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Abstract

Continuum or hybrid modeling of bilayer membrane morphological dynamics induced by 

embedded proteins necessitates the identification of protein-membrane interfaces and coupling of 

deformations of two surfaces. In this article we developed (i) a minimal total geodesic curvature 

model to describe these interfaces, and (ii) a numerical one-one mapping between two surface 

through a conformal mapping of each surface to the common middle annulus. Our work provides 

the first computational tractable approach for determining the interfaces between bilayer and 

embedded proteins. The one-one mapping allows a convenient coupling of the morphology of two 

surfaces. We integrated these two new developments into the energetic model of protein-

membrane interactions, and developed the full set of numerical methods for the coupled system. 

Numerical examples are presented to demonstrate (1) the efficiency and robustness of our methods 

in locating the curves with minimal total geodesic curvature on highly complicated protein 

surfaces, (2) the usefulness of these interfaces as interior boundaries for membrane deformation, 

and (3) the rich morphology of bilayer surfaces for different protein-membrane interfaces.
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1. Introduction

Lipid bilayer membranes are highly curved macromolecules whose curvatures have been 

long recognized as an essential structural feature in key biological processes such as 

membrane trafficking, cytokinesis, infection, and cell motion. Biological membranes, 

however, are far more complicated than simple bilayers because of the presence of non-lipid 

components, in particular, proteins. Measured by weight, the ratio of protein to lipid is about 

0.2 in myelin, while in the mitochondrial inner membrane the ratio is about 3.0 [1]. More 

recent measurements identified about 40 different membrane proteins in the membrane of a 

synaptic vesicle with a diameter around 40 nm [2]. Generation, modulation, and 

maintenance of biological membrane curvature are therefore intrinsically coupled to the 

interactions between lipid bilayers and membrane proteins. These interactions also 

determine the conformational change of transmembrane segments of membrane proteins [3], 

see for example the gating of mechanosensitive ion channels [4]. The importance and 

complexity of protein-mediated membrane morphological variation have thus fascinated 

investigators from various research areas.

In this article we develop a hybrid computational model of protein embedding into bilayer 

membrane for quantifying two critical geometric features of protein-membrane interactions. 

These are (i) the interface between bilayer and the embedded protein, and (ii) the surface 

morphology of the bilayer with the embedded protein. This interface sets a boundary for the 

lipid bilayer whose deformation will produce a tensional force on the boundary that shall 

displace the interface as a feedback, thus defining a bidirectional coupling between 

membrane morphological changes and the state of protein inclusion. Different treatments 

exist for modeling these two features. Continuum [5] or hybrid [6, 7, 8, 9, 10] models 

usually treat the whole bilayer or its two individual leaflets as an elastic sheet using the 

classical Helfrich theory [11, 12, 13]. An explicit specification of membrane edge and the 

boundary condition for displacement are in these models. In fully atomistic [14] or coarse-

grained [15, 8] models it is not necessary to explicitly track the protein-membrane interface 

or membrane surface as they arise naturally as a result of trajectories of particles under 

simulations. However, it still remains a grand challenge for full atomistic or coarse-grained 

molecular dynamics simulators to model protein modulated membrane deformations or 

membrane mediated protein conformation changes of biologically relevant spatial and time 

scales [16]. Continuum or hybrid models appear attractive for tackling these problems for 

they can be scaled to large domains and long time simulations at a relatively low 

computational cost.

Description of protein membrane interfaces and boundary conditions for membrane 

elasticity vary in complexity and detail. For example, in [15, 17] the channel protein is 

represented as cylindrical rods located within, but without direction contact with, a pre-

determined pore in an elastic sheet the modeling bilayer. The force between the protein rods 
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and the membrane is described by Coulomb interactions, generating a bidirectional model 

for the gating of mechanosensitive ion channels. Consistent protein-membrane interface is 

found by using an immersed boundary method for proteins presented as cylinders or cones 

[9]. As a result, these models are able to generate rotational symmetrical membrane bending 

induced by proteins, but fail to reproduce realistic asymmetrical membrane deformations 

associated with anisotropic inclusions of membrane proteins [18]. These asymmetrical 

deformations can be characterized by using the two distinct principal curvatures κ1 ≠ κ2. 

These two curvatures are associated with the complex shape and specific orientation of 

membrane proteins, and are indispensable for the generation of negative Gaussian curvature 

required by all endocytosis and exocytosis processes of living cells [19, 20]. Determination 

of protein-membrane interface, i.e., the contact curves between the protein and the two 

membrane surfaces, is at the center of the continuum or hybrid modelling of protein-

membrane interactions [21, 9].

We model the protein-membrane contact lines as curves evolving on the 3-D protein surface 

driven by the geodesic curvature energy and the nonpolar energy. The geodesic curvature 

energy models the line tension at the contact curves between the protein and the membrane 

surfaces. This energy is locally minimized on membrane surface when the curve is a 

geodesic. To track the minimization of the geodesic curvature energy we adopt the approach 

in [22] to develop a surface phase field model where the evolution of the surface phase field 

function follows the gradient flow of the curvature energy. Furthermore, the bilayer has two 

high dielectric layers of polar headgroups that face the aqueous solution and a low dielectric 

hydrophobic core at the center. Inclusion of hydrophobic amino acids of the transmembrane 

proteins into the bilayer must go through the headgroup layers before getting into the 

energetically favorable hydrophobic core, and the final state of inclusion depends on the 

matching of hydrophobic domains of both structures. The nonpolar energy, described by the 

scaled particle theory (SPT) [23, 24], is a function of the protein surface area exposed to the 

aqueous solvent, and thus can be represented using the surface phase field function as a 

force additional to the variation of the curvature energy functional.

