian of the form

L(q, q̇) =
1
2

q̇T Mq̇−V (q)

where q ∈C2 ([0,h] ,Q) and each component qd of q, qd ∈C2 ([0,h] ,Q), is a polynomial

of degree at most s. Assume M is symmetric positive-definite and all second-order par-

tial derivatives of V exist, and are continuous and bounded. Then, there exists a time

interval [0,h] such that stationary points of the discrete action,

Sd

({
qi

k
}n

i=1

)
= h

m

∑
j=1

b j

(
1
2

˙̃qn
(
c jh
)T M ˙̃qn

(
c jh
)
−V

(
q̃n
(
c jh
)))

,

on this time interval are minimizers if the quadrature rule used to construct the discrete

action is of order at least 2s+1.

We quickly note that the assumption that each component of q, qd , is a polyno-

mial of degree at most s allows for discretizations where different components of the
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configuration space are discretized with polynomials of different degrees. This allows

for more efficient discretizations where slower evolving components are discretized with

lower-degree polynomials than faster evolving ones.

Proof. Let q̃n be a stationary point of the discrete action Sd (·), and let δq be an arbitrary

perturbation of the stationary point q̃n, under the conditions δqd ∈PSd , δq(0)= δq(h)=

0, which is uniquely defined by
{

δqi
k

}n
i=1 ⊂ Q. Then,

Sd

({
qi

k +δqi
k
}n

i=1

)
−Sd

({
qi

k
}n

i=1

)
= h

m

∑
j

b j

(
1
2
(

˙̃qn +δ q̇
)T M

(
˙̃qn +δ q̇

)
−V (q̃n +δq)

)
−h

m

∑
j

b j

(
1
2

˙̃qT
n M ˙̃qn−V (q̃n)

)
= h

m

∑
j

b j

(
1
2
(

˙̃qn +δ q̇
)T M

(
˙̃qn +δ q̇

)
−V (q̃n +δq)− 1

2
˙̃qT
n M ˙̃qn +V (q̃n)

)
.

Making use of Taylor’s remainder theorem, we expand:

V (q̃n +δq) =V (q̃n)+∇V (q̃n) ·δq+
1
2

δ q̃T
n Rδ q̃n,

where |Rlm| ≤ supl,m

∣∣∣ ∂ 2V
∂ql∂qm

∣∣∣. Using this expansion, we rewrite

Sd

({
qi

k +δqi
k
}n

i=1

)
−Sd

({
qi

k
}n

i=1

)
= h

m

∑
j

b j

(
1
2
(

˙̃qn +δ q̇
)T M

(
˙̃qn +δ q̇

)
−V (q̃n)−∇V (q̃n) ·δq

− 1
2

δqT Rδq−
(

1
2

˙̃qT
n M ˙̃qn +V (q̃n)

))
which, given the symmetry in M, rearranges to:

Sd

({
qi

k +δqi
k
}n

i=1

)
−Sd

({
qi

k
}n

i=1

)
= h

m

∑
j

b j

(
˙̃qT
n Mδ q̇−∇V (q̃n) ·δq+

1
2

δ q̇T Mδ q̇− 1
2

δqT Rδq
)
.

Now, it should be noted that the stationarity condition for the discrete Euler-Lagrange
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equations is

h
m

∑
j=1

b j
(

˙̃qT
n Mδ q̇−∇V (q̃n) ·δq

)
= 0

for arbitrary δq, which allows us to simplify the expression to

Sd

({
qi

k +δqi
k
}n

i=1

)
−Sd

({
qi

k
}n

i=1

)
= h

m

∑
j

b j

(
1
2

δ q̇T Mδ q̇− 1
2

δqT Rδq
)
.

Now, using the assumption that the partial derivatives of V are bounded,

|Rlm| ≤
∣∣∣∣ ∂ 2V
∂ql∂qm

∣∣∣∣<CR,

and standard matrix inequalities, we get the inequality:

δqT Rδq≤ ‖Rδq‖2 ‖δq‖2 ≤ ‖R‖2 ‖δq‖2
2 ≤ ‖R‖F ‖δq‖2

2 ≤ DCR ‖δq‖2
2 = DCRδqT

δq,

(2.17)

where D is the number of spatial dimensions of Q. Thus

h
m

∑
j

b j

(
1
2

δ q̇T Mδ q̇− 1
2

δqT Rδq
)
≥ h

m

∑
j

b j

(
1
2

δ q̇T Mδ q̇− 1
2

DCRδqT
δq
)
.

Because M is symmetric positive-definite, there exists m > 0 such that xT Mx ≥ mxT x

for any x. Hence,

h
m

∑
j

b j

(
1
2

δ q̇T Mδ q̇− 1
2

DCRδqT
δq
)
≥ h

m

∑
j

b j

(
1
2

mδ q̇T
δ q̇− 1

2
DCRδqT

δq
)
.

Now, we note that since each component of δq is a polynomial of degree at most s,

δqT δq and δ q̇T δ q̇ are both polynomials of degree less than or equal to 2s. Since our

quadrature rule is of order 2s+1, the quadrature rule is exact, and we can rewrite

h
m

∑
j

b j

(
1
2

mδ q̇T
δ q̇− 1

2
DCRδqT

δq
)
=

1
2

∫ h

0
mδ q̇T

δ q̇−DCRδqT
δqdt
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=
1
2

(∫ h

0
mδ q̇T

δ q̇dt−
∫ h

0
DCRδqT

δqdt
)
.

From here, we note that δq ∈ H1
0 ([0,h] ,Q), and make use of the Poincaré inequality to

conclude

1
2

(∫ h

0
mδ q̇T

δ q̇dt−
∫ h

0
nCRδqT

δqdt
)
≥ 1

2

(
m

π2

h2

∫ h

0
δqT

δqdt−DCR

∫ h

0
δqT

δqdt
)

=
1
2

(
mπ2

h2 −DCR

)∫ h

0
δqT

δqdt.

Since
∫ h

0 δqT δqdt > 0,

Sd

({
qi

k +δqi
k
}n

i=1

)
−Sd

({
qi

k
}n

i=1

)
≥ 1

2

(
mπ2

h2 −DCR

)∫ h

0
δqT

δqdt > 0

so long as h <
√

mπ2

DCR
.

2.3.4 Convergence of Galerkin Curves and Noether Quantities

Galerkin Curves

In order to construct the one-step method, spectral variational integrators deter-

mine a curve,

q̃n (t) =
n

∑
i=1

qi
kφi (t) ,

which satisfies

q̃n (t) = argmin
qn(t)∈Mn([0,h],Q)

qn(0)=qk,qn(h)=qk+1

h
m

∑
j=1

b jL
(
q̃n
(
c jh
)
, ˙̃qn
(
c jh
))

.

Evaluating this curve at h defines the next step of the one-step method, qk+1 = q̃n (h),

but the curve itself has many desirable properties which makes it a good continuous

approximation to the true solution of the Euler Lagrange equations q̄(t). In this section,

we will examine some of the favorable properties of q̃n (t), hereafter referred to as the
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Galerkin curve.

However, before discussing the properties of the Galerkin curve, it is useful re-

view the different curves with which we are working. We have already defined the

Galerkin curve, q̃n (t), and we will also be making use of the local solution to the Euler-

Lagrange equations q̄(t), where

q̄(t) = argmin
q(t)∈C2([0,h],Q)

q(0)=qk,q(h)=qk+1

∫ h

0
L(q(t) , q̇(t))dt.

However, while for each interval q̄ satisfies the Euler-Lagrange equations exactly, it is

not the exact solution of the Euler-Lagrange equations globally, as qk 6= Φkh (q0, q̇0),

where Φt (q0, q̇0) is the flow of the Euler-Lagrange vector field. This is particularly

important when discussing invariants, where the invariants of q̄ remain constant within

a time-step, but not from time-step to time-step.

The first property of the Galerkin curve that we will examine is its rate of con-

vergence to the true flow of the Euler-Lagrange vector field. There are two general

sources of error that affect the convergence of these curves, the first being the accuracy

to which the curves approximate the local solution to the Euler-Lagrange equations over

the interval [0,h] with the boundary (qk,qk+1), and the second being the accuracy of

the boundary conditions (qk,qk+1) as approximations to a true sampling of the exact

flow. Numerical experiments will show that often the second source of error dominates

the first, causing the Galerkin curves to converge at the same rate as the one-step map.

However, the accuracy to which the Galerkin curves approximate the true minimiz-

ers independent of the error of the boundary can also be established under appropriate

assumptions about the action. Two theorems which establish this convergence are pre-

sented below.

Before we state the theorems, we quickly recall the definitions of the Sobolev

Norm ‖·‖W 1,p([0,h]),

‖ f‖W 1,p([0,h]) =
(
‖ f‖p

Lp([0,h])+
∥∥ ḟ
∥∥p

Lp([0,h])

) 1
p
=

(∫ h

0
| f |p dt +

∫ h

0

∣∣ ḟ ∣∣p dt
) 1

p

.

We will make extensive use of this norm when examining convergence of Galerkin



49

curves.

Theorem 2.3.6. (Geometric Convergence of Galerkin Curves with n-Refinement) Un-

der the same assumptions as Theorem 2.3.4, if at q̄, the action is twice Frechet differ-

entiable, and if the second Frechet derivative of the action D2S(·) [·, ·] is coercive in a

neighborhood U of q̄, that is,

D2S(ν) [δq,δq]≥C f ‖δq‖2
W 1,1([0,h]) ,

for all curves δq ∈H1
0 ([0,h] ,Q) and all ν ∈U, then the curves which minimize the dis-

crete action converge to the true solution geometrically with n-refinement with respect

to ‖·‖W 1,1([0,h]). Specifically, if the discrete Hamiltonian flow map has error O (Kn
s ),

Ks < 1, then the Galerkin curves have error O
(√

Ks
n).

Proof. We start with the bound (2.16) given at the end of Theorem 2.3.4,

∣∣∣LE
d (qk,qk+1)−LS

d (qk,qk+1,n)
∣∣∣≤CsKn

s

and expand using the definitions of LE
d (qk,qk+1) and LS

d (qk,qk+1,n), as well as the

assumed accuracy of the quadrature rule Gn to derive

CsKn
s ≥

∣∣∣LE
d (qk,qk+1)−LS

d (qk,qk+1,n)
∣∣∣ (2.18)

=

∣∣∣∣∣
∫ h

0
L(q̄, ˙̄q)dt−h

mn

∑
j=1

bn jL
(
q̃n
(
cn jh

)
, q̃n
(
cn jh

))∣∣∣∣∣
≥
∣∣∣∣∫ h

0
L(q̄, ˙̄q)dt−

∫ h

0
L(q̃n, q̃n)dt

∣∣∣∣−CgKn
g (2.19)

= |S(q̃n)−S(q̄)|−CgKn
g

which implies:

(Cs +Cg)Kn
s ≥|S(q̃n)−S(q̄)|

because Ks≥Kg, (see the proof of Theorem 2.3.4 in the appendix). Using this inequality,
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we make use of a Taylor expansion of S(q̃n),

S(q̃n) =S(q̄)+DS(q̄) [q̃n− q̄]+
1
2

D2S(ν) [q̃n− q̄, q̃n− q̄] ,

for some ν ∈U , to see that

(Cs +Cg)Kn
s ≥ |S(q̃n)−S(q̄)|

=

∣∣∣∣S(q̄)+DS(q̄) [q̃n− q̄]+
1
2

D2S(q̄) [q̃n− q̄, q̃n− q̄]−S(q̄)
∣∣∣∣ .

But

DS(q̄) [q̃n− q̄] =
∫ h

0

∂L
∂q

(q̄, ˙̄q)(q̃n− q̄)+
∂L
∂ q̇

(q̄, ˙̄q)
(

˙̃qn− ˙̄q
)

dt

=
∫ h

0

(
∂L
∂q

(q̄, ˙̄q)− d
dt

∂L
∂ q̇

(q̄, ˙̄q)
)
· (q̃n− q̄)dt

= 0,

because q̃n (0) = q̄(0) and q̃n (h) = q̄(h) by definition (note that this implies (q̃n− q̄) ∈
H1

0 ([0,h] ,Q)). Then

(Cs +Cg)Kn
s ≥

∣∣D2S(ν) [q̃n− q̄, q̃n− q̄]
∣∣

≥C f ‖q̃n− q̄‖2
W 1,1([0,h])

C
√

Ks
n ≥ ‖q̃n− q̄‖2

W 1,1([0,h])

where C =
Cs+Cg

C f
.

This result shows that Galerkin curves converge to the true solution geometri-

cally with n-refinement, albeit with a larger geometric constant, and hence a slower rate.

By simply replacing the bounds (2.18) and (2.19) from Theorem 2.3.4 with those from

Theorem 2.3.3 and the term CsKn
s with Cophp, an identical argument shows that Galerkin

curves converge at half the optimal rate with h-refinement.

Theorem 2.3.7. (Convergence of Galerkin Curves with h-Refinement) Under the same

assumptions as Theorem 2.3.3, if at q̄, the action is twice Frechet differentiable, and
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if the second Frechet derivative of the action D2S (·) [·, ·] is coercive with a constant

C f independent of h in a neighborhood U of q̄, for all curves δq ∈ H1
0 ([0,h] ,Q),

then if the discrete Lagrange map has error O
(
hp+1), the Galerkin curves have er-

ror at most O
(

h
p+1

2

)
in ‖·‖W 1,1([0,h]). If C f is a function of h, this bound becomes

O
(

C f (h)
−1 h

p+1
2

)
.

Like the requirement that the stationary points of the actions are minimizers, the

requirement that the second Frechet derivative of the action is coercive may appear quite

strong at first. Again, the coercivity will depend on the properties of the Lagrangian L,

but we can establish that for Lagrangians of the canonical form,

L(q, q̇) =
1
2

q̇T Mq̇−V (q) ,

there exists a time step [0,h] over which the action is coercive on H1
0 ([0,h] ,Q).

Theorem 2.3.8. (Coercivity of the Action) For Lagrangian of the form

L(q, q̇) =
1
2

q̇T Mq̇−V (q) ,

where M is symmetric positive-definite, and the second derivatives of V (q) are bounded,

there exists an interval [0,h] over which the action is coercive over H1
0 ([0,h] ,Q), that

is,

D2S(ν) [δq,δq]≥C f ‖δq‖2
W 1,1([0,h]) ,

for any δq ∈ H1
0 ([0,h] ,Q) and any ν ∈C2 ([0,h] ,Q).

Proof. First, we note that if

S(ν) =
∫ h

0

1
2

ν̇
T Mν̇−V (ν) ,

then

D2S(ν) [δq,δq] =
∫ h

0
δ q̇T Mδ q̇−δqT H (ν)δqdt
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=
∫ h

0
δ q̇T Mδ q̇dt−

∫ h

0
δqT H (ν)δqdt

where H (ν) is the Hessian of V (ν) at the point ν . Since M is symmetric positive-

definite, and the second derivatives of V (·) are bounded, then there exists Cr and m such

that:

∫ h

0
δ q̇T Mδ q̇dt ≥

∫ h

0
mδ q̇T

δ q̇dt∫ h

0
δqT H (ν)δqdt ≤

∫ h

0
DCrδqT

δqdt, (2.20)

(see (2.17) for a derivation of (2.20)). Hence,

D2S(ν) [δq,δq]≥
∫ h

0
mδ q̇T

δ q̇dt−
∫ h

0
DCr f T f dt

=
1
2

m
∫ h

0
δ q̇T

δ q̇dt +
1
2

m
∫ h

0
δ q̇T

δ q̇dt−DCr

∫ h

0
δqT

δqdt. (2.21)

Considering the last two terms in (2.21), and noting that δq ∈ H1
0 ([0,h] ,Q), we make

use of the Poincaré inequality to derive:

1
2

m
∫ h

0
δ q̇T

δ q̇dt−DCr

∫ h

0
δqT

δqdt ≥ mπ2

2h2

∫ h

0
δqT

δqdt−nCr

∫ h

0
δqT

δqdt

≥
(

mπ2

2h2 −DCr

)∫ h

0
δqT

δqdt. (2.22)

Thus, substituting (2.22) in for the last two terms of (2.21), we conclude:

D2S(q, q̇) [δq,δq]

≥
(

mπ2

2h2 −DCr

)∫ h

0
δqT

δqdt +
m
2

∫ h

0
δ q̇T

δ q̇dt

≥min
(

m
2
,

(
mπ2

2h2 −DCr

))(∫ h

0
δqT

δqdt +
∫ h

0
δ q̇T

δ q̇dt
)

= min
(

m
2
,

(
mπ2

2h2 −DCr

))(
‖δq‖2

L2([0,h])+‖δ q̇‖2
L2([0,h])

)
,
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Figure 2.2: Conserved and approximately conserved Noether quantities and the re-
sulting constrained solution space. Suppose that both pT q = 1 and p2 + q2 = 5 were
conserved quantities for a certain Lagrangian. Then the solutions of the Euler-Lagrange
equations would be constrained to the intersections of these two constant surfaces in
phase space; in the above diagram, this is the intersection of the dashed and solid lines.
If these quantities were conserved up to a fixed error along a numerical solution, then
the numerical solution would be constrained to the intersection of the shaded regions in
the above figure. The constraint of the numerical solution to these regions is what leads
to the many excellent qualities of variational integrators.

and making use of Hölder’s inequality, we see that ‖δq‖L2([0,h]) ≥ h−
1
2 ‖δq‖L1([0,h]), thus

D2S(q, q̇) [δq,δq]

≥min
(

m
2
,

(
mπ2

2h2 −DCr

))(
h−1 ‖δq‖2

L1([0,h])+h−1 ‖δ q̇‖2
L1([0,h])

)
≥min

(
m
2h

,h−1
(

mπ2

2h2 −hDCr

))
1
2

(
‖δq‖L1([0,h])+‖δ q̇‖L1([0,h])

)2

= min
(

m
4h

,(2h)−1
(

mπ2

2h2 −DCr

))
‖δq‖2

W 1,1([0,h])

which establishes the coercivity result.
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Noether Quantities

One of the great advantages of using variational integrators for problems in ge-

ometric mechanics is that by construction they have a rich geometric structure which

helps lead to excellent long term and qualitative behavior. An important geometric fea-

ture of variational integrators is the preservation of discrete Noether quantities, which

are invariants that are derived from symmetries of the action. These are analogous to the

more familiar Noether quantities of geometric mechanics in the continuous case. We

quickly recall Noether’s theorem in both the discrete and continuous case, which will

also help define the notation used throughout the proofs that follow. The proofs of both

these theorems can be found in Hairer et al. [11].

Theorem 2.3.9. (Noether’s Theorem) Consider a system with Hamiltonian H (p,q) and

Lagrangian L(q, q̇). Suppose {gs : s ∈ R} is a one-parameter group of transformations

which leaves the Lagrangian invariant. Let

a(q) =
d
ds

∣∣∣∣
s=0

gs (q)

be defined as the vector field with flow gs (q), referred to as the infinitesimal generator,

and define the canonical momentum

p =
∂L
∂ q̇

(q, q̇) .

Then

I (p,q) = pT a(q)

is a first integral of the Hamiltonian system.

Theorem 2.3.10. (Discrete Noether’s Theorem) Suppose the one-parameter group of

transformations leaves the discrete Lagrangian Ld (qk,qk+1) invariant for all (qk,qk+1).

Then:

pT
k+1a(qk+1) = pT

k a(qk)
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where

pk =−D1Ld (qk,qk+1) ,

pk+1 = D2Ld (qk,qk+1) .

For the remainder of this section, we will refer to I (q, p) as the Noether quantity

and pT
n a(qn) = pT

n+1a(qn+1) as the discrete Noether quantity.

For Galerkin variational integrators, it is possible to bound the error of the

Noether quantities along the Galerkin curve from the behavior of the analogous discrete

Noether quantities of the discrete problem and, more importantly, this bound is inde-

pendent of the number of time steps that are taken in the numerical integration. This

is significant because it offers insight into the excellent behavior of spectral variational

integrators even over long periods of integration.

The proof of convergence and near preservation of Noether quantities is bro-

ken into three major parts. First, we note that on step k of a numerical integration the

discrete Noether quantity arises from a function of the Galerkin curve and the initial

point of the one-step map (qk−1,qk), and that a bound exists for the difference of this

discrete Noether quantity evaluated on the Galerkin curve and evaluated on the local

exact solution to the Euler-Lagrange equations q̄. Second, we show that a bound ex-

ists for the difference of the discrete Noether quantity on the local exact solution of the

Euler-Lagrange equations and the value of the Noether quantity of the local exact solu-

tion, which is conserved along the flow of the Euler-Lagrange vector field. Finally, we

show that under certain smoothness conditions, there exists a point-wise bound between

the Noether quantity evaluated on the Galerkin curve and the Noether quantity evalu-

ated on the local exact solution. Thus, we establish a point-wise bound between the

Noether quantity evaluated on the Galerkin curve and the discrete Noether quantity, and

a bound between the discrete Noether quantity and the Noether quantity, which leads to

a point-wise bound between the Noether quantity evaluated on the Galerkin curve, and

the Noether quantity which is conserved along the global flow of the Euler-Lagrange

vector field.
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Throughout this section we will make the simplifying assumptions that

q̃n =
n

∑
i=1

qi
kφi

where q1
k = qk, and thus

∂ q̃n

∂qk
= φ1.

This assumption significantly simplifies the analysis.

We begin by bounding the discrete Noether quantity by a function of the local

exact solution of the Euler-Lagrange equations.

Lemma 2.3.3. (Bound on Discrete Noether Quantity) Define the Galerkin Noether map

as:

Id (q(t) ,qk) =−

(
h

n

∑
j=1

b j

[
∂L
∂q

(q, q̇)φ1 +
∂L
∂ q̇

(q, q̇) φ̇1

])T

a(qk)

and note that the discrete Noether quantity is given by

Id (q̃n,qk) = pT
n a(qk) .

Assuming the quadrature accuracy of Theorem (2.3.4) with n-refinement and Theo-

rem (2.3.3) with h-refinement, if ∂L
∂q (q, q̇),

∂L
∂ q̇ (q, q̇) and d

dt
∂L
∂ q̇ are Lipschitz continuous,

‖φ1‖L∞([0,h]) is bounded with n refinement, and ‖q̃n− q̄‖W 1,1([0,h]) is bounded below by

the quadrature error, then

|Id (q̃n,qk)− Id (q̄,qk)|

≤C |a(qk)|
(
‖q̃n− q̄‖W 1,1([0,h])+‖q̃n− q̄‖L∞([0,h])+

∥∥ ˙̃qn− ˙̄q
∥∥

L∞([0,h])

)
for some C independent of n and h.

