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Abstract 

In this paper, we present a method for utilizing the spare capac­
ity in super-scalar and very long instruction word (VLIW) processors 
to tolerate functional unit failures. Unlike previous work that was pri­
marily interested in detection of transient faults, we are concerned with 
more permanent and/ or intermittent faults which necessitate processor 
reconfiguration. Our method utilizes the VLIW compiler or the super­
scalar scheduler to insert redundant operations whenever idle functional 
units exist. The results of these redundant operations are used to de­
tect and diagnose functional unit failures. For super-scalar processors, 
the scheduler can then utilize this information to ensure that operations 
are performed only on non-faulty units. In VLIW processors, this is 
equivalent to recompiling the code to run on the remaining non-faulty 
functional units. Since in certain applications, recompilation may not be 
possible, we consider two alternative reconfiguration strategies for VLIW 
processors. These strategies sacrifice storage space and execution time, 
respectively, in order to reconfigure without recompiling. We present 
Markov models that describe the behavior of processors using these dif­
ferent approaches and we evaluate their reliabilities. The results show 
that, while super-scalar and VLIW with recompilation provide the high­
est reliability, all proposed strategies significantly increase reliability over 
that of an unprotected processor. 

*This work was supported in part by NSF under Grant CCR-901054 7. 
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1 Introduction 

One of the principal uses of fault-tolerant computer systems is in applications where 
repair is difficult or impossible. These are typically applications in which systems 
are placed in remote areas, e.g. underground, underwater, or in space. Failures 
of such systems are extremely costly to repair and may be fatal to the system. In 
addition to requiring ultra-high reliability, many of these applications demand high 
performance. In this paper, we present a fault tolerance approach that is specifically 
designed for a large class of high-performance processors, namely those that utilize 
multiple functional units to exploit instruction-level parallelism. Our approach is 
capable of significantly increasing the reliability of such processors with only minor 
hardware modification and little overhead. 

Dependences in a sequential program require that a parallel program which is 
a direct translation of the sequential program maintain the order of execution of 
some instructions. Instructions which are independent can be executed in any or­
der, or simultaneously. A popular form of fine-grain parallelism is to use multiple 
functional units to execute independent instructions from a sequential program si­
multaneously. Two main approaches to this instruction-level parallelism have been 
developed. In the first approach [3, 7], operations are statically scheduled on the 
multiple functional units by the compiler. Processors utilizing this approach, known 
as very long instruction word (VLIW) processors, allow the maximum amount of 
parallelism to be extracted from a sequential program since the compiler can perform 
global dependence analysis. In the second approach [9], operations are scheduled 
dynamically on the functional units in such a way as to maintain a correct ordering. 
This approach, referred to as super-scalar, is simpler than VLIW since branches can 
be handled easily at run time but in general it will not extract as much parallelism 
since only local independences are exploited. 

Both of these approaches to instruction-level parallelism attempt; in each clock 
cycle, to issue as many operations as there are functional units. This ideal situation 
is not possible when dependences exist in the sequential program. This means that 
some functional units will be idle at various points in the computation. This is 
illustrated by the data shown in Table 1. These data, collected using the perco­
lation scheduling compiler described in [13], represent an average taken across the 
Livermore Loops, the Stanford Benchmarks, and several programs in computational 
fluid dynamics. The data were calculated assuming that all instructions take one 
cycle to complete. The table clearly indicates that a significant amount of unused 
capacity exists. The dynamic NOP percentage is the percentage of NOP's that oc­
cur during execution and it ranges from 9% when there are two functional units to 
57% when the number of functional units is 16. Clearly, the higher the performance, 
the more spare capacity there is to exploit for fault tolerance purposes. These data 
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Number of Average Dynamic NOP 
Functional Units Speed-Up Percentage (Approx.) 

2 1.82 9% 
4 3.09 23% 
8 4.90 393 
16 6.81 573 

Table 1: Speed-Up and NOP Percentage for 
Percolation-Based Compiler of (13] 

are fairly conservative in the sense that even higher NOP percentages were reported 
on benchmarks done on the Multi:flow TRACE 14/300 in [14]. 