The geodesic curvature flow in a Riemannian surface, also known as the curve shortening 

flow [25, 26], is an important mathematical and computational tool in image processing, 

computer vision, and material sciences. The geodesic curvature flow equation, when posed 

in a level set formulation, is usually given by a highly nonlinear Hamilton-Jacobi equation 

for the level set function ϕ:

ϕt = | ∇ϕ | ∇ ⋅ ∇ϕ
∇ϕ 2 + β

, (1)

where β > 0 is a small constant introduced to avoid division by zero [27, 28, 29, 30]. The 

surface phase field model we developed previously for microdomain formation in bilayer 

membrane describes the similar evolution of the geodesic curvature flow and is numerically 

more tractable [22]. The limiting case of this surface phase field model at the vanishing 

intrinsic geodesic curvature of the microdomains is adopted to characterize the geodesic 

curvature flow in this study. The contact angle at the computed three-phase contact line (i.e., 

protein, solvent, and lipids) can be found using a generalized Young’s formula [31, 32], 
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which prescribes the normal derivative of the displacement of the membrane surface. The 

position and the normal derivative comprise a full set of Dirichlet boundary condition on the 

protein-membrane interface. Along with the far field boundary conditions (c.f (26)) the 

fourth-order equation describing the membrane surface displacement [6, 21] will be 

solvable.

The displacements of the two membrane surfaces are not independent. Lipids are 

incompressible regardless of the gel or liquid phase in which they exist. This leads to the 

first constraint on the membrane displacement and has been characterized by the term 

penalizing the change of the membrane thickness [33, 10]. The inclusion of protein into the 

bilayer causes the lipid director, i.e., the average longitudinal axis directed from the lipid 

head group to lipid tail, to deviate from their surface normal. This tilt deformation was 

recognized [73, 34, 35] but has not been considered in the continuum or hybrid modeling of 

bilayer membrane deformation until very recently [36]. Mismatch of the lipid directors of 

the two surfaces constitutes the second constraint for the coupling of the membrane 

displacement. However, the inclusion of a transmembrane protein with arbitrarily 

complicated configuration into the bilayer makes it computationally challenging to establish 

one-to-one correspondence between the two membrane surfaces. A previous practice 

decomposes the two membrane surfaces as matched and unmatched domains, while the 

coupling of membrane displacement through the penalty of membrane thickness is only 

enforced in the matched domain [33]. In this work we take advantage of the topological 

equivalence of the two membrane surfaces with protein inclusion to map them onto the same 

annulus. This allows us to find the one-to-one correspondence between the membrane 

surfaces, thus avoiding the splitting of matching and unmatched domains, and permitting the 

efficient enforcement of both constraints on the membrane displacement. Finally, the 

inclusion of proteins with charged residues from the high dielectric solvent to the low 

dielectric bilayer core has an electrostatic barrier to pass through. The resolved protein-

membrane interface and the membrane surfaces allow a convenient characterization of the 

dielectric interface and the corresponding electrostatic potential energy.

The rest of the manuscript is organized as follows. In Section 2 a brief introduction of the 

transmembrane inclusion of protein into lipid bilayer is followed by the energy functional 

formulation of solvated protein-membrane complex. The total energy consists of the 

geodesic curvature energy, the coupled bilayer mechanical energy, nonpolar energy, and the 

electrostatic potential energy. We will compute the weak derivatives of this functional with 

respect to the surface phase field function, the membrane displacements, and the 

electrostatic potential. Corresponding partial differential equations (PDEs) will be derived. 

Numerical solutions of these coupled PDEs will be discussed in Section 3 where we will 

introduce the discontinuous Galerkin methods for solving the surface Cahn-Hilliard equation 

and the membrane displacement. Mapping of the two membrane surfaces to the same 

annulus and the assembly of the surface mesh for the protein-membrane complex will also 

be presented. The proposed computational model is applied in Section 4 to the M2 proton 

channel, a protein in the influenza A virus envelope. The simulated protein-membrane 

interfaces and the membrane surface morphology will be examined against the experimental 

measurements. A summary and outline of future perspectives is presented in Section 5.
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2. Hybrid Model of the Solvated Bilayer Membrane with Transmembrane 

Protein

Consider a bilayer membrane as illustrated in Fig. 1 (left). The two surfaces, at height u+ and 

u−, represent the two leaflets of the bilayer stacked upon each other, with respective flat 

equilibrium height ±L0. If membrane surfaces are curved, the normal vectors n+ and n− on 

the top (+) and bottom (−) surfaces will not align with their respective top and bottom lipid 

directors nl
+ and nl−. Inclusion of the transmembrane protein causes the re-orientation of 

lipids near the protein, further deviating the lipid directors from their equilibrium orientation 

by tilt vectors t+ and t− defined as

t± = n± − nl
± . (2)

When the two lipid directors are not aligned as observed in case of protein inclusion, c.f. 

Fig. 1(middle), the tilt energy could be significant. With the Monge parameterization of the 

surface heights u+, u−, the surface normal vectors can be computed using

n± = ∓ ∇u±(x, y), ∓ 1 . (3)

On the other hand, the transmembrane protein contacts with the two membrane surfaces at 

two closed curves, as shown in Fig. 1(right), where they are modelled as zero-level sets of 

the phase field function ψ defined on the protein surface, with red patch being the protein 

surface inside the bilayer while the blue patch in the aqueous solution exterior to the bilayer.

