
UC San Diego
UC San Diego Previously Published Works

Title

Diagnostics of Thyroid Cancer Using Machine Learning and Metabolomics.

Permalink

https://escholarship.org/uc/item/0467499h

Journal

Metabolites, 14(1)

ISSN

2218-1989

Authors

Kuang, Alyssa
Kouznetsova, Valentina
Kesari, Santosh
et al.

Publication Date

2023-12-22

DOI

10.3390/metabo14010011
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0467499h
https://escholarship.org/uc/item/0467499h#author
https://escholarship.org
http://www.cdlib.org/


Citation: Kuang, A.; Kouznetsova,

V.L.; Kesari, S.; Tsigelny, I.F.

Diagnostics of Thyroid Cancer Using

Machine Learning and Metabolomics.

Metabolites 2024, 14, 11. https://

doi.org/10.3390/metabo14010011

Academic Editors: Leonardo Franco

and Martin Grootveld

Received: 27 October 2023

Revised: 14 December 2023

Accepted: 18 December 2023

Published: 22 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

metabolites

H

OH

OH

Article

Diagnostics of Thyroid Cancer Using Machine Learning and
Metabolomics
Alyssa Kuang 1, Valentina L. Kouznetsova 2,3,4 , Santosh Kesari 5 and Igor F. Tsigelny 2,3,4,6,*

1 Haas Business School, University of California at Berkeley, Berkeley, CA 94720, USA;
alyssakuang@berkeley.edu

2 San Diego Supercomputer Center, University of California at San Diego, La Jolla, CA 92093, USA;
vkouznet@ucsd.edu

3 BiAna, La Jolla, CA 92038, USA
4 CureScience Institute, San Diego, CA 92121, USA
5 Pacific Neuroscience Institute, Santa Monica, CA 90404, USA; santosh.kesari@providence.org
6 Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093, USA
* Correspondence: itsigeln@ucsd.edu

Abstract: The objective of this research is, with the analysis of existing data of thyroid cancer
(TC) metabolites, to develop a machine-learning model that can diagnose TC using metabolite
biomarkers. Through data mining, pathway analysis, and machine learning (ML), the model was
developed. We identified seven metabolic pathways related to TC: Pyrimidine metabolism, Tyrosine
metabolism, Glycine, serine, and threonine metabolism, Pantothenate and CoA biosynthesis, Arginine
biosynthesis, Phenylalanine metabolism, and Phenylalanine, tyrosine, and tryptophan biosynthesis.
The ML classifications’ accuracies were confirmed through 10-fold cross validation, and the most
accurate classification was 87.30%. The metabolic pathways identified in relation to TC and the
changes within such pathways can contribute to more pattern recognition for diagnostics of TC
patients and assistance with TC screening. With independent testing, the model’s accuracy for other
unique TC metabolites was 92.31%. The results also point to a possibility for the development of
using ML methods for TC diagnostics and further applications of ML in general cancer-related
metabolite analysis.

Keywords: thyroid cancer; machine learning; metabolomics; diagnostics

1. Introduction

Thyroid cancer (TC) is the most common endocrine cancer. TC is deadly because of
its quickness to spread to the other parts of the human body, such as the kidney, lungs,
prostate, and the breasts. While TC is a common cancer, the symptoms typically do not
show until the later stages. TC also can recur. Currently, doctors classify thyroid nodules
with fine-needle aspiration biopsy (FNAB), a type of evaluation of palpable soft tissue
lesions that are clinically suspected to be metastatic carcinomas, which uses an ultrasound
(US) image [1]. FNAB is found to be inaccurate 20% of the time [2].

1.1. Artificial Intelligence, Computer-Aided Diagnostics, and Machine Learning in Cancer Therapy

Computer-aided diagnostics (CAD) has been used to help radiologists with screening
mammography and other cancers. Indeed, in a study conducted on CAD at the University
of Michigan, the CAD system recognized 10 of the 11 cancers within the patient cohort [3].
Analysis of thyroid cancer stages can identify the severity of the development of this
cancer. Ultrasound (US) is the most widely used diagnostic tool for TC and other cancers.
US is enhanced through deep learning (DL), as DL can extract nonlinear features from
predictable auditory patterns, which are present in US and are often neither clear nor
simple [4]. Artificial intelligence (AI) has been useful in diagnostics of cancer and other
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diseases. AI is currently used to predict disease outbreaks, increasing the efficiency of
operations and quickly navigating large datasets to provide crucial information to doctors.
Specifically, AI, as well as CAD, has come to the aid of thyroid cancer diagnostics. Due
to current risks and the complicated system of the Thyroid Imaging Reporting and Data
System (TI-RADS), CAD systems that are based on AI strategies alleviate the complexity of
US-based risk-stratification systems (RSS) and provide higher accuracy for detecting and
evaluating potential thyroid nodules [5]. Furthermore, machine-learning (ML) approaches
can help predict and identify nodules with a high risk of mutations through molecular
testing [6]. ML largely relies on probability and statistics and is inherently more powerful,
since it enables conclusions or decisions that would otherwise be impossible to make using
traditional statistical methods [7]. In a study conducted by Li et al., authors developed a
classification model using groups of over 300,000 images [8]. Several CAD systems based
on US features have been created using the ML method to analyze thyroid imaging. There
are also several commercial analysis systems for such image recognition. One of these
systems, AmCAD-UT, is used for characterizing thyroid nodules through statistical pattern
recognition, as well as quantified algorithms [5].