Our approach to fault tolerance utilizes these idle functional units to execute 
redundant operations. A redundant operation is a replica of a primary operation 
executed on another unit. These operations are begun during the same clock cycle 
and their results are compared when the operations are completed. This duplication 
and comparison will detect any fault within the primary or redundant functional 
unit that affects the operation being performed. A sequence of such comparisons is 
used to isolate a fault to a particular unit. Once a faulty unit has been identified, no 
further operations should be scheduled on it. In super-scalar processors, this is not 
difficult since the scheduling is dynamic. In VLIW, a more involved reconfiguration 
procedure is necessary. In Section 3, we discuss our fault tolerance approach in 
more detail and we outline several alternative reconfiguration strategies for VLIW 
processors. 

In general, the set of functional unit failures that can be tolerated by our ap­
proach depends on the way in which units are grouped for comparison purposes, 
on the diagnosis mechanism utilized, and on the reconfiguration procedure. In Sec­
tion 4, we present Markov models for processors that utilize our proposed reconfig­
uration strategies. Using these models, we evaluate the reliabilities of the proposed 
strategies and compare them to each other as well as to a non-fault-tolerant pro­
cessor. The results show that significant increases in reliability can be obtained by 
utilizing our approach. 

Before presenting these results, we discuss related work. 
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2 Related Work 

Almost all of the previous work in the area of multi-functional unit processors has 
been concerned with optimizing performance (7, 9, 11]. This work attempts to 
reduce the unused capacity in such a processor by keeping each functional unit as 
busy as possible. As was shown in Table 1, state-of-the-art scheduling techniques 
still result in a significant amount of unused capacity in the processor. The first 
research to consider utilizing this spare capacity for fault tolerance purposes was [14]. 
In that work, the authors proposed using idle functional units to detect transient 
faults through control-flow monitoring. This significant paper showed that 993 of 
control-flow errors can be detected on the Multifiow TRACE [3] computer with 
negligible overhead. For transient faults, detection is essential while diagnosis and 
reconfiguration are not necessary since there is no physical damage to the processor. 

The idea of utilizing spare capacity in multiprocessor/multicomputer systems to 
execute redundant tasks was suggested in (1, 4, 6, 8]. In (6], the authors proposed 
using idle nodes in a distributed system to execute redundant tasks. The scheduling 
of these tasks is done by software and the goal is to replicate all critical tasks so as to 
ensure their correct completion. The problems of diagnosis and reconfiguration are 
not considered. In (4], spare capacity in a bus-based multiprocessor system is used 
to execute comparison tasks that form the basis of a diagnosis strategy [5, 2, 10]. 
Here, the scheduling and diagnosis are done at a high level in the system by software. 
In [1, 8], the problem of scheduling the individual tasks of a larger computation in a 
fault-secure manner is considered. This requires, as a minimum, replication of each 
task in the computation, something which is in most cases not possible using spare 
capacity alone and hence, this approach causes decreased performance. In addition, 
the approach is concerned only with fault detection and does not consider how to 
diagnose faulty processors or reconfigure the system. 

We are concerned herein with permanent or intermittent faults in one or more 
units of a multi-functional unit processor. Without fault tolerance, such a processor 
would be rendered inoperable by even one such fault. In our approach, the unused 
capacity in such a processor can be utilized to detect and diagnose these faults. 
Unlike in (1, 4, 6, 8], detection and diagnosis must be accomplished in hardware. We 
present simple modifications to the design of a multi-functional unit processor that 
enable this hardware detection and diagnosis to take place. Whereas with transient 
faults reconfiguration is not an issue [14], for permanent and intermittent faults the 
processor must be reconfigured so that it can be used after one or more functional 
unit failures. We will present and evaluate multiple reconfiguration alternatives, 
some accomplished solely in software and others requiring hardware assistance. This 
work is particularly valuable for long-life applications since it can significantly extend 
the operational life of the processor. 
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3 Fault Tolerance Approach 

In this section, we propose an active redundancy approach to the fault tolerance of 
multi-functional unit processors. The approach can be divided into fault detection, 
fault diagnosis, and reconfiguration components. These components are discussed 
in turn in the remainder of the section. 