Proof. We begin by expanding the definitions of the discrete Noether quantity:

|Id (q̃n,qk)− Id (q̄,qk)|
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=

∣∣∣∣∣∣h
(

m

∑
j=1

b j

[
∂L
∂q

(
q̃n, ˙̃qn

)
φ1 +

∂L
∂ q̇

(
q̃n, ˙̃qn

)
φ̇1

])T

a(qk)

−

(
h

m

∑
j=1

b j

[
∂L
∂q

(q̄, ˙̄q)φ1 +
∂L
∂ q̇

(q̄, ˙̄q) φ̇1

])T

a(qk)

∣∣∣∣∣∣
=

∣∣∣∣∣
(

h∑b j

[(
∂L
∂q

(
q̃n, ˙̃qn

)
− ∂L

∂q
(q̄, ˙̄q)

)
φ1−

(
∂L
∂ q̇

(
q̃n, ˙̃qn

)
− ∂L

∂ q̇
(q̄, ˙̄q)

)
φ̇1

])T

a(qk)

∣∣∣∣∣
≤

∣∣∣∣∣h m

∑
j=1

b j

[(
∂L
∂q

(
q̃n, ˙̃qn

)
− ∂L

∂q
(q̄, ˙̄q)

)
φ1−

(
∂L
∂ q̇

(
q̃n, ˙̃qn

)
− ∂L

∂ q̇
(q̄, ˙̄q)

)
φ̇1

]∣∣∣∣∣ |a(qk)| .

Now we introduce the function eq (·, ·) which gives the error of the quadrature rule, and

thus

|Id (q̃n,qk)− Id (q̄,qk)|

≤
∣∣∣∣∫ h

0

(
∂L
∂q

(
q̃n, ˙̃qn

)
− ∂L

∂q
(q̄, ˙̄q)

)
φ1−

(
∂L
∂ q̇

(
q̃n, ˙̃qn

)
− ∂L

∂ q̇
(q̄, ˙̄q)

)
φ̇1dt

+ eq
(
q̃n− q̄, ˙̃qn− ˙̄q

)∣∣∣∣ |a(qk)| .

Integrating by parts, we get:

|Id (q̃n,qk)− Id (q̄,qk)|

≤
∣∣∣∣∫ h

0

(
∂L
∂q

(
q̃n, ˙̃qn

)
− ∂L

∂q
(q̄, ˙̄q)

)
φ1−

d
dt

(
∂L
∂ q̇

(
q̃n, ˙̃qn

)
− ∂L

∂ q̇
(q̄, ˙̄q)

)
φ1dt

+

(
∂L
∂ q̇

(
q̃n, ˙̃qn

)
− ∂L

∂ q̇
(q̄, ˙̄q)

)
φ1

∣∣∣∣h
0
+ eq

(
q̃n− q̄, ˙̃qn− ˙̄q

)∣∣∣∣∣ |a(qk)| .

Introducing the Lipschitz constants L1 for ∂L
∂q , L2 for ∂L

∂ q̇ , and L3 for d
dt

∂L
∂ q̇ ,

|Id (q̃n,qk)− Id (q̄,qk)|

≤
(∫ h

0
(L1 +L3)

∣∣(q̃n, ˙̃qn
)
− (q̄, ˙̄q)

∣∣ |φ1|dt +2L2

(
‖φ1‖L∞([0,h])

)
(
‖q̃n− q̄‖L∞([0,h])+

∥∥ ˙̃qn− ˙̄q
∥∥

L∞([0,h])

)
+ eq

(
q̃n− q̄, ˙̃qn− ˙̄q

))
|a(qk)|
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≤ (L1 +L3)‖φ1‖L∞([0,h]) |a(qk)|
(∫ h

0

∣∣(q̃n, ˙̃qn
)
− (q̄, ˙̄q)

∣∣dt
)

+2L2

(
‖φ1‖L∞([0,h])

)
|a(qk)|

(
‖q̃n− q̄‖L∞([0,h])+

∥∥ ˙̃qn− ˙̄q
∥∥

L∞([0,h])

)
+ eq

(
q̃n− q̄, ˙̃qn− ˙̄q

)
|a(qk)| .

We now make the simplification that the quadrature error
∣∣eq (·, ·)

∣∣ serves as a lower

bound for ‖q̃n− q̄‖W 1,1([0,h]). While this may not strictly hold, all of our estimates on

the convergence for q̃n imply this bound, and hence it is a reasonable simplification for

establishing convergence in this case. Now, note that ‖φ1‖L∞([0,h]) is invariant under h

rescaling, and let

C = max(L1 +L3,2L2)‖φ1‖L∞([0,h])+1

to get

|Id (q̃n,qk)− Id (q̄,qk)|

≤C |a(qk)|
(
‖q̃n− q̄‖W 1,1([0,h])+‖q̃n− q̄‖L∞([0,h])+

∥∥ ˙̃qn− ˙̄q
∥∥

L∞([0,h])

)
which establishes the result.

Lemma 2.3.3 establishes a bound between the discrete Noether quantity and

Id (q̄,qk). The next step is to establish a bound between Id (q̄,qk) and the Noether quan-

tity.

Lemma 2.3.4. (Error Between Discrete Noether Quantity and True Noether Quantity)

Assume that φ1 (0) = 1 and φ1 (h) = 0, and that the sequence {|a(qk)|}N
k=1 is bounded

by a constant Ca which is independent of N. Let

p̄(t) =
∂L
∂ q̇

(q̄(t) , ˙̄q(t)) .

Once again, let the error of the quadrature rule be given by eq (·, ·). Then

∣∣∣Id (q̄,qk)− I (p̄(t) , q̄(t))
∣∣∣≤Ca

∣∣eq (q̄, ˙̄q)
∣∣
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for any t ∈ [0,h].

Proof. We note that since q̄ solves the Euler-Lagrange equations exactly, I (p̄(t) , q̄(t))

is a conserved quantity along the flow, so it suffices to show the inequality holds for

t = 0. We begin by expanding:

∣∣∣Id (q̄,qk)− I (p̄(0) , q̄(0))
∣∣∣

=

∣∣∣∣∣∣−h

(
m

∑
j=1

b j
∂L
∂q

(q̄, ˙̄q)φ1 +
∂L
∂ q̇

(q̄, ˙̄q) φ̇1

)T

a(qk)− p̄(0)T a(q̄(0))

∣∣∣∣∣∣
=

∣∣∣∣∣−
(∫ h

0

∂L
∂q

(q̄, ˙̄q)φ1 +
∂L
∂ q̇

(q̄, ˙̄q) φ̇1dt + eq (q̄, ˙̄q)
)T

a(qk)− p̄(0)T a(q̄(0))

∣∣∣∣∣
=

∣∣∣∣−(∫ h

0

(
∂L
∂q

(q̄, ˙̄q)− d
dt

∂L
∂ q̇

(q̄, ˙̄q)
)

φ1dt +
∂L
∂ q̇

(q̄(h) , ˙̄q(h))φ1 (h)

−∂L
∂ q̇

(q̄(0) , ˙̄q(0))φ1 (0)+ eq (q̄, ˙̄q)
)T

a(qk)− p̄(0)T a(q̄(0))

∣∣∣∣∣
Since q̄(t) solves the Euler-Lagrange equations, φ1 (0) = 1 and φ1 (h) = 0, and q̄(0) =

qk,

∣∣∣Id (q̄,qk)− I (p̄(0) , q̄(0))
∣∣∣

=

∣∣∣∣∣
(

∂L
∂ q̇

(q̄(0) , ˙̄q(0))
)T

a(qk)+
(
eq (q̄, ˙̄q)

)T a(qk)− p̄(0)T a(qk)

∣∣∣∣∣
=
∣∣∣(p̄(0))T a(qk)+

(
eq (q̄, ˙̄q)

)T a(qk)− (p̄(0))T a(qk)
∣∣∣

=
∣∣∣eq (q̄, ˙̄q)T a(qk)

∣∣∣
≤
∣∣eq (q̄, ˙̄q)

∣∣ |a(qk)|

≤Ca
∣∣eq (q̄, ˙̄q)

∣∣
which yields the desired bound.

Once again, if we assume that the quadrature error serves as a lower bound for

the Sobolev error, combining the bounds from (2.3.3) and (2.3.4) yields:

|Id (q̃n,qk)− I (p̄(t) , q̄(t))|
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≤ 2CCa

(
‖q̃n− q̄‖W 1,1([0,h])+‖q̃n− q̄‖L∞([0,h])+

∥∥ ˙̃qn− ˙̄q
∥∥

L∞([0,h])

)
.

This bound serves two purposes; the first is to establish a bound between the discrete

Noether quantity and the Noether quantity computed on the local exact solution q̄. The

second is to establish a bound between the discrete Noether quantity after one step and

the Noether quantity computed on the initial data:

|Id (q̃n,q1)− I (p(0) ,q(0))|

≤ 2CCa

(
‖q̃n− q̄‖W 1,1([0,h])+‖q̃n− q̄‖L∞([0,h])+

∥∥ ˙̃qn− ˙̄q
∥∥

L∞([0,h])

)
,

since for (q1,q2), q̄ is the global exact flow of the Euler-Lagrange equations.

The difference between these two bounds is subtle but important; by establishing

a bound between the discrete Noether quantity and the Noether quantity associated with

the initial conditions, on any step of the method we can bound the error between the

discrete Noether quantity and the Noether quantity associated with the global exact

flow. By establishing the bound between the discrete Noether quantity and the Noether

quantity associated with q̄ at any step, we can bound the error between the Noether

quantity associated with the local exact flow q̄ and the true Noether quantity conserved

along the global exact flow:

|I (p̄(t) , q̄(t))− I (p(0) ,q(0))|

≤ |I (p̄(t) , q̄(t))− Id (q̃n,qk)|+ |Id (q̃n,qk)− I (p(0) ,q(0))|

≤ 4CCa

(
‖q̃n− q̄‖W 1,1([0,h])+‖q̃n− q̄‖L∞([0,h])+

∥∥ ˙̃qn− ˙̄q
∥∥

L∞([0,h])

)
(2.23)

for any t0 ∈ [0,h] on any time step k. Because the local exact flow q̄ is generated from

boundary conditions (qk,qk+1) which only approximate the boundary conditions of the

true flow, there is no guarantee that the Noether quantity associated with q̄ will be the

same step to step, only that it will be conserved within each time step. However, because

there is a bound between the Noether quantity associated with q̄ and the discrete Noether

quantity at every time step, the discrete Noether quantity and the Noether quantity as-

sociated with the exact flow, and because the Noether quantity is conserved point-wise

along q̄ on each time step, there exists a bound between the Noether quantity associated
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with each point of the local exact flow and the Noether quantity associated with the true

solution.

We finally arrive at the desired result, which is a theorem that bounds the error

between the Noether quantity along the Galerkin curve and the true Noether quantity. It

is significant because not only does it bound the error of the Noether quantity, but the

bound is independent of the number of steps taken, and hence will not grow even for

extremely long numerical integrations.

Theorem 2.3.11. (Convergence of Conserved Noether Quantities) Define

p̃n =
∂L
∂ q̇

(
q̃n, ˙̃qn

)
.

Under the assumptions of Lemmas (2.3.3 - 2.3.4), if the Noether map I (p,q) is Lipschitz

continuous in both its arguments, then there exists a constant Cv independent N, the

number of method steps, such that:

|I (p(0) ,q(0))− I (p̃n (t) , q̃n (t))|

≤Cv

(
‖q̃n− q̄‖W 1,1([0,h])+‖q̃n− q̄‖L∞([0,h])+

∥∥ ˙̃qn− ˙̄q
∥∥

L∞([0,h])

)
.

for any t ∈ [0,Nh].

Proof. We begin by introducing the Noether quantity evaluated at t on the local exact

flow, q̄:

|I (p(0) ,q(0))− I (p̃n (t) , q̃n (t))|

≤ |I (p̃n (t) , q̃n (t))− I (p̄(t) , q̄(t))|+ |I (p̄(t) , q̄(t))− I (p(0) ,q(0))| . (2.24)

Considering the first term in (2.24), let L4 be the Lipschitz constant for I (·, ·). Then

|I (p̃n (t) , q̃n (t))− I (p̄(t) , q̄(t))|

≤ L4 |(p̃n (t) , q̃n (t))− (p̄(t) , q̄(t))|

≤ L4 (|p̃n (t)− p̄(t)|+ |q̃n (t)− p̄(t)|)

= L4

(∣∣∣∣∂L
∂ q̇

(
q̃n (t) , ˙̃qn (t)

)
− ∂L

∂ q̇
(q̄(t) , ˙̄q(t))

∣∣∣∣+ |q̃n (t)− q̄(t)|
)
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≤ L4
(
L2
∣∣ ˙̃qn (t)− ˙̄q(t)

∣∣+(L2 +1) |q̃n (t)− q̄(t)|
)

≤ L4 (L2 +1)
(
‖q̃n− q̄‖L∞([0,h])+

∥∥ ˙̃qn− ˙̄q
∥∥

L∞([0,h])

)
. (2.25)

The second term in (2.24) is exactly the bound given by (2.23) and thus combin-

ing (2.25) and (2.23) in (2.24) and defining Cv = 4CCa +L(L2 +1), we have:

|I (p̃n (t) , q̃n (t))− I (p̄(t) , q̄(t))|

≤Cv

(
‖q̃n− q̄‖W 1,1([0,h])+‖q̃n− q̄‖L∞([0,h])+

∥∥ ˙̃qn− ˙̄q
∥∥

L∞([0,h])

)
which completes the result.

The convergence of the Noether quantity evaluated on the Galerkin curve to

that of the true solution is hampered by one issue. While Theorems (2.3.6) and (2.3.7)

provide estimates for convergence in the Sobolev norm ‖·‖W 1,1([0,h]), Theorem (2.3.11)

requires estimates in the L∞ norm. We establish a bound for ‖q̃n (t)− q̄(t)‖L∞([0,h]), but

it is much more difficult to establish a general estimate for
∥∥ ˙̃qn (t)− ˙̄q(t)

∥∥
L∞([0,h]).

Lemma 2.3.5. (Bound on L∞ Norm from Sobolev Norm) For any t ∈ [0,h], the following

bound holds:

|q(t)| ≤max
(

1
h
,1
)
‖q‖W 1,1([0,h])

and thus

‖q‖L∞([0,h]) ≤max
(

1
h
,1
)
‖q‖W 1,1([0,h]) .

Proof. This is a basic extension of the arguments from Lemma A.1. in Larsson and

Thomée [15], generalizing the lemma from the interval [0,1] to an interval of arbitrary

length, [0,h]. We note that for any t,s ∈ [0,h], q(t) = q(s)+
∫ t

s q̇(u)du. Thus:

|q(t)| ≤|q(s)|+
∫ h

0
|q̇(u)|du

≤|q(s)|+‖q̇‖L1([0,h]) .
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Now, we integrate with respect to s:

∫ h

0
|q(t)|ds≤

∫ h

0
|q(s)|ds+

∫ h

0
‖q̇‖L1([0,h]) ds

h |q(t)| ≤
(
‖q‖L1([0,h])+h‖q̇‖L1([0,h])

)
.

which yields the desired result.

Under certain assumptions about the behavior of ˙̃qn− ˙̄q, it is possible to establish

bounds on the point-wise error of ˙̃qn from the Sobolev error ‖q̃n− q̄‖W 1,1([0,h]). For

example, if the length of time that the error is within a given fraction of the max error is

proportional to the length of the interval [0,h], i.e. there exists C1,C2 independent of h:

i.e.,

m
({

t
∣∣∥∥( ˙̃qn (t)− ˙̄q(t)

)∥∥≥C1
∥∥ ˙̃qn (t)− ˙̄q(t)

∥∥
∞

})
≥C2h,

where m is the Lebesgue measure, then it can easily be seen that:

‖q̃n− q̄‖W 1,1([0,h]) ≥
∫ h

0

∥∥ ˙̃qn (t)− ˙̄q(t)
∥∥dt ≥C1C2h

∥∥ ˙̃qn− ˙̄q
∥∥

L∞([0,h]) .

While we will not establish here that the ˙̃qn converges in the L∞ norm with the same rate

that the Galerkin curve converges in the Sobolev norm, our numerical experiments will

show that the Noether quantities tend to converge at the same rate as the Galerkin curve.

2.4 Numerical Experiments

To support the results in this paper, as well as to investigate the efficiency and sta-

bility of spectral variational integrators, several numerical experiments were conducted

by applying spectral variational techniques to well-known variational problems. For

each problem, the spectral variational integrator was constructed using a Lagrange in-

terpolation polynomials at n Chebyshev points with a Gauss quadrature rule at 2n points.

Convergence of both the one-step map and the Galerkin curves was measured using the

`∞ and L∞ norms respectively, although we record them on the same axis using labeled
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L∞ error in a slight abuse of notation. The experiments strongly support the results of

this paper, and suggest topics for further investigation.

2.4.1 Harmonic Oscillator

The first and simplest numerical experiment conducted was the harmonic oscil-

lator. Starting from the Lagrangian,

L(q, q̇) =
1
2

q̇2− 1
2

q2,

where q ∈ R, the induced spectral variational discrete Euler-Lagrange equations are

linear. Choosing the large time step h = 20 over 100 steps yields the expected geometric

convergence, and attains very high accuracy, as can be seen in Figure 2.3. In addition,

the max error of the energy converges geometrically, see Figure 2.4, and does not grow

over the time of integration, see Figure 2.5.

2.4.2 N-body Problems

We now turn our attention towards Kepler N-body problems, which are both

good benchmark problems and are interesting in their own right. The general form of

the Lagrangian for these problems is

L(q, q̇) =
1
2

N

∑
i=1

q̇T
i Mq̇i +G

N

∑
i=1

i−1

∑
j=0

mim j∥∥qi−q j
∥∥ ,

where qi ∈ RD is the center of mass for body i, G is a gravitational constant, and mi is a

mass constant associated with the body described by qi.

2-Body Problem

The first experiment we will examine is the choice of parameters D = 2, m1 =

m2 = 1. Centering the coordinate system at q1, we choose q2 (0) = (0.4,0), q̇2 (0) =

(0,2), which has a known closed form solution which is a stable closed elliptical orbit

with eccentricity 0.6. Knowing the closed form solution allows us to examine the rate of
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Figure 2.3: Geometric convergence of the spectral variational integration of the har-
monic oscillator for 100 steps at step size h = 20.0.
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Figure 2.4: Geometric convergence of the energy error of the spectral variational inte-
gration of the harmonic oscillator for 100 steps at step size h = 20.0.
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Figure 2.5: Energy Stability of the spectral variational integration of the harmonic oscil-
lator. This energy was computed for the integration using n = 14 for step size h = 20.0.
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Figure 2.6: Geometric convergence of the Kepler 2-body problem with eccentricity 0.6
over 100 steps of h = 2.0. Note that around n = 32, the error for the Galerkin curves
becomes O (0.74n), while the error for the one-step map is always O (0.56n).
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Figure 2.7: Geometric convergence of the energy error of Kepler 2-body problem with
eccentricity 0.6 over 100 steps of h = 2.0. Note that the error is O (0.74n), the same as
it was for the Galerkin curves.

10 15 20 25 30 35 40 45 50 55
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Chebyshev Points Per Step (N )

L
∞

E
rr

o
r

(e
)

Angular Momentum Convergence with N−Refinement

 

 
Angular Momentum Error

e = 10(0.74)N

Figure 2.8: Geometric convergence of the angular momentum of the Kepler 2-body
problem with eccentricity 0.6 over 100 steps of h = 2.0. Again, the error is of the same
order as it was the Galerkin curves.
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Figure 2.10: Convergence of the Kepler 2-body problem energy with eccentricity 0.6
over 10 steps with h refinement.
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Figure 2.11: Convergence of the angular momentum Kepler 2-body problem with ec-
centricity 0.6 over 100 steps with h refinement.
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Figure 2.12: Stability of energy for Kepler 2-body problem. This solution was com-
puted with parameters n = 8 and h = 2.0.
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convergence to the true solution, and when solved with the large time step h = 2.0, over

100 steps, the error of the one-step map is O (0.56n) with n-refinement and O
(

h2d n
2e
)

with h-refinement, as can be seen in Figure 2.6 and Figure 2.9, respectively. The numeri-

cal evidence suggests that our bound for the one-step map with h-refinement is not sharp,

as the convergence of the one-step map is always even. Interestingly, it is also possible

to observe the different convergence rates of the one-step map and the Galerkin curves

with n-refinement, as eventually the Galerkin curves have error approximately O (0.74n)

while the one-step map has error approximately O (0.56n), and
√

0.56≈ 0.7483. How-

ever, it appears that the error from the one step map dominates until very high choices

of n, and thus it is difficult to observe the error of the Galerkin curves directly with h-

refinement, round off error becomes a problem before the error of the Galerkin curves

does for smaller choices of n.

The N-body Lagrangian is invariant under the action of SO(D), which yields the

conserved Noether quantity of angular momentum. For the two body problem this is:

L(q, q̇) = qxq̇y−qyq̇x

where q=(qx,qy). Numerical experiments show that the error of the angular momentum

does not grow with the number of steps taken in the integration, Figure 2.13, but that the

error is of the same order as the error of Galerkin curve with n-refinement in Figure 2.8.

With h-refinement, the angular momentum appears to have error O
(
h

n
2 +2

)
in Figure

2.11. This is interesting because the theoretical bound on the error of the Galerkin

curves is O
(
h

n
2
)
, and the error of the Noether quantities is theoretically a factor C (h)

times the error of the Galerkin curves, where C is the factor that arises in the proof of

the convergence of the conserved Noether quantities. Numerical experiments suggest C

is O
(
h2) for this problem, but that the Galerkin curves do converge at a rate of O

(
h

n
2
)
,

which is consistent with of the Galerkin curve error estimate. While this evidence is not

conclusive, it is suggestive that the error analysis provides a plausible bound. A careful

analysis of the factor C would be an interesting direction for further investigation.
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Figure 2.13: Stability of angular momentum for the Kepler 2-body problem. This solu-
tion was computed with parameters n = 8 and h = 2.0.