ML can conduct complex tasks, such as introducing a human-like interpretation of
an image [9]. ML, and in particular DL, has been incorporated into lung cancer research.
AI models have been used to help doctors identify lung cancer on CT scans. Furthermore,
applications of ML into US, including image registration and content retrieval, are develop-
ing. Cancer is a complex disease with various causes and various outcomes for different
people. Therefore, the use of combining clinical data, medical images, various biomarkers,
and ML strategies would allow for a more holistic approach to diagnosis and possible
prevention. ML is used for both cancer detection and enhanced recognition of cancer
progression. For almost 20 years, decision trees and artificial neural networks (ANNs) have
been employed in the detection and diagnosis of cancer [10–12]. The prognosis of cancer
is determined by a variety of clinical criteria, such as the patient’s age and general health,
the type and location of the disease, as well as the grade and size of the tumor [13–15]. ML
takes this data, compares it, and forms predictions that could characterize a certain node
and aid in assessing the severity of a current patient’s condition. Indeed, scientists have
grown reliant on protein markers and microarray data, which largely apply to breast and
prostate cancers [7]. ML utilizes unsupervised and supervised techniques, which are mostly
used for classification and regression. Abundant data, AI, and ML algorithms are being
utilized more and more frequently in medicine and health for things like disease diagnosis,
individualized treatment plans, medication development, clinical trial research, and the
prediction of epidemic outbreaks. The metabolic features of lung cancer can be revealed by
metabolomics technology [16]. Researchers say that ML helps with diagnostics through
analyzing pathology profiles and clinical images and converting data into algorithmic
sequences [17]. ML has the potential to analyze and identify specific types of cancer, predict
cancer susceptibility, and screen individuals for cancer regularly before it can spread. ML
models have also been developed to help doctors conduct CT scans and project images of
cancer [9]. DNA strains and variants that indicate early-stage risk factors for cancer and
other disorders have been identified with the help of ML [18]. ML methods are the most
effective in detecting patterns of changes in multivariate data. In clinical trials that compare
various treatment approaches, the resulting ML models could subsequently be utilized to
enhance the precision of tumor diagnosis and to select the best treatment plans.

Multilayer perceptron (MLP), recurrent neural network (RNN), and convolution
neural networks (CNN) are the most common neural networks that are involved with
oncology. Traditionally, histology or cytopathology is used to diagnose cancer. These forms
of assessment examine whether tumor cells are present in a given patient’s sample [19].
Histology-based CNNs have proved to be successful at grading cancer in the prostate,
breast, and colon [20]. DL models have successfully classified healthy versus cancerous
tissues in lung cancer using whole-slide imaging. A challenge is locating the unknown
sites where cancer originates from in a body. Around 3–5% of cancer cases are cancers of
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unknown origin [21]. ML has helped with this greatly. Using transcriptome data and DL
approaches, it is possible to forecast the origin of tumors.

1.2. Radiomics and AI for Diagnostics of TC

Recently, radiomics has also been a rising method for applying AI in diagnosing
potential TC patients. Radiomics is performed through inputting medical images, and
AI processes the data and performs deeper data mining through analyzing the image
itself compared to other similar images and using specific features extracted to accurately
classify and predict models. Radiomics involves image acquisition, image segmentation,
feature extraction, and feature selection [22]. For image segmentation, the process can be
performed either manually or semi-automatically. Manually extracting features of images
and inputting them into a larger system is the typical method. Radiomics eliminates
possible biases when interpreting data and allows for the repeatability of interpretations.
This repeatability allows AI-based algorithms to discover possible patterns and allows
researchers to generalize from abnormal findings. For radiomics, although it is unable to
completely replace human operations within radiology, the image interpretation efficiency
can be increased using ML methods. However, just like DL, the limitation of radiomics is
the large amount of data required to build models and the lack of equipment. Even so, the
future of AI continues to grow, with potentials of better assessments when improving the
tools necessary and better generalizability.

1.3. Metabolomics in Cancer Diagnosis

Metabolomics research and ML open doors for diagnostics of cancer. The metabolic
pathways and metabolites that control the growth of tumors and physiological function
have been identified [23]. Blood metabolites have been shown to be helpful in non-invasive
diagnostic methods for several disorders, including lung malignancies. They can also
serve as biomarkers when evaluating a tumor [24]. Monitoring metabolites can help
track the stage of the tumor’s progression and even identify responses to drugs and
other treatments [25]. A key indicator of cancer is an increase in glucose consumption by
tumors. This glucose consumption is monitored by fluorodeoxyglucose positron emission
tomography (FDG-PET) imaging [26]. With the glucose increase, the various pathways
that facilitate energy production are activated. The pathways that are identified in cancer
patients contribute to the prognosis of cancer developing. ML models are able to analyze
the imaging of the changes in a tumor’s environment to identify patterns for possible
pathways or increases in glucose.

Many publications describe the metabolites involved in different types of cancers. In
the exploration of metabolites and biomarkers that could identify stages of bladder cancer
(BCa), for example, ML methods were used to compare metabolite patterns at various
stages of BCa [27]. Metabolic pathways, similarly, relay correlations in certain metabolites
in normal people versus in patients with oral cancer. Kouznetsova et al., using saliva
metabolites, created an ML model that can determine whether oral lesions are caused by
oral cancer or periodontitis [28]. Furthermore, ML-based classifiers used genomic data to
generate a panel of 16 DNA methylation indicators and, using the random forest ML model,
classified lung cancer with an accuracy of 86.54% [29]. Murata et al. [30] analyzed the saliva
concentration of 260 metabolites for diagnostics of invasive carcinoma (IC) of the breast. A
multiple logistic regression model was developed for diagnostics of IC. The authors also
created an ML model based on the alternative decision tree classifier, with the accuracy of
diagnostics being above 90%. Xie et al. [25] developed an ML model with the best accuracy
obtained with Naïve Bayes and KNN classifiers for diagnostics of lung cancer. They used
61 plasma metabolites. Yao et al. [31] developed an ML system for the diagnostics of
ovarian cancer using metabolites as biomarkers. The system’s accuracy of diagnostics was
more than 85%. Huang et al. [32] used serum metabolites for ML diagnostics of early-stage
lung adenocarcinoma with an accuracy of more than 90%.
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As AI continues to grow and technology advances, the use of ML will increase the
effectiveness of TC diagnostics and serve as a measure to identify cancer at early stages or
even before cancer develops.