3.1 Fault Detection 

The basic means of fault detection that we utilize is duplication and comparison. A 
functional unit that would otherwise be idle executes an operation identical to that 
executed by a busy functional unit and the results of these operations are compared. 
A mismatch in results indicates a fault in one of the two functional units. For this 
purpose, we partition the functional units in the processor into groups of identical 
units. These groups are referred to as comparison groups since any two processors 
in the same such group can execute duplicate operations and compare results. To 
accomplish this, the hardware must be capable of delivering the outputs of any pair 
of units in the same comparison group to a comparator circuit. Since a switching 
circuit that performs this task is quite complex if the number of units in a group 
(referred to as the group size) is large, the group size should be small. For diagnosis 
purposes, the group size must be at least three. Since the total number of functional 
units is typically a power of two, we utilize a group size of four. 

Our duplicate and compare strategy requires a mechanism for scheduling the 
redundant operations, hardware for selecting and comparing outputs, and a method 
for controlling the selection and comparison. The mechanism for scheduling redun­
dant operations differs depending on whether the processor is a VLIW or super­
scalar processor. In a VLIW processor, these operations are scheduled by the com­
piler whenever there is a NOP present in the code. In a super-scalar processor 
with dynamic scheduling, the scheduler must be modified to issue duplicate instruc­
tions whenever there are at least two idle units from the same group. In order to 
control the selection and comparison hardware, each functional unit should have 
two additional control bits indicating whether the current operation is a primary 
or redundant operation and to which unit the result should be compared. For this 
purpose, the units in a group are numbered from 0 to 3. If the control bits inside 
a unit contain the unit's own ID, this indicates the current operation is a primary 
operation. Otherwise, the control bits give the ID of the unit to which the result 
should be compared. In this case, the write-back stage of the pipeline in the unit 
should be disabled. In a VLIW processor, these control bits are generated by the 
compiler and stored as additional bits for each operation. This incurs a slight stor­
age overhead. In a super-scalar processor, the bits are generated dynamically by 
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IU 1 IU2 IU3 IU4 IU5 IU6 IU7 IU8 FUl FU2 FU3 FU4 

COMPARATOR COMPARATOR COMPARATOR 

FAULT 1 FAULT 2 FAULT 3 

Figure 1: A 12-Unit Processor with Fault Detection Circuitry 

the scheduler. 
To simplify the hardware for selection and comparison, we execute at most one 

comparison per group during each cycle. Thus, only one comparator is needed 
for each comparison group. Figure 1 shows an example of a 12-unit processor with 
eight integer units and four floating point units. This processor has three comparison 
groups and hence, three comparators. The comparators are sequential circuits to 
prevent temporary incorrect values on the FAULT lines due to functional units' 
outputs that change at slightly different times. The switching circuit is quite simple 
requiring only two multiplexers to direct the units' outputs to the comparator. 
The control lines for these multiplexers can be obtained easily from the control 
bits described above. Such a processor is capable of executing three duplicate and 
compare tasks per cycle making efficient use of the spare capacity in the processor. 

An important parameter of a fault detection mechanism is its detection latency. 
The detection latency is defined as the time between a fault's occurrence and its 
detection. To minimize the detection latency, each functional unit should participate 
in a duplicate and compare task as often as possible. This implies that these tasks 
should be scheduled in a round-robin fashion. Unfortunately, this is not possible in 
either a VLIW or super-scalar processor. In VLIW, the scheduling is done statically. 
For straight-line code, it is therefore possible to guarantee a round-robin schedule. 
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main() 
{ 

} 

register int i; 
double x[1002], y[1002], z[1002]; 

for ( i = 2; i < = 998; i+ = 1) { 
x[i] = z[i] * (y[i] - x[i - 1]); 

} 

Figure 2: Source Code for Livermore Loop Number 5 

However, in segments of code containing branches, the compiler cannot achieve this 
since it does not know how the dynamic execution will proceed. In the worst case, 
there may be a single NOP inside a loop that is executed many times. This means 
that the same pair of units will be compared repeatedly while other units may have 
faults that remain undetected until the loop is exited. One way of alleviating this 
problem is to use loop unwinding [12]. Loop unwinding has been used to expose 
parallelism. In this case, it can be used to increase the number of NOP's inside a 
loop so as to allow the compiler to institute a fair schedule. A negative side-effect 
of loop unwinding is that it increases the amount of storage required for the code 
but this is acceptable given that it may reduce the detection latency significantly. 