The Solar System

To illustrate the excellent stability proprieties of spectral variational integrators,

we let D = 3, N = 10, and use the velocities, positions, and masses of the sun, 8 planet,

and the dwarf planet Pluto on January 1, 2000 (as provided by the JPL Solar System

ephemeris [27]) as initial configuration parameters for the Kepler system. Taking 100

time steps of h = 100 days, the N = 25 spectral variational integrator produces a highly

stable flow in Figure 2.14. It should be noted that orbits are closed, stable, and exhibit

almost none of the “precession” effects that are characteristic of symplectic integrators,

even though the time step is larger than the orbital period of Mercury. Additionally,

considering just the outer solar system (Jupiter, Saturn, Uranus, Neptune, Pluto), and

aggregating the inner solar system (Sun, Mercury, Venus, Earth, Mars) to a point mass,

an N = 25 spectral variational integrator taking 100 time steps h = 1825 days (5 year

steps) produces the orbital flow seen in Figure 2.15. Again, these are highly stable, pre-

cession free orbits. As can be clearly seen, the spectral variational integrator produces

extremely stable flows, even for very large time steps.
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Figure 2.14: Orbital diagram for the inner Solar System produced by the spectral varia-
tional integrator using all 8 planets, the Sun, and Pluto with 100 time steps with h = 100
days.
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Figure 2.15: Orbital diagram for the outer Solar System produced by the spectral vari-
ational integrator using the 4 outer planets, Pluto, with the Sun and 4 inner planets
aggregated to a point with 100 time steps at h = 1825 days.
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2.5 Conclusions and Future Work

In this paper a new numerical method for variational problems was introduced,

specifically a symplectic momentum-preserving integrator that exhibits geometric con-

vergence to the true flow of a system under the appropriate conditions. These integrators

were constructed under the general framework of Galerkin variational integrators, and

made use of the global function paradigm common to many different spectral methods.

Additionally, a general convergence theorem was established for Galerkin type

variational integrators, establishing the important result that, under suitable hypotheses,

Galerkin variational integrators will inherit the optimal order of convergence permitted

by the underlying approximation space used in their construction. This result provides

a powerful tool for both constructing and analyzing variational integrators, it provides

a methodology for constructing methods of very high order of accuracy, and it also

establishes order of convergence for methods that can be viewed as Galerkin variational

integrators. It was shown that from the one step map, a continuous approximation to the

solution of the Euler-Lagrange equations can be easily recovered over each time step.

The error of these continuous approximations was shown to be related to the error of the

one step map. Furthermore, the Noether quantities along this continuous approximation

approximate the true Noether quantity up to a small error which does not grow with

the number of steps taken. It was also shown that the error of the Noether quantities

converges to zero with n or h refinement at a predictable rate.

In addition to the convergence results, another interesting feature of spectral vari-

ational integrators is the construction of very high order methods that remain stable and

accurate using time steps that are orders of magnitude larger than can be tolerated by

traditional integrators. The trade off is that the computational effort required to compute

each time step is also orders of magnitude larger than that of other methods, which are a

major trade off in terms of the practicality of spectral variational integrators. However,

a mitigating factor of this trade off is that the approach of solving a short sequence of

large problems, as opposed to a large sequence of small problems, lends itself much

better to parallelization and computational acceleration. The literature on methods for

acceleration of the construction and solution of structured systems of linear and nonlin-

ear problems for PDE problems is extensive, and it is likely that such methods could be
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applied to spectral variational integrators to greatly improve their computation cost.

2.5.1 Future Work

Future directions for this work are numerous. Because of generality of the con-

struction of Galerkin variational integrators, there exists many possible directions of

further exploration.

Lie Group Spectral Variational Integrators

Following the approach of Leok and Shingel [20] or Bou-Rabee and Marsden

[1], it is relatively straight forward to extend spectral variational integrators to Lie groups

using natural charts. A systematic investigation of the resulting Lie group methods,

including convergence and near conservation of Noether quantities, would be a natural

extension of the work done here.

Novel Variational Integrators

The power of the Galerkin variational framework is its high flexibility in the

choice of approximation spaces and quadrature rules used to construct numerical meth-

ods. This flexibility allows for the construction of novel methods specifically tailored

to certain applications. One immediate example is the use of periodic functions to con-

struct methods for detecting choreographies in Kepler problems, which would be closely

related to methods already used with great success to detect choreographies. Another

interesting application would be the use of high order polynomials to develop integra-

tors for high-order Lie group problems, such as the construction of Riemannian splines,

which has a variety of applications in motion planning. Enriching traditional polyno-

mial approximation spaces with highly oscillatory functions could be used to develop

methods for problems with dynamics evolving on radically different time scales, which

are also very challenging for traditional numerical methods.
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Multisymplectic Variational Integrators

Multisymplectic geometry (see Marsden et al. [24]) has become an increas-

ingly popular framework for extending much of the geometric theory from classical

Lagrangian mechanics to Lagrangian PDEs. The foundations for a discrete theory have

been laid, and there have been significant results achieved in geometric techniques for

structured problems such as elasticity, fluid mechanics, non-linear wave equations, and

computational electromagnetism. However, there is still significant work to be done in

the areas of construction of numerical methods, analysis of discrete geometric structure,

and especially error analysis. Galerkin type methods have become a standard method in

classical numerical PDE methods, such as Finite-Element Methods, Spectral, and Pseu-

dospectral methods. The variational Galerkin framework could provide a natural frame-

work for extending these classical methods to structure preserving geometric methods

for PDEs, and the analysis of such methods will rely on the notion of the boundary La-

grangian (see Vankerschaver et al. [30]), which is the PDE analogue of the exact discrete

Lagrangian.

2.6 Appendix

2.6.1 Proofs of Geometric Convergence of Spectral Variational In-

tegrators

As stated in §2.3.2, it can be shown that spectral variational integrators converge

geometrically to the true flow associated with a Lagrangian under the appropriate con-

ditions. The proof is similar to that of order optimality, and is offered below.

However, before we offer a proof of the theorem, we must establish a result that

extends Theorem 2.1.1. Specifically, we must show:

Theorem 2.6.1. (Extension of Theorem 2.1.1 to Geometric Convergence) Given a reg-

ular Lagrangian L and corresponding Hamiltonian H, the following are equivalent for

a discrete Lagrangian Ld (q0,q1,n):

1. there exist a positive constant K, where K < 1, such that the discrete Hamiltonian

map for Ld (q0,qh,n) has error O (Kn),
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2. there exists a positive constant K, where K < 1, such that the discrete Legendre

transforms of Ld (q0,qh,n) have error O (Kn),

3. there exists a positive constant K, where K < 1, such that Ld (q0,qh,n) approxi-

mates the exact discrete Lagrangian LE
d (q0,qh,h) with error O (Kn).

The proof of this theorem is a simple modification of the proof of Theorem 2.1.1,

and is included here for completeness. For details, the interested reader is referred to

Marsden and West [23].

Proof. Since we are assuming that the time step h is being held constant, we will

suppress it as an argument to the exact discrete Lagrangian, writing LE
d (q0,qh) for

LE
d (q0,qh,h). First, we will assume that Ld (q0,qh,n) approximates Ld (q0,qh) with er-

ror O (Kn) and show this implies the discrete Legendre transforms have error O (Kn).

By assumption, if Ld (q0,qh,n) has error O (Kn), there exists a function which is smooth

in its first two arguments ev : Q×Q×N→ R such that:

Ld (q0,qh,n) = LE
d (q0,qh)+Knev (q0,qh,n) ,

with |ev (q0,qh,n)| ≤ Cv on U , some compact subset of Q. Taking derivatives with

respect to the first argument yields:

F−Ln
d (q0,qh) = F−LE

d (q0,qh)+KnD1ev (q0,qh,n) ,

and with respect to the second yields:

F+Ln
d (q0,qh) = F+LE

d (q0,qh)+KnD2ev (q0,qh,n) .

Since ev is smooth and bounded over the compact set U , so are D1ev and D2ev, yielding

that the discrete Legendre transforms have error O (Kn). Now, to show that if the dis-

crete Legendre transforms have error O (Kn), the discrete Lagrangian has error O (Kn),

we write:

ev (q0,qh,n) =
1

Kn

[
Ld (q0,qh,n)−LE

d (q0,qh)
]
,
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D1ev (q0,qh,n) =
1

Kn

[
F−Ld (q0,qh,n)−F−LE

d (q0,qh)
]
,

D2ev (q0,qh,n) =
1

Kn

[
F+Ld (q0,qh,n)−F+LE

d (q0,qh)
]
.

Since D1ev and D2ev are smooth and bounded on a compact set, this implies there exists

a function d (n) such that

‖ev (q(0) ,q(h) ,n)−d (n)‖ ≤Cv,

for some constant Cv. This shows that the discrete Lagrangian is equivalent to a discrete

Lagrangian with error O (Kn). We note that the equivalence is a consequence of the fact

that one can add a function of h or n to any discrete Lagrangian and the resulting discrete

Euler-Lagrange equations and discrete Legendre Transforms are unchanged, hence the

function d (n).

To show the equivalence of the discrete Hamiltonian map having error O (Kn)

and the discrete Legendre transforms having error O (Kn), we recall expressions for the

discrete Hamiltonian map for the discrete Lagrangian Ld and exact discrete Lagrangian

LE
d :

FLd = F+Ld ◦
(
F−Ld

)−1
,

FLE
d
= F+LE

d ◦
(
F−LE

d
)−1

.

Now, we make use of the following consequence of the implicit function theorem: If

we have smooth functions g1,g2 and the sequences of functions { f1n}
∞

n=1, { f2n}
∞

n=1,

{e1n}
∞

n=1 and {e2n}
∞

n=1 such that

f1n (x) = g1 (x)+Kne1n (x) ,

f2n (x) = g2 (x)+Kne2n (x) ,

where sup{‖e1n‖}
∞

n=1 <C1 and sup{‖e2n‖}
∞

n=1 <C2 on compact sets, then

f2n ( f1n (x)) = g2 (g1 (x))+Kne12n (x) (2.26)

f−1
1n

(y) = g−1
1 (y)+Knē1n (y) (2.27)
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for some sequences of functions {e12n}
∞

n=1, {ē1n}
∞

n=1 where sup{‖e12n‖}
∞

n=1 < C3 and

sup{‖ē1n‖}
∞

n=1 <C4 on compact sets.

It follows from (2.26) and (2.27) that if the discrete Legendre transforms have

error O (Kn), the discrete Hamiltonian map does as well. Finally, if we have a discrete

Hamiltonian map has error O (Kn), we use the identity

(
F−Ld

)−1
(q0, p0) = (q0,πQ ◦FLd (q0, p0))

where πQ is the projection map πQ : (q, p)→ q and (2.27) to see that F−Ld is has error

O (Kn), and the identity:

F+Ld = FLd ◦F
−Ld,

along with (2.26) to establish that F+Ld also has error O (Kn), which completes the

proof.

This simple extension is a critical tool for establishing the geometric conver-

gence of spectral variational integrators, and leads to the following theorem concerning

the accuracy of spectral variational integrators.

Theorem 2.6.2. (Geometric Convergence of Spectral Variational Integrators) Given an

interval [0,h] and a Lagrangian L : T Q→ R, let q̄ be the exact solution to the Euler-

Lagrange equations, and q̃n be the stationary point of the spectral variational discrete

action

LS
d (q0,qh,n) = ext

qn(t)∈Mn([0,h],Q)
qn(0)=q0,qn(h)=qh

Sd ({qi}n
i=1)

= ext
qn(t)∈Mn([0,h],Q)
qn(0)=q0,qn(h)=qh

h
mn

∑
j=0

bn jL
(
qn
(
cn jh

)
, q̇n
(
cn jh

))
.

If:

1. there exists constants CA,KA, KA < 1, independent of n, such that, for each n, there
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exists a curve q̂n ∈Mn ([0,h] ,Q) such that,

∥∥(q̄, ˙̄q)−
(
q̂n, ˙̂qn

)∥∥≤CAKn
A,

2. there exists a closed and bounded neighborhood U ⊂ T Q such that (q̄(t) , ˙̄q(t)) ∈
U and

(
q̂n (t) , ˙̂qn (t)

)
∈ U for all t and n, and all partial derivatives of L are

continuous on U,

3. for the sequence of quadrature rules Gn ( f )= h∑
mn
j=1 bn j f

(
cn jh

)
≈
∫ h

0 f (t)dt there

exists constants Cg, Kg, Kg < 1, independent of n such that:∣∣∣∣∣
∫ h

0
L(qn (t) , q̇n (t))dt−h

mn

∑
j=1

bn jL
(
qn
(
cn jh

)
, q̇n
(
cn jh

))∣∣∣∣∣≤CgKn
g ,

for any qn ∈Mn ([0,h] ,Q),

4. and the stationary points q̄, q̃n minimize their respective actions,

then

∣∣∣LE
d (q0,q1)−LS

d (q0,q1,n)
∣∣∣≤CsKn

s (2.28)

for some constants Cs,Ks, Ks < 1, independent of n, and hence the discrete Hamiltonian

flow map has error O (Kn
s ).

Proof. As before, we rewrite both the exact discrete Lagrangian and the spectral discrete

Lagrangian:

∣∣∣LE
d (q0,q1)−LS

d (q0,q1,n)
∣∣∣= ∣∣∣∣∫ h

0
L(q̄(t) , ˙̄q(t))dt−Gn

(
L
(
q̃n (t) , ˙̃qn (t)

))∣∣∣∣
=

∣∣∣∣∣
∫ h

0
L(q̄(t) , ˙̄q(t))dt−h

mn

∑
j=1

bn jL
(
q̃n
(
cn jh

)
, ˙̃qn
(
cn jh

))∣∣∣∣∣
=

∣∣∣∣∣
∫ h

0
L(q̄, ˙̄q)dt−h

mn

∑
j=1

bn jL
(
q̃n, ˙̃qn

)∣∣∣∣∣ ,
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with suppression of the t argument. We introduce the action evaluated on the curve q̂n:∣∣∣∣∣
∫ h

0
L(q̄, ˙̄q)dt−h

mn

∑
j=1

bn jL
(
q̃n, ˙̃qn

)∣∣∣∣∣
=

∣∣∣∣∣
∫ h

0
L(q̄, ˙̄q)dt−

∫ h

0
L
(
q̂n, ˙̂qn

)
dt +

∫ h

0
L
(
q̂n, ˙̂qn

)
dt−h

mn

∑
j=1

bn jL
(
q̃n, ˙̃qn

)∣∣∣∣∣
≤
∣∣∣∣∫ h

0
L(q̄, ˙̄q)dt−

∫ h

0
L
(
q̂n, ˙̂qn

)
dt
∣∣∣∣+
∣∣∣∣∣
∫ h

0
L
(
q̂n, ˙̂qn

)
dt−h

m

∑
j=1

bn jL
(
q̃n, ˙̃qn

)∣∣∣∣∣ . (2.29)

Considering the first term in (2.29):∣∣∣∣∫ h

0
L(q̄, ˙̄q)dt−

∫ h

0
L
(
q̂n, ˙̂qn

)
dt
∣∣∣∣= ∣∣∣∣∫ h

0
L(q̄, ˙̄q)−L

(
q̂n, ˙̂qn

)
dt
∣∣∣∣

≤
∫ h

0

∣∣L(q̄, ˙̄q)−L
(
q̂n, ˙̂qn

)∣∣dt.

By assumption, all partials of L are continuous on U , and since U is closed and bounded,

this implies L is Lipschitz on U , so let Lα denote the Lipschitz constant. Since, again

by assumption, (q̄, ˙̄q) ∈U and
(
q̂n, ˙̂qn

)
∈U , we can obtain:

∫ h

0

∣∣L(q̄, ˙̄q)−L
(
q̂n, ˙̂qn

)∣∣dt ≤
∫ h

0
Lα

∣∣(q̄, ˙̄q)−
(
q̂n, ˙̂qn

)∣∣dt

≤
∫ h

0
LαCAKn

Adt

=hLαCAKn
A.

Hence, ∣∣∣∣∫ h

0
L(q̄, ˙̄q)dt−

∫ h

0
L
(
q̂n, ˙̂qn

)
dt
∣∣∣∣≤ hLαCAKn

A. (2.30)

Next, considering the second term in (2.29),∣∣∣∣∣
∫ h

0
L
(
q̂n, ˙̂qn

)
dt−

m

∑
j=1

hbn jL
(
q̃n, ˙̃qn

)∣∣∣∣∣ ,
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since q̃n minimizes its action,

h
mn

∑
j=1

bn jL
(
q̃n, ˙̃qn

)
≤ h

mn

∑
j=1

bn jL
(
q̂n, ˙̂qn

)
≤
∫ h

0
L
(
q̂n, ˙̂qn

)
dt +CgKn

g (2.31)

where the inequalities follow from the assumptions on the order of the quadrature rule

and (2.30). Furthermore,

h
mn

∑
j=1

bn jL
(
q̃n, ˙̃qn

)
≥
∫ h

0
L
(
q̃n, ˙̃qn

)
dt−CgKn

g ≥
∫ h

0
L(q̄, ˙̄q)dt−CgKn

g

≥
∫ h

0
L
(
q̂n, ˙̂qn

)
dt−hLαCAKn

A−CgKn
g ,

(2.32)

where the inequalities follow from (2.30), the order of the sequence of quadrature rules,

and the assumption that q̄ minimizes its action. Putting (2.31) and (2.32) together, we

can conclude:∣∣∣∣∣
∫ h

0
L
(
q̂n, ˙̂qn

)
dt−h

mn

∑
j=1

bn jL
(
q̃n, ˙̃qn

)∣∣∣∣∣≤ (hLαCA +Cg)K−n
s . (2.33)

where Ks = max(KA,Kg). Now, combining the bounds (2.30) and (2.33) in (2.29), we

can conclude

∣∣∣LE
d (q0,q1)−LS

d (q0,q1,n)
∣∣∣≤ (2hLαCA +Cg)K−n

s

which, combined with Theorem 2.6.1, establishes the rate of convergence.
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LIE GROUP GALERKIN VARIATIONAL INTEGRATORS

JAMES HALL AND MELVIN LEOK

ABSTRACT. We present a new class of high-order variational integrators on Lie

groups. We show that these integrators are symplectic, momentum preserving, and can

be constructed to be of arbitrarily high-order, or can be made to converge geometri-

cally. Furthermore, these methods are stable and accurate for very large time steps. We

demonstrate the construction of one such variational integrator for the rigid body, and

discuss how this construction could be generalized to other related Lie group problems.

We close with several numerical examples which demonstrate our claims, and discuss

further extensions of our work.
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3.1 Introduction

There is a deep and elegant geometric structure underlying the dynamics of many

mechanical systems. Conserved quantities, such as the energy, momentum, and sym-

plectic form offer insight into this structure, and through this, we obtain an understand-

ing of the behavior of these systems that goes beyond what is conventionally available.

Conservation laws reveal much about the stability and long term behavior of a system,

and can even characterize the entire dynamics of a system when a sufficient number of

them exist. Hence, there has been much recent interest in the field of geometric mechan-

ics, which seeks to understand this structure using differential geometric and symmetry

techniques.

From this geometric mechanics framework, it is possible to formulate numerical

methods which respect much of the geometry of mechanical systems. There are a variety

of approaches for constructing such methods, often known as structure-preserving meth-

ods, including projection methods, splitting methods, symplectic Runge-Kutta methods,

B-series expansion methods, to name a few. An extensive introduction can be found

in Hairer et al. [14]. One of the powerful frameworks, discrete mechanics, approaches

the construction of numerical methods by developing much of the theory of geometric

mechanics from a discrete standpoint. This approach has proven highly effective for

constructing methods for problems in Hamiltonian and Lagrangian mechanics, specif-

ically because these type of problems arise from a variational principle. Methods that

make use of a variational principle and the framework of discrete mechanics are re-

ferred to as variational integrators, and they have many favorable geometric properties,

including conservation of the symplectic form and momentum.

A further advantage of variational integrators is that it is often straightforward to

analyze the error of these methods. This has led turn to the development of high-order

variational integrators, which can be constructed so that they converge very quickly.

In Hall and Leok [16], such integrators for vector space problems were presented and

analyzed. It was shown that such integrators can be arbitrarily high-order or even exhibit

geometric convergence. Furthermore, these integrators are stable and accurate even

with extremely large time steps, and using them it is easy to reconstruct highly accurate

continuous approximations to the dynamics of the system of interest.
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In this paper, we present an extension of that work to Lie group methods. Lie

group methods are of particular interest in science and engineering applications. It can

be shown that many problems of interest, from the dynamics of rigid bodies to the be-

havior of incompressible fluids, evolve on Lie groups. Furthermore, if a traditional

numerical method is applied to a problem with dynamics in a Lie group, the approxi-

mate solution will typically depart from the Lie group, destroying a critical structural

property of the solution. Our work gives a general framework for constructing methods

which will always evolve in the Lie group and which will share many of the desirable

properties of the vector space type methods. Specifically, we will be able to construct

methods of arbitrarily high-order and with geometric convergence, and we will be able

to reconstruct high quality continuous approximations from these methods.

Lie group methods have a rich history and remain the subject of significant in-

terest. An extensive introduction can be found in Iserles et al. [18], which provides an

excellent exposition of both the motivation for Lie group methods and many of the tech-

niques used on Lie groups. Likewise, Celledoni and Owren [7], provide a very helpful

general introduction to Lie group methods for the rigid body, which is a prototypical

example of an interesting Lie group problem. In this paper, we provide a thorough ex-

ample of the construction of our method for the rigid body, as this approach can easily

be extended to other interesting problems. More recently Bogfjellmo and Marthinsen

[1] investigated the construction of high-order symplectic Lie group integrators from a

discrete Hamilton-Pontryagin principle, and Burnett et al. [6] described applications of

such high-order Lie group discretizations, such as interpolation in SO(3).

Galerkin variational integrators were proposed in Marsden and West [29], and

expanded on by Leok [24]. The concept of a Galerkin Lie group integrator was pro-

posed in Leok [24] and expanded in Leok and Shingel [26]. Our work expands upon

this by generalizing both the diffeomorphisms used to construct the natural charts and

the approximation spaces used to construct the curve on the Lie group, and establish-

ing convergence results and properties of both the discrete solution and the continuous

approximation.
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3.1.1 Discrete Mechanics

Since we are working from the perspective of discrete mechanics, we will take

a moment to review the fundamentals of the theory here. This will only be a brief

summary, and extensive exposition of the theory can be found in Marsden and West

[29].

Consider a configuration manifold, Q, which describes the configuration of a

mechanical system at a given point in time. In discrete mechanics, the fundamental

object is the discrete Lagrangian, Ld : Q×Q×R→ R. The discrete Lagrangian can be

viewed as an approximation to the exact discrete Lagrangian LE
d , where the LE

d is defined

to be the action of the Lagrangian on the solution of the Euler-Lagrange equations over

a short time interval:

Ld (q0,q1,h)≈ LE
d (q0,q1,h) = ext

q(t)∈C2([0,h],Q)
q(0)=q0,q(h)=q1

∫ h

0
L(q, q̇)dt.

The discrete Lagrangian gives rise to a discrete action sum, which can be viewed as an

approximation to the action over a long time interval:

S({qk}n
k=1) =

n−1

∑
k=0

Ld (qk,qk+1)≈
∫ tn

t0
L(q, q̇)dt,

and requiring stationarity of this discrete action sum subject to fixed endpoint conditions

q0,qn, gives rise to the discrete Euler-Lagrange equations:

D1Ld (qk,qk+1,h)+D2Ld (qk−1,qk,h) = 0, (3.1)

where Di denotes partial differentiation of a function with respect to the i-th argu-

ment. Given a point (qk−1,qk), these equations implicitly define an update map FLd :

(qk−1,qk)→ (qk,qk+1), which approximates the solution of the Euler-Lagrange equa-

tions for the continuous system. A numerical method which uses the update map FLd to

construct numerical solutions to ODEs is referred to as a variational integrator.