2. Materials and Methods
2.1. Approaches Overview

The programs and databases used to analyze the thyroid cancer data included Pub-
Chem [33], the Human Metabolome Database (HMDB, v. 5.0) [34], PaDEL-Descriptor
v. 2.21 [35], Waikato Environment for Knowledge Analysis (WEKA, v. 3.8.5) [36], and
MetaboAnalyst, v. 5.0 [37,38]. The initial steps were to extract TC metabolite data from
existing datasets to use as a selection model. The data for the development of the ML model
were selected from a study that identified differential metabolites in the serum of papillary
thyroid cancer (PTC) patients with positive and negative ion patterns [39]. These metabo-
lites were only selected if the p-value ≤ 0.05, and the fold change (FC) ≥ 1.5. The resulting
table included 64 unique PTC metabolites. Sixty-four randomly selected metabolites were
included in the training set. Using the PaDEL software, v. 2.2.1, the 1444 of 1D and 2D
descriptors of the metabolites were calculated [35]. Utilizing information-based filtration
methods, attributes that were less significant were filtered to create specific data that were
later inputted into the ML algorithm.

2.2. PubChem

PubChem is a database that provides access to an expansive platform full of infor-
mation regarding chemicals [33]. A utilized aspect of the database is the readily stored
simplified molecular-input line-entry system (SMILES) that offers a unique branding to
each chemical compound. The SMILES of each of the selected 64 metabolites and 64 random
metabolites were obtained.

2.3. The Human Metabolome Database

HMDB, v. 5.0, stores detailed information on all metabolites in the human body [34].
To gather a comparable sample, randomized HMDB selections of 64 metabolites were
obtained as the “random” dataset for comparison with the selected 64 metabolites from
the table.

2.4. PaDEL-Descriptor

PaDEL-Descriptor, v. 2.21, is a software capable of calculating molecular descriptors
and fingerprints; in present time, PaDEL calculates 1875 descriptors, including 1444 1D
and 2D and 431 3D descriptors [35]. PaDEL was used to calculate descriptors of the
128 metabolites.

2.5. Waikato Environment for Knowledge Analysis

WEKA, v. 3.8.5, is a software developed to build classification and regression models
and contains a collection of numerous ML classifiers [36]. In the class label, the 64 selected
metabolites from the table were labeled as selected, while the 64 random metabolites were
labeled as random. The significant metabolites’ descriptors were selected with the attribute
evaluator InfoGainAttributeEval. The algorithm evaluated the worth of an attribute relative
to the class and therefore discarded any extra data that would be unnecessary to classify
the whole of the dataset, selecting only 53 attributes out of the 1546. This provided the
highest accuracy in classification. On the preprocessing step, the unwanted instances were
removed through the attribute filter. WEKA was also used for cross-validation, assessing
the accuracy in which the model could classify if a metabolite was TC related. In this context,
accuracy was defined as the number of metabolites that were accurately categorized as
being related to thyroid cancer out of the total amount of metabolites assessed. If all of
the metabolites were classified as TC metabolites, that would constitute a 100% accuracy.
The reason that accuracy must be assessed is to see the capability of the ML model built. If
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the ML model can consistently and accurately identify TC-related metabolites, it would be
easier to identify TC early on.

2.6. MetaboAnalyst

MetaboAnalyst, v. 5.0, is a web-based tool that facilitates metabolomics data analy-
sis [37]. The pathway analysis function within MetaboAnalyst 5.0 was used in this paper
to identify which pathways were expressed in the 128-metabolite dataset [38]. This tool
aided in finding related pathways and creating a chart to show the identifications. On the
resulting graph, both the p-value and the pathway impact were relevant. The p-value was
defined as the probability that the statistical summary would be equal to or more extreme
than the actual observed results. The pathway impact was defined as an objective estimate
of the importance of a given pathway.

3. Results
3.1. Metabolite Set

For development of a machine learning system for diagnostics of thyroid cancer, we
employed a dataset of metabolite biomarkers elucidated by Du et al. [39] (Table 1).

Table 1. The training dataset was derived from the following set of 64 metabolites [39].

Metabolite Name FC log(FC)
Quillaic Acid 3-[galactosyl-(1->2)-glucuronide] 0.33217 −1.59000
Quillaic acid 3-[xylosyl-(1->3)-[galactosyl-(1->2)]-glucuronide] 0.32061 −1.64110
L-Aspartyl-L-phenylalanine 0.27591 −1.85770
L-Histidine 0.40090 −1.31870
Pyridinoline 0.40468 −1.30510
5-hydroxylysine 0.47622 −1.07003
L-glutamic acid 0.51228 −0.96499
Hydrogencarbonate 0.58709 −0.76835
L-phenylalanine 2.09010 1.06360
Trans,trans-muconic acid 0.53257 −0.90896
Taurocholic acid 2.21440 1.14690
Disulfiram 0.61107 −0.71060
Citric acid 0.54732 −0.86954
Dimercaprol 0.52417 −0.93190
Argininic acid 0.57260 −0.80439
Ursocholic acid 1.84740 0.88546
Methylmalonic acid 0.42889 −1.22130
Nicotine glucuronide 2.22150 1.15150
L-Kynurenine 0.46308 −1.11070
2-Hydroxyethinylestradiol 2.97520 1.57300
Oleoylcarnitine 2.03350 1.02400
Retinyl beta-glucuronide 2.06240 1.04430
N-Acetyl-L-arginine 0.53088 −0.91355
Cyanate 1.86650 0.90033
10-Hydroxy-octadec-12Z-enoate-9-beta-D-glucuronide 2.06310 1.04480
Biotin 0.60751 −0.71902
2-Arachidonylglycerol 0.55461 −0.85046
Beta-alanine 0.55975 −0.83715
3-Indoleacetic acid 0.48593 −1.04120
Acitretin 2.69310 1.42930
Hippuric acid 0.55416 −0.85163
L-Tryptophan 0.61765 −0.69513
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Table 1. Cont.