Figures 2-5 show an example of the scheduling that is done on a VLIW ma­
chine. Figure 2 shows the C code for one of the Livermore loops. In Figure 3, the 
intermediate 3-address code generated by the GNU C compiler (gee) for the loop of 
Figure 2 is shown. Next, the code is parallelized for a four functional unit VLIW 
machine. This parallelized code is shown in Figure 4. Each address label in this 
figure corresponds to an instruction containing four separate operations to be per­
formed simultaneously on the functional units. The empty parentheses represent 
NOP's that can be used to execute redundant operations. Finally, Figure 5 shows 
the parallelized code with redundant operations inserted. Here, the four functional 
units form a single comparison group. As an example of a redundant operation, con­
sider instruction 37ele8. Here, the iadd operation is executed on both functional 
unit 1 and functional unit 3. The results of these two executions are then compared 
using the fault detection circuitry described previously. The ivstore operation in 
the same instruction can not be duplicated even though there is one more NOP in 
the instruction because there is only one comparator per group. Note that in the 
initialization portion of the program (instructions 2193e8 through 21a4e8) which is 
straight-line code, a round-robin schedule has been implemented. Inside the loop 
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(PROC..BEGIN main 
(LABEL main) 

(!CONSTANT $29 25032) 
(ISUB $29 $29 24232) 
(IVSTORE 4 $29 $30) 
(IAD D $30 $29 24232) 
(!CONSTANT $3 2) 
(IADD $2 $30 16) 

(LABEL L5) 

) 

(FVLOAD $f6 -16204 $2) 
(FVLOAD $f8 -8196 $2 ) 
(FSUB $f4 $f6 $f8) 
(FVLOAD $f6 -24220 $2) 
(FMUL $f4 $f4 $f6) 
(FVSTORE -8188 $2 $f4 
(IADD $2 $2 8) 
(IADD $3 $3 1) 
(!CONSTANT $4 998) 
(ILE $cc0 $3 $4) 
(IF $cc0 (LABEL L5)) 
(IADD $8 $0 $30) 
(IVLO AD $30 -24228 $8) 
(IAD D $29 $0 $8) 
(IGOTO $31) 
(PROC_END main) 

; $29:= 25032 
; $29:= 800 
; M[804]:= $30 
; $30:= 25032 
; $3:= 2 (i=2) 
; $2:= 25048 (base for x[i],y[i],z[i]) 

; $f6:= M[8844] (y[i]) 
; $f8:= M[16852] (x[i-1]) 
; $f4:= y[i]-x[i-1] 
; $f6:= M[828] ( z[i]) 
; $f4:= z[i]*(y[i]-x[i-1]) 
; M[16860]:= $f4 (x[i]) 
; increment pointer 
; i+=l 

; i<=998 ??? 

; $8:= 25032 
; $30:= M[804] 
; $29:= 25032 

Figure 3: 3-address Code for Loop 
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PROC BEGIN main 

2193e8: 21ab80: 
( ) (fvload $f6 $2 -16204) 
( ) (fvload $f8 $2 -8196) 
(iconstant $29 25032) (iadd $3 $3 1) 
(iconstant $3 2) (iconstant $4 998) 

21a170: 21bca8: 
( ) (fsub $f4 $f6 $f8) 
( ) (fvload $f6 $2 -24220) 

( ) (ile $cc0 $3 $4) 
(isub $29 $29 24232) (fsub $f4 $f6 $f8) 

37ele8: 358ff8: 
( ) ( ) 
( ) ( ) 
(ivstore $29 $30 4) (fmul $f4 $f4 $f6) 
(iadd $30 $29 24232) (if $cc0 (goto 359230)) 

21a4e8: 3593e0: 
( ) ( ) 
( ) ( ) 
( ) (fvstore $2 $f4 -8188) (iadd$D (goto 21dcb8) 

359230: 
( ) 
(fvstore $2 $f4 -8188) 
(iadd $2 $2 8) 
(goto 21ab80) 

21dcb8: 
( ) 
( ) 
(igoto 213al8) 
( ) 

PROC END main 

Figure 4: Parallelized Code 
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PROC BEGIN main 