The power of discrete mechanics is derived from the discrete variational struc-

ture. Since the update map FLd is induced from a discrete analogue of the variational
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principle, much of the geometric structure from continuous mechanics can be extended

to discrete mechanics. The discrete Lagrangian gives rise to discrete Legendre Trans-

forms FL± : Q×Q→ T ∗Q:

FL+
d (qk,qk+1) = (qk+1,D2Ld (qk,qk+1)) ,

FL−d (qk,qk+1) = (qk,−D1Ld (qk,qk+1)) ,

which lead to the extension of other classical geometric structures. It is important to

note that, while there are two different discrete Legendre transforms, (3.1) guarantees

that FL−d (qk,qk+1) = FL+
d (qk−1,qk), and thus they can be used interchangeably when

defining the discrete geometric structure. By their construction, variational integrators

induce a discrete symplectic form, i.e. ΩLd = (F±Ld)
∗

Ω which is conserved by the

update map F∗Ld
ΩLd = ΩLd , and a discrete analogue of Noether’s Theorem, which states

that if a discrete Lagrangian is invariant under a diagonal group action on (qk,qk+1),

it induces a discrete momentum map JLd =
(
FL±d

)∗ J, which is preserved under the

update map: F∗Ld
JLd = JLd . The existence of these discrete geometric conservation laws

gives a systematic framework to construct powerful numerical methods which preserve

structure.

The discrete Legendre transforms also allow us to define an update map through

phase space F̃Ld : T ∗Q→ T ∗Q,

F̃Ld (qk, pk) = (qk+1, pk+1) ,

which is given by

F̃Ld (qk, pk) = F+Ld

((
F−Ld

)−1
(qk, pk)

)
,

known as the Hamiltonian flow map. As long as the discrete Lagrangian is sufficiently

smooth, the Hamiltonian flow map and the Lagrangian flow map are compatible, and

the geometric structure of discrete flow can be understood from either perspective, just

as in the continuous theory.

The following commutative diagram illustrates the relationship between the dis-
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crete Legendre transforms, the Lagrangian flow map, the Hamiltonian flow map, and the

discrete Lagrangian.

(qk, pk)
F̃Ld // (qk+1, pk+1)

(qk−1,qk)

F+Ld

??

FLd

// (qk,qk+1) FLd

//

F+Ld

==

F−Ld

__

(qk+1,qk+2)

F−Ld

bb

A further consequence of the discrete mechanics framework is that it provides

a natural mechanism for analyzing the order of accuracy of a variational integrator.

Specifically, it can be shown that the variational integrator induced by the exact discrete

Lagrangian produces an exact sampling of the true flow. Based on this, we have the

following theorem which is critical for the error analysis of variational integrators:

Theorem 3.1.1. Variational Order Analysis (Theorem 2.3.1 of Marsden and West [29]).

If a discrete Lagrangian Ld approximates the exact discrete Lagrangian LE
d to order p,

i.e. Ld (q0,q1,h) = LE
d (q0,q1,h)+O

(
hp+1), then the variational integrator induced by

Ld is order p accurate.

This theorem allows for greatly simplified a priori error estimates of variational

integrators, and is a fundamental tool for the development and analysis of high-order

variational integrators.

3.2 Construction

3.2.1 General Galerkin Variational Integrators

Lie group Galerkin variational integrators are an extension of Galerkin varia-

tional integrators to Lie groups. As such, we will briefly review the construction of

general Galerkin variational integrators.

The driving idea behind Galerkin variational integrators is approaching the con-

struction of a discrete Lagrangian as the approximation of a variational problem. We
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know from discrete mechanics that the exact discrete Lagrangian LE
d : Q×Q×R→ R,

LE
d (q0,q1,h) = ext

q(t)∈C2([0,h],Q)
q(0)=q0,q(h)=q1

∫ h

0
L(q, q̇)dt,

induces a variational integrator that produces an exact sampling of the true flow, and the

accuracy with which a variational integrator approximates the true solution is the same

as the accuracy to which the discrete Lagrangian used to construct it approximates the

exact discrete Lagrangian. Hence, to construct a highly accurate discrete Lagrangian,

we construct a discrete approximation

LG
d (q0,q1,h) = ext

qn(t)∈Mn([0,h],Q)
qn(0)=q0,qn(h)=q1

h
m

∑
j=1

b jL
(
qn
(
c jh
)
, q̇n
(
c jh
))

≈ ext
q(t)∈C2([0,h],Q)
q(0)=q0,q(h)=q1

∫ h

0
L(q, q̇)dt

by replacing the function space C2 ([0,h] ,Q) with a finite-dimensional subspace

Mn ([0,h] ,Q)⊂C2 ([0,h] ,Q)

and the integral with a quadrature rule, h∑
m
j=1 b j f

(
c jh
)
≈
∫ h

0 f dt. Finding the ex-

tremizer of the discrete action is computationally feasible, and by computing this ex-

tremizer we can construct the variational integrator that results from the discrete La-

grangian. Because this approach of replacing the function space C2 ([0,h] ,Q) with a

finite-dimensional subspace is inspired by Galerkin methods for partial differential equa-

tions, we refer to variational integrators constructed in this way as Galerkin variational

integrators.

In Hall and Leok [16], we studied the Galerkin variational integrator construc-

tion on vector spaces. Specifically, we obtained several significant results, including that

Galerkin variational integrators over linear spaces are in a certain sense order-optimal,

and that by enriching the function space Mn ([0,h] ,Q), as opposed to shortening the

time step h, we can construct variational integrators that converge geometrically. Fur-

thermore, we established that it is easy to recover a continuous approximation to the
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trajectory over the time step [0,h], and that the convergence of this continuous approx-

imation is related to the rate of convergence of the variational integrator. Finally, we

established an error bound on Noether quantities evaluated on this continuous approxi-

mation which is independent of the number of steps taken.

3.2.2 Lie Group Galerkin Variational Integrators

The construction and analysis in Hall and Leok [16] relied on the linear structure

of the spaces involved. At their heart, Galerkin variational integrators make use of a

Galerkin curve

q̃n (t) =
n

∑
i=1

qi
φi (t)

for some set of points
{

qi}n
i=1 ⊂Q and basis functions {φi}n

i=1. While for linear spaces,

q̃n (t) ∈ Q for any choice of t, in nonlinear spaces this will not be the case. However,

when Q is a Lie group, it is possible to extend this construction in a way that keeps the

curve q̃n (t) in Q.

Natural Charts

To generalize Galerkin variational integrators to Lie groups, we will make use

of the linear nature of the Lie algebra associated with the Lie group. Specifically, given

a Lie group G and its associated Lie algebra g, we choose a local diffeomorphism Φ :

g→ G. Then, given a set of points in the Lie group {gi}n
i=1 ⊂ G and a set of associated

interpolation times ti, we can construct an interpolating curve g : Gn×R→ G such that

g({gi}n
i=1 , ti) = gi, given by

g({gi}n
i=1 , t) = Lg1Φ

(
n

∑
i=1

Φ
−1
(

Lg−1
1

gi

)
φi (t)

)
,

where Lg is the left group action of g and φi (t) is the Lagrange interpolation polyno-

mial for ti. A key feature of this type of curve is that is Lie group equivariant, that is,

g
({

Lg0gi
}n

i=1 , t
)
= Lg0g({gi}n

i=1 , t), as we shall show in the following lemma.
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Lemma 3.2.1. The curve g({gi}n
i=1 , t) is Lie group equivariant.

Proof. The proof is a direct calculation.

g
({

Lg0gi
}n

i=1 , t
)
= LLg0g1Φ

(
n

∑
i=1

Φ
−1
(

L
(Lg0g1)

−1Lg0gi

)
φi (t)

)

= Lg0Lg1Φ

(
n

∑
i=1

Φ
−1
(

Lg−1
1

Lg−1
0

Lg0gi

)
φi (t)

)

= Lg0Lg1Φ

(
n

∑
i=1

Φ
−1
(

Lg−1
1

gi

)
φi (t)

)
= Lg0g({gi}n

i=1 , t) .

This property will be important for ensuring that the Lie group Galerkin dis-

crete Lagrangian inherits the symmetries of the continuous Lagrangian; these inherited

symmetries give rise to the structure-preserving properties of the resulting variational

integrator.

Throughout this paper, we will consider the function spaces composed of curves

of this form. We note that Φ−1
(

Lg−1
1

gi

)
∈ g, and for any ξ ∈ g, Lg1Φ(ξ ) ∈ G, so we

can construct interpolation curves on the group in terms of interpolation curves in the

Lie algebra. In light of this, we define

GMn (g0× [0,h] ,G)

:=

{
g
({

ξ
i}n

i=1 , t
) ∣∣∣∣∣ g

({
ξ

i}n
i=1 , t

)
= Lg0Φ

(
n

∑
i=1

ξ
i
φi (t)

)
,ξ i ∈ g

}

where {φi (t)}n
i=1 forms the basis for a finite-dimensional approximation space in R, for

example, Lagrange interpolation polynomials, which is what we will use in our explicit

construction in §3.4 and numerical examples in §3.5. We refer to the space of finite

dimensional curves in the Lie algebra as

Mn ([0,h] ,g) :=

{
ξ (t)

∣∣∣∣∣ ξ (t) =
n

∑
i=1

ξ
i
φi (t) ,ξ i ∈ g,φi : [0,h]→ R

}
.
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Because we are identifying every point in a neighborhood of the Lie group with a

point in the Lie algebra, which is a vector space, it is natural to think of this construction

as choosing a set of coordinates for a neighborhood in the Lie group. Thus, we can

consider this construction as choosing a chart for a neighborhood of the Lie group, and

because it makes use of the “natural” relationship between the Lie group G, its Lie

algebra g, and the tangent space of the Lie group T G, we call the function ϕg0 : G→ g,

ϕg0 (·) = Φ−1
(

Lg−1
0
(·)
)

a “natural chart.”

Discrete Lagrangian

Now that we have introduced a Lie group approximation space, we can define

a compatible discrete Lagrangian for Lie group problems. We take a similar approach

to the construction for vector spaces; we construct an approximation to the action of

the Lagrangian over [0,h] by replacing C2 ([0,h] ,G) with a finite-dimensional approxi-

mation space and the integral with a quadrature rule, and then compute its extremizer.

Specifically, given a Lagrangian on the tangent space of a Lie group L : T G→ R, the

associated Lie group Galerkin discrete Lagrangian is defined to be:

Ld (gk,gk+1) = ext
gn(t)∈GMn(gk×[0,h],G)

gn(0)=gk,gn(h)=gk+1

h
m

∑
j=1

b jL
(
gn
(
c jh
)
, ġn
(
c jh
))

.

Internal Stage Discrete Euler-Poincaré Equations

This discrete Lagrangian involves solving an optimization problem, namely: find

g̃n (t) ∈GMn (gk× [0,h] ,G) such that g̃n (0) = gk, g̃n (h) = gk+1, and

h
m

∑
j=1

b jL
(
g̃n
(
c jh
)
, ˙̃gn
(
c jh
))

= ext
gn(t)∈GMn(gk×[0,h],G)

gn(0)=gk,gn(h)=gk+1

h
m

∑
j=1

b jL
(
gn
(
c jh
)
, ġn
(
c jh
))

.

(3.2)

While this problem can be solved using standard methods of numerical optimization,

it is also possible to reduce it to a root finding problem. Since each curve g̃n (t) ∈
GMn (g0× [0,h] ,G) is parametrized by a finite number of Lie algebra points {ξ i}n

i=1,

by taking discrete variations of the discrete Lagrangian with respect to these points, we
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can derive stationarity conditions for the extremizer. Specifically, if we denote

ξ (t) =
n

∑
i=1

ξ
i
φi (t)

then a straightforward computation reveals the stationarity condition:

h
m

∑
j=1

b j

(
D1L◦D

Φ(ξ(c jh))Lgk ◦D
ξ(c jh)Φ◦

(
n

∑
i=1

Dξ iξ
(
c jh
)
·δξ

i

)
+D2L◦D(

Φ◦ξ(c jh),D
ξ̇(c jh)

Φ◦ξ̇(c jh)
)D

Φ◦ξ(c jh)Lgk

◦D(ξ(c jh),ξ̇(c jh))Φ◦

(
n

∑
i=1

Dξ i ξ̇
(
c jh
)
·δξ

i

))
= 0

for arbitrary
{

δξ i}n−1
i=2 . Using standard calculus of variations arguments, this reduces to

h
m

∑
j=1

b j

D1L◦D
Φ(ξ(c jh))Lgk ◦D

ξ(c jh)Φ◦Dξ iξ
(
c jh
)
·δξ

i

+D2L◦D(
Φ◦ξ(c jh),D

ξ̇(c jh)
Φ◦ξ̇(c jh)

)D
Φ◦ξ(c jh)Lgk

◦D(ξ(c jh),ξ̇(c jh))Φ◦Dξ i ξ̇
(
c jh
)
·δξ

i

= 0

for i = 2, ..,n−1 (note that the sum of the Lie algebra elements has disappeared). Now

using the linearity of one-forms, we can collect terms to further simplify this expression

to

h
m

∑
j=1

b j

D1L◦D
Φ(ξ(c jh))Lgk ◦D

ξ(c jh)Φ◦Dξ iξ
(
c jh
)

+D2L◦D(
Φ◦ξ(c jh),D

ξ̇(c jh)
Φ◦ξ̇(c jh)

)D
Φ◦ξ(c jh)Lgk

◦D(ξ(c jh),ξ̇(c jh))Φ◦Dξ i ξ̇
(
c jh
) ·δξ

i

= 0
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for i = 2, ...,n−1. Since δξ i is arbitrary, this implies that

h
m

∑
j=1

b j

D1L◦D
Φ(ξ(c jh))Lgk ◦D

ξ(c jh)Φ◦Dξ iξ
(
c jh
)

(3.3)

+D2L◦D(
Φ◦ξ(c jh),D

ξ̇(c jh)
Φ◦ξ̇(c jh)

)D
Φ◦ξ(c jh)Lgk (3.4)

◦D(ξ(c jh),ξ̇(c jh))Φ◦Dξ i ξ̇
(
c jh
)= 0

for i = 2, ...,n−1. These equations, which we shall refer to as the internal stage discrete

Euler-Poincaré equations, combined with the standard momentum matching condition,

D2Ld (gk−1,gk)+D1Ld (gk,gk+1) = 0, (3.5)

which we will discuss in more detail in the §3.2.2, can be easily solved with an iterative

nonlinear equation solver. The result is a curve g̃n (t) which satisfies condition (3.2).

The next step of the one-step map is given by g̃n (h) = gk+1, which gives the variational

integrator.

It should be noted that while the internal stage discrete Euler-Poincaré equations

can be computed by deriving all of the various differentials in the chosen coordinates, it

is often much simpler to form the discrete action

Sd

({
ξ

i}n
i=1

)
= h

m

∑
j=1

b jL

(
LgkΦ

(
n

∑
i=1

ξ
i
φi
(
c jh
))

,
d
dt

(
LgkΦ

(
n

∑
i=1

ξ
i
φi
(
c jh
))))

explicitly and then compute the stationarity conditions directly in coordinates, rather

than a step by step computation of the different maps in (3.3). This is the approach we

take when deriving the integrator for the rigid body in §3.4, and it appears to be the

much simpler approach in this case. However, the two approaches are equivalent, so if

done carefully either will suffice to give the internal stage Euler-Poincaré equations.
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Momentum Matching Condition

A difficulty in the derivation of the discrete Euler-Poincaré equations is the com-

putation of the discrete momentum terms

p−k,k+1 =−D1Ld (gk,gk+1)

p+k−1,k = D2Ld (gk−1,gk)

which are used in the discrete Euler-Poincaré equations (3.5),

D1Ld (gk,gk+1)+D2Ld (gk−1,gk) = 0

or

p+k−1,k = p−k,k+1.

The difficulty arises because the discrete Lagrangian makes use of a local left trivial-

ization. Through the local charts, we reduce the discrete Lagrangian to a function of

algebra elements, and because the corresponding group elements are recovered through

a complicated computation, working with the group elements directly to compute the

discrete Euler-Poincaré equations is difficult. Because of this, to compute the discrete

Euler-Poincaré equations, it is more natural to think of the discrete Lagrangian as a func-

tion of two Lie algebra elements. If we define a discrete Lagrangian on the Lie algebra

L̂d : g×g→ R as

L̂d (ξk,ξk+1) = ext
gn(t)∈GMn(gk×[0,h],G)

Φ−1
(

L
g−1
k

gn(0)
)
=ξk,Φ

−1
(

L
g−1
k

gn(h)
)
=ξk+1

h
m

∑
j=1

b jL
(
gn
(
c jh
)
, ġn
(
c jh
))

and compare it to the discrete Lagrangian on the Lie group,

Ld (gk,gk+1) = ext
gn(t)∈GMn(gk×[0,h],G)

gn(0)=gk,gn(h)=gk+1

h
m

∑
j=1

b jL
(
gn
(
c jh
)
, ġn
(
c jh
))
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it can be seen that there is a simple one-to-one correspondence through the natural charts

between points in G×G and points in g×g, and that if

(
Φ
−1
(

Lg−1
k

g0

)
,Φ−1

(
Lg−1

k
g1

))
= (ξ0,ξ1) ,

then

L(g0,g1) = L̂d (ξ0,ξ1) .

Hence, for every sequence {gk}N
k=1, there exists a unique sequence {ξk}N

i=1 such that

N−1

∑
k=1

Ld (gk,gk+1) =
N−1

∑
k=1

L̂d (ξk,ξk+1) , (3.6)

and vice versa. Thus, we can find the sequence {gk}N
k=1 that makes the sum on the left

hand side of (3.6) stationary by finding the sequence {ξk}N
k=1 that makes the sum on the

right hand side of (3.6) stationary.

It can easily be seen that the stationarity condition of the action sum on the right

is

D2L̂d (ξk−1,ξk)+D1L̂d (ξk,ξk+1) = 0, . (3.7)

However, from the definition of L̂d , this implicitly assumes that (ξk−1,ξk) and (ξk,ξk+1)

are in the same natural chart. Unfortunately, in our construction (ξk−1,ξk) and (ξk,ξk+1)

are in different natural charts. This is because the construction of the Lie group interpo-

lating curve

g(t) = Lgβ
Φ

(
n

∑
i=1

ξ
i
kφi (t)

)

requires the choice of a base point for the natural chart gβ ∈ G. If a consistent choice

of base point was made for each time step, then the above equations could be directly

computed without difficulty. However, because many natural chart functions contain

coordinate singularities, our construction uses a different base point, and thus a different
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natural chart, at each time step. Specifically, on the interval [kh,(k+1)h], we choose

gβ = gk and define

g(t) = LgkΦ

(
n

∑
i=1

ξ
i
kφi (t)

)
.

Thus

g(t) = Lgk−1Φ

(
n

∑
j=1

ξ
i
k−1φi (t)

)
, t ∈ [(k−1)h,kh]

g(t) = LgkΦ

(
n

∑
j=1

ξ
i
kφi (t)

)
, t ∈ [kh,(k+1)h] ,

where we now denote internal stage points ξ i
k with the subscript k to denote in which

interval they occur. While the change in natural chart is expedient for the construction, it

creates a difficulty for the computation of the discrete Euler-Poincaré equations, in that

now we are using discrete Lagrangians with different natural charts for the different time

steps, and hence we cannot compute the discrete Euler-Poincaré equations using (3.7).

This problem can be resolved by expressing g(t), and hence (ξk−1,ξk) and (ξk,ξk+1),

in the same natural chart for t ∈ [(k−1)h,(k+1)h]. Rewriting

gn (t) = LgkΦ

(
n

∑
i=1

ξ
i
kφi (t)

)
t ∈ [kh,(k+1)h] ,

= Lgk−1Φ

(
Φ
−1

(
Lg−1

k−1
LgkΦ

(
n

∑
i=1

ξ
i
kφi (t)

)))
t ∈ [kh,(k+1)h] ,

(note that gn (t) is still in GMn (gk× [0,h] ,G)), and defining

λ (t) = Φ
−1

(
Lg−1

k−1
LgkΦ

(
n

∑
i=1

ξ
i
kφi (t)

))
= Φ

−1

(
LΦ(ξk)Φ

(
n

∑
i=1

ξ
i
kφi (t)

))
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we can reexpress the discrete Lagrangian as

L̃d (λk,λk+1) = ext
gn(t)∈GMn(gk×[0,h],G)

Φ−1
(

L
g−1
k−1

gn(0)
)
=λk,Φ

−1
(

L
g−1
k−1

gn(h)
)
=λk+1

h
m

∑
j=1

b jL
(
gn
(
c jh
)
, ġn
(
c jh
))

.

Note that if Lgk−1Φ(λk) = LgkΦ(ξk) and Lgk−1Φ(λk+1) = LgkΦ(ξk+1) then

L̂d (ξk,ξk+1) = L̃d (λk,λk+1) .

Furthermore, (λk,λk+1) are in the same chart as (ξk−1,ξk), and hence the discrete Euler-

Poincaré equations are

D2L̂d (ξk−1,ξk)+D1L̃d (λk,λk+1) = 0.

It remains to compute λk as a function of ξk. If we consider the definition of λ (t), then

λk = λ (0) = Φ
−1

(
LΦ(ξk)Φ

(
n

∑
i=1

ξ
i
kφi (0)

))

and

ξk = Φ
−1
(

Lg−1
k

gn (0)
)
= Φ

−1
(

L
Φ(ξk)

−1Φ(λk)
)
. (3.8)

This is simply a change of coordinates, and hence computing the discrete Euler La-

grange equations amounts to using the change of coordinates map to transform the al-

gebra elements into the same chart. Thus,

D2L̂d (ξk−1,ξk) =
∂Ld

∂ξk

D1L̃d (λk,λk+1) =
∂Ld

∂ξk

∂ξk

∂λk
(3.9)

where (3.8) can be used to compute ∂ξk
∂λk

. An explicit example is presented in section

§3.4.

There are several features of this computation that should be noted. First, since
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we are considering specific choices of natural charts, we may think of ξk and λk as cor-

responding to a specific coordinate choice, and hence it is natural to use standard partial

derivatives as opposed to coordinate free notation. Second, because λk is a function of

ξk, which is in turn a function of ξ i
k, this is still a root finding problem over ξ i

k, and hence

may be solved concurrently with the internal stage Euler-Poincaré equations (3.3).