Metabolite Name FC log(FC)
Ribothymidine 0.49838 −1.00470
3-Hydroxy-cis-5-tetradecenoylcarnitine 0.61797 −0.69440
N-Acetylornithine 0.39628 −1.33540
Threonic acid 1.92510 0.94496
Oxalic acid 0.50332 −0.99047
Alpha-tocotrienol 1.98070 0.98599
Acetone 0.54805 −0.86763
4’-O-Methylcatechin 1.67120 0.74089
Glucosylgalactosylhydroxylysine 1.63340 0.70790
L-Tyrosine 0.65647 −0.60719
1-Methylguanosine 0.60407 −0.72721
Azelaic acid 0.36788 −1.44270
4-hydroxybenzaldehyde 0.47227 −1.08230
(S)-3,4-Dihydroxybutyric acid 0.62090 −0.68756
Heparan sulfate 1.64210 0.71556
4-glutathionyl cyclophosphamide 0.62610 −0.67553
Uric acid 0.54884 −0.86554
Thiamine pyrophosphate 1.80870 0.85496
Phenylalanylphenylalanine 0.60089 −0.73483
Farnesyl pyrophosphate 0.55865 −0.83999
p-Cresol sulfate 0.44465 −1.16930
3-hydroxyhexadecadienoylcarnitine 1.87230 0.90484
Hesperetin 3’,7-O-diglucuronide 1.61650 0.69291
Glucose 6-phosphate 0.54630 −0.87223
Proline betaine 3.83720 1.94010
Dopamine 0.66314 −0.59262
3’-hydroxy-e,e-caroten-3-one 1.52140 0.60537
8-hydroxy-deoxyguanosine 0.63158 −0.66296
12(13)ep-9-KODE 1.68180 0.75004
8-isoprostane 0.58342 −0.77739
Maltotetraose 0.52038 −0.94235
Oxypurinol 0.54446 −0.87710

Note: Selected from the dataset of metabolites from an open source [39].

3.2. Metabolic Pathways

The metabolic pathways described proved that the selected metabolites were related
to thyroid cancer or cancer generally (Figure 1).

3.2.1. Pyrimidine Metabolism

Pyrimidine synthesis includes several enzymes that are overexpressed in PTC and
thyroid cancer in general. The phosphorylation of uridine monophosphate to uridine
diphosphate is overexpressed in PTC [40]. Likewise, in the lungs, where TC can easily
spread to, the pyrimidine metabolism signaling pathway is considerably enriched in over
1290 lung carcinoma samples [41].

3.2.2. Tyrosine Metabolism

Tyrosine metabolism is affected in esophageal cancer [42,43]. Upregulation of tyro-
sine in serum in hepatocellular carcinoma (HCC) was reported by Watanabe et al. [44].
Systematic examination of the tyrosine metabolic pathway described several genes that
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participated in this pathway affected in HCC [45]. Alteration of tyrosine metabolism was
shown for thyroid cancer [46].

Metabolites 2023, 13, x FOR PEER REVIEW 7 of 16 
 

 

 

Figure 1. Pathways were matched to the metabolites by MetaboAnalyst, v. 5.0, and presented in a 
diagram. The position on the y-axis and the vibrancy of the color were determined by the p-value; 
the higher the value on the y-axis and the darker the red color, the greater the significance. Blue dots 
signified the least significance, while the orange dots signified a high significance just under red. 
The darker the red, the greater the significance of the pathway. The x-axis and size of a point signi-
fied pathway impact values. The most significant pathways were Pyrimidine metabolism, Tyrosine 
metabolism, and Glycine, serine, and threonine metabolism. 

3.2.1. Pyrimidine Metabolism 
Pyrimidine synthesis includes several enzymes that are overexpressed in PTC and 

thyroid cancer in general. The phosphorylation of uridine monophosphate to uridine di-
phosphate is overexpressed in PTC [40]. Likewise, in the lungs, where TC can easily 
spread to, the pyrimidine metabolism signaling pathway is considerably enriched in over 
1290 lung carcinoma samples [41]. 

3.2.2. Tyrosine Metabolism 
Tyrosine metabolism is affected in esophageal cancer [42,43]. Upregulation of tyro-

sine in serum in hepatocellular carcinoma (HCC) was reported by Watanabe et al. [44]. 
Systematic examination of the tyrosine metabolic pathway described several genes that 
participated in this pathway affected in HCC [45]. Alteration of tyrosine metabolism was 
shown for thyroid cancer [46]. 

3.2.3. Glycine, Serine, and Threonine Metabolism 
The expression of Glycine, serine, and threonine metabolism-related proteins vary 

among different subsets of TC, with more expression in PTC. In a study investigating the 
Glycine, serine, and threonine metabolism related to different thyroid cancers, Sun and 
co-authors found that the use of targeted therapy against the Glycine, serine and threonine 

Figure 1. Pathways were matched to the metabolites by MetaboAnalyst, v. 5.0, and presented in a
diagram. The position on the y-axis and the vibrancy of the color were determined by the p-value;
the higher the value on the y-axis and the darker the red color, the greater the significance. Blue dots
signified the least significance, while the orange dots signified a high significance just under red. The
darker the red, the greater the significance of the pathway. The x-axis and size of a point signified
pathway impact values. The most significant pathways were Pyrimidine metabolism, Tyrosine
metabolism, and Glycine, serine, and threonine metabolism.