2193e8: 2lab80: 
(iconstant $29 25032) (fvload $f6 $2 -16204) 
(iconstant $29 25032) (fvload $f8 $2 -8196) 
( ) (iadd $3 $3 1) 
(iconstant $3 2) (iconstant $4 998) 

21al70: 21bca8: 
( ) (fsub $f4 $f6 $f8) 
( ) (fvload $f6 $2 -24220) 
(isub $29 $29 24232) (ile $cc0 $3 $4) 
(isub $29 $29 24232) (fsub $f4 $f6 $f8) 

37ele8: 358ff8: 
(iadd $30 $29 24232) ( ) 
(ivstore $29 $30 4) (fmul $f4 $f4 $f6) 
(iadd $30 $29 24232) (fmul $f4 $f4 $f6) 
( ) (if $cc0 (goto 359230)) 

21a4e8: 3593e0: 
( ) (fvstore $2 $f4 -8188) 
(iadd $2 $30 16) (fvstore $2 $f4 -8188) 
( ) ( ) 
(iadd $2 $30 16) (goto 21dcb8) 

359230: 
(goto 21ab80) 
(fvstore $2 $f4 -8188) 
(iadd $2 $2 8) 
(iadd $2 $2 8) 

21dcb8: 
(igoto 213a18) 
( ) 
(igoto 213al8) 
( ) 

PROC END main 

Figure 5: Parallelized Code with Redundant Operations 
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body (instructions 21ab80 through 359230), there are enough NOP's so that the 
compiler can implement a fair schedule, i.e. each functional unit executes at least 
one duplicated operation. Hence, in this case loop unwinding is not necessary to 
reduce the fault detection latency. 

3.2 Fault Diagnosis 

In our fault tolerance approach, fault diagnosis is done through analysis of a sequence 

of functional unit mismatches. With a group size of four, there are ( ~ ) = 6 pairs 

of units in each group. Our fault diagnosis hardware makes use of six latches, 
each corresponding to a different pair of units. Each time a pair of units produces 
a mismatch, the FAULT signal clocks a "1" into the corresponding latch. The 
correct latch can be determined based on the functional unit control bits described 
previously. H there is at most one faulty functional unit in a comparison group, the 
unit can be diagnosed as faulty after it has produced a mismatch with two other 
units. However, we prefer to diagnose a unit as faulty only when it has produced a 
mismatch with all other units in its comparison group. The circuitry required for 
this diagnosis is shown in Figure 6. 

With only a single faulty unit, the diagnosis result will be the same whether 
a unit is diagnosed after two or three mismatches. The diagnostic latency of our 
approach will be greater than the alternative in this case since we must wait for 
one additional mismatch before producing the diagnosis result. The reason that we 
choose the slower procedure is because we are interested in diagnosing up to two 
faulty units per comparison group. Ha unit is diagnosed as faulty after only two 
mismatches and there are nearly coincident faults in two units, then a non-faulty 
unit will produce two mismatches in a very short time. The first approach would 
incorrectly diagnose the non-faulty unit as faulty while our approach would not since 
the two non-faulty units will still match. Furthermore, the two faulty units will both 
produce mismatches with the two non-faulty units and they are likely to produce 
a mismatch with each other which will cause them both to be diagnosed as faulty. 
The only possible instance where two faulty units in a group cannot be diagnosed 
as faulty is when they fail in exactly the same way at almost exactly the same time. 
Even in this case, our approach is safe in that no non-faulty unit will be diagnosed 
as faulty. 

It should be noted that we are concerned primarily with permanent and/or 
intermittent faults in this work so that once a unit has failed it is assumed to be of 
no use. The diagnosis mechanism described above utilizes this assumption. H the 
processor is to be used in an environment where transient faults due to environmental 
factors can occur, then the mechanism should be modified. H the mechanism is used 
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Figure 6: Diagnosis Circuitry for a Single Comparison Group 
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period of time may end up being diagnosed as faulty. A standard approach in this 
situation is to force units to produce a sufficient number of mismatches during a 
specified length of time before diagnosing them as faulty. This can be accomplished 
in our approach by adding a counter in front of each latch and triggering the latch 
off the desired bit of the counter. In order to prevent mismatches due to transient 
faults from building up over a long period of time, the counters should be reset 
periodically. 