2.1. Energetics of Solvated Protein-Membrane Complex

The total free energy G for the entire protein-membrane complex is defined as the 

summation of the electrostatic potential energy Ge, the nonpolar energy Gnp, the membrane 

elastic energy Gme, and the geodesic curvature energy Ggeo of protein-membrane interfaces:

G = Ge + Gnp + Gme + Ggeo . (4)

Here the energy Ggeo is defined on the protein surface P by

Ggeo = ∫
P

Kl ξΔsψ + 1
2ξ 1 − ψ2 ψ

2
ds (5)

where ψ ∈ [−1, 1] is the phase field function, Δs is the surface Laplacian, ξ > 0 is a 

parameter adjusting the transition of ψ = −1 in the bilayer to ψ = 1 in the aqueous solution, 

and Kl is the line tension coefficient. The square bracketed function is the approximation of 

the geodesic curvature using the surface phase field function [22]. Here it is associated with 

line tension on the protein-membrane interface. The electrostatic potential energy Ge is 

given by

Ge = ∫
Ω

ϵ
2 ∇ϕ 2 − qϕ − κ2cosh(ϕ) dx, (6)
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where ϕ is the electrostatic potential, Ω is a 3-D domain containing the membrane-protein 

complex, ϵ is the dielectric permittivity which takes different values in different molecular 

domains, q is the spatial-dependent charge density, κ is the ionic strength in the solvent (and 

thus is zero in proteins or lipid bilayers). Our model of electrostatics can be replaced by 

other variational formulations of implicit solvent models to include more sophisticated 

dielectric effects such as nonlocal responses [37, 38, 39], finite particle size of ions and 

solvent [40, 41], or surface charge or dipolar densities of bilayers [7, 42]. The discontinuity 

of ϵ at the membrane surfaces shall induce dielectric surface forces, generating a driving 

force for membrane deformation.

The nonpolar energy Gnp is defined to be the work for transferring solute molecules between 

polar and nonpolar solvents, given by a function of the Solvent Accessible Surface Area 

(SASA)

Gnp = γA Am − As , (7)

where γA is the constant characterizing the energy to transfer a unit molecular surface area 

from the polar to non-ploar solvent [43], and Am, As are SASAs in the interior and exterior 

of the bilayer, respectively. The term proportional to the molecular volume as seen in many 

nonpolar solvation energy models [24, 44] is not considered here. The lateral pressure varies 

drastically across the bilayer because of the highly inhomogeneous molecular structure of 

the bilayer, and thus there does not exist a constant of proportionality similar to the uniform 

hydrostatic pressure in the aqueous solvent [45, 46, 47]. Microscopic chemical potentials 

have been defined to quantify the dependence of lateral pressure on the cross-sectional area 

of the protein [48, 49]. Energetically these efforts amount to relate the mechanical energy of 

the protein inclusion to the change of membrane morphology which will be modelled by 

Gme. It is therefore necessary to remove the volume term of the nonpolar solvation energy in 

our model to avoid double counting. With the surface phase field function ψ we can 

conveniently approximate

Am = ∫
P

(ψ − 1)ds, As = − ∫
P

(ψ + 1)ds . (8)

The membrane elastic energy Gme includes the energies associated with the fundamental 

modes of membrane deformations and lipid tilt:

Gme = ∫
S

Kc
2 ∇2u+ + ∇ ⋅ t+ − J0

+ 2 + ∇2u− − ∇ ⋅ t− − J0
− 2 ds +

∫
S

KG
2 K− + K+ ds + ∫

S
α
2 ∇u− 2 + ∇u+ 2 ds +

∫
S

Kα
L0

2 u+ − u− 2ds + ∫
S

Kt
2 t+ 2 + t− 2 ds +

∫
S

Ktw
2 ∇ × t+ 2 + ∇ × t− 2 ds + ∫

S

Ke
2 n+ − n0

2 + n− − n0
2 ds,

(9)
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where the integrals in order represent the splay (mean curvature), saddle splay (Gaussian 

curvature), surface tension, compression of membrane surfaces and tilt-stretch, tilt-twist, and 

configurational entropic cost of lipid chains, with respective constant coefficients Kc the 

bending modulus, KG the Gaussian modulus, α the surface tension coefficient, Kα the 

compression modulus, Kt, Ktw, Ke the moduli of tilt, tilt-twist, and configurational 

confinement [33]. J0
±, n0

± are the spontaneous mean curvature and spontaneous director 

vector of the respective surfaces. These constants are assumed to be the same for two 

leaflets, though their dependence on the lipid composition can be introduced at the cost of 

computational complexity. G± are the Gaussian curvatures of the respective monolayers. The 

energetic modelling of membrane deformation modes has been classical and can be reduced 

to the Canham-Helfrich energy density [11, 12, 13]. Lipid tilt has been recognized important 

recently [34, 35] and proved to be critical in describing the energy pathway of membrane 

fusion during which lipid directors mismatch significantly [36]. For protein inclusions with 

arbitrary shape we expect the lipid directors would also differ significantly from those away 

from the inclusion.

2.2. Variational Principles and Nonlinear PDEs for the Hybrid Model

Given the fixed 2-D domain S for the Monge parameterization of the membrane surfaces, 

the static manifold P modeling the protein surface, and the fixed 3-D domain Ω containing 

the entire solvated protein-membrane complex, the total energy G depends only on the 

membrane surface heights u± and the lipid directors t±, noticing that the electrostatic 

potential ϕ depends on dielectric function ϵ which in turn depends on u±. We shall compute 

the variational derivatives of G with respect to ϕ, ψ and u±, t± to obtain the differential 

equations for ϕ, ψ and u±, t±. For ϕ we will have the Poisson-Boltzmann equation [50, 51]

− ∇ ⋅ (ϵ∇ϕ) + κ2sinh(ϕ) = q . (10)

For ψ we first compute

g(ψ) = δG
δψ = δGgeo

δψ + δGnp

δψ = Kl ΔsW − 1
ξ2 3ψ2 − 1 W + 2γA, (11)

where

W = ξΔsψ + 1
ξ 1 − ψ2 ψ . (12)

The evolution of the protein-membrane contact curves along the pseudo-time t will follow 

the weak gradient flow of ψ:

∂ψ
∂t = − δG

δψ = − Kl ΔsW L + 1
ξ2W L + ΔsW N − 3ψ2

ξ2 W + 1
ξ2W N − 2γA, (13)

where
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W L = ξΔsψ + 1
ξ ψ, W N = − 1

ξ ψ3 (14)

are respectively the linear and nonlinear components of W such that W = WL+WN. This 

splitting will facilitate the numerical treatment of the Allan-Cahn equation (13). Here the 

phase boundary is tracked without enforcing the total quantity of either phase, thus our 

model is free of the conservation constraints and the associated Lagrangian multipliers [52, 

22]. Our approach here is different from those based on the geodesic active contours [53, 

54], where an Euler-Lagrange equation is first derived for minimizing the curve energy in 

sharp interface formulation and then approximated using a level set form [27, 30],

To derive the Euler-Lagrange equations for the unknowns u±, t± we recognize that the 

dielectric function ϵ also depends on u±, thus we shall also consider the variational 

derivative of Ge with respect to u±. This derivative, by definition, is identical to the shape 

derivative of the electrostatic potential energy under the smooth velocity field induced by the 

displacement u± [42], and thus gives the electrostatic forces fe on the membrane surfaces:

fe
± = − ϵs

2 ∇ϕs
± 2 + ϵm

2 ∇ϕm
± 2 + ϵm ∇ϕs

± ⋅ n± ∇ϕm
± ⋅ n± − cosh(ϕ), (15)

where ϕs, ϕm are respectively the electrostatic potentials on the solution and membrane 

sides. The Euler-Lagrange equations for u−, t− shall read

KcΔ Δu− − ∇ ⋅ t− + J0
− − Ke ∇ ⋅ ∇u− − t− + n0− − αΔu− + 2Kα

L0
2 u− − u+

= fe
−,

(16)

Kt + Ke t− − Ke ∇u− + n0 + Kc∇ Δu− − ∇ ⋅ t− + J0 = 0, (17)

noticing that ϵ does not depend on t− so the variational derivatives of Ge do not generate a 

forcing term for t−. Equations for u+, t+ can be obtained similarly. The coupling of u with t 
in these equations motivates us to think of approaches to decouple them to facilitate 

numerical treatment. The assumption of infinite two-dimensional wall on the surface of 

protein inclusion as put forward by May et. al. [55, 56] is not applicable to our modeling of 

the protein-membrane complex because it contradicts our consideration of the realistic 

protein geometry. Instead, we assume that only within a lipid tail length the values of Ke and 

n0 are constants equaling to the values right at the protein-membrane interface in May’s 

model [56]. Beyond that length different constants are taken, leading to the following 

piecewise definition of the two constants:

Ke
kBT = 12

A0
, n0 = − 1

2np, 0 ≤ r ≤ ℎ0, (18)
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Ke
kBT = 3

A0
, n0 = 0, r > ℎ0, (19)

where np is the unit binormal vector on the protein-membrane contact curves, r is distance in 

the normal direction away from the protein surface, and A0 is the cross-sectional area of 

each lipid chain. Consequently, one can remove J0
−, n0− from Equation (16) and take 

divergence of Equation (17) to get

KcΔ Δu− − ∇ ⋅ t− − Ke ∇ ⋅ ∇u− − t− − αΔu− + 2Kα
L0

2 u− − u+ = − fe
−, (20)

Kt + Ke ∇ ⋅ t− − KeΔu− + KcΔ Δu− − ∇ ⋅ t− = 0. (21)

We observe in Equations (20,21) that

Ke ∇ ⋅ ∇u− − t− + αΔu− − 2Kα
L0

2 u− − u+ − fe
− = − Kt + Ke ∇ ⋅ t−

+ KeΔu−,
(22)

and thus we can solve for ∇ · t−:

∇ ⋅ t− = − α
Kt

Δu− + 2Kα
KtL0

2 u− − u+ + fe
−

Kt
. (23)

Put this back to Equation (16) we will get

Δ2u− − χ−Δ u− − u+ − γ−Δu− + β− u− − u+ = fe
−, (24)

with

χ− =
2Kα

L0
2 Kt + α

, γ− =
Ke
Kc

+
Ktα

Kc Kt + α , β− =
2Kα

L0
2Kc

Kt + Ke
Kt + α ,

and

fe
− =

KcΔfe− − Kt + Ke fe−
Kc Kt + α .

A similar equation for u+ shall read

Δ2u+ − χ+Δ u− − u+ − γ+Δu+ + β+ u− − u+ = fe
+, (25)

with
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χ+ =
−2Kα

L0
2 Kt − α

, γ+ =
Ke
Kc

+
Ktα

Kc Kt − α , β+ =
2Kα

L0
2Kc

Kt − Ke
Kt − α ,

and

fe
+ = −

KcΔfe+ − Kt − Ke fe+
Kc Kt − α .

Proper boundary conditions are needed for the solutions of equations we derived above. 

Electrostatic potential induced by fixed charges of the protein in the aqueous solution where 

ϵw ≈ 80 can be used as the approximate boundary conditions of the Poisson-Boltzmann 

equation (10) on ∂Ω [57, 58]. The surface Allan-Cahn equation does not need a boundary 

condition as it is defined on the closed protein surface P. For the coupled fourth-order 

equations (24,25) we adopt the fixed boundary condition (homogeneous Dirichlet boundary 

condition for biharmonic equations) on the boundary far away from the protein inclusion:

u± = 0, ∇u± ⋅ n = 0, (26)

indicating that the membrane is free of deformation on ∂Ω. The protein-membrane interfaces 

are indeed the contact curves of three phases: the aqueous solvent, the protein, and the 

bilayer. Wang et. al. [31] proposed a modification of the classical Young’s contact angle [32] 

to include the tension energy of the contact line among solid-liquid-vapor phases:

γlvcosθ = γsl − γsv + τ
R (27)

where θ is the γlv, γsl, γsv are respectively the surface tensions of liquid-vapor, solid-liquid, 

and solid-vapor interfaces, τ is the line tension and R is the radius of the base of the liquid 

drop in contact with the solid. It is interesting to recognize that if the base contact curve is a 

geodesic then 1/R shall be zero and the classical Young’s contact angle is reproduced. 