3.3 Convergence

Thus far, we have discussed the construction of Lie group Galerkin variational

integrators. Now we will prove several theorems related to their convergence. Unlike

traditional integrators, we will achieve convergence in two different ways; the first will

be the standard shortening of the time step [0,h], which we refer to as h-refinement.

In practice, we refer to methods that achieve convergence through h-refinement as Lie

group Galerkin variational integrators, after the method used to construct them. The

second is by enriching the function space GMn (g0× [0,h] ,G) and holding the time step

[0,h] constant. Because enriching GMn (g0× [0,h] ,G) involves increasing the number

of basis functions, and hence the value of n, we refer to this as n-refinement. Because

this approach of enriching the function space is inspired by classical spectral methods,

as in Trefethen [36], when we use n-refinement to achieve convergence we will refer to

the the resulting method as a Lie group spectral variational integrator.

3.3.1 Geometric and Optimal Convergence

Naturally, the goal of applying the spectral paradigm to the construction of

Galerkin variational integrators is to construct methods which achieve geometric conver-

gence. In this section, we will prove that under certain assumptions about the behavior of

the Lagrangian and the approximation space, Lie group spectral variational integrators

achieve geometric convergence. Additionally, the argument that establishes geometric

convergence can be easily modified to show that the convergence of Lie group Galerkin

integrators is, in a certain sense, optimal.

The proof of the rate of convergence Galerkin Lie group variational integrators

is superficially similar to the proof of the rate of convergence of Galerkin variational
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integrators, which was established in [16]. The specific major difference is the need to

quantify the error between two different curves on the Lie group. Unlike a normed vector

space, there may not be a simple method of quantifying this error. For the moment, we

will avoid this difficulty by simply assuming that the error between two curves that share

a common point in a Lie group can be characterized through the error between curves

in the Lie algebra. Specifically, we will make the following “natural chart conditioning”

assumption:

eg (Lg0Φ(ξ (t)) ,Lg0Φ(η (t)))≤CG 〈ξ (t)−η (t) ,ξ (t)−η (t)〉
1
2 (3.10)

ea

(
d
dt

Lg0Φ(ξ (t)) ,
d
dt

Lg0Φ(η (t))
)
≤Cg

〈
ξ̇ (t)− η̇ (t) , ξ̇ (t)− η̇ (t)

〉 1
2 (3.11)

+CG
g 〈ξ (t)−η (t) ,ξ (t)−η (t)〉

1
2

for some functions eg (·, ·) and ea (·, ·), which are chosen to measure the error in the

Lie group and tangent bundle of the Lie group, respectively, and for some choice of

Riemannian metric 〈·, ·〉 on the Lie algebra. It is important to note that while the error

function may be chosen to be the length of the geodesic curve that connects LgkΦ(ξ )

and LgkΦ(η), there are other valid choices. This will greatly simplify error calculations;

for example, in §3.4 we choose the error function to be the matrix two-norm, ‖·‖2, which

is quickly and easily computed and will obey this inequality for the Riemannian metric

we use.

Optimal Convergence

We will begin by proving optimal convergence of Lie group Galerkin variational

integrators. In this case, we take “optimal” to mean that the Lie group Galerkin varia-

tional integrator will converge at the same rate as the best possible approximation in the

approximation space used to construct it.

Theorem 3.3.1. Given an interval [0,h], and a Lagrangian L : T G→ R, suppose that

ḡ(t) solves the Euler-Lagrange equations on that interval exactly. Furthermore, suppose
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that the exact solution ḡ(t) falls within the range of the natural chart, that is:

ḡ(t) = LgkΦ(η̄ (t))

for some η̄ (t) ∈ C2 ([0,h] ,g). For the function space GMn (g0× [0,h] ,G) and the

quadrature rule G , define the Galerkin discrete Lagrangian LG
d (g0,g1,h)→ R as

LG
d (g0,g1,h) = ext

gn(t)∈GMn(g0×[0,h],G)
gn(0)=g0,gn(h)=g1

h
m

∑
j=1

b jL
(
gn
(
c jh
)
, ġn
(
c jh
))

= h
m

∑
h=1

b jL
(
g̃n
(
c jh
)
, ˙̃gn
(
c jh
))

(3.12)

where g̃n (t) is the extremizing curve in GMn (g0× [0,h] ,G). If:

1. there exists an approximation η̂n ∈Mn ([0,h] ,g) such that,

〈η̄ (t)− η̂n (t) , η̄ (t)− η̂n (t)〉
1
2 ≤CAhn〈 ˙̄η (t)− ˙̂ηn (t) , ˙̄η (t)− ˙̂ηn (t)
〉 1

2 ≤CAhn,

for some constants CA ≥ 0 and CA ≥ 0 independent of h,

2. the Lagrangian L is Lipschitz in the chosen norms in both its arguments, that is:

|L(g1, ġ1)−L(g2, ġ2)| ≤ Lα (eg (g1,g2)+ ea (ġ1, ġ2)) ,

3. the chart function Φ is well-conditioned in eg (·, ·) and ea (·, ·), that is (3.10) and

(3.11) hold,

4. for the quadrature rule G ( f ) = h∑
m
j=1 b j f

(
c jh
)
≈
∫ h

0 f (t)dt, there exists a con-

stant Cg ≥ 0 such that,∣∣∣∣∣
∫ h

0
L(gn (t) , ġn (t))dt−h

m

∑
j=1

b jL
(
gn
(
c jh
)
, ġn
(
c jh
))∣∣∣∣∣≤Cghn+1

for any gn (t) = Lg0Φ(ξ (t)) where ξ (t) ∈Mn ([0,h] ,g),
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5. the stationary points of the discrete action and the continuous action are minimiz-

ers,

then the variational integrator induced by LG
d (g0,g1) has error O

(
hn+1).

Proof. We begin by rewriting the exact discrete Lagrangian and the Galerkin discrete

Lagrangian:

∣∣∣LE
d (g0,g1,h)−LG

d (g0,g1,h)
∣∣∣= ∣∣∣∣∣

∫ h

0
L(ḡ, ˙̄g)dt−h

m

∑
j=1

b jL
(
g̃n
(
c jh
)
, ˙̃gn
(
c jh
))∣∣∣∣∣ ,

where we have introduced g̃n (t), which is the stationary point of the local Galerkin

action (3.12). We introduce the solution in the approximation space which takes the

form ĝn (t) = LgkΦ(η̂n (t)), and compare the action on the exact solution to the action

on this solution:∣∣∣∣∫ h

0
L(ḡ, ˙̄g)dt−

∫ h

0
L
(
ĝn, ˙̂gn

)
dt
∣∣∣∣= ∣∣∣∣∫ h

0
L(ḡ, ˙̄g)−L

(
ĝn, ˙̂gn

)
dt
∣∣∣∣

≤
∫ h

0

∣∣L(ḡ, ˙̄g)−L
(
ĝn, ˙̂gn

)∣∣dt.

Now, we use the Lipschitz assumption to establish the bound

∫ h

0

∣∣L(ḡ, ˙̄g)−L
(
ĝn, ˙̂gn

)∣∣dt

≤
∫ h

0
Lα

(
eg (ḡ, ĝn)+ ea

(
˙̄g, ˙̂gn

))
dt

=
∫ h

0
Lα (eg (LgkΦ(η̄) ,LgkΦ(η̂n))

+ea
(
DΦ(η̄)Lg0Dη̄Φ

( ˙̄η
)
,DΦ(η̂n)Lg0Dη̂nΦ

( ˙̂ηn
)))

dt,

and the chart conditioning assumptions to see

∫ h

0

∣∣L(ḡ, ˙̄g)−L
(
ĝn, ˙̂gn

)∣∣dt ≤
∫ h

0
Lα

(
CG 〈η̄− η̂n, η̄− η̂n〉

1
2 +Cg

〈 ˙̄η− ˙̂ηn, ˙̄η− ˙̂ηn
〉 1

2 +

CG
g 〈η̄− η̂n, η̄− η̂n〉

1
2

)
dt

≤
∫ h

0
Lα

(
CGCAhn +CgCAhn +CG

g CAhn
)

dt
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= Lα

((
CG +CG

g

)
CA +CgCA

)
hn+1.

This establishes a bound between the action evaluated on the exact discrete Lagrangian

and the optimal solution in the approximation space, ĝn. Considering the Galerkin dis-

crete action,

h
m

∑
j=1

b jL(g̃n, g̃n)≤ h
m

∑
j=1

b jL
(
ĝn, ˙̂gn

)
≤
∫ h

0
L
(
ĝn, ˙̂gn

)
dt +Cghn+1

≤
∫ h

0
L(ḡ, ˙̄g)dt +Cghn+1 +Lα

((
CG +CG

g

)
CA +CgCA

)
hn+1 (3.13)

where we have used the assumption that the Galerkin approximation g̃n minimizes the

Galerkin discrete action and the assumption on the accuracy of the quadrature. Now, us-

ing the fact that ḡ(t) minimizes the action and that GMn (g0× [0,h] ,G)⊂C2 ([0,h] ,G),

h
m

∑
j=1

b jL
(
g̃n, ˙̃gn

)
≥
∫ h

0
L
(
g̃n, ˙̃gn

)
dt−Cghn+1

≥
∫ h

0
L(ḡ, ḡ)dt−Cghn+1 (3.14)

Combining inequalities (3.13) and (3.14), we see that,

∫ h

0
L(ḡ, ˙̄g)dt−Cghn+1 ≤ h

m

∑
j=1

b jL
(
g̃n, ˙̃gn

)
≤
∫ h

0
L(ḡ, ˙̄g)dt +Cghn+1 +Lα

((
CG +CG

g

)
CA +CgCA

)
hn+1

which implies∣∣∣∣∣
∫ h

0
L(ḡ, ˙̄g)dt−h

m

∑
j=1

L
(
g̃n, ˙̃gn

)∣∣∣∣∣≤ (Cg +Lα

((
CG +CG

g

)
CA +CgCA

))
hn+1 (3.15)

The left hand side of (3.15) is exactly
∣∣LE

d (g0,g1,h)−LG
d (g0,g1,h)

∣∣, and thus

∣∣∣LE
d (g0,g1,h)−LG

d (g0,g1,h)
∣∣∣≤Cophn+1.
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where

Cop =Cg +Lα

((
CG +CG

g

)
CA +CgCA

)
.

This states that the Galerkin discrete Lagrangian approximates the exact discrete La-

grangian with error O
(
hn+1), and by Theorem (3.1.1) this further implies that the La-

grangian update map, and hence the Lie group Galerkin variational integrator has error

O
(
hn+1).

Geometric Convergence

Under similar assumptions, we can demonstrate that Lie group spectral varia-

tional integrators will converge geometrically with n-refinement, that is, enrichment of

the function space GMn (g0× [0,h] ,G) as opposed to the shortening of the time step, h.

Theorem 3.3.2. Given an interval [0,h], and a Lagrangian L : T G→ R, suppose that

ḡ(t) solves the Euler-Lagrange equations on that interval exactly. Furthermore, suppose

that the exact solution ḡ(t) falls within the range of the natural chart, that is:

ḡ(t) = LgkΦ(η̄ (t))

for some η̄ ∈C2 ([0,h] ,g). For the function space Mn ([0,h] ,g) and the quadrature rule

G , define the Galerkin discrete Lagrangian LG
d (g0,g1,h)→ R as

LG
d (g0,g1,h) = ext

gn(t)∈GMn(g0×[0,h],G)
gn(0)=g0,gn(h)=g1

h
m

∑
j=1

b jL
(
gn
(
c jh
)
, ġn
(
c jh
))

= h
m

∑
h=1

b jL
(
g̃n
(
c jh
)
, ˙̃gn
(
c jh
))

(3.16)

where g̃n (t) is the extremizing curve in GMn (g0× [0,h] ,G). If:

1. there exists an approximation η̂n ∈Mn ([0,h] ,g) such that,

〈η̄− η̂n, η̄− η̂n〉
1
2 ≤CAKn

A〈 ˙̄η− ˙̂ηn, ˙̄η− ˙̂ηn
〉 1

2 ≤CAKn
A,
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for some constants CA ≥ 0 and CA ≥ 0, 0 < KA < 1 independent of n,

2. the Lagrangian L is Lipschitz in the chosen error norm in both its arguments, that

is:

|L(g1, ġ1)−L(g2, ġ2)| ≤ Lα (eg (g1,g2)+ ea (ġ1, ġ2))

3. the chart function Φ is well conditioned in eg (·, ·) and ea (·, ·), that is (3.10) and

(3.11) hold,

4. there exists a sequence of quadrature rules {Gn}∞

n=1,

Gn ( f ) = h
mn

∑
j=1

bn j f
(
cn jh

)
≈
∫ h

0
f (t)dt,

and there exists a constant 0 < Kg < 1 independent of n such that,∣∣∣∣∣
∫ h

0
L(gn (t) , ġn (t))dt−h

m

∑
j=1

b jL
(
gn
(
c jh
)
, ġn
(
c jh
))∣∣∣∣∣≤CgKn

g

for any gn (t) = Lg0Φ(ξ (t)) where ξ (t) ∈Mn ([0,h] ,g),

5. the stationary points of the discrete action and the continuous action are minimiz-

ers,

then the variational integrator induced by LG
d (g0,g1) has error O (Kn).

The proof for this theorem is very similar to that for Theorem 3.3.1, using the

modified assumptions in the obvious way. It would be tedious to repeat it here, but it

has been included in the appendix for completeness.

These proofs may seem quite strong in their assumptions. However, as we shall

see in §3.4, for many Lagrangians, there are many reasonable choices of function spaces,

natural chart functions, quadrature rules and error norms such that the assumptions are

satisfied. We will specifically examine Lagrangians over SO(3) of the form:

L
(
R, Ṙ

)
= tr

(
ṘT RJdRT Ṙ

)
−V (R) ,
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which is the rigid body under the influence of a potential. We will show that for Lie

group Galerkin variational integrators, stationary points of the discrete action are min-

imizers under a certain time step restriction. In addition we will give a specific con-

struction of a Lie group Galerkin variational integrator for this type of problem, and

demonstrate the expected convergence on several example problems.

3.3.2 Stationary Points are Minimizers

A major assumption in both Theorem 3.3.1 and Theorem 3.3.2 is that the station-

ary point of the discrete action is a minimizer. While in general this may not hold, we

can show that given a time step restriction on h, that this condition holds for problems

on SO(3) for Lagrangians of the form

L
(
R, Ṙ

)
= tr

(
ṘT RJdRT Ṙ

)
−V (R) .

This includes a broad range of problems. Furthermore, we establish a similar result

for problems in vector space in Hall and Leok [16], and it may be possible to combine

these two results to include a large class of problems, including those that evolve on the

special Euclidean group SE (3) = R3 nSO(3).

Lemma 3.3.1. Consider a Lagrangian on SO(3) of the form

L
(
R, Ṙ

)
= tr

(
ṘT RJdRT Ṙ

)
−V (R) .

If a Lie group Galerkin variational integrator is constructed with {φi}n
i=1 forming the

basis for polynomials of degree n+1 and the quadrature rule is of order at least 2n+2,

then the stationary points of the discrete action are minimizers.

Proof. We begin by noting that we can identify every element of so(3), the Lie algebra

associated with SO(3), with an element of R3 using the hat map ·̂ : R3→ so(3),

̂
a

b

c

=


0 −c b

c 0 −a

−b a 0

 . (3.17)
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Hence, it is natural to consider the discrete action as a function on H1 ([0,h] ,R3),
Sd

(
ξ (t) , ξ̇ (t)

)
= h

m

∑
j=1

b jL
(

LgkΦ

(
ξ̂
(
c jh
))

,
d
dt

LgkΦ

(
ξ̂
(
c jh
)))

.

Let ξs (t) be the stationary point of Sd . Now, consider a perturbation to ξs (t), ξs (t)+

δξ (t). Since ξs (t) is the extremizer over curves ξ (t) subject to the constraints ξ (0) =

ξ0, ξ (h) = ξ1, we know δξ (0) = 0 and δξ (h) = 0, but it is otherwise arbitrary. Hence,

we consider an arbitrary perturbation δξ (t) ∈ H1
0
(
[0,h] ,R3). Since Sd is a function on

H1 ([0,h] ,R3), we can Taylor expand around the stationary point:

Sd

(
ξs +δξ , ξ̇s +δ ξ̇

)
= Sd

(
ξs, ξ̇s

)
+DSd

(
ξs, ξ̇s

)[(
δξ ,δ ξ̇

)]
+

1
2

D2Sd (η , η̇)
[(

δξ ,δ ξ̇

)][(
δξ ,δ ξ̇

)]
where η (t) = λ (t)ξ0 (t) + (1−λ (t))δξ (t) for some λ (t) : [0,h]→ [0,1] and DSd ,

D2Sd are the first and second Frechet derivative of Sd , respectively. Thus

Sd

(
ξs +δξ , ξ̇s +δ ξ̇

)
−Sd

(
ξs, ξ̇s

)
= DSd

(
ξs, ξ̇s

)[(
δξ ,δ ξ̇

)]
+

1
2

D2Sd (η , η̇)
[(

δξ ,δ ξ̇

)][(
δξ ,δ ξ̇

)]
.

Now, note that

DSd

(
ξs, ξ̇s

)[(
δξ ,δ ξ̇

)]
= 0

is exactly the stationarity conditions for the internal stage discrete Euler-Poincaré equa-

tions. Thus,

Sd

(
ξs +δξ , ξ̇s +δ ξ̇

)
−Sd

(
ξs, ξ̇s

)
=

1
2

D2Sd (η , η̇)
[(

δξ ,δ ξ̇

)][(
δξ ,δ ξ̇

)]
.

We will examine D2Sd . The second Frechet derivative of the discrete action is given by

D2Sd

(
ξ , ξ̇

)[(
δξa,δ ξ̇a

)][(
δξb,δ ξ̇b

)]
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= h
m

∑
j=1

b j∇
2L
(

ξ , ξ̇
)[(

δξa
(
c jh
)
,δ ξ̇a

(
c jh
))][(

δξb
(
c jh
)
,δ ξ̇b

(
c jh
))]

.

In order to examine the second Frechet derivative, we must examine the Hessian of the

Lagrangian. We will do this term-wise. The Lagrangian has the form

L
(

ξ , ξ̇
)
= K

(
ξ , ξ̇

)
−V (ξ )

where

K
(

ξ (t) , ξ̇ (t)
)
= Ṙ(ξ (t))T R(ξ (t))JdR(ξ (t))T Ṙ(ξ (t)) .

is the kinetic energy and V is the potential energy. Considering K, note that

R(ξ (t))T Ṙ(ξ (t)) = Φ(ξ (t))T
∇Φ(ξ (t)) ξ̇ (t)

and hence as a function of ξ̇ (t),

K
(

ξ̇ (t)
)
= ξ̇ (t)T

∇Φ(ξ (t))T
Φ(ξ (t))JdΦ(ξ (t))T

∇Φ(ξ (t)) ξ̇ (t) .

Jd is a diagonal matrix with (J1,J2,J3) on the diagonal, and because Φ(ξ (t)) is an

orthogonal matrix, Φ(ξ (t))JdΦ(ξ (t))T has the eigenvalues (J1,J2,J3). Furthermore,

Φ(·) is a diffeomorphism, which implies ∇Φ(·) is non-singular, so

ξ̇ (t)T
∇Φ(ξ (t))T

Φ(ξ (t))JdΦ(ξ (t))T
∇Φ(ξ (t)) ξ̇ (t)

≥ Jmin

∥∥∥∇Φ(ξ (t)) ξ̇ (t)
∥∥∥2

2

≥ Jmin |σmin (t)|
∥∥∥ξ̇ (t)

∥∥∥2

2

where Jmin = min({J1,J2,J3}) and σmin (t) is the singular value of ∇Φ

(
ξ̇ (t)

)
with the

smallest magnitude. Since |σmin (t)| is a continuous function of t and |σmin (t)|> 0 for all

t over the compact interval [0,h], there exists a constant Cσ > 0 such that |σmin (t)|>Cσ
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for all t ∈ [0,h]. Finally, we note

∂ 2K

∂ ξ̇ 2
(η (t) , η̇ (t))

[
δ ξ̇a

][
δ ξ̇b

]
= 2δ ξ̇

T
a ∇Φ(η (t))T

Φ(η (t))JdΦ(η (t))T
∇Φ(η (t))δ ξ̇b,

and hence

∂ 2K

∂ ξ̇ 2
(η (t) , η̇ (t))

[
δ ξ̇

][
δ ξ̇

]
≥ 2JminCσ δ ξ̇

T
δ ξ̇ . (3.18)

Now, considering the full term ∇2K (η (t) , η̇ (t))
[(

δξ ,δ ξ̇

)][(
δξ ,δ ξ̇

)]
, we see that:

∇
2K (η (t) , η̇ (t))

[(
δξ ,δ ξ̇

)][(
δξ ,δ ξ̇

)]
=

∂ 2K
∂ξ 2 (η (t) , η̇ (t)) [δξ ] [δξ ]+2

∂ 2K

∂ξ ∂ ξ̇
(η (t) , η̇ (t)) [δξ ]

[
δ ξ̇

]
(3.19)

+
∂ 2K

∂ ξ̇ 2
(η (t) , η̇ (t))

[
δ ξ̇

][
δ ξ̇

]
,

where we have made use of the symmetry of mixed second derivatives. K is smooth in

all of its components, and hence there exists Cm > 0, Cd > 0 such that

∂ 2K

∂ξ ∂ ξ̇
(η (t) , η̇ (t)) [δξ ]

[
δ ξ̇

]
≥−Cmδξ

T
δ ξ̇ (3.20)

∂ 2K
∂ξ 2 (η (t) , η̇ (t)) [δξ ] [δξ ]≥−Cdδξ

T
δξ . (3.21)

Defining Cp = 2JminCσ , inserting (3.18), (3.20), and (3.21) into (3.19) gives

∇
2K (η (t) , η̇ (t))

[(
δξ ,δ ξ̇

)][(
δξ ,δ ξ̇

)]
≥Cpδ ξ̇ (t)T

δ ξ̇ (t)−Cmδ ξ̇ (t)T
δξ (t)−Cdδξ (t)T

δξ (t)

=
Cp

2
δ ξ̇ (t)T

δ ξ̇ (t)+
Cp

2
δ ξ̇ (t)T

δ ξ̇ (t)−Cmδ ξ̇ (t)T
δξ (t)

−Cdδξ (t)T
δξ (t) .
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Completing the square, we see that

Cp

2
δ ξ̇ (t)T

δ ξ̇ (t)+
Cp

2
δ ξ̇ (t)T

δ ξ̇ (t)−Cmδ ξ̇ (t)T
δξ (t)−Cdδξ (t)T

δξ (t)

=
Cp

2
δ ξ̇ (t)T

δ ξ̇ (t)+

(√
Cp√
2

δ ξ̇ (t)−
√

2Cm

2
√

Cp
δξ (t)

)T (√
Cp√
2

δ ξ̇ (t)−
√

2Cm

2
√

Cp
δξ (t)

)

−
(

Cd +
C2

m
2Cp

)
δξ (t)T

δξ (t)

=
Cp

2

∥∥∥δ ξ̇ (t)
∥∥∥2

2
+

∥∥∥∥∥
√

Cp√
2

δ ξ̇ (t)−
√

2Cm

2
√

Cp
δξ (t)

∥∥∥∥∥
2

2

−
(

Cd +
C2

m
2Cp

)
‖δξ (t)‖2

2 .

