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Semiconductor heterostructures are the fundamental platform for
many important device applications such as lasers, light-emitting
diodes, solar cells, and high-electron-mobility transistors. Analo-
gous to traditional heterostructures, layered transition metal
dichalcogenide heterostructures can be designed and built by
assembling individual single layers into functional multilayer
structures, but in principle with atomically sharp interfaces, no
interdiffusion of atoms, digitally controlled layered components,
and no lattice parameter constraints. Nonetheless, the optoelec-
tronic behavior of this new type of van der Waals (vdW) semi-
conductor heterostructure is unknown at the single-layer limit.
Specifically, it is experimentally unknown whether the optical
transitions will be spatially direct or indirect in such hetero-
bilayers. Here, we investigate artificial semiconductor heterostruc-
tures built from single-layer WSe2 and MoS2. We observe a large
Stokes-like shift of ∼100 meV between the photoluminescence
peak and the lowest absorption peak that is consistent with a type
II band alignment having spatially direct absorption but spatially
indirect emission. Notably, the photoluminescence intensity of this
spatially indirect transition is strong, suggesting strong interlayer
coupling of charge carriers. This coupling at the hetero-interface
can be readily tuned by inserting dielectric layers into the vdW
gap, consisting of hexagonal BN. Consequently, the generic nature
of this interlayer coupling provides a new degree of freedom in
band engineering and is expected to yield a new family of semi-
conductor heterostructures having tunable optoelectronic proper-
ties with customized composite layers.

MoS2-WSe2 heterostructure | Moiré pattern | charge transfer |
exciton relaxation | rectifying

Two-dimensional layered transition metal dichalcogenide
(TMDC) semiconductors such as MoS2 and WSe2 have

established themselves as strong contenders for next-generation
electronics and optoelectronics (1–6) and are promising building
blocks for novel semiconductor heterostructures (7–11). Con-
ventional heterostructures are mainly based on group IV, III-V,
or II-VI semiconductors with covalent bonding between atoms
at the hetero-interface. Owing to atomic interdiffusion during
growth, the resulting atomic-scale interface roughness and com-
position variation at the hetero-interface inevitably smear the
density of states profile and consequently compromise the per-
formance of these heterostructures, especially as the film thick-
nesses are reduced toward a single atomic layer. In addition, the
choice of material components for conventional heterostructures
is strongly dictated by lattice mismatch.
In TMDCs, however, individual layers are held together by van

der Waals (vdW) forces, without surface dangling bonds (12).
Semiconductor heterostructures built up from monolayer TMDCs
would in principle offer atomically regulated interfaces and thereby
sharp band edges. Theoretical studies have predicted different

electronic structures and optical properties from TMDC hetero-
bilayers (13–17); however, to date there have been no experi-
mental results. Whereas previous experimental efforts have
focused on graphene-based layered heterostructures (8–11, 18–
26), we present an experimental study on the electronic in-
terlayer interaction in a heterostructure built from two single-
layer TMDC semiconductors, namely, MoS2 and WSe2. The
hetero-bilayers are characterized by transmission electron mi-
croscopy, X-ray photoelectron microscopy, electron transport
studies, and optical spectroscopy to elucidate the band alignments,
optoelectronic properties, and the degree of the electronic layer
coupling in this novel material system.
The fabrication of WSe2/MoS2 hetero-bilayers was realized by

stacking individual monolayers on top of each other (see SI
Methods for details). Fig. 1A shows an illustration of the hetero-
bilayer, and Fig. 1B displays the corresponding optical micro-
scope image of a WSe2/MoS2 hetero-bilayer on a Si substrate
with 260-nm thermally grown SiO2. Owing to the 3.8% lattice
mismatch, estimated from the bulk lattice constants (12), as well
as the unregulated, but in principle controllable, angular align-
ment (ϕ) between the constituent layers, the heterostructure
lattice forms a moiré pattern, clearly visible in the high-resolu-
tion transmission electron microscopy (HRTEM) image in Fig.
1C. The HRTEM image displays the boundary region between
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single-layer MoS2 and the WSe2/MoS2 hetero-bilayer. Whereas
MoS2 exhibits a simple hexagonal lattice, the heterostructure
shows moiré fringes with a spatial envelope periodicity on the
order of four to six times the lattice constants of WSe2 (or
MoS2). Inspection of the diffraction pattern in Fig. 1D along the
[001] zone axis reveals that in this particular sample the two
hexagonal reciprocal lattices are rotated by ϕ=12.5° with respect
to each other and there is negligible strain in the two constituent
layers (Supporting Information). The alignment of the two lattices
can also be examined with a fast Fourier transform of the two
zoomed-in TEM images in Fig. 1C (Fig. S1). The absence of
strain in the constituent layers of the WSe2/MoS2 hetero-bilayer
is also confirmed by Raman spectroscopy (Fig. S2), which show
that the in-plane vibration modes of both WSe2 and MoS2
maintain their corresponding positions before and after transfer.
To shed light on the electronic structure of the WSe2/MoS2