3.2.3. Glycine, Serine, and Threonine Metabolism

The expression of Glycine, serine, and threonine metabolism-related proteins vary
among different subsets of TC, with more expression in PTC. In a study investigating the
Glycine, serine, and threonine metabolism related to different thyroid cancers, Sun and
co-authors found that the use of targeted therapy against the Glycine, serine and threonine
metabolism pathway’s numerous sites held potential for TC therapeutic approaches [47].
Furthermore, Glycine, serine and Threonine metabolism-related proteins and enzymes
were associated with thyroid tumors.

3.2.4. Pantothenate and CoA Biosynthesis

Decreased levels of CoA-SH were found in both cancerous and normal tissues of
animals that had malignant tumors. Furthermore, participating in the biosynthesis of CoA
genes, noncoding RNAs can cause cancer [48]. Another study that tested groups of mice
with tumors and measured CoA levels corroborated the association of decreased levels of
CoA with the potential for cancer and other diseases, and it was found that the growth
of the TLX-5 lymphoma was in association with “significant decreases in ‘total’ CoA, and
CoA-SH” [49].
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3.2.5. Arginine Biosynthesis

Studies on cancer cells with low levels of ASS1 that were denied arginine contributed
to the current understanding of the impact of arginine on cancer metabolism [50]. Tran-
scription suppression of metabolic genes within processes such as glycolysis, purine, and
pyrimidine synthesis, DNA repair genes, oxidative phosphorylation (OXPHOS), and mito-
chondrial activities is brought on by arginine deprivation [51]. Furthermore, mitochondria
are the target of arginine deprivation. This is harmful, since arginine is a crucial regulator
of actions in cancer metabolism in the mitochondria. Tumor cells adapt to stay present
by altering metabolic pathways. The reduced inherent capability of tumor cells to create
arginine is one of the most prevalent metabolic abnormalities [52].

3.2.6. Phenylalanine Metabolism

Phenylalanine metabolism involves the conversion of phenylalanine into tyrosine
and then to acetoacetic acid and fumaric acid. Phenylalanine concentration in the blood
is elevated due to Phenylalanine metabolism [53]. Increased blood concentrations of
phenylalanine are typical in patients with HIV infection and cancer; however, the exact
cause of this phenomenon is yet undiscovered. Phenylalanine metabolism has been found to
be one of the main pathways involved in PTC development, the most commonly identified
form of thyroid cancer [39]. Generally, for cancer, another study by Abasov found that
phenylalanine was present in 80% of cancer cases, as opposed to 56% in the study’s
control [43,54].

3.2.7. Phenylalanine, Tyrosine, and Tryptophan Biosynthesis

In a study investigating and identifying certain metabolic characteristics through blood
samples in PTC patients, the comprehension of the biological and pathological components
involved in the transition from a normal to eventually malignant state can be improved
by the identification of specific metabolites exhibiting altered levels of their associated
metabolic pathways. Such altered pathways include changes in Phenylalanine, tyrosine,
and tryptophan biosynthesis [55].

3.3. Machine-Learning Classifiers

Machine-learning has had rising popularity in both cancer studies and identification
of biomedical patterns in data. The final dataset contained 128 metabolites, 64 selected from
a previous study and 64 randomly selected from a database of metabolites. The filtered
dataset had a total of 53 attributes, including fold change (FC). We tried multitudes of
classifiers, including Naïve Bayes, MultilayerPerceptron (MLP), AttributeSelectedClassifier,
and more. The highest accuracies of classification were with the classifiers LogitBoost, Ad-
aBoostM1, iterative classifier optimizer, RandomForest, filtered classifier, Bagging, Random
Committee, decision table, JRip, Random Sub Space, and J48, all with accuracies above 80%,
with the highest being LogitBoost with an 87.03% accuracy (Figure 2). The classifiers were
carried out through ten-fold cross-validation, the function that takes the dataset, divides it
into ten pieces or folds, and tests each piece on the remaining nine pieces for training (as
an estimate of the model), testing each distinct piece 10 times. Then, WEKA averaged the
results for each test to obtain the accuracy of each classifier. Cross-validation reduced the
variance of the estimate.

3.4. Receiver Operating Characteristics

The receiver operating characteristic (ROC) curve shows a classifier’s accuracy and
diagnostic power at all class threshold levels. Both the true-positive rate and the false-
positive rate are presented by the model. The area under the ROC curve (AUC) is the
integration of the AUC from 0 to 1, examining how well predictions are produced at various
decision thresholds. The ROC curves with AUCs for top classifiers are presented in Figure 3,
and comparisons of their AUCs are presented in Figure 4. The precision–recall curves are
presented in Figure 5. These curves confirm that all presented classifiers are solid classifiers.



Metabolites 2024, 14, 11 9 of 15

Metabolites 2023, 13, x FOR PEER REVIEW 9 of 16 
 

 

classifiers were carried out through ten-fold cross-validation, the function that takes the 
dataset, divides it into ten pieces or folds, and tests each piece on the remaining nine pieces 
for training (as an estimate of the model), testing each distinct piece 10 times. Then, WEKA 
averaged the results for each test to obtain the accuracy of each classifier. Cross-validation 
reduced the variance of the estimate. 

 
Figure 2. Using cross-validation, the highest classifier performances are shown. The accuracy of 
cross-validation is the percentage of the metabolites that is deemed relevant to the model through 
each classifier. 

3.4. Receiver Operating Characteristics 
The receiver operating characteristic (ROC) curve shows a classifier’s accuracy and 

diagnostic power at all class threshold levels. Both the true-positive rate and the false-
positive rate are presented by the model. The area under the ROC curve (AUC) is the 
integration of the AUC from 0 to 1, examining how well predictions are produced at var-
ious decision thresholds. The ROC curves with AUCs for top classifiers are presented in 
Figure 3, and comparisons of their AUCs are presented in Figure 4. The precision–recall 
curves are presented in Figure 5. These curves confirm that all presented classifiers are 
solid classifiers. 