Therefore at our protein-water-lipid interface we will have

cosθ = γpl
γlw

− γpw
γlw

. (28)

The protein-water interface tension was well-estimated [59], and given the fluidity of the 

lipid molecules in the two-dimensional surface we postulate that γpl ≈ γpw thus cos θ = 0, 

leading to an estimate that θ = π/2. This suggests that the two membrane surfaces are locally 

orthogonal to the protein surface at the protein-membrane contact curves, thus the following 

fixed boundary conditions will be adopted

u± = uB
±, ∇u± ⋅ n = θp, (29)
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where uB
± are the positions of the protein-membrane contact curves and θp is the projection 

of the unit normal direction at the contact curves onto the common x − y base plane on 

which the Monge parameterizations of the two membrane surfaces are defined.

3. Numerical Techniques for the Nonlinear PDEs

In this section we discuss the numerical solutions of the differential equations and the 

convergent iterations for their coupling. The evolving protein-membrane contact curves on 

the protein surfaces present varying dielectric interface for the Poisson-Boltzmann equation, 

so a numerical method that does not require the regeneration of interface conforming 3-D 

mesh is preferred. Here we adopt a tree-code accelerated boundary integral method for 

solving the Poisson-Boltzmann equation [60, 61]. The molecular surface mesh of the 

protein-membrane complex will be updated when the protein-membrane contact curves 

evolve or the membrane surfaces are deformed with the given contact curves.

Our numerical treatments of the problem are focused on the solutions of the surface Allan-

Cahn equation (13), the surface deformation equations (24,25), and their convergent 

coupling with the Poisson-Boltzmann equation. The C0 interior penalty discontinuous 

Galerkin (DG) method [62, 22] is not applicable to the surface deformation equations as 

they only admit Cahn-Hilliard type boundary conditions while we have the Dirichlet 

boundary conditions here. Based on the DG method in [63] we develop an alternative C0 

interior penalty method to solve the deformation equations (24,25). Consider the following 

prototype of the surface deformation equation with Dirichlet boundary conditions (gD, gN):

Δ2u + β1Δu + β2u = f, u = gD, ∇u ⋅ n = gN, (30)

on the annulus domain ℛ, c.f. Fig. 6(right). Let Tℎ be a regular simplicial triangulation of 

ℛ. We will use the following standard notions for defining discontinuous Galerkin methods:

• hT: diameter of the triangle T ∈ Tℎ, where ℎ = maxT ∈ Tℎ ℎT ,

• ℰℎ: set of edges of the triangles in T,

• ℰℎ
i : subset of ℰℎ consisting of edges interior to ℛ,

• ℰℎ
b : subset of ℰℎ consisting of edges on the boundary ∂ℛ,

• |T|, |e|: the area of the triangle T, and the length of the edge e.

On an interior edge e that is shared by the two triangles T± we define the normal vector ne 

pointing from T− to T+ and the jump and average quantities:

⟦v⟧ = u+ − u−, {{u}} = 1
2 u+ + u−
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for u ∈ H1 ℛ, Tℎ . Here the subscripts ± signify the limit values of the function at the 

common edge e on the triangles T±. These definitions are extended to the boundary edge 

e ∈ ℰℎ
b  where

⟦v⟧ = {{u}} = u e .

We associate with Tℎ a standard quadratic Lagrange finite element space 

V ℎ = v ∈ C(ℛ):vT = v T ∈ P2(T ), ∀T ∈ Tℎ . The approximate solution uh ∈ Vh to Equation 

(30) is given by

ℬ uℎ, vℎ = l vℎ , ∀vℎ ∈ V ℎ, (31)

where the bilinear form ℬ( ⋅ , ⋅ ) and the linear functional l(·) are given, respectively, by

ℬ uℎ, vℎ = ∑
T ∈ Tℎ

∫
T

ΔuℎΔvℎ + β1∇uℎ ⋅ ∇vℎ + β2uℎvℎ dx +

+ ∑
e ∈ ℰℎ

b
∫

e
α1uℎvℎds

+ ∑
e ∈ ℰℎ

∫
e

− ∂uℎ
∂ne

Δvℎ − ∂v
∂ne

+ α2
∂uℎ
∂ne

∂vℎ
∂ne

ds,

(32)

l vℎ = ∑
T ∈ Tℎ

∫
T

fvℎdx + ∑
e ∈ ℰℎ

b
∫

e
−gNΔvℎ + α1gDvℎ + β1gN

∂vℎ
∂ne

ds .
(33)

Here the penalty parameters α1, α2 are given by

α1 = C1ℎ−3, α2 = C2ℎ−1 (34)

for sufficiently large positive constants C1, C2 that depend only on the triangulation Tℎ. The 

optimal convergence of this interior penalty DG method and the generalization of the 

analysis to higher order basis functions are given in [63].

Coupling of the deformation of two membrane surfaces demands the two equations (24,25) 

to be defined on the same domain. However, this appears not the case because of the 

different contact curves of the transmembrane protein with two membrane surfaces. Since 

the two surfaces are expected to match point-wisely we are motivated to define smooth 

mapping between the middle plane and the base planes of two membrane surfaces. We 

define the interior boundary of the middle plane as a circle whose radius and height are the 

respective average radius and height of the two contact curves. The exterior boundary is at 

the middle of the exterior boundaries of the two surfaces. These mappings are numerically 
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established by solving two Winslow equations [64] on the annulus domain ℛ in the middle 

plane. The meshes are locally refined toward the contact curves where larger membrane 

deformations are expected, c.f. Fig. 6(right).