Making use of the trivial bound that for any a,b ∈ R3, ‖a−b‖2
2 ≥ 0, we see

Cp

2

∥∥∥δ ξ̇ (t)
∥∥∥2

2
+

∥∥∥∥∥
√

Cp√
2

δ ξ̇ (t)−
√

2Cm

2
√

Cp
δξ (t)

∥∥∥∥∥
2

2

−
(

Cd +
C2

m
2Cp

)
‖δξ (t)‖2

2

≥
Cp

2

∥∥∥δ ξ̇ (t)
∥∥∥2

2
−
(

Cd +
C2

m
2Cp

)
‖δξ (t)‖2

2

=C
ξ̇

δ ξ̇ (t)T
δ ξ̇ (t)−Cξ δξ (t)T

δξ (t)

for constants C
ξ̇
> 0, Cξ > 0, where

C
ξ̇
=

Cp

2

Cξ =Cd +
C2

m
2Cp

.

This bound allows us to conclude

∇
2K (η (t) , η̇ (t))

[(
δξ ,δ ξ̇

)][(
δξ ,δ ξ̇

)]
≥C

ξ̇
ξ̇ (t)T

ξ̇ (t)−Cξ ξ (t)T
ξ (t) . (3.22)

We now turn our attention to the potential term, V (R(ξ (t))). Since V and R(·) are both

smooth we know that the second partial derivatives of V (R(·)) are bounded, and since

V does not depend on ξ̇ (t),

∇
2V (R(η (t)))

[(
δξ (t) ,δ ξ̇ (t)

)][(
δξ (t) ,δ ξ̇ (t)

)]
≤CV δξ (t)T

δξ (t) (3.23)
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for a constant CV . Thus, combining (3.22) and (3.23), we can bound ∇2Sd ,

∇
2Sd (η (t) , η̇ (t))

[(
δξ (t) ,δ ξ̇ (t)

)][(
δξ (t) ,δ ξ̇ (t)

)]
≥

h
m

∑
j=1

b jCξ̇
δ ξ̇
(
c jh
)T

δ ξ̇
(
c jh
)
−
(
Cξ +CV

)
δξ
(
c jh
)T

δξ
(
c jh
)
.

By assumption, δξ (t) and δ ξ̇ (t) are polynomials of degree at most n+1, so we know

that δξ (t)T
δξ (t) and δ ξ̇ (t)T

δ ξ̇ (t) are polynomials of degree at most 2n+ 2, which

implies the quadrature rule is exact, and thus

h
m

∑
j=1

b jCξ̇
δ ξ̇
(
c jh
)T

δ ξ̇
(
c jh
)
−
(
Cξ +CV

)
δξ
(
c jh
)T

δξ
(
c jh
)
= (3.24)

C
ξ̇

∫ h

0
δ ξ̇ (t)T

δ ξ̇ (t)dt−
(
Cξ +CV

)∫ h

0
δξ (t)T

δξ (t)dt.

δξ (t) ∈ H1
0
(
[0,h] ,R3), so we can apply Poincaré’s inequality to see

C
ξ̇

∫ h

0
δ ξ̇ (t)T

δ ξ̇ (t)dt−
(
Cξ +CV

)∫ h

0
δξ (t)T

δξ (t)dt

≥
C

ξ̇
π2

h2

∫ h

0
δξ (t)T

δξ (t)dt−
(
Cξ +CV

)∫ h

0
δξ (t)T

δξ (t)dt

=

(
C

ξ̇
π2

h2 −
(
Cξ +CV

))∫ h

0
ξ (t)T

ξ (t)dt

which is positive so long as h <

√
C

ξ̇
π2

Cξ+CV
. Thus, given that h <

√
C

ξ̇
π2

Cξ+CV
, for arbitrary(

δξ (t) ,δ ξ̇ (t)
)
Sd

(
ξs (t)+δξ (t) , ξ̇s (t)+δ ξ̇ (t)

)
−Sd

(
ξs (t) , ξ̇s (t)

)
> 0

which demonstrates that
(

ξs (t) , ξ̇s (t)
)

minimizes the action.

It should be noted that the only use of the assumption that the approximation

space is polynomials of order at least n is when we use the order of the quadrature rule

to change the quadrature to the exact integral (3.24). Thus, this proof can easily be
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generalized to other approximation spaces, so long as the quadrature rule used is exact

for the product of any two elements of the approximation space and the product of any

two derivatives of the elements of the approximation space.

3.3.3 Convergence of Galerkin Curves

Lie group Galerkin variational integrators require the construction of a curve

g̃n (t) ∈GMn (gk× [0,h] ,G)

such that

g̃n (t) = argext
gn(t)∈GMn(gk×[0,h],G)

gn(0)=gk,gn(h)=gk+1

m

∑
j=1

b jL
(
gn
(
c jh
)
, ġn
(
c jh
))

.

This curve, which we shall refer to as the Galerkin curve, is a finite-dimension approx-

imation to the true solution of the Euler-Poincaré equations over the interval [0,h]. For

the one-step map, we are only concerned with the right endpoint of the Galerkin curve,

as

gk+1 = gn (h) .

However, the curve itself has excellent approximation properties as a continuous approx-

imation to the solution of the Euler-Poincaré equations over the interval [0,h]. Because

Lie group Galerkin variational integrators are capable of taking very large time steps,

the dynamics during these time steps may be of interest, and hence the quality of the

approximation by these Galerkin curves is also of particular interest.

Ideally, these curves would have the same order of error as the one-step map.

Unfortunately, we can only establish error estimates with lower orders of approximation.

We established similar results in the vector space case, see Hall and Leok [16], and

observed that at high enough accuracy, there is indeed greater error in the Galerkin curve

than the one-step map. However, when comparing these curves to the true solution,

typically the error introduced by the inaccuracies in (gk,gk+1) dominates the error from
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the Galerkin curve, and thus this lower rate of convergence is not observable in practice.

Before we formally establish the rates of convergence for the Galerkin curves,

we will briefly review the norms we will use in our theorems and proofs. First, recall

the Lp norm for functions over the interval [0,h] given by

‖ f‖Lp([0,h]) =

(∫ h

0
| f |p dt

) 1
p

and next, the Sobolev norm ‖·‖W 1,p([0,h]) for functions on the interval [0,h], given by:

‖ f‖W 1,p([0,h]) =
(
‖ f‖p

Lp([0,h])+
∥∥ ḟ
∥∥p

Lp([0,h])

) 1
p
.

Also, note that for curves ξ (t) ∈ g, |ξ (t)|= 〈ξ (t) ,ξ (t)〉
1
2 . We will make extensive use

of these definitions in the next three theorems.

Theorem 3.3.3. Under the same assumptions as Theorem 3.3.2, consider the action as

a function of the local left trivialization of the Lie group curve and its derivative,

Sg

(
η̄ (t) , ˙̄η (t)

)
=
∫ h

0
L
(

LgΦ(η̄ (t)) ,
d
dt

LgΦ(η̄ (t))
)

dt,

where LgΦ(η̄ (t)) satisfies the Euler-Poincaré equations exactly. If at
(
η̄ (t) , ˙̄η (t)

)
the

action Sg (·, ·) is twice Frechet differentiable and the second Frechet derivative is coer-

cive in variations of the Lie algebra, that is,

∣∣∣D2Sg

((
η̄ (t) , ˙̄η (t)

))[(
δξ (t) ,δ ξ̇ (t)

)][(
δξ (t) ,δ ξ̇ (t)

)]∣∣∣≥C f ‖δξ (t)‖2
W 1,1([0,h])

for all δξ (t) ∈ H1
0 ([0,h] ,g), then if the one-step map has error O (Kn), the Galerkin

curves have error O
(√

K
n
)

in Sobolev norm ‖·‖W 1,1([0,h]).

Proof. We start with the bound (3.56), given at the end of the proof of Theorem 3.3.2 in

the appendix,

∣∣∣LE
d (gk,gk+1,h)−LG

d (gk,gk+1,n)
∣∣∣≤CsKn

s ,
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and expand using the definitions of LE
d (gk,gk+1,h) and LG

d (gk,gk+1,n),

CsKn
s ≥

∣∣∣LE
d (gk,gk+1,h)−LG

d (gk,gk+1,n)
∣∣∣

≥
∣∣∣∣∫ h

0
L
(

LgkΦ(η̄ (t)) ,
d
dt

LgkΦ(η̄ (t))
)

dt

−
m

∑
j=1

b jL
(

LgkΦ(η̃ (t)) ,
d
dt

LgkΦ(η̃ (t))
)∣∣∣∣∣

≥
∣∣∣∣∫ h

0
L
(

LgkΦ(η̄ (t)) ,
d
dt

LgkΦ(η̄ (t))
)

dt

−
∫ h

0
L
(

LgkΦ(η̃ (t)) ,
d
dt

LgkΦ(η̃ (t))
)

dt
∣∣∣∣−CgKn

g

=
∣∣Sg

(
η̄ (t) , ˙̄η (t)

)
−Sg

(
η̃ (t) , ˙̃η (t)

)∣∣−CgKn
g ,

and since Kg ≤ Ks, this implies

(Cs +Cg)Kn
s ≥

∣∣Sg

(
η̄ (t) , ˙̄η (t)

)
−Sg

(
η̃ (t) , ˙̃ηn (t)

)∣∣ . (3.25)

We now Taylor expand around the exact solution
(
η̄ (t) , ˙̄η (t)

)
Sg

(
η̃ (t) , ˙̃η (t)

)
(3.26)

=Sg

(
η̄ (t) , ˙̄η (t)

)
+DSg

(
η̄ (t) , ˙̄η (t)

)[
η̄ (t)− η̃ (t) , ˙̄η (t)− ˙̃η (t)

]
(3.27)

+
1
2

D2Sg (ν (t) , ν̇ (t))
[(

η̄ (t)− η̃ (t) , ˙̄η (t)− ˙̃η (t)
)][(

η̄ (t)− η̃ (t) , ˙̄η (t)− ˙̃η (t)
)]
,

where ν (t) is a curve in g. Now, note that DSg

(
η̄ (t) , ˙̄η (t)

)
= 0 is exactly the sta-

tionarity condition of the Euler-Poincaré equations. Thus, inserting (3.27) into (3.25)

yields

(Cs +Cg)Kn
s (3.28)

≥ 1
2

∣∣D2Sg (ν (t) , ν̇ (t))
[(

η̄ (t)− η̃ (t) , ˙̄η (t)− ˙̃η (t)
)][(

η̄ (t)− η̃ (t) , ˙̄η (t)− ˙̃η (t)
)]∣∣

≥
C f

2
‖η̄ (t)− η̃ (t)‖2

W 1,1([0,h]) (3.29)

where we have made use of the coercivity of the second derivative of the action. Sim-
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plifying (3.29) yields√
2(Cs +Cg)

C f

√
Ks

n ≥ ‖η̄ (t)− η̃ (t)‖W 1,1([0,h]) ,

which establishes convergence in the Sobolev norm.

Just as we proved an order optimality theorem, Theorem 3.3.1, that was analo-

gous to the geometric convergence theorem, Theorem 3.3.2, we can establish an analo-

gous convergence theorem for Galerkin curves with h-refinement.

Theorem 3.3.4. Under the same assumptions as Theorem 3.3.1, consider the action as

a function of the local left trivialization of the Lie group curve and its derivative,

Sg

(
η̄ , ˙̄η

)
=
∫ h

0
L
(

LgΦ(η̄) ,
d
dt

LgΦ(η̄)

)
dt.

If at
(
η̄ , ˙̄η

)
the action Sg (·, ·) is twice Frechet differentiable and the second Frechet

derivative is coercive in variations of the Lie algebra as in Theorem 3.3.3, then if the

one-step map has error O
(
hn+1), then the Galerkin curves have error O

(
h

n+1
2

)
in the

Sobolev norm ‖·‖W 1,1([0,h]).

The proof Theorem 3.3.4 is nearly identical to that of Theorem 3.3.3, the only

difference being that the bounds containing Kn
s are replaced with bounds containing

hn+1 in the obvious way.

Like the assumption that the stationary point of the discrete action is a minimizer

in Theorems 3.3.2 and 3.3.1, the assumption that the second Frechet derivative of the

action is coercive might seem quite strong. However, we can show that for Lagrangians

on SO(3) of the form

L
(
R, Ṙ

)
= tr

(
ṘT RJdRT Ṙ

)
−V (R) ,

the second Frechet derivative of the action is coercive, subject to a time-step restriction

on h.
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Lemma 3.3.2. For Lagrangians on SO(3) of the form

L
(
R, Ṙ

)
= tr

(
ṘT RJdRT Ṙ

)
−V (R) ,

there exists a C > 0 such that for h < C, the second Frechet derivative of Sg (·, ·) at(
η̄ (t) , ˙̄η (t)

)
is coercive on the interval [0,h].

Proof. First, we note that for this Lagrangian

D2Sg

(
η̄ (t) , ˙̄η (t)

)[(
δξ (t) ,δ ξ̇ (t)

)][(
δξ (t) ,δ ξ̇ (t)

)]
=
∫ h

0
∇

2L
(

LgkΦ(η̄ (t)) ,
d
dt

LgkΦ(η̄ (t))
)[(

δξ (t) ,δ ξ̇ (t)
)][(

δξ (t) ,δ ξ̇ (t)
)]

dt

From the proof of Lemma 3.3.1, we know that

∇
2L
(

LgkΦ(η̄ (t)) ,
d
dt

LgkΦ(η̄ (t))
)[(

δξ (t) ,δ ξ̇ (t)
)][(

δξ (t) ,δ ξ̇ (t)
)]

≥C
ξ̇

δ ξ̇ (t)T
δ ξ̇ (t)−

(
Cξ +CV

)
δξ (t)T

δξ (t)

=
C

ξ̇

2
δ ξ̇ (t)T

δ ξ̇ (t)+
C

ξ̇

2
δ ξ̇ (t)T

δ ξ̇ (t)−
(
Cξ +CV

)
δξ (t)T

δξ (t) ,

and hence

D2Sg

(
η̄ (t) , ˙̄η (t)

)[(
δξ (t) ,δ ξ̇ (t)

)][(
δξ (t) ,δ ξ̇ (t)

)]
≥
∫ h

0

C
ξ̇

2
δ ξ̇ (t)T

δ ξ̇ (t)dt +
∫ h

0

C
ξ̇

2
δ ξ̇ (t)T

δ ξ̇ (t)−
(
Cξ +CV

)
δξ (t)T

δξ (t)dt.

(3.30)

Applying Poincaré’s inequality, we see that

∫ h

0

C
ξ̇

2
δ ξ̇ (t)T

δ ξ̇ (t)dt−
∫ h

0

(
Cξ +CV

)
δξ (t)T

δξ (t)dt

≥
C

ξ̇
π2

2h2

∫ h

0
δξ (t)T

δξ (t)dt−
(
Cξ +CV

)∫ h

0
δξ (t)T

δξ (t)dt

=

(
C

ξ̇
π2

2h2 −
(
Cξ +CV

))∫ h

0
δξ (t)T

δξ (t)dt. (3.31)
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Replacing the last two terms in (3.30) with (3.31), we see

D2Sg

((
η̄ , ˙̄η

))[(
δξ (t) ,δ ξ̇ (t)

)][(
δξ (t) ,δ ξ̇ (t)

)]
≥

C
ξ̇

2

∫ h

0
δ ξ̇ (t)T

δ ξ̇ (t)dt +

(
C

ξ̇
π2

2h2 −
(
Cξ +CV

))∫ h

0
δξ (t)T

δξ (t)dt

=
C

ξ̇

2

∥∥∥δ ξ̇ (t)
∥∥∥2

L2([0,h])
+

(
C

ξ̇
π2

2h2 −
(
Cξ +CV

))
‖δξ (t)‖2

L2([0,h]) .

We now apply Hölder’s inequality

‖ f g‖L1([0,h]) ≤ ‖ f‖L2([0,h]) ‖g‖L2([0,h])

to derive the bounds

∥∥∥δ ξ̇ (t)
∥∥∥

L1([0,h])
≤
√

h
∥∥∥δ ξ̇ (t)

∥∥∥
L2([0,h])

‖δξ (t)‖L1([0,h]) ≤
√

h‖δξ (t)‖L2([0,h]) ,

and hence,

D2Sg

((
η̄ , ˙̄η

))[(
δξ (t) ,δ ξ̇ (t)

)][(
δξ (t) ,δ ξ̇ (t)

)]
≥

C
ξ̇

2h

∥∥∥δ ξ̇ (t)
∥∥∥2

L1([0,h])
+

1
h

(
C

ξ̇
π2

2h2 −
(
Cξ +CV

))
‖δξ (t)‖2

L1([0,h])

≥min

(
C

ξ̇

2h
,
1
h

(
C

ξ̇
π2

2h2 −
(
Cξ +CV

)))(
‖δξ (t)‖2

L1([0,h])+
∥∥∥δ ξ̇ (t)

∥∥∥2

L1([0,h])

)

≥min

(
C

ξ̇

2h
,
1
h

(
C

ξ̇
π2

2h2 −
(
Cξ +CV

)))(1
2

)(
‖δξ (t)‖L1([0,h])+

∥∥∥δ ξ̇ (t)
∥∥∥

L1([0,h])

)2

≥min

(
C

ξ̇

4h
,

1
2h

(
C

ξ̇
π2

2h2 −
(
Cξ +CV

)))
‖δξ (t)‖2

W 1,1([0,h])

which establishes the required coercivity result so long as 0 < h <

√
C

ξ̇
π2

2(Cξ+CV)
.
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3.4 Cayley Transform Based Method on the Special Or-

thogonal Group

Because the construction of a Lie group Galerkin variational integrator can be

involved, we will provide an example of an integrator based on the Cayley transform for

the rigid body on SO(3) and related problems. We will first construct the method and

then verify that it satisfies the hypotheses of Theorems 3.3.1 and 3.3.2, and in §3.5 we

will demonstrate numerically that it exhibits the expected convergence.

Additionally, discretizing the rigid body amounts to discretizing a kinetic energy

term that can be used in many different applications. It appears that discretizing the

kinetic energy term of the rigid body is more painstaking than the potential term, so we

provide a detailed description so that others will not have to repeat the derivation of this

discretization for future applications.

3.4.1 Free Rigid Body

The Lagrangian:

L
(
R, Ṙ

)
= tr

(
ṘT RJdRT Ṙ

)
(3.32)

Jd =
1
2

tr [J] I3×3− J

J = tr [Jd] I3×3− Jd, (3.33)

where R ∈ SO(3) and J are the moments of inertia in the reference coordinate frame,

gives rise to the equations of motion for the rigid body. The rigid body has a rich ge-

ometric structure, which is discussed in Lee et al. [23], Celledoni and Owren [7], and

Marsden and Ratiu [31]. In addition to being an interesting example of a non-canonical

Lagrangian system, it is a standard model problem for discretization for numerical meth-

ods on Lie groups, and an overview of integrators applied to the rigid body can be found

in Hairer et al. [14].
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3.4.2 Construction

To construct the Lie group Galerkin variational integrator, we have to choose:

1. a map Φ(·) : so(3)→ SO(3),

2. a finite dimensional function space Mn ([0,h] ,g), and

3. a quadrature rule,

and to complete the error analysis, we must also choose

1. a metric on so(3) 〈·, ·〉,

2. error functions eg (·, ·) and ea (·, ·).

For our construction, we will make use of the Cayley transform for our map Φ(·) and

Lagrange interpolation polynomials through so(3) for the finite-dimensional function

space Mn ([0,h] ,g), that is,

Mn ([0,h] ,g) =

{
ξ (t)

∣∣∣∣∣ ξ (t) =
n

∑
i=1

q̂iφi (t),qi ∈ R3

}
,

where ·̂ is that hat map described by (3.17) and φi (t) is the Lagrange interpolation poly-

nomial for ti. For the error analysis we will choose:

〈η̂ , ν̂〉= η
T

ν ,

eg (G1,G2) = ‖G1−G2‖2

ea (η̂ , ν̂) = ‖η̂− ν̂‖2 ,

for arbitrary G1,G2 ∈ SO(3) and η ,ν ∈ R3, where the ‖·‖2 norm is understood as aris-

ing from the ‖·‖2 from the embedding space R3×3. We will discuss these below, and

elaborate on the motivation for these choices in our construction.



123

The Cayley Transform

To construct our Lie group Galerkin variational Integrator, we will make use of

the Cayley Transform, Φ(·) : so(3)→ SO(3) which is given by:

Φ(q) = (I−Q)(I +Q)−1 .

The reader should note that we are using an unscaled version of the Cayley transform,

but for the purposes of constructing the natural chart, different versions of the Cayley

transform should result in equivalent methods. Furthermore, the choice of the Cayley

transform for the integrator is certainly not necessary; different choices of maps, such as

the exponential map, would result in equally valid methods. We make use of the Cayley

transform simply because it is easy to manipulate and compute, is its own inverse, and

because it satisfies our chart conditioning assumptions, as we will establish shortly.

Lemma 3.4.1. For η ,ν ∈ so(3), so long as

2‖η‖2 +‖ν‖2 ≤< 1, (3.34)

the natural chart constructed by the Cayley transform locally satisfies chart conditioning

assumption, that is:

‖Φ(η)−Φ(ν)‖2 ≤CG 〈η−ν ,η−ν〉
1
2∥∥DηΦ(η̇)−DνΦ(ν̇)

∥∥
2 ≤Cg 〈η−ν ,η−ν〉

1
2 +CG

g 〈η̇− ν̇ , η̇− ν̇〉
1
2 .

If ‖η−ν‖2 < ε , assumption (3.34) can be relaxed to

‖η‖2 + ε ≤Ccon < 1.