Figure 2. Using cross-validation, the highest classifier performances are shown. The accuracy of
cross-validation is the percentage of the metabolites that is deemed relevant to the model through
each classifier.

Metabolites 2023, 13, x FOR PEER REVIEW 10 of 16 
 

 

 
Figure 3. Through WEKA, ROC curves were generated for the highest accuracy classifiers with re-
spect to the dataset: LogitBoost (A), AdaBoostM1 (B), Random Forest (C), and iterative classifier 
optimizer (D). Position on the y-axis signifies a classifier’s positive response rate when the correct 
response was positive, and the x-axis signifies a classifier’s positive response rate when the correct 
response was negative. 

 
Figure 4. The areas under the ROC curves (AUC) for the highest accuracy classifiers are shown. The 
AUC is the overall measure of performance in each classifier. 

Figure 3. Through WEKA, ROC curves were generated for the highest accuracy classifiers with
respect to the dataset: LogitBoost (A), AdaBoostM1 (B), Random Forest (C), and iterative classifier
optimizer (D). Position on the y-axis signifies a classifier’s positive response rate when the correct
response was positive, and the x-axis signifies a classifier’s positive response rate when the correct
response was negative.



Metabolites 2024, 14, 11 10 of 15

Metabolites 2023, 13, x FOR PEER REVIEW 10 of 16 
 

 

 
Figure 3. Through WEKA, ROC curves were generated for the highest accuracy classifiers with re-
spect to the dataset: LogitBoost (A), AdaBoostM1 (B), Random Forest (C), and iterative classifier 
optimizer (D). Position on the y-axis signifies a classifier’s positive response rate when the correct 
response was positive, and the x-axis signifies a classifier’s positive response rate when the correct 
response was negative. 

 
Figure 4. The areas under the ROC curves (AUC) for the highest accuracy classifiers are shown. The 
AUC is the overall measure of performance in each classifier. 
Figure 4. The areas under the ROC curves (AUC) for the highest accuracy classifiers are shown. The
AUC is the overall measure of performance in each classifier.

Metabolites 2023, 13, x FOR PEER REVIEW 11 of 16 
 

 

 
Figure 5. Precision–recall curves were generated for the highest accuracy classifiers in respect to the 
dataset: LogitBoost (A), AdaBoostM1 (B), Random Forest (C), and iterative classifier optimizer (D). 

3.5. Independent Testing 
In order to test a model to identify potentially TC-related metabolites, an unrelated 

metabolite set must also be tested, so 34 unique kidney disease metabolites, unrelated to 
TC, were obtained. These kidney disease metabolites were tested on the developed ML 
models. After setting the new kidney disease descriptors set as the supplied test, we re-
evaluated the kidney disease descriptors onto the TC RandomForest model. The resulting 
classification of 7% signified that the ML model classified these metabolites as mostly ran-
dom metabolites. 

Similarly, TC metabolites that did not include any of the compounds used for train-
ing from the original set that the model was developed from were selected to test the ML 
model. This was performed to determine whether the model could accurately and con-
sistently identify TC metabolites in screening. A set of 13 TC serum metabolites were se-
lected [56] (Table 2). After conducting a re-evaluation on the same LogitBoost training set 
model, we found that the ML model classified all metabolites into TC metabolites. The 
accuracy of the test was 100%. With such a percentage, the ML model was able to accu-
rately assess related metabolites. 

Table 2. The independent testing dataset was derived from the following 13 metabolites [56]. 

Metabolite 
Lauric acid propyl ester 2-monostearin 
Pentadeconic acid, glycerine-(1)-monoester Decanoic acid decylester 
Ricinoleic acid Myo-inositol phosphate 
Heptadecanoic acid, glycerine-(1)-monoester D-gluconic acid 
Nonadecanoic acid-glycerine-(1)-monoester Succinic acid 
Eicosanoic acid propyl ester Citric acid 
Hexadecanoic acid propyl ester  

4. Discussion 

Figure 5. Precision–recall curves were generated for the highest accuracy classifiers in respect to the
dataset: LogitBoost (A), AdaBoostM1 (B), Random Forest (C), and iterative classifier optimizer (D).

3.5. Independent Testing

In order to test a model to identify potentially TC-related metabolites, an unrelated
metabolite set must also be tested, so 34 unique kidney disease metabolites, unrelated
to TC, were obtained. These kidney disease metabolites were tested on the developed
ML models. After setting the new kidney disease descriptors set as the supplied test,
we re-evaluated the kidney disease descriptors onto the TC RandomForest model. The
resulting classification of 7% signified that the ML model classified these metabolites as
mostly random metabolites.

Similarly, TC metabolites that did not include any of the compounds used for training
from the original set that the model was developed from were selected to test the ML model.
This was performed to determine whether the model could accurately and consistently
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identify TC metabolites in screening. A set of 13 TC serum metabolites were selected [56]
(Table 2). After conducting a re-evaluation on the same LogitBoost training set model, we
found that the ML model classified all metabolites into TC metabolites. The accuracy of
the test was 100%. With such a percentage, the ML model was able to accurately assess
related metabolites.

Table 2. The independent testing dataset was derived from the following 13 metabolites [56].