Approximation of the surface biharmonic and surface Laplacian for the solution of Equation 

(13) can be done as in (32,33), without terms related to the boundary conditions though, as 

the evolution of phase field function is on a closed 2-manifold P approximated by a 

simplicial surface triangulation. There are many energy stable time discretization schemes 

developed for the phase-field models, including convex splitting methods [65, 66, 67], 

exponential time discretization schemes [68], IEQ schemes [69], and semi-implicit methods 

[70]. Many of these methods introduce a chemical potential as an intermediate variable to 

reduce the fourth-order Allan-Cahn or Cahn-Hilliard equation to two coupled second-order 

equations, which is not consistent with our discontinuous Galerkin approximation. Here the 

implicit method we developed for the surface Allan-Cahn equation [22] will be adapted. The 

method begins with a Crank-Nicolson approximation of the time derivation in Equation (13), 

giving rise to

ψn + 1 − ψn
Δt + Klg ψn + 1, ψn + 2γA = 0, (35)

where Δt is the time increment. The average function g(ψn+1, ψn) is defined as

g ψn + 1, ψn = 1
2Δs fc ψn + 1 + fc ψn

− 1
2ξ2 ψn + 1

2 + ψn + 1ψn + ψn2 − 1 fc ψn + 1 + fc ψn
(36)

with

fc(ψ) = ξΔsψ + 1
ξ 1 − ψ2 ψ .

To solve Equation (35) which is nonlinear and implicit in ψn+1, we define inner iterations on 

the variable Ψm which is expected to converge to ψn+1 as m → ∞. Replacing all linear and 

nonlinear terms of ψn+1 respectively using Ψm+1 and Ψm, we can get the following inner 

iteration

Ψm + 1 − ψn
Δt + Klg ψn, Ψm, Ψm + 1 + 2γA = 0, (37)

with the new average function

g ψn, ψn, Ψm + 1 = 1
2Δsfc ψn, Ψm, Ψm + 1

− 1
2ξ2 Ψm

2 + Ψmψn + ψn2 − 1 f Ψm + f ψn
(38)

where
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fc ψn, Ψm, Ψm + 1 = ξ
2Δs Ψm + 1 + ψn − 1

4ξ Ψm2 + ψn2 − 2 Ψm + ψn .

Now the equation (37) is linear in Ψm+1 as we expect:

1 + KlξΔt
2 Δs

2 Ψm + 1 = ψn − Kl
ξΔt
2 Δs

2ψn + Δt
4ξ Δs Ψm

2 + ψn2 − 2 Ψm + ψn

+ Δt
2ξ2Δs Ψm

2 + Ψmψn + ψn2 fc Ψm + fc ψn + 2ΔtγA .
(39)

Since the surface phase field model can only find the local minimum of the geodesic 

curvature energy, we will scan a range of initial protein-membrane contact curves to finally 

find the global minimum of the total energy G defined in Equation (4). The full algorithm of 

our energetic model is summarized below:

Algorithm 3.1

1. Define a proper range for the initial position of bilayer with respect to the given 

membrane protein. Divide the range into small intervals for the loop in Step 2 

below.

2. For each initial position of the bilayer

i. Update the protein-membrane interfaces by solving the surface phase 

field equation (39).

ii. Update the mappings from the middle plane to the base planes of two 

membrane surfaces.

iii. Update the electrostatic surface forces by solving the Poisson-

Boltzmann equation with updated membrane surfaces.

iv. Update the membrane surfaces by solving the coupled surface 

deformation equations.

v. Return to Step (ii) until convergence. Save total energy G.

3. Choose the minimum G and the corresponding geometry of protein-membrane 

complex.

4. Model Validation and Computational Simulations

In this section we shall first validate our geodesic curvature modelling of the protein-

membrane interfaces. We will then present examples of mapping the base planes of 

membrane surfaces to the middle annulus. We will finally apply these validated modules of 

our energetic model for the determination of inclusion state of the transmembrane protein.

Zhou et al. Page 14

J Comput Phys. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4.1. Validation of geodesic curvature model

We first apply our geodesic curvature model to capture the curve on a molecular surface 

with the well-identified local minimal geodesic curvature. The molecule mimics the carbon 

backbone of a benzene ring with six atoms in y-plane of unit radius respectively centered at 

(x, z) = (2.5, 0), (1.25, 2.165), (−1.25, 2.165), (−2.5, 0), (−1.25, −2.165) and (1.25, −2.165). 

In the first test, shown in Fig. 2, we chose the initial phase field ϕ = 1 for zini ∈ [−1.62, 1.52] 

and ϕ = −1 elsewhere. This asymmetrical initial condition allows the two initial phase 

boundaries to evolve toward local minima of different topology. The upper phase boundary 

evolves downward, quickly splitting into two closed curves each of which evolves toward its 

own local minimum of geodesic curvature energy. The lower phase boundary below, in 

contrast, is able to maintain its topology and evolves upward gradually settle on a local 

minimum. The initial position zini = 1.52 for the upper phase boundary is near the critical 

point. An initial phase boundary above this critical z-position will not split during the 

evolution but converges to a final position symmetrical to the convergent position of the 

phase boundary initialized at zini = −1.62 below.

In the second test, shown in Fig. 3, the surface phase field is initialized with phase 

boundaries at zini = −2.22 and 0.2, respectively. The upper phase boundary evolves upward 

and converges to the same local minimum found by the upper phase boundary in Fig. 2. The 

lower phase boundary, which is initially 0.6 below the lower phase boundary in the first test, 

evolves downward, shrinks and finally disappears, achieving a local minimum geodesic 

curvature energy of zero.