3.3 Reconfiguration 

Since we are concerned with permanent and/or intermittent faults backward re­
covery strategies are not guaranteed to be successful. Hence, when faulty units are 
diagnosed we recover by reconfiguring the processor and restarting the computation. 
As stated in the previous section, our diagnosis mechanism is capable of diagnos­
ing up to two faulty units per comparison group. Ideally, we would like to be able 
to reconfigure after each failure until the capability of the diagnosis mechanism is 
exceeded, i.e. until some comparison group has three faulty units. This maximum 
level of reconfiguration is possible for super-scalar processors since the scheduling 
is dynamic. The scheduler keeps track of the remaining non-faulty units and issues 
instructions only to those units. Since the scheduling in a VLIW processor is static, 
reconfiguration is not as easy. The most natural reconfiguration is accomplished 
by recompiling the code and inserting NOP's in every operation corresponding to a 
faulty unit. For this to work, there must be a remote machine available to recom­
pile the code and download it into the VLIW processor. While this provides the 
maximum reconfiguration capability, it is slow and, in some applications, it is not 
possible. Hence, we consider two alternative reconfiguration strategies for VLIW 
processors. 

One reconfiguration strategy is to store multiple versions of object code pre­
compiled for different fault situations. The straightforward way of accomplishing 
this would store n + 1 versions of object code to tolerate a single faulty unit in 
a processor with n functional units. To tolerate k faulty units in the processor 

would require ( ~ ) + · . · + ( ~ ) + ( ~ ) versions of the object code. Even for 

small values of n the storage space required for this is prohibitive when k = 2. An 
alternative is to store one version of the object code for each number of faulty units, 
i.e. one for the single fault case, one for the double fault case, etc. Although this 
greatly reduces storage requirements, the execution of the code requires hardware 
support in order to direct the operations into the correct functional units. This is 
feasible only for small values of k. Hence, this alternative, which we refer to as 
multiple code versions, provides less than the maximum reconfiguration capability. 
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Technique Advantages Disadvantages 

Recompilation maximum reconfiguration slow reconfiguration, not 
capability, no storage possible in all applications 
overhead, maximum per-
formance 

Multiple code versions fast reconfiguration, max- high storage overhead, 
imum performance low reconfiguration capa-

bility 

Folding fast reconfiguration, no poor performance, low re-
storage overhead configuration capability 

Table 2: Advantages and Disadvantages of 
VLIW Reconfiguration Alternatives 

It becomes more difficult to implement multiple code versions when different types 
of functional units are present in the processor. 

Another alternative which can be used to reconfigure after a single failure is to 
split each long instruction into two instructions of half the length. After one failure, 
either the right half of the functional units or the left half of the functional units 
will still be non-faulty. The appropriate half can then be used to execute the shorter 
instructions in twice the time of the original execution. This technique can be used 
when different types of functional units are present so long as the two halves are 
identically configured. We refer to this technique as folding. Folding can be applied 
multiple times but the execution time increases exponentially with the number of 
folds and the complexity of the hardware support also increases. Hence, from a 
practical standpoint, this technique can be used to tolerate only a small number of 
faulty units. 

The advantages and disadvantages of these three reconfiguration alternatives for 
VLIW processors are summarized in Table 2. Note that the three alternatives sac­
rifice different resources in order to reconfigure. Recompilation uses reconfiguration 
time, multiple code versions sacrifice storage space, and folding sacrifices execution 
time. In the next section, we present and analyze detailed models for the reliability 
of processors that utilize one of these alternative reconfiguration schemes. 

It is worth noting that in the specified approach, if a comparison group contains 
functional units of the same type and the group size is four, the number of functional 
units of each type in the processor must be divisible by four. For processors that have 
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only one type of functional unit this is not a problem. However, for processors with 
both integer and floating point units where the number of units of each type is not 
divisible by four, it may be necessary to have a hybrid comparison group containing 
units of both types. Duplication and comparison within hybrid groups is slightly 
more complicated. First, only integer operations can be used when comparing an 
integer unit and a floating point unit. Next, since floating point units will take 
more cycles to complete an operation than integer units, if a comparison is made 
between units of different type, the results of the integer unit will have to be stored 
until the floating point result is available. In addition, the floating point output will 
have to be converted to integer format before the comparison is done. Finally, there 
should be at least two :floating point units in the hybrid group so that comparison of 
:floating point operations can be done. Ha floating point unit is only checked when 
it is executing integer operations, some faults in the unit could go undetected. 