Metabolite
Lauric acid propyl ester 2-monostearin
Pentadeconic acid, glycerine-(1)-monoester Decanoic acid decylester
Ricinoleic acid Myo-inositol phosphate
Heptadecanoic acid, glycerine-(1)-monoester D-gluconic acid
Nonadecanoic acid-glycerine-(1)-monoester Succinic acid
Eicosanoic acid propyl ester Citric acid
Hexadecanoic acid propyl ester

4. Discussion

Although ML has been significantly developed and improved in past decades, it is inter-
esting to explore whether ML could be used for clinical medical diagnosis. Obermeyer et al.
revealed that ML application in clinical laboratory data could drastically improve both
prognosis and diagnostic accuracies [57]. Previously, research suggested that ML models
have the potential to diagnose diseases such as bladder cancer [58]. It is important to use
the results to analyze the applications of AI and ML on thyroid cancer diagnostics. In
this study, the main models and findings were developed from previous PTC patient’s’
data. We prepared supplemental material including the Figure S1 that in simplified form
explains the concept of model creation using metabolites descriptors. We aimed to set up a
model that could assess TC-related metabolites. Therefore, the ML model is a testament
to developing future models and not recommended to be directly applied to diagnostics
of TC.

After data mining, we used cross-validation in order to counter overfitting or failing
to accurately generalize a pattern. We used WEKA to assess accuracy, which is defined
by the number of metabolites that are accurately categorized as TC-related out of the total
amount of metabolites assessed. Assessing the accuracy helps to understand how capable
the model is and, consequently, its ability to identify TC early on. Data mining is crucial
to ML, due to the complex nature of ML in big data [59]. The highest scoring classifier,
LogitBoost, produced a classification of 87.30%. In Chen and Pan’s study of diabetes,
LogitBoost was a highly successful classifier for the machine-learning model using clinical
test results [60]. The accuracy of 87.3% meant that in the dataset that contained all thyroid
cancer metabolites, the classifier was able to accurately identify a large majority of TC-
containing metabolites. Furthermore, the model used to perform independent testing
was produced through another relatively accurate classifier, RandomForest. In order to
ensure that the model would not falsely classify TC-irrelevant metabolites, we utilized
independent testing. The goal of independent testing was to input TC-related datasets and
TC-unrelated datasets to see if the model would correctly or incorrectly classify attributes
to TC. In response to kidney disease metabolites, the model only classified 7% of the
metabolites as TC-related. The ML model largely classified the kidney disease metabolites
as random. Furthermore, in response to a related set of TC metabolites, the model was
able to identify 92.31% of the data as TC. This established that the model was able to
detect relevant TC metabolites and filter TC-irrelevant metabolites. This model could be
applied to future uses of AI models in diagnostics for TC. The metabolite dataset was
analyzed with MetaboAnalyst and elucidated the most significant pathways and among
them TC and cancer in general. MetaboAnalyst generated a graph that identified various
pathways related to the dataset and portrayed the most significant pathway impacts.
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The seven identified pathways included: Pyrimidine metabolism, Tyrosine metabolism,
Glycine, serine, and threonine metabolism, Pantothenate, and CoA biosynthesis, Arginine
biosynthesis, Phenylalanine metabolism, and Phenylalanine, tyrosine, and tryptophan
biosynthesis. These pathways are a sign of abnormal TC and general cancer metabolism.

Through data mining, pathway analysis, and independent testing, a model was
developed for PTC patients. As more data were collected and accessed, similar models
could be developed with increased accuracies.

Limitations

Although there have been successes in diagnosing TC patients through AI-generated
models, there could be more efficient and accurate ways to diagnose future patients. In
order to have more accurate models built, relevant data that is available should be stored
in one general location that is easily accessible for research. ML models such as the
one created in this paper could be applied and remodeled using more existing data for
accurate diagnostics.

5. Conclusions

Metabolomic analysis evaluation on PTC serum proved effective in identifying po-
tential thyroid patients through screening. Metabolomics, although not used consistently
for screening, has the potential to identify certain molecular markers, which could classify
pathological conditions and create higher accuracies within diagnostics. The future of
diagnostics through machine learning has exponential potential that could change the
entire field of cancer research and cancer diagnostics.

Within the model developed in this project, an accurate machine-learning diagnosis
classifier of thyroid cancer was developed. The model can diagnose thyroid cancer based
on serum metabolites. Improvements to the developed model can be achieved by adding
more metabolites. Further, the model can also be expanded to include different types of
thyroid cancer, as the current model is based only on PTC-related metabolites. As the use
of ML increases, TC and other cancers alike can be diagnosed with improved efficiency.

The implication of this study is that ML based on metabolite biomarkers is an effi-
cient tool to diagnose TC patients. With the increase in using ML with existing and new
biomarkers, the process of diagnosis will greatly improve.

6. Future Work

We plan to use a deep-learning strategy for PTC diagnostics using metabolite biomark-
ers. We also plan to expand the studies toward including, to the ML model the other
biomarkers, especially images. It will significantly improve the general diagnostics of PTC.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo14010011/s1, Figure S1: Simplified scheme of ML sys-
tem function.
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fine-needle aspiration biopsy; HCC, hepatocellular carcinoma; HMDB, Human Metabolome Database;
TC, thyroid cancer; FC, fold change; InfoGain, information gain; ML, machine learning; PTC, papillary
thyroid cancer; PCA, principal component analysis; ROC, receiver operating characteristic; SMILES,
simplified molecular-input line-entry system; TIRAD, Thyroid Imaging Reporting and Data System;
US, ultrasound; WEKA, Waikato Environment for Knowledge Analysis.