The third and fourth tests are carried out on the proton channel M2 (PDB ID: 2kqt). With a 

total of 3247 atoms this protein has a rich surface morphology with many local minima of 

total geodesic curvature. Fig. 4 shows the evolution of the two phase boundaries initially 

located at zini = −10, 13. The upper phase boundary moves up considerably to the local 

minimum, while the lower phase boundary finds the local minimum geodesic energy after a 

slight adjustment of position. When the initial phase boundaries are changed to be at zini = 

−13, 11, shown in Fig. 5, final phase boundaries different from the third test are observed.

These four numerical examples illustrate that our model and numerical methods are very 

effective in capturing the initial condition-dependent local minimum of the geodesic 

curvature energy. In the applications to be presented in (4.3), we will scan over the full 

height of the membrane protein to set a range of initial phase boundaries and to locate the 

global minimum from the set of local minima.

4.2. Validation of mappings to the middle plane

We consider a model transmembrane protein and two phase boundaries on its surface 

modeling the protein-membrane interfaces, c.f. Fig. 6 (left). The common middle annulus is 

defined as follows. First, the geometrical centers and radii of the upper and lower phase 

boundaries are found. These define the position of the base planes for the two membrane 

surfaces. The average radii and average height (z-coordinate) will be used as the inner radius 

of middle annulus and its z-coordinate. This middle annulus is then discretized on the polar 

coordinate, with its uniformly discretized inner circle mapped to quasi-uniformly discretized 
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upper and lower phase boundaries. Together with the mapping between the discretized 

exterior circles, we have the boundaries of the two base planes mapped to the middle 

annulus.

Inhomogeneous Thompson-Thames-Mastin elliptic grid generator ([64], Page 98) is adopted 

to produce interior mesh grids for the two base planes that are dense near the protein-

membrane interfaces, c.f. Fig. 6 (right). The quadrilateral grid meshes are then triangulated 

for the solution of Eq.(24,25) using the interior penalty discontinuous Galerkin method 

described above. The vertices of the triangulated meshes for the two membrane surfaces 

inherit the one-one correspondence established on the mesh grids, allowing us to compute 

the coupling terms (u− −u+) and Δ(u− −u+) in the two surface deformation equations. It is 

worth noting that by using the numerical mappings we do not change the physical domains 

or coordinate systems of the two membrane surfaces. The mappings are introduced merely 

to establish a one-one correspondence between the two membrane surfaces. Therefore one 

does not need to transform the surface deformation equations because of these numerical 

mappings of the computational domains.

4.3. Membrane morphology induced by protein inclusion

After validating the evolution of surface phase field function and the mapping to the middle 

annulus, we are now at a position to apply these methodologies on the determination of 

membrane morphology induced by protein inclusion. We consider a single M2 protein 

embedded in a homogeneous phosphatidylcholine (POPC) bilayer with equilibrium 

thickness L0 = 26Å. Although the height of protein is comparable to the bilayer thickness we 

will still expect a considerable compression of the bilayer in the vicinity of protein inclusion 

because the protein-membrane interfaces are highly curved. The mechanics and dielectric 

parameters of the POPC bilayer are taken from [10]. The outer radius of the middle common 

annulus is 100Å. The inner radius is about 12 to 15Å, depending on the position of the 

protein-membrane interfaces. The values of other parameters are Kc = 10.8, KG = −9.8, α = 

0.004, Kα = 0.33, kt = α, all in the unit of kcal/mol.

We first look at the protein-membrane interfaces modelled as the phase boundaries with 

different surface phase field initializations zini = ±8 ∼ ±14Å. As shown in Fig. 7, the top 

phase boundary does not change when the initial position is placed at 8 ≤ zini ≤ 12.5Å as 

they will be trapped to the same position with a local minimum geodesic curvature energy is 

observed. The bottom interface stays at the same local minimum for −11.3 ≤ zini ≤ −8Å, and 

then moves to another local minimum for a lower initial phase boundary. We will consider 

these initial protein-membrane interfaces and apply Algorithm 3.1 to find the equilibrium 

membrane surfaces with minimum total energy, and the results are shown in Fig. 8. For zini 

= ±8Å or ±10Å, the corresponding equilibrated protein-membrane interfaces are identical 

and located near z = −6Å and z = 8Å, respectively. The two membrane surfaces have to bend 

significantly to match these inner boundaries as their exterior boundaries are clamped at z = 

±13Å. This shall generate large bending and compression energies, see also Table 1. When 

the initial phase boundaries are placed further apart at |zini| > 11.3Å, the new bottom protein-

membrane interface promotes the curving of the membrane near the protein, shown as the 

peaking of saddle splay energy in the table, see also the variation of the membrane heights 
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near the protein in Fig. 8, where the four peaks of the displacement signifies the quatermer 

structure of M2.

The significant increase of bilayer compression near the embedded protein from zini = ±8Å 

to zini = ±13Å is also illustrated in Fig. 9. Maximum energy for saddle splay is observed at 

zini = ±13Å, indicating the largest negative Gaussian curvature is generated, a feature that is 

well observed in small 23 angle X-ray scattering and molecular dynamics simulations [71, 

72]. However, this negative Gaussian curvature is confined to a small neighborhood near the 

embedded protein. We attribute this confinement to the homogeneous Dirichlet (aka 

clamped) boundary condition (26). In experiments the far boundary is not clamped while in 

molecular dynamics simulations a periodic boundary condition is usually chosen. A more 

realistic boundary condition on the exterior edge of the annulus would be

Δu = 0, ∂Δu
∂n = 0, (40)

i.e., the membrane is stress-free there. However, there does not exist a robust numerical 

method for biharmonic equations with mixed boundary conditions in arbitrarily complicated 

2-D domain. Recently emerged weak Galerkin method might possess the flexibility of 

approximating fourth-order equations with mixed boundary conditions (Dirichlet boundary 

conditions (29) on the inner edge and stress-free boundary condition on the exterior edge).