4 Reliability Analysis 

In this section, we evaluate the reliabilities of the different reconfiguration strategies 
described in the previous section. 

4.1 Markov Models 

For the purposes of analysis, we separate the failure rate of a VLIW or super-scalar 
processor into multiple parts. We denote the failure rate of each functional unit in 
such a processor by Au and the failure rate of the remainder of the processor (every­
thing other than the functional units) by Aoth· Assuming exponentially distributed 
failure times, the overall failure rate for a fault-intolerant processor with n functional 
units is then n ·Au+ Aoth· In general, the functional units are the most complex 
components of the processor and require the most area. Another component that 
occupies a large area is the register file. Due to this, we strongly recommend that a 
processor designed with our fault tolerance approach utilize error-correcting codes 
in the register file in order to reduce Aoth· The remaining circuitry in the processor 
is quite simple relative to the functional unit complexity and consists mainly of an 
address decoder for the register file, a small amount of control circuitry, and an 
instruction scheduler (only in super-scalar processors). The bulk of the processor 
control circuitry is contained in the functional units which are usually fully pipelined 
processing elements. It is reasonable to assume that Aoth is no greater than Au and 
will often (particularly for VLIW processors) be much smaller. 

The Markov model for a fault-intolerant processor with n functional units is 
shown in Figure 7. Since the processor can not tolerate any faults, its model has 
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Figure 7: Markov Model of Fault-Intolerant Processor 

only two states, operational and failed. The reliability of this processor is 

The general Markov model for a VLIW processor with n functional units that 
stores three versions of object code, one for the non-faulty situation, one for the 
single fault situation, and one for the double fault situation, is shown in Figure 8. 
Due to the fault detection and diagnosis circuitry described in the previous section 
and hardware support for executing the multiple versions, the failure rate of the 
remainder of the processor (other than the functional units) will be slightly increased 
relative to the fault-intolerant case. This is reflected in the modified failure rate A~th· 
The labels on the states represent the number of operational functional units. F 
represents the failure state. There is a transition with rate A~th from every state to 
the failure state since the circuitry outside the functional units represents a single 
point of failure. The first functional unit failure causes a transition from state n to 
state n - 1. The second unit failure leaves the processor in state n - 2. The third 
failure results in the entire processor failing. The reliability of this processor can be 
shown to be 

If we use only two object code versions thereby tolerating one fault, the reliability 
becomes 

R2version(t) = e-,\:,ht · [ne-(n-l),\ut - (n - l)e-n,\ut] 

The general Markov model for a VLIW processor with n functional units that 
utilizes two levels of folding is shown in Figure 9. Since such a processor can tolerate 
any two functional unit failures, this model is quite similar to the three object code 
version processor model. However, note that after each functional unit failure, half 
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Figure 8: Markov Model of VLIW Processor using 
Three Object Code Versions 

Figure 9: Markov Model of VLIW Processor with Two Levels of Folding 
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Figure 10: Markov Model of Super-Scalar Processor or 
VLIW Processor with Recompilation 

of the units that had been operational are not used and hence the failure rate is cut 
in half after each fault occurrence. The reliability of this processor is given by 

R.!oublefold(t) = e-A:,.t · (~e-nAut - 2e-~Aut + ~e-~Aut) 

With only a single level of folding, the reliability is 

For an n-functional unit super-scalar processor or VLIW processor with recom­
pilation, it is difficult to draw the general Markov model. The model when n = 8 is 
shown in Figure 10. The labels on the states in this model represent the number of 
operational functional units in each group. When this number drops below two for 
either group, the processor fails. Again, there are transitions with rate A~th from 
every state to the failed state representing failures in the circuitry outside the func­
tional units. This model reflects the maximum reconfiguration capability of these 
processors, i.e. up to two faulty units per comparison group can be handled. The 
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Figure 11: Comparison of Proposed Techniques with Fault-Intolerant 
Processor (A:th = ~' Aoth = f&>, and n = 8) 

reliability of an 8-unit processor of this type is given by 

Rrecomp/super(t) = e-,\:tht . ( 9e-S,\ut - 48e-7,\ut + 10oe-6,\ut - 96e-S,\ut + 36e-4,\ut) 

We have purposely omitted the derivations of these reliabilities. While some of 
the derivations are non-trivial, they involve well-known procedures for the transient 
analysis of continuous-time Markov models. The interested reader is referred to [15] 
for information concerning these procedures. 