heterostack, we performed X-ray photoelectron spectroscopy
(XPS). Specifically, we used a photoemission electron micro-
scope (PEEM) with a high spatial resolution of 30 nm to dis-
criminate between photoelectrons emitted from the WSe2 single
layer, MoS2 single layer, and the WSe2/MoS2 hetero-bilayer, as
illustrated in Fig. 2A (see Fig. S3 for details). In addition, by
looking at the core-level photoelectrons, we achieved elemental
and electronic selectivity that allows us to probe photoelectrons
originating from the top layer of the hetero-bilayer and to di-
rectly quantify the potential difference between the WSe2 layer
in the hetero-stack with respect to the WSe2 single-layer refer-
ence on the substrate. As shown in Fig. 2B, a peak shift of about
−220 meV in binding energy (or +220 meV in kinetic energy) is
evident in the W 4f core levels of the hetero-bilayer compared
with the WSe2 single layer. The direction of the peak shift is

consistent with a negative net charge on the WSe2 in the WSe2/
MoS2 hetero-bilayer. However, a shift of +190 meV is observed
in the Mo 3d core levels of the WSe2/MoS2 in Fig. 2C. Our
PEEM results therefore indicate that the WSe2 layer has a neg-
ative net charge, whereas the MoS2 layer has a positive net
charge as a result of contact potential. The hetero-bilayer can
essentially be interpreted as being a 2D dipole, an atomically thin
parallel plate capacitor with vdW gap with a built-in potential up
to 400 meV, originating from the work function difference in-
duced charge transfer between the two constituent single layers.
The latter interpretation is also consistent with the p- and n-type
character of WSe2 and MoS2, respectively (2, 3).
To investigate the optoelectronic properties of the WSe2/

MoS2 hetero-bilayer, we used photoluminescence (PL) and ab-
sorption spectroscopy. It is known that both single-layer WSe2
and MoS2 exhibit direct band gaps, whereas their bulk and
homo-bilayer counterparts are indirect (1, 27). In agreement
with previous work we observe strong excitonic PL peaks at 1.64
eV and 1.87 eV for single-layer WSe2 and MoS2, respectively
(Fig. 3A). Note that single-layer WSe2 shows a 10–20 times
higher PL intensity than single-layer MoS2, a result consistent
with ref. 28. For the WSe2/MoS2 hetero-bilayer, we observe
a peak at 1.55 eV, lying interestingly at a lower energy than for
the two constituent single layers, as shown in Fig. 3A (with in-
tensity ∼1.5 times higher than for single-layer MoS2). The ap-
pearance of a peak at such low energy was observed consistently
for multiple (>10) samples, with peak energies ranging from 1.50
to 1.56 eV (Fig. S4). This distribution is attributed to sample-to-
sample variations in interface quality and/or alignment angle ϕ.
Of value in optoelectronics, an Urbach tail inverse slope, cor-
responding to the band edge sharpness of ∼30 meV/dec is extracted
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Fig. 1. WSe2/MoS2 hetero-bilayer illustration, optical image, and TEM images. (A) Atomistic illustrations of the heterostructure of single-layer (SL) WSe2 on SL
MoS2 with their respective lattice constants and a misalignment angle ϕ. (B) Optical microscope image of a WSe2/MoS2 hetero-bilayer on a Si/SiO2 substrate
(260-nm SiO2). (C) HRTEM images of a boundary region of SL MoS2 and the hetero-bilayer, showing the resulting Moiré pattern. (D) The electron diffraction
pattern of the hetero-bilayer shown in B, with the pattern of MoS2 and WSe2 indexed in green and blue colors, respectively.
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from the PL spectra (29, 30) (Fig. S5). The steep tail slopes of our
hetero-bilayer prove that high-quality heterostructures with sharp
band edges can be built at the single-layer limit using TMDC
building blocks, which is a unique feature of this material system.
The nature of the photoluminescence of the WSe2/MoS2

hetero-bilayer is intriguing. To better understand the electronic
structure of the hetero-bilayer, we performed absorption mea-
surements in the near-infrared and visible part of the spectrum
using synchrotron light shown as dashed lines in Fig. 3B. The
WSe2/MoS2 hetero-bilayer shows a first absorption peak at
1.65 eV and a second peak at 1.91 eV. These peaks closely co-
incide with the absorption peaks of single-layer WSe2 and MoS2,