5. Conclusion

In this paper we propose a geodesic curvature energy model for characterizing the protein-

membrane interfaces. These interfaces represent the essential information of the boundaries 

in the continuum or hybrid modeling of bilayer membrane morphology induced by 

embedded proteins. Along with a surface phase field approximation of the geodesic 

curvature, our efforts present a computationally tractable geometrical characterization of the 

boundary conditions for the protein-membrane interactions. To further completely couple 

the surface morphology of two leaflets we first envision an annulus located between two 

surfaces and then construct conformal mapping between individual surface and the middle 

annulus through numerical grid generation. We integrate these two new features into a 

general energetic functional model of protein-membrane interactions. Numerical 

experiments demonstrate that our methods are efficient and robust in locating the highly 

complicated protein-membrane interfaces and the corresponding membrane morphology.

Our work can be improved and extended mathematically and computationally in several 

different directions. A stress-free boundary condition on the exterior edge of membrane shall 

better reflect the local mechanical constraint, and we are currently developing a weak 

Galerkin finite element method for solving the resulting fourth order equations with mixed 

boundary conditions. Secondly, the manual scanning on the protein surface for locating a 

global minimum of total geodesic curvature can be replaced by a surface Allan-Cahn 

equation with stochastic forcing term (or a stochastic term directly added to the total 

geodesic curvature energy) that could provide an additional force driving the evolving 

surface phase boundary from a local minimum to the global minimum. Finally, force and 

Zhou et al. Page 17

J Comput Phys. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



torque balance equations can be introduced to the transmembrane protein to better describe 

the tilting and orientation of the embedded protein.
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Highlights

• Model the contact interfaces between bilayer membrane and transmembrane 

protein as the minimal geodesics on protein surface.

• Efficient identification of minimal geodesics through the evolution of surface 

phase field function.

• Tight coupling deformations of two monolayers through numerical mappings 

onto the same middle plane.
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Figure 1: 
Illustration of protein inclusion in a lipid bilayer. Left: the two membrane surfaces and the 

attached vectors. Middle: The protein inclusion causes the unalignment of the lipid vectors 

from two bilayers near the inclusion. Right: The protein inclusion with two protein-

membrane contact curves represented as the boundaries of a surface phase field function.
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Figure 2: 
Snapshots in the surface phase boundary evolution on the model benzene ring at time t = 0, 

0.1, 5, 12, 18. Surface triangular mesh is quasi-uniform with 8124 vertices and 16248 

triangles. Time increment Δt = 0.01, ξ = 0.1. Top: Plots of surface phase field function. 

Bottom: Surface mesh for the phase ψ = −1 highlights the phase boundaries with different 

history of topological change during the phase boundary evolution.

Zhou et al. Page 24

J Comput Phys. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Snapshots in the surface phase boundary evolution on the model benzene ring at time t = 0, 

6, 14, 18, 26. Mesh and parameters are identical to the case in Fig. 2. Top: Plots of surface 

phase field function. Bottom: Surface mesh for the phase ψ = −1 highlights the phase 

boundaries with different history of topological change during the phase boundary evolution. 

The lower phase boundary disappears finally as a result of geodesic curvature minimization.
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Figure 4: 
Snapshots in the surface phase boundary evolution on the proton channel protein (PDB ID: 

2kqt) at time t = 0, 20, 40, 60, 80. Initial phase boundaries are at zini = −10, 13. Surface 

triangular mesh is quasi-uniform with 12470 vertices and 24940 triangles. Time increment 

Δt = 0.01, ξ = 0.5. Left: Plots of surface phase field function. Right: Surface mesh for the 

phase ψ = −1 highlights the evolution of the phase boundaries. The pole in the center 

represents the open proton channel.
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Figure 5: 
Snapshots in the surface phase boundary evolution on the proton channel protein (PDB ID: 

2kqt) at time t = 0, 20, 40, 60, 80. Initial phase boundaries are at zini = −13, 11. Mesh and 

parameters are identical to the case in Fig. 4. Left: Plots of surface phase field function. 

Right: Surface mesh for the phase ψ = −1 highlights the evolution of the phase boundaries.
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Figure 6: 
Illustration of membrane surfaces mapped to the same middle annulus. Left: A model 

protein with two surface phase boundaries representing the two contact curves with 

membrane surfaces. Right: The model protein is embedded in the bilayer represented as two 

membrane surfaces, whose Monge parameterizations are defined on the planes mapped from 

the same annulus ℛ via respective transformations Ψ±.
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Figure 7: 
Surface phase fields with different initial phase boundaries (top) and the corresponding 

equilibrium fields (bottom). From left to right: zini = ±8, ±10, ±12, ±14Å.
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Figure 8: 
Equilibrium top (u+) and bottom (u−) membrane surfaces obtained with different initial 

phase field boundaries at z = ±8, ±10, ±12, ±14Å, from left to right.
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Figure 9: 
Embedding of M2 channel in the bilayer with zini = ±8 (left) and zini = ±13 (right).
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Table 1:

Energies in kcal/mol corresponding to different modes of bilayer deformation when the initial membrane-

protein contact curves are varied.

Zini ±8 ±9 ±10 ±11 ±12 ±13 ±14

Splay −310.7 −305.6 −292.1 −350.2 −365.6 45.72 −183.23

Saddle splay 2.11 1.13 0.96 −6.87 −13.56 27.54 6.99

Surface tension 1.50 1.02 0.65 0.36 0.24 0.60 0.54

Compression 196159 136287 88400 47046 16106 534.2 8382

Tilt-stretch 0.75 0.51 0.32 0.19 0.13 0.20 0.24
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