Proof. Throughout the proof of this lemma, we will make extensive use of two inequal-

ities. The first is the bound:

∥∥∥(I +E)−1
∥∥∥

p
≤Ccon

(
1−‖E‖p

)−1
, (3.35)
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if ‖E‖p < 1, and the second is the bound:

∥∥∥(A+E)−1−A−1
∥∥∥

p
≤ ‖E‖p

∥∥A−1∥∥2
p

(
1−
∥∥A−1E

∥∥
p

)−1
(3.36)

which generalizes (3.35). We begin with

‖Φ(η)−Φ(ν)‖2

=
∥∥∥(I−η)(I +η)−1− (I−ν)(I +ν)−1

∥∥∥
2

=
∥∥∥(I−η)(I +η)−1− (I−η)(I +ν)−1 +(I−η)(I +ν)−1− (I−ν)(I +ν)−1

∥∥∥
2

=
∥∥∥(I−η)

[
(I +η)−1− (I +ν)−1

]
+[(I−η)− (I−ν)] (I +ν)−1

∥∥∥
2

=
∥∥∥(I−η)

[
(I +η)−1− (I +ν)−1

]
+[ν−η ] (I +ν)−1

∥∥∥
2

≤
∥∥∥(I−η)

[
(I +η)−1− (I +ν)−1

]∥∥∥
2
+
∥∥∥[ν−η ] (I +ν)−1

∥∥∥
2
. (3.37)

Considering the term [ν−η ] (I +ν)−1, we make use of (3.35) to see

∥∥∥[ν−η ] (I +ν)−1
∥∥∥

2
≤ ‖ν−η‖2

∥∥∥(I +ν)−1
∥∥∥

2

≤ (1−‖ν‖2)
−1 ‖η−ν‖2 . (3.38)

Next, considering the term
∥∥∥(I−η)

[
(I +η)−1− (I +ν)−1

]∥∥∥
2
,

∥∥∥(I−η)
[
(I +η)−1− (I +ν)−1

]∥∥∥
2
≤ ‖I−η‖2

∥∥∥(I +η)−1− (I +ν)−1
∥∥∥

2

= ‖I−η‖2

∥∥∥(I +ν +(η−ν))−1− (I +ν)−1
∥∥∥

2
.

(3.39)

Applying (3.36), with E = η−ν and A = I +ν ,

∥∥∥(I +ν +(η−ν))−1− (I +ν)−1
∥∥∥

2

≤ ‖η−ν‖2

∥∥∥(I +ν)−1
∥∥∥2

2

(
1−
∥∥∥(I +ν)−1 (η−ν)

∥∥∥
2

)−1
. (3.40)
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But

1−
∥∥∥(I +ν)−1 (η−ν)

∥∥∥
2
≥ 1−

∥∥∥(I +ν)−1
∥∥∥

2
‖(η−ν)‖2

≥ 1− (1−‖ν‖2)
−1 ‖(η−ν)‖2

which implies

(
1−
∥∥∥(I +ν)−1 (η−ν)

∥∥∥
2

)−1
≤
(

1− (1−‖ν‖2)
−1 ‖(η−ν)‖2

)−1

and

∥∥∥(I +ν)−1
∥∥∥2

2
≤ (1−‖ν‖2)

−2 ,

so

∥∥∥(I +ν)−1
∥∥∥2

2

(
1−
∥∥∥(I +ν)−1 (η−ν)

∥∥∥
2

)−1

≤ (1−‖ν‖2)
−2
(

1− (1−‖ν‖2)
−1 ‖(η−ν)‖2

)−1

= (1−‖ν‖2)
−1 ((1−‖ν‖2)−‖η−ν‖2)

−1

= (1−‖ν‖2)
−1 (1−‖ν‖2−‖η−ν‖2)

−1 . (3.41)

The triangle inequality gives

‖η−ν‖2 ≤ ‖η‖2 +‖ν‖2

and thus

1−‖η‖2−‖η−ν‖2 ≥ 1−2‖η‖2−‖ν‖2

(1−‖η‖2−‖η−ν‖2)
−1 ≤ (1−2‖η‖2−‖ν‖2)

−1 . (3.42)
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So applying (3.42) to (3.41) gives,

∥∥∥(I +ν)−1
∥∥∥2

2

(
1−
∥∥∥(I +ν)−1 (η−ν)

∥∥∥
2

)−1
≤ (1−‖ν‖2)

−1 (1−2‖η‖2−‖ν‖2)
−1 ,

(3.43)

then applying (3.43) to (3.40) gives,

∥∥∥(I +ν +(η−ν))−1− (I +ν)−1
∥∥∥

2
≤ ‖η−ν‖2 (1−‖ν‖2)

−1 (1−2‖η‖2−‖ν‖2)
−1 ,

(3.44)

and finally applying (3.44) to (3.39) yields

∥∥∥(I−η)
[
(I +η)−1− (I +ν)−1

]∥∥∥
2

≤ ‖I−η‖2 (1−‖ν‖2)
−1 (1−2‖η‖2−‖ν‖2)

−1 ‖η−ν‖2

≤ (1−‖η‖2)
−1 (1−‖ν‖2)

−1 (1−2‖η‖2−‖ν‖2)
−1 ‖η−ν‖2 (3.45)

Substituting (3.38) and (3.45) into (3.37), we see

‖Φ(η)−Φ(ν)‖2

≤
[
(1−‖ν‖2)

−1 +(1−‖η‖2)
−1 (1−‖ν‖2)

−1 (1−2‖η‖2−‖ν‖2)
−1
]
‖η−ν‖2 .

Hence, so as long as 2‖η‖+‖ν‖ ≤Ccon < 1

‖Φ(η)−Φ(ν)‖2 ≤CG ‖η−ν‖2 .

where

CG =
[
(1−‖ν‖2)

−1 +(1−‖η‖2)
−1 (1−‖ν‖2)

−1 (1−2‖η‖2−‖ν‖2)
−1
]
.

If we make the stronger assumption that ‖η−ν‖2 < ε , we can weaken the assumption

to simply ‖η‖2+ε ≤Ccon < 1 and ‖ν‖2+ε ≤Ccon < 1. As we expect the error between

the approximate and exact solutions in the Lie algebra to be orders of magnitude smaller

than the magnitude of the Lie algebra elements, this is a reasonable assumption to make.
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Next, to examine
∥∥DηΦ(η̇)−DνΦ(ν̇)

∥∥
2, we consider the definition

DX Φ(Y ) =−Y (I +X)−1− (I−X)(I +X)−1Y (I +X)−1 .

Using this definition,

∥∥DηΦ(η̇)−DνΦ(ν̇)
∥∥

2

=
∥∥∥−η̇ (I +η)−1− (I−η)(I +η)−1

η̇ (I +η)−1+

ν̇ (I +ν)−1 +(I−ν)(I +ν)−1
ν̇ (I +ν)−1

∥∥∥
2

≤
∥∥∥ν̇ (I +ν)−1− η̇ (I +η)−1

∥∥∥
2
+∥∥∥(I−ν)(I +ν)−1

ν̇ (I +ν)−1− (I−η)(I +η)−1
η̇ (I +η)−1

∥∥∥
2
.

Considering

∥∥∥ν̇ (I +ν)−1− η̇ (I +η)−1
∥∥∥

2

=
∥∥∥ν̇ (I +ν)−1− η̇ (I +ν)−1 + η̇ (I +ν)−1− η̇ (I +η)−1

∥∥∥
2

=
∥∥∥(ν̇− η̇)(I +ν)−1 + η̇

[
(I +ν)−1− (I +η)−1

]∥∥∥
2

≤
∥∥∥(I +ν)−1

∥∥∥
2
‖η̇− ν̇‖2 +‖η̇‖2

∥∥∥(I +ν)−1− (I +η)−1
∥∥∥

2

≤ (1−‖ν‖2)
−1 ‖η̇− ν̇‖2 +‖η̇‖2 ((1−‖ν‖2)(1−‖ν‖2−‖ν−η‖2))

−1 ‖η−ν‖2 ,

where we have made use of (3.44) to bound
∥∥∥(I +ν)−1− (I +η)−1

∥∥∥
2
. Now, consider-

ing the second term, we first note,

∥∥∥(I−ν)(I +ν)−1
ν̇ (I +ν)−1− (I−η)(I +η)−1

η̇ (I +η)−1
∥∥∥

2

=
∥∥∥Φ(ν) ν̇ (I +ν)−1−Φ(η) η̇ (I +η)−1

∥∥∥
2
.

Using this, we see

∥∥∥Φ(ν) ν̇ (I +ν)−1−Φ(η) η̇ (I +η)−1
∥∥∥

2

=
∥∥∥Φ(ν) ν̇ (I +ν)−1−Φ(ν) ν̇ (I +η)−1
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+ Φ(ν) ν̇ (I +η)−1−Φ(η) η̇ (I +η)−1
∥∥∥

2
.

≤
∥∥∥Φ(ν) ν̇ (I +ν)−1−Φ(ν) ν̇ (I +η)−1

∥∥∥
2

+
∥∥∥Φ(ν) ν̇ (I +η)−1−Φ(η) η̇ (I +η)−1

∥∥∥
2

(3.46)

For the first term in (3.46),

∥∥∥Φ(ν) ν̇ (I +ν)−1−Φ(ν) ν̇ (I +η)−1
∥∥∥

2

=
∥∥∥Φ(ν) ν̇

[
(I +ν)−1− (I +η)−1

]∥∥∥
2

≤ ‖Φ(ν)‖2 ‖ν̇‖2

∥∥∥(I +ν)−1− (I +η)−1
∥∥∥

2

≤ ‖ν̇‖2 ((1−‖ν‖2)(1−‖ν‖2−‖ν−η‖2))
−1 ‖η−ν‖2 . (3.47)

where we once again have made use of (3.44) to bound
∥∥∥(I +ν)−1− (I +η)−1

∥∥∥
2

and

the fact that Φ(ν) is orthogonal to set ‖Φ(ν)‖2 = 1. Now, considering the second term

in (3.46),

∥∥∥Φ(ν) ν̇ (I +η)−1−Φ(η) η̇ (I +η)−1
∥∥∥

2
=
∥∥∥(Φ(ν) ν̇−Φ(η) η̇)(I +η)−1

∥∥∥
2

≤ ‖Φ(ν) ν̇−Φ(η) η̇‖2

∥∥∥(I +η)−1
∥∥∥

2

(3.48)

and additionally,

‖Φ(ν) ν̇−Φ(η) η̇‖2 = ‖Φ(ν) ν̇−Φ(η) ν̇ +Φ(η) ν̇−Φ(η) η̇‖2

≤ ‖Φ(ν)−Φ(η)‖2 ‖ν̇‖2 +‖Φ(η)‖2 ‖ν̇− η̇‖2

≤CG ‖ν̇‖2 ‖η−ν‖2 +‖η̇− ν̇‖2 . (3.49)

Combining (3.47), (3.48), (3.49) in (3.46) yields

∥∥DηΦ(η̇)−DνΦ(ν̇)
∥∥

2 ≤Cg ‖η−ν‖2 +CG
g ‖η̇− ν̇‖2
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with constants

Cg = (1−‖ν‖2−‖ν−η‖2)
−1
(
‖η̇‖2 (1−‖η‖2)

−1 +‖ν̇‖2 (1−‖ν‖2)
−1
)
+CG ‖ν̇‖2

CG
g = 1+(1−‖ν‖2)

−1 .

To complete the proof of the lemma, we need to establish a bound on the matrix two

norm from the metric on the Lie algebra. For arbitrary algebra element ξ , standard

vector and matrix norm equivalences yield

∥∥∥ξ̂

∥∥∥
2
≤
√

3
∥∥∥ξ̂

∥∥∥
1
≤
√

3‖ξ‖1 ≤ 3‖ξ‖2 = 3
〈

ξ̂ , ξ̂
〉 1

2

which completes the proof.

It should be noted that as ‖ν‖2 or ‖η‖2 approaches 1, CG, Cg and CG
g increase

without bound. This amounts to a time step restriction for the method; if the config-

uration changes too dramatically during the time step, the chart will become poorly

conditioned and the numerical solution will degrade. However, as long as ‖ν‖2 ≤Ccon

and ‖η‖2 ≤Ccon on each time step for some Ccon < 1 which is independent of the num-

ber of the time step, these constants will remain bounded and the natural chart will be

well conditioned.

Choice of Basis Functions

The final feature of the construction of our Cayley transform Lie group Galerkin

variational integrator is the choice of function space Mn ([0,h] ,g) for approximation of

curves in the Lie algebra. Since the curves in the Lie algebra so(3) that we use have a

natural correspondence with curves in R3 through the hat map, constructing these curves

reduces to choosing an approximation space for curves in R3.

We make the choice of polynomials of degree at most n+ 1 for Mn ([0,h] ,g).

We choose polynomials because approximation theory and particularly the theory of

spectral numerical methods, see Trefethen [36], tells us that polynomials have excellent

convergence under both h and n refinement to smooth curves, and in particular, analytic

curves. For the basis functions {φi (t)}n
i=1, we choose φi (t) to be the Lagrange interpo-
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lation polynomial for the i-th of n Chebyshev points rescaled to the interval [0,h], that

is

φi (t) =
∏

n
j=1, j 6=i

(
t− t j

)
∏

n
j=1, j 6=i

(
ti− t j

)
for ti = h

2 cos
( iπ

n

)
+ h

2 . While our convergence theory does not depend on the choice of

polynomial basis, there are two major benefits for this choice of basis functions. The first

is that these polynomials interpolate 0 and h, which greatly simplifies the computation

of D1 (Rk,Rk+1) and D2 (Rk−1,Rk). The second is that this choice of basis function leads

to methods which are more stable than other choices of interpolation points, most likely

because of the excellent stability properties of the interpolation polynomials that are

constructed from them. The interested reader is referred to Trefethen [36] and Boyd [5]

and the references therein for more details on spectral numerical methods.

Choice of Quadrature Rule

The final selection we must make when constructing the integrator is a choice of

quadrature rule. We choose to use Gaussian quadrature, mostly because this quadrature

rule is optimally accurate in the number of points and because it is simple to compute

higher order Gaussian quadrature points and weights by solving a small eigenvalue prob-

lem. However, it is possible to use other rules, and we make no claim that our choice is

the best for our choice of parameters.

3.4.3 Discrete Euler Poincaré Equations

While in §3.2.2 we presented a general form of the internal stage discrete Euler-

Poincaré equations in coordinate-free notation, direct construction of these equations

is probably not the easiest way to formulate a numerical method. This is because it

requires the computation and composition of many different functions, some of which

may be complicated (for example, working out Dα,α̇DαΦ(Dqiα,Dqiα̇) for the Cayley

transform is straightforward, but also slightly obnoxious). An alternative approach, to

which we alluded in §3.2.2, is to compute the discrete action in coordinates, and then
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explicitly compute the stationarity conditions for this discrete action. We do this here

for the rigid body equations.

For the construction of the Lie group Galerkin variational integrator for the rigid

body, we make use of the following functions:

Rn

({
ξ

i}n
i=1 , t

)
= RkΦ

(
n

∑
i=1

ξ̂
i
φi (t)

)
L
(
R(t) , Ṙ(t)

)
= tr

(
Ṙ(t)T R(t)JdR(t)T Ṙ(t)

)
Ld (Rk,Rk+1) = ext

Rn(t)∈GMn(Rk×[0,h],G)
Rn(0)=Rk,Rn(0)=Rk+1

h
m

∑
j=1

b jL
(
Rn
(
c jh
)
, Ṙn
(
c jh
))

(3.50)

where ξ i ∈ R3. Since the curve Rn (t) is a function on n points in R3, denoting ξ i =(
ξ i

a,ξ
i
b,ξ

i
c
)
, we can write (3.50) as

Ld (Rk,Rk+1) = ext
ξ 0=0,ξ̂ n=Φ−1(RT

k Rk+1)
h

m

∑
j=1

b j
2(

1+
∥∥ξ
(
c jh
)∥∥2

2

)2

(
I1ϕ (ξc,ξa,ξb)

2

+I2ϕ (ξb,ξc,ξa)
2 + I3ϕ (ξa,ξb,ξc)

2
)

where

ϕ (ξa,ξb,ξc) = ξ̇a
(
c jh
)
+ξb

(
c jh
)

ξ̇c
(
c jh
)
−ξc

(
c jh
)

ξ̇b
(
c jh
)
,

ϕ (ξc,ξa,ξb) and ϕ (ξb,ξc,ξa) are defined analogously, and

Ii = ∑
j 6=i

(Jd) j j

ξx (t) =
n

∑
i

ξ
i
xφi (t)

ξ (t) = (ξa (t) ,ξb (t) ,ξc (t)) .
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Forming the action sum as a function of the ξ i,

Sd

({
ξ

i}n
i=1

)
= h

m

∑
j=1

b j
2(

1+
∥∥ξ
(
c jh
)∥∥2

2

)2

(
I1ϕ (ξc,ξa,ξb)

2

+I2ϕ (ξb,ξc,ξa)
2 + I3ϕ (ξa,ξb,ξc)

2
)

computing its variational derivative from ξ i directly and setting it equal to 0,

d
dε

Sd

({
ξ

i + εδξ
i}n

i=1

)∣∣∣∣
ε=0

= 0,

gives the internal stage discrete Euler-Poincaré equations,

h
m

∑
j=1

b j4
(

1+‖ξ‖2
2

)−2
(3.51a)[

(I3ϕ (ξc,ξa,ξb))

(
−2
(

1+‖ξ‖2
2

)−1
ϕ (ξc,ξa,ξb)ξaφi + ξ̇bφi−ξbφ̇i

)
+

(I2ϕ (ξb,ξc,ξa))

(
−2
(

1+‖ξ‖2
2

)−1
ϕ (ξb,ξc,ξa)ξaφi +ξcφ̇i− ξ̇cφi

)
+

(I1ϕ (ξa,ξb,ξc))

(
−2
(

1+‖ξ‖2
2

)−1
ϕ (ξa,ξb,ξc)ξaφi + φ̇i

)]
= 0

h
m

∑
j=1

b j4
(

1+‖ξ‖2
2

)−2
(3.51b)[

(I3ϕ (ξc,ξa,ξb))

(
−2
(

1+‖ξ‖2
2

)−1
ϕ (ξc,ξa,ξb)ξbφi +ξaφ̇i− ξ̇aφi

)
+

(I2ϕ (ξb,ξc,ξa))

(
−2
(

1+‖ξ‖2
2

)−1
ϕ (ξb,ξc,ξa)ξbφi + φ̇i

)
+

(I1ϕ (ξa,ξb,ξc))

(
−2
(

1+‖ξ‖2
2

)−1
ϕ (ξa,ξb,ξc)ξbφi + ξ̇cφi−ξcφ̇i

)]
= 0

h
m

∑
j=1

b j4
(

1+‖ξ‖2
2

)−2
(3.51c)[

(I3ϕ (ξc,ξa,ξb))

(
−2
(

1+‖ξ‖2
2

)−1
ϕ (ξc,ξa,ξb)ξcφi + φ̇i

)
+

(I2ϕ (ξb,ξc,ξa))

(
−2
(

1+‖ξ‖2
2

)−1
ϕ (ξb,ξc,ξa)ξcφi + ξ̇aφi−ξaφ̇i

)
+

(I1ϕ (ξa,ξb,ξc))

(
−2
(

1+‖ξ‖2
2

)−1
ϕ (ξa,ξb,ξc)ξcφi +ξbφ̇i− ξ̇bφi

)]
= 0,
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for i = 2, ...,n−1, and where we have suppressed the t argument on all of our functions.

Solving these equations, along with the condition ξ 1 = 0 and the discrete Euler-Poincaré

equations

D1Ld (Rk,Rk+1)+D2Ld (Rk−1,Rk) = 0, (3.52)

which we will discuss in §3.4.3, yields R̃(t), the stationary point of the discrete action.

Using this stationary point, computing R̃(h) = Rk+1 gives us the next step of our one-

step map.

Momentum Matching

As we mentioned in our general derivation of the discrete Euler-Poincaré equa-

tions, (3.52) must be treated with care. We described in an expedient method for com-

puting D1Ld (Rk,Rk+1) so that the result is compatible with our change of natural charts.

We will provide an explicit example below.

We already know the expression for D1Ld (Rk,Rk+1) for the coordinates in the

current natural chart, the vector of the form (3.51a) – (3.51c), with i = 1. This is the

map ∂Ld
∂ξk

described in §3.2.2. Now, we need to compute an expression for λk and ∂ξk
∂λk

.

Given ξ0 =
(
ξ 0

a ,ξ
0
b ,ξ

0
c
)

and ξk = (ξa,ξb,ξc), we compute λ by

λ̂ = Φ
−1
(

Φ

(
ξ̂0

)
Φ

(
ξ̂k

))
which gives in coordinates λ = (λa,λb,λc),

λa =
−ξa−ξ 0

a +ξcξ 0
b −ξbξ 0

c

−1+ξ 0
a ξa +ξ 0

b ξb +ξ 0
c ξc

λb =
−ξb−ξ 0

b +ξaξ 0
c −ξcξ 0

a

−1+ξ 0
a ξa +ξ 0

b ξb +ξ 0
c ξc

λc =
−ξc−ξ 0

c +ξbξ 0
a −ξaξ 0

b

−1+ξ 0
a ξa +ξ 0

b ξb +ξ 0
c ξc

.
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Now, we recompute ξk in terms of λ ,

ξ̂k = Φ
−1
((

Φ

(
ξ̂0

))−1
Φ

(
λ̂

))
which, when expressed in coordinates ξk = (ξa,ξb,ξc), gives

ξa =
λa−ξ 0

a +λcξ 0
b −λbξ 0

c

1+λaξ 0
a +λbξ 0

b +λcξ 0
c

ξb =
λb−ξ 0

b +λaξ 0
c −λcξ 0

a

1+λaξ 0
a +λbξ 0

b +λcξ 0
c

ξc =
λc−ξ 0

c +λbξ 0
a −λaξ 0

b

1+λaξ 0
a +λbξ 0

b +λcξ 0
c
.

So, to compute D1Ld (Rk,Rk+1) =
(

∂Ld
∂λa

, ∂Ld
∂λa

, ∂Ld
∂λa

)
, we can take the easily computed

expression ∂Ld
∂ξk

and apply a change of coordinates computation,

∂Ld

∂λa
=

∂Ld

∂ξa

∂ξa

∂λa
+

∂Ld

∂ξb

∂ξb

∂λa
+

∂Ld

∂ξc

∂ξc

∂λa

∂Ld

∂λb
=

∂Ld

∂ξa

∂ξa

∂λb
+

∂Ld

∂ξb

∂ξb

∂λb
+

∂Ld

∂ξc

∂ξc

∂λb

∂Ld

∂λc
=

∂Ld

∂ξa

∂ξa

∂λc
+

∂Ld

∂ξc

∂ξb

∂λc
+

∂Ld

∂ξc

∂ξc

∂λc
,

which is the momentum matching condition expressed so that it is compatible with the

change of natural charts.

3.5 Numerical Experiments

Thus far, we have discussed the construction of Lie group Galerkin variational

integrators, and established bounds on their rate of convergence. We will now turn to

several numerical examples to demonstrate that our methods behave in practice as our

theory predicts.
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3.5.1 Cayley Transform Method for the Rigid Body

In §3.4 we have discussed in great detail a specific construction of a Lie group

Galerkin variational integrators for the free rigid body based on the Cayley transform.