4.2 Evaluation 

In this section, we evaluate and compare the proposed reconfiguration approaches. 
Figures 11-15 show plots of the six reliability functions in different ranges of time 
and for different choices of parameters. All plots are for eight functional units. 

In Figure 11, we have chosen A:th = ~ and Aoth = f&. Thus, the failure rate 
of the circuitry outside the functional units is increased by a multiplicative factor 
of 10 by our proposed changes and the resulting failure rate is one tenth as high 
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Figure 12: Comparison of Proposed Techniques with Fault-Intolerant 
Processor (;\:th = Au, Aoth = fct, and n = 8) 

as the functional unit failure rate. The lowest reliability curve in Figure 11 is that 
of Rintolerant(t). All the proposed techniques significantly improve the processor 
reliability. 

Figure 12 shows a similar plot with slightly different parameters. Here, ;\:th= Au 
and Aoth = fct· Again, our proposed changes increase the "other" failure rate by a 
factor of ten. Now, however, this increased failure rate is identical to the functional 
unit failure rate. Even under these conditions, it can be seen that our proposed 
techniques result in significant improvement. 

The range of reliability of greatest interest is usually between 0.99 and 1.0. 
Figures 13 and 14 show close-ups of the curves from the previous two figures in 
this range. The significance of the improvement of our techniques is more clearly 
visible in these figures. When the failure rate of the functional units is greater 
than the increased "other" failure rate, the worst of our techniques will survive 
approximately 17 times as long as the fault-intolerant processor with a probability 
of 0.99. In this situation, the best of our techniques lasts about 70 times as long as 
the fault-intolerant processor. When the increased "other" failure rate is the same 
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Figure 13: Comparison of Proposed Techniques with Fault-Intolerant 
Processor ( A~th = ~, Aoth = ~, and n = 8) 
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Figure 14: Comparison of Proposed Techniques with Fault-Intolerant 
Processor ( A~th = Au, Aoth = ift', and n = 8) 
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Figure 15: Comparison of Proposed Techniques 
(A:th = ~' Aoth = fd5, and n = 8) 

as the functional unit failure rate, the woxst of our techniques lasts about eight times 
as long and the best technique lasts about 10 times as long as the fault-intolerant 
processor. 

Figure 15 provides a detailed comparison of the proposed techniques. When 
there are two versions of object code or a single level of folding is applied, some 
combinations of two faulty units will cause the processor to fail. Hence, these two 
reliabilities are the smallest. While k versions of object code fail for any combination 
of k + 1 faulty units, the folding strategy with the same minimum level of fault 
tolerance can survive many combinations of k + 1 faulty units. Hence, from a 
reliability standpoint, folding appears to be superior to multiple object code versions. 
This is further demonstrated by the reliabilities of three object code versions and 
two levels of folding. Recall however that the performance degradation of folding is 
very severe. Hence, a choice between these two techniques would have to take into 
account both reliability and performance goals. When the number of functional 
units is eight, applying two levels of folding results in a reliability which is very 
nearly as good as the maximum achieved by recompilation or dynamic scheduling. 
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For larger numbers of functional units however, there are many fault combinations 
that will cause two-level folding to fail while recompilation or dynamic scheduling 
would not. Hence, the gap between these two approaches will widen as the number 
of functional units is increased. 

5 Conclusion 

We have presented a new approach to fault tolerance in super-scalar and VLIW 
processors. The approach has no performance penalty, relying solely on idle re­
sources in the processor. Three reconfigur~tion strategies that trade reconfiguration 
time, storage overhead, and execution time, respectively, for reconfigurability were 
evaluated. A comparison with a fault-intolerant processor showed that significant 
reliability improvement can be achieved with our proposed approach. An interest­
ing area of future research is to incorporate performance data into the reliability 
models of our proposed reconfiguration strategies so as to permit a performability 
comparison. More experimental data concerning fault coverage and fault detection 
latency are also needed to verify the efficacy of our approach. 
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