respectively. Interestingly, comparing the absorption spectra with
the normalized PL data shown in Fig. 3B, we note that the
hetero-bilayer exhibits a striking ∼100 meV shift between the PL
and absorbance peaks. This large Stokes-like shift is consistent
with a spatially indirect transition in a staggered gap (type II)
heterostructure (31) (as shown in Fig. 3C). Our hetero-bilayers
share certain similarities with organic semiconductor hetero-
structures in which donor and acceptor layers are also bound
by weak intermolecular vdW forces (32). Similar to the optical
processes in organic heterostructures, photons are absorbed in
single-layer WSe2 and single-layer MoS2, generating excitons in
both layers. Photo-excited excitons then relax at the MoS2/WSe2
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interface, driven by the band offset as shown in Fig. 3C. That
band offset is also consistent with the measured built-in electric
field from PEEM. Owing to the energy lost to the band offset
(Fig. 3C), the PL excitonic peak energy is lower than the exci-
tonic band gaps of either material component. This 100-meV
shift may be a balance between conduction band offset between
the two monolayers versus diminished exciton binding energy
associated with being spatially indirect. Note that in the hetero-
bilayer we observe only a weak luminescence signal at the en-
ergies corresponding to the excitonic band gaps of single-layer
MoS2 and WSe2, suggesting that the large majority of the photo-
excited carriers are relaxed at the interface producing the highest
luminescence for the spatially indirect recombination process.

To fine-tune the interlayer interaction in the WSe2/MoS2
hetero-bilayer, single- and few-layer sheets of hexagonal BN
(h-BN) spacer layers were inserted into the vdW gap (Fig. 3D)
using the same transfer technique. Fig. 3E shows the normalized
PL of hetero-stacks with single- and trilayer h-BN spacers. In-
terlayer spatially indirect recombination becomes negligible for
the sample with a trilayer h-BN spacer, as indicated by both the
position and the intensity of the peak at 1.64 eV (Fig. 3E and Fig.
S6), which are nearly the same as for single-layer WSe2. How-
ever, a single layer of h-BN does not fully suppress the interlayer
interaction between WSe2 and MoS2. The results demonstrate
that the interlayer coupling can be readily tuned by intercalation
of dielectric layers and provide yet another degree of control in
the vdW heterostructure properties.
Finally, we explored the carrier transport along the hetero-

bilayer interface. A single flake consisting of single-layer WSe2
and MoS2, and an overlapping hetero-bilayer was made via the
transfer process. The flake was dry etched into a long ribbon
(Fig. 4A). A corresponding PL peak energy map is shown at the
right edge of Fig. 4A, further depicting the ribbon structure by
color coding of the luminescence energy. Multiple source/drain
(S/D) metal electrodes were then fabricated by electron beam
lithography and lift-off on each region of the ribbon (see Figs. S7
and S8 for details). The Si/SiO2 substrate serves as the global
back gate, with 260 nm gate oxide thickness. As expected
single-layer MoS2 and WSe2 devices exhibit n- and p-channel
characteristics, respectively (Fig. S9), consistent with previous
reports (2, 3). However, the device consisting of one contact on
the monolayer WSe2 and the other on monolayer MoS2, with the
two layers overlapping in the central region (Fig. 4B) exhibits
a distinct rectifying behavior (Fig. 4C and Fig. S10), consistent
with type II band alignment of the hetero-bilayer. The rectifi-
cation provides additional evidence for electrical coupling and
proper contact potential between the two constituent layers. This
behavior is consistent with previous work on TMDC/nanotubes
(33) and TMDC/III-V heterostructures (34), which had shown
that electrically active vdW interfaces can be achieved from
TMDC components. The work here highlights the ability to
engineer a novel class of electronic and optoelectronic devices by
vdW stacking of the desired layered chalcogenide components
with molecular-scale thickness control.
In summary, we have fabricated and characterized an artificial

vdW heterostructure by stacking monolayer TMDC building
blocks and achieved electronic coupling between the two 2D
semiconductor constituents. Strong PL with a large Stokes-like
shift was observed from the WSe2/MoS2 hetero-bilayer, consis-
tent with spatially indirect luminescence from a type II hetero-
structure. We anticipate that our result will trigger subsequent
studies focused on the bottom-up creation of new hetero-
structures by varying chemical composition, interlayer spacing,
and angular alignment. In addition, the focus will be on the
fabrication of vdW semiconductor heterostructure devices with
tuned optoelectronic properties from customized single-layer
components. Particularly, electroluminescene efficiency of vdW
heterostructures needs to be explored experimentally to examine
their viability for use as nanoscale light-emitting/lasing devices.
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