Based on the convergence results from Theorems 3.3.1 and 3.3.2, we would expect

our construction to converge geometrically with n-refinement and optimally with h-

refinement.

Using MATLAB, we implemented the Lie group Galerkin variational integrator

described in §3.4, using a finite-difference Newton method as a root finder. We used the

parameters

Jd = diag(1.3,2.1,1.2)

R(0) = I

RT (0) Ṙ(0) = ̂(2.0,−1.9,1.0)
T
.

To establish convergence, we first computed a numerical solution using a low-order

splitting method with a very small time step, and once we established that the Lie group

Galerkin variational integrator’s solution and the splitting method’s numerical solutions

agreed, we used a Lie group Galerkin variational integrator solution with n = 26 and

h= 0.5 as a high-order approximation to the exact solution, and established convergence

to this solution. We made this choice of parameters for our approximate exact solution

because it appeared that for this choice of parameters, the residual from the nonlinear

solver was the dominant source of error, and neither h nor n refinement improved our

numerical solution.

The results, which are summarized in Figures 3.1 – 3.4, establish the rates of

convergence predicted in Theorems 3.3.1 and 3.3.2. For n-refinement, we see that our

integrator did indeed achieve geometric convergence, as can be seen in Figure 3.1. How-

ever, unlike the vector space method (see Hall and Leok [16]), we did not observe the

difference in convergence rates of the continuous approximation and the one-step map.

We suspect this is because until very high accuracy is achieved, the inaccurate bound-

ary conditions due to the one-step map error dominates the continuous approximation

error, and the threshold at which the continuous approximation error is greater than the
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one-step error is related to the time step. While we can take extremely large time steps

in the vector space case, in the Lie group case the time step length is limited by the

natural chart, and hence we never observe the lower convergence rate of the continuous

approximation. We explore convergence with h-refinement, see Figure 3.2, and observe

the optimal rate of convergence for our construction for even n. However, for odd n, we

see convergence at a rate of n−1. We do not have a clear explanation for this.

Now, considering the geometric invariants related to the rigid body, we see that

the Cayley transform based method has excellent conservation properties. Figure 3.4

shows one of the classic depictions of geometric invariants for the rigid body, that is the

intersection of the two hypersurfaces in momentum space given by the two geometric

invariants C (y) = 1
2 ∑

3
i=1 y2

i and H (y) = 1
2 ∑

3
i=1 I−1

i y2
i where y is the angular momentum

of the rigid body. These invariants correspond to the norm of the body fixed angular

momentum and the energy, respectively. Discussions of these invariants, and compara-

ble behavior of other methods can be found in Marsden and Ratiu [31] and Hairer et al.

[14] (specifically, see Hairer et al. [14] for a comparison to other numerical methods).

Our method has nearly perfect conservation of these invariants.

Additionally, while it is not perfectly conserved, the energy behavior of our

method is oscillatory and remains bounded even for very long integration times, as can

be seen in Figure 3.3. This type of behavior is typical for variational integrators, and

can be understood in terms of backwards error analysis.

3.5.2 Cayley Transform Method for the 3D Pendulum

For a second numerical experiment, we examine the 3D pendulum. The 3D

pendulum is the rigid body with one point fixed and under the influence of gravity, and

its Lagrangian is:

L
(
R, Ṙ

)
=

1
2

tr
(
ṘT RJdRT Ṙ

)
+mgeT

3 Rρ

Jd = diag(1,2.8,2)

ρ = (0,0,1)T
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Figure 3.1: Geometric convergence of the Lie group spectral variational integrator
based on the Cayley transform for the rigid body. We use a constant step-size h = 0.5.
Note that the Galerkin curves have the same error as the one-step map, even though they
have a theoretical lower rate of convergence.
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Figure 3.2: Order optimal convergence of the Lie group Galerkin variational integrator
based on the Cayley transform for the rigid body.
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Figure 3.3: Energy behavior of the Lie group Galerkin variational integrator based on
the Cayley transform for the rigid body. This is from a simulation starting at t0 = 0.0,
and using the parameters n = 12, h = 0.5 for the integrator.

where ρ is center of mass for R = I, m is the mass of the pendulum and g is the gravita-

tional constant. We consider two sets of initial conditions, the first,

R(0) = I

R(0)T Ṙ(0) = ̂(0.5,−0.5,0.4)T ,

which is a slight perturbation from stable equilibrium, and the second

R(0) = diag(−1,1,−1)

R(0)T Ṙ(0) = ̂(0.5,−0.5,0.4)T

which is the pendulum slightly perturbed from its unstable equilibrium.

We construct the variational integrator for this system using the Cayley trans-

form. This involves adding the term V (ξ (t))=mgeT
3 LgkΦ(ξ (t))ρ to the discrete action

in equations (3.50), and finding the stationarity conditions of this new discrete action,

which gives us the new internal stage discrete Euler-Poincaré equations. These have the

same form as equations (3.51a) – (3.51c), with added terms for the potential.
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Figure 3.4: Conserved quantities for the Lie group Galerkin variational integrator based
on the Cayley transform for the rigid body. This is from a series of computations using
the parameters n = 8, and h = 0.5, from a variety of initial conditions. Note that the
trajectories computed by the Lie group Galerkin variational integrators, which are the
black curves, lie on the intersections of ∑

3
i=1 y2

i = 1, ∑
3
i=1 I−1

i y2
i = 2, which are the norm

of angular momentum and energy, respectively.
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For the first set of initial data, which are near the stable equilibrium, we see ex-

actly the expected convergence with both h and N refinement, as is illustrated in Figures

3.5 and 3.6. Furthermore, we see bounded oscillatory energy behavior over the length

of the integration, as in Figure 3.7.

For the second set of initial data, this system evolves chaotically, so convergence

of individual trajectories is not of great interest. What is more important is the conser-

vation of geometric invariants as the system evolves. As can be seen from Figures 3.8

and 3.9, the energy of the system is nearly conserved, even with very aggressive time

stepping. Of particular note is that even though there are many steps where the solution

undergoes a change that approaches the limit on the conditioning of the natural chart,

the energy error remains small.
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Figure 3.5: Geometric convergence of the Lie group spectral variational integrator
based on the Cayley transform for the 3D pendulum for a small perturbation from the
stable equilibrium. We use the time step h = 0.5. Note that, once again, the Galerkin
curves have the same error as the one-step map.

3.6 Conclusions and Future Work

In this paper, we have presented a new numerical method for Lagrangian prob-

lems on Lie groups. Specifically, we used a Galerkin construction to create variational
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Figure 3.6: Order optimal convergence of Lie group Galerkin variational integrator
based on the Cayley transform for the 3D pendulum for a small perturbation from the
stable equilibrium. Note that we have almost exactly order optimal convergence.
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Figure 3.7: Energy behavior of the Lie group Galerkin variational integrator based on
the Cayley transform for the 3D pendulum for a small perturbation from the stable equi-
librium. This is the behavior of an integrator constructed with parameters n = 8, step
size h = 1.5. Note that the error is both small and oscillatory, but not increasing.



142

−2

−1

0

1

2

−2

−1

0

1

2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t is 8.2365

Figure 3.8: Dynamics of the numerical simulation of the 3D pendulum constructed from
a Lie group Galerkin variational integrator. These dynamics were constructed from an
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chart.
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integrators of arbitrarily high-order, and also Lie group spectral variational integrators,

which converge geometrically. We demonstrated that in addition to inheriting the ex-

cellent geometric properties common to all variational integrators, which include con-

servation of the symplectic form, and conservation of momentum, that such integrators

also are extremely stable even for large time steps, can be adapted for a large class of

problems, and yield highly accurate continuous approximations to the true trajectory of

the system.

We also gave an explicit example of a Lie group Galerkin variational integrator

constructed using the Cayley transform. Using this construction, we demonstrated the

expected rates of convergence on two different example problems, the rigid body and

the 3D pendulum. We also showed that these methods both have excellent energy and

momentum conservation properties. Additionally, we provided explicit expressions for

the internal stage discrete Euler-Poincaré equations for the free rigid body, which form

the foundation of a numerical method for a variety of problems.
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3.6.1 Future Work

Symplectic integrators continue to be an area of interest, and there has been con-

siderable success in developing high-order structure-preserving methods and applying

such methods to relevant problems. While we have developed a significant amount of

the theory of Lie group Galerkin variational integrators, there is considerable future

work to be done.

Choice of Natural Charts

In our construction, we chose the Cayley transform to construct our natural chart.

While this choice made the derivation of the resulting integrator simpler, it also intro-

duced a limitation on the conditioning of the natural chart. A possible extension of

our framework would be constructions based on natural charts constructed from other

functions. An obvious choice is the exponential map, which was the choice of chart

function used in earlier works that proposed this construction. A comparison of the be-

havior of integrators constructed from other choices of natural chart functions would be

interesting further work.

Novel Variational Integrators

One of the attractive features of our work is that we establish an optimality re-

sult for arbitrary approximation spaces. Because of this, our results hold for a variety

of different possible constructions of variational integrators. It would be interesting to

investigate the behavior of variational integrators constructed from novel approxima-

tion spaces, such as wavelets, or for variational integrators that make use of specialized

function spaces, such as spaces that include both high and low frequency functions for

problems with components that evolve on different time scales.

Larger classes of Problems

In this paper, we have focused most of our attention on the rigid body and prob-

lems that evolve on SO(3). However, there are many examples of Lie group problems

that evolve on other spaces. Our analysis suggests that the Galerkin approach would
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be effective for these problems. It would be interesting to examine Galerkin variational

integrators for problems that evolve on other Lie groups, and apply our methods to other

interesting applications.

Parallel Implementation and Computational Efficiency

Perhaps our method’s greatest flaw is that it requires the solution of a large num-

ber of nonlinear equations at every time step. This problem is further exasperated by

the fact that assembling the Newton matrix at every time step requires the repeated ap-

plication of a high-order quadrature rule. While the fact that our method is stable even

for very large time steps helps to overcome this computational difficulty, it would be in-

teresting to see how much our method could be accelerated by assembling our Newton

matrix in parallel.

Multisymplectic Variational Integrators

Multisymplectic geometry has become an increasingly popular framework for

extending much of the geometric theory from classical Lagrangian mechanics to La-

grangian PDEs. The foundations for a discrete theory have been laid, and there have

been significant results achieved in geometric techniques for structured problems such

as elasticity, fluid mechanics, non-linear wave equations, and computational electromag-

netism. However, there is still significant work to be done in the areas of construction of

numerical methods, analysis of discrete geometric structure, and especially error analy-

sis. Galerkin type methods have become a standard in classical numerical PDE methods,

popular examples include Finite-Element, Spectral, and Pseudospectral methods. The

variational Galerkin framework could provide a natural framework for extending these

classical methods to structure-preserving geometric methods for PDEs.

3.7 Appendix

In §3.3.1, we stated Theorem 3.3.2 but did not provide a proof. This is because

the proof is essentially the same as that for optimal convergence, with slight and obvious

modifications. For completeness, we will provide the proof here.
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Theorem 3.7.1. Given an interval [0,h], and a Lagrangian L : T G→ R, suppose that

ḡ(t) solves the Euler-Lagrange equations on that interval exactly. Furthermore, suppose

that the exact solution ḡ(t) falls within the range of the natural chart, that is:

ḡ(t) = LgkΦ(η̄ (t))

for some η̄ ∈C2 ([0,h] ,g). For the function space Mn ([0,h] ,g) and the quadrature rule

G , define the Galerkin discrete Lagrangian LG
d (g0,g1)→ R as

LG
d (g0,g1,n) = ext

gn(t)∈GMn(g0×[0,h],G)
gn(0)=g0,gn(h)=g1

h
m

∑
j=1

b jL
(
gn
(
c jh
)
, ġn
(
c jh
))

= h
m

∑
h=1

b jL
(
g̃n
(
c jh
)
, ˙̃gn
(
c jh
))

(3.53)

where g̃n (t) is the extremizing curve in GMn (g0× [0,h] ,G). If:

1. there exists an approximation η̂n ∈Mn ([0,h] ,g) such that,

〈η̄− η̂n, η̄− η̂n〉
1
2 ≤CAKn

A〈 ˙̄η− ˙̂ηn, ˙̄η− ˙̂ηn
〉 1

2 ≤CAKn
A,

for some constants CA ≥ 0 and CA ≥ 0, 0 < KA < 1 independent of n,

2. the Lagrangian L is Lipschitz in the chosen error norm in both its arguments, that

is:

|L(g1, ġ1)−L(g2, ġ2)| ≤ Lα (eg (g1,g2)+ ea (ġ1, ġ2))

3. the chart function Φ is well-conditioned in eg (·, ·) and ea (·, ·), that is (3.10) and

(3.11) hold,

4. there exists a sequence of quadrature rules {Gn}∞

n=1,

Gn ( f ) = h
mn

∑
j=1

bn j f
(
cn jh

)
≈
∫ h

0
f (t)dt,
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and there exists a constant 0 < Kg < 1 independent of n such that,∣∣∣∣∣
∫ h

0
L(gn (t) , ġn (t))dt−h

mn

∑
j=1

bn jL
(
gn
(
cn jh

)
, ġn
(
cn jh

))∣∣∣∣∣≤CgKn
g

for any gn (t) = Lg0Φ(ξ (t)) where ξ (t) ∈Mn ([0,h] ,g).

5. the stationary points of the discrete action and the continuous action are minimiz-

ers,

then the variational integrator induced by LG
d (g0,g1,n) has error O (Kn

s ) for some con-

stant Ks independent of n, 0 < Ks < 1.

Proof. We begin by rewriting the exact discrete Lagrangian and the Galerkin discrete

Lagrangian:

∣∣∣LE
d (g0,g1,n)−LG

d (g0,g1,h)
∣∣∣= ∣∣∣∣∣

∫ h

0
L(ḡ, ˙̄g)dt−h

mn

∑
j=1

bn jL
(
g̃n
(
cn jh

)
, ˙̃gn
(
cn jh

))∣∣∣∣∣ ,
where we have introduced g̃n, which is the stationary point of the local Galerkin action

(3.53). We introduce the solution in the approximation space which takes the form

ĝn (t) = LgkΦ(η̂ (t)), and compare the action on the exact solution to the action on this

solution: ∣∣∣∣∫ h

0
L(ḡ, ˙̄g)dt−

∫ h

0
L
(
ĝn, ˙̂gn

)
dt
∣∣∣∣= ∣∣∣∣∫ h

0
L(ḡ, ˙̄g)−L

(
ĝn, ˙̂gn

)
dt
∣∣∣∣

≤
∫ h

0

∣∣L(ḡ, ˙̄g)−L
(
ĝn, ˙̂gn

)∣∣dt.

Now, we use the Lipschitz assumption to establish the bound

∫ h

0

∣∣L(ḡ, ˙̄g)−L
(
ĝn, ˙̂gn

)∣∣dt

≤
∫ h

0
Lα

(
eg (ḡ, ĝn)+ ea

(
˙̄g, ˙̂gn

))
dt

=
∫ h

0
Lα (eg (LgkΦ(η̄) ,LgkΦ(η̂n))+

ea
(
DΦ(η̄)Lg0Dη̄Φ

( ˙̄η
)
,DΦ(η̂n)Lg0Dη̂nΦ

( ˙̂ηn
)))

dt,
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and the chart conditioning assumptions to see

∫ h

0

∣∣L(ḡ, ˙̄g)−L
(
ĝn, ˙̂gn

)∣∣dt ≤
∫ h

0
Lα

(
CG 〈η̄− η̂n, η̄− η̂n〉

1
2 +Cg

〈 ˙̄η− ˙̂ηn, ˙̄η− ˙̂ηn
〉 1

2 +

CG
g 〈η̄− η̂n, η̄− η̂n〉

1
2

)
dt

≤
∫ h

0
Lα

(
CGCAKn

A +CgCAKn
A +CG

g CAKn
A

)
dt

= Lα

((
CG +CG

g

)
CA +CgCA

)
Kn

A.

This establishes a bound between the action evaluated on the exact discrete Lagrangian

and the optimal solution in the approximation space. Considering the Galerkin discrete

action,

h
mn

∑
j=1

bn jL(g̃n, g̃n)≤ h
mn

∑
j=1

bn jL
(
ĝn, ˙̂gn

)
≤
∫ h

0
L
(
ĝn, ˙̂gn

)
dt +CgKn

g

≤
∫ h

0
L(ḡ, ˙̄g)dt +CgKn

g +Lα

((
CG +CG

g

)
CA +CgCA

)
Kn

A (3.54)

where we have used the assumption that the Galerkin approximation minimizes the

Galerkin discrete action and the assumption on the accuracy of the quadrature. Now, us-

ing the fact that ḡ(t) minimizes the action and that GMn (g0× [0,h] ,G)⊂C2 ([0,h] ,G),

h
mn

∑
j=1

bn jL
(
g̃n, ˙̃qn

)
≥
∫ h

0
L
(
g̃n, ˙̃gn

)
dt−CgKn

g

≥
∫ h

0
L(ḡ, ḡ)dt−CgKn

g . (3.55)

Combining inequalities (3.54) and (3.55), we see that,

∫ h

0
L(ḡ, ˙̄g)dt−CgKn

g ≤ h
mn

∑
j=1

bn jL
(
g̃n, ˙̃gn

)
≤
∫ h

0
L(ḡ, ˙̄g)dt +CgKn

g +Lα

((
CG +CG

g

)
CA +CgCA

)
Kn

A
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which implies∣∣∣∣∣
∫ h

0
L(ḡ, ˙̄g)dt−h

mn

∑
j=1

bn jL
(
g̃n, ˙̃gn

)∣∣∣∣∣≤ (Cg +Lα

((
CG +CG

g

)
CA +CgCA

))
Kn

s (3.56)

where Ks = max(KA,Kg). The left hand side of (3.56) is exactly

∣∣∣LE
d (g0,g1,h)−LG

d (g0,g1,n)
∣∣∣ ,

and thus

∣∣∣LE
d (g0,g1,h)−LG

d (g0,g1,n)
∣∣∣≤ (Cg +Lα

((
CG +CG

g

)
CA +CgCA

))
Kn

s .

This states that the Galerkin discrete Lagrangian approximates the exact discrete La-

grangian with error O (Kn
s ), and by Theorem (3.1.1) this further implies that the La-

grangian update map has error O (Kn
s ).
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4.1 Summary of Work

This dissertation presented a new framework for developing high order structure

preserving numerical methods, using tools from spectral methods, Galerkin methods,

and discrete mechanics. Techniques from these fields were used to construct structure

preserving methods that share some of the best properties of these theories; specifically,

highly stable, symplectic and momentum preserving methods that have optimal conver-

gence. A brief summary of the major results of this dissertation are summarized below,

and precise statements of these results can be found in Chapters 2 and 3.

1. If Q is a vector space, for Lagrangians of the form

L(q, q̇) =
1
2

q̇T Mq̇−V (q) ,

as long as the quadrature rule is sufficiently accurate, Galerkin variational integra-

tors will converge at the same rate as the best approximation in the approximation

space used to construct them.

2. If Q is a vector space, if the stationary points of the action for a certain Lagrangian

over the interval [0,h] are minimizers, as long as the quadrature rule is sufficiently

accurate, Galerkin variational integrators will converge at the same rate as the best

approximation in the approximation space used to construct them.

3. If Q is a vector space, for Lagrangians of the form

L(q, q̇) =
1
2

q̇T Mq̇−V (q) ,

then the Galerkin curves qn (t) which are the stationary points of the local discrete

action converge to the true flow with error O
(

h
p
2

)
if the Galerkin variational

integrator has error O (hp) and with error O
(√

K
n
)

if the Galerkin variational

integrator has error O (Kn).

4. If Q is SO(3), for Lagrangians of the form

L(g, q̇) = ġT gJdgT ġ−V (g) ,
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as long as the quadrature rule is sufficiently accurate and the natural chart is well

conditioned, Lie group Galerkin variational integrators will converge at the same

rate as the best approximation in the approximation space used to construct them.

5. If Q is a Lie group, if the stationary points of the action for a certain Lagrangian

over the interval [0,h] are minimizers, as long as the quadrature rule is sufficiently

accurate and the natural chart is well conditioned, Lie group Galerkin variational

integrators will converge at the same rate as the best approximation in the approx-

imation space used to construct them.

6. If Q is a Lie group G, as long as the action of the Lagrangian over [0,h] is coercive,

then the Galerkin curves g(t) will converge to the true flow with error O
(

h
p
2

)
if

the Galerkin variational integrator has error O (hp) and with error O
(√

K
n
)

if the

Galerkin variational integrator has error O (Kn),

While the Galerkin approach used here has been proposed before, this is the first

work that explores a general error analysis for these types of methods. Previous works

have either developed error theories that are specific to certain constructions, or have not

discussed the error analysis of these methods at all. Furthermore, in this dissertation the

Galerkin construction and the general error theory were extended to Lie group problems.

The cumulative result is a general framework for constructing high quality numerical

methods for problems with structure, and a rigorous error analysis for this framework.

4.2 Future Applications

One of the surprising and powerful features of Galerkin variational integrators is

that they are capable of producing high quality solutions even with very large time-steps.

For example, when computing a numerical simulation of the Solar System, these meth-

ods can produce highly accurate simulations even using time-steps which are greater

than the orbital period of Mercury. Furthermore, because time-step shortening is not

necessary to achieve convergence, it is possible to produce solutions using Galerkin in-

tegrators that are more accurate than explicit methods even when the time-step used

for the Galerkin integrators is several orders of magnitude times larger than those of
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the explicit methods. By increasing the efficiency of these methods, highly accurate

long term simulations may be achievable with these methods that are simply not possi-

ble using lower order methods. Investigating the extent to which these methods can be

accelerated remains an avenue of future work.

Additionally, the error analysis for Galerkin variational integrators creates the

opportunity for the development of many new and novel methods. By connecting the

accuracy of the numerical method to the best possible approximation in an approxima-

tion space, this error analysis connects the behavior of Galerkin variational integrators

to approximation theory. If there exists an understanding the behavior of the dynamics

of a Lagrangian system acquired through analytic means, Galerkin variational integra-

tors allow for the construction of integrators which are specially designed for specific

problems, in addition to the ability to construct high order integrators. Such methods

could have applications for problems with dynamics on different scales or problems

with periodic behavior. A simple example is using high order polynomials to discretize

components with dynamics which evolve on short time scales and low order polynomi-

als to discretize components with dynamics on longer time scales, which reduces the

dimension of the discrete problem without sacrificing accuracy. Another interesting di-

rection for future research would be to investigate the behavior of Galerkin variational

integrators on such problems, and using the Galerkin framework to construct variational

integrators based on novel approximation spaces.
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