References
1. Ogun, G.O. Fine needle aspiration biopsy (FNAB) in the initial evaluation anddiagnosis of palpable soft tissue lesions and with

histologic correlation. Pan Afr. Med. J. 2015, 20, 44. [CrossRef] [PubMed]
2. Kim, J.; Park, B.; Ha, J.; Steinberg, I.; Hooper, S.M.; Jeong, C.; Park, E.Y.; Choi, W.; Liang, T.; Bae, J.S.; et al. Multiparametric

photoacoustic analysis of human thyroid cancers in vivo. Cancer Res. 2021, 81, 4849–4860. [CrossRef] [PubMed]
3. Hadjiiski, L.; Sahiner, B.; Chan, H.P. Advances in computer-aided diagnosis for breast cancer. Curr. Opin. Obstet. Gynecol. 2006, 18,

64–70. [CrossRef] [PubMed]
4. Brattain, L.J.; Telfer, B.A.; Dhyani, M.; Grajo, J.R.; Samir, A.E. Machine learning for medical ultrasound: Status, methods, and

future opportunities. Abdom. Radiol. 2018, 43, 786–799. [CrossRef] [PubMed]
5. Ha, E.J.; Baek, J.H. Applications of machine learning and deep learning to thyroid imaging: Where do we stand? Ultrasonography

2021, 40, 23–29. [CrossRef] [PubMed]
6. Daniels, K.; Gummadi, S.; Zhu, Z. Machine learning by ultrasonography for genetic risk stratification. JAMA Otolaryngol. Head

Neck Surg. 2020, 146, 36–41. [CrossRef] [PubMed]
7. Cruz, J.A.; Wishart, D.S. Applications of machine learning in cancer prediction and prognosis. Cancer Inform. 2007, 2, 59–77.

[CrossRef]
8. Li, X.; Zhang, S.; Zhang, Q.; Wei, X.; Pan, Y.; Zhao, J.; Xin, X.; Qin, C.; Wang, X.; Li, J.; et al. Diagnosis of thyroid cancer using

deep convolutional neural network models applied to sonographic images: A retrospective, multicohort, diagnostic study. Lancet
Oncol. 2019, 20, 193–201. [CrossRef]

9. Jaber, N. Can Artificial Intelligence Help See Cancer in New Ways? National Cancer Institute; 2022. Available online: www.
cancer.gov/news-events/cancer-currents-blog/2022/artificial-intelligence-cancer-imaging (accessed on 23 July 2023).

10. Simes, R.J. Treatment selection for cancer patients: Application of statistical decision theory to the treatment of advanced ovarian
cancer. J. Chronic Dis. 1985, 38, 171–186. [CrossRef]

11. Maclin, P.S.; Dempsey, J.; Brooks, J.; Rand, J. Using neural networks to diagnose cancer. J. Med. Syst. 1991, 15, 11–19. [CrossRef]
12. Astion, M.L.; Wilding, P. Application of neural networks to the interpretation of laboratory data in cancer diagnosis. Clin. Chem.

1992, 28, 34–38. [CrossRef]
13. Fielding, L.P.; Fenoglio-Preiser, C.M.; Freedman, L.S. The future of prognostic factors in outcome prediction for patients with

cancer. Cancer 1992, 70, 2367–2377. [CrossRef] [PubMed]
14. Cochran, A.J. Prediction of outcome for patients with cutaneous melanoma. Pigment Cell Res. 1997, 10, 162–167. [CrossRef]

[PubMed]
15. Burke, H.B.; Bostwick, D.G.; Meiers, I.; Montrioni, R. Prostate cancer outcome: Epidemiology and biostatistics. Anal. Quant. Cytol.

Histol. 2005, 27, 211–217. [PubMed]
16. Sun, R.; Fei, F.; Wang, M.; Jiang, J.; Yang, G.; Yang, N.; Jin, D.; Xu, Z.; Cao, B.; Li, J. Integration of metabolomics and machine

learning revealed tryptophan metabolites are sensitive biomarkers of pemetrexed efficacy in non-small cell lung cancer. Cancer
Med. 2023, 12, 19245–19259. [CrossRef] [PubMed]

17. Zhang, B.; Shi, H.; Wang, H. Machine learning and AI in cancer prognosis, prediction, and treatment selection: A critical approach.
J. Multidiscip. Healthc. 2023, 16, 1779–1791. [CrossRef] [PubMed]

18. Iqbal, M.J.; Javed, Z.; Sadia, H.; Qureshi, I.A.; Irshad, A.; Ahmed, R.; Malik, K.; Raza, S.; Abbas, A.; Pezzani, R.; et al. Clinical
applications of artificial intelligence and machine learning in cancer diagnosis: Looking into the future. Cancer Cell Int. 2021,
21, 270. [CrossRef]

19. Tran, K.A.; Kondrashova, O.; Bradley, A.; Williams, E.D.; Pearson, J.V.; Waddell, N. Deep learning in cancer diagnosis, prognosis
and treatment selection. Genome Med. 2021, 13, 152. [CrossRef]

20. Ryu, H.S.; Jin, M.S.; Park, J.H.; Lee, S.; Cho, J.; Oh, S.; Kwak, T.Y.; Woo, J.I.; Mun, Y.; Kim, S.W.; et al. Automated Gleason
scoring and tumor quantification in prostate core needle biopsy images using deep neural networks and its comparison with
pathologist-based assessment. Cancers 2019, 11, 1860. [CrossRef]

21. Pavlidis, N.; Pentheroudakis, G. Cancer of unknown primary site. Lancet 2012, 379, 1428–1435. [CrossRef]
22. Nagendra, L.; Pappachan, J.M.; Fernandez, C.J. Artificial intelligence in the diagnosis of thyroid cancer: Recent advances and

future directions. Artif. Intell. Cancer 2023, 4, 1–10. [CrossRef]
23. Lam, C.W.; Law, C.Y. Untargeted mass spectrometry-based metabolomic profiling of pleural effusions: Fatty acids as novel cancer

biomarkers for malignant pleural effusions. J. Proteome Res. 2014, 13, 4040–4046. [CrossRef] [PubMed]

https://doi.org/10.11604/pamj.2015.20.44.4271
https://www.ncbi.nlm.nih.gov/pubmed/26090002
https://doi.org/10.1158/0008-5472.CAN-20-3334
https://www.ncbi.nlm.nih.gov/pubmed/34185675
https://doi.org/10.1097/01.gco.0000192965.29449.da
https://www.ncbi.nlm.nih.gov/pubmed/16493263
https://doi.org/10.1007/s00261-018-1517-0
https://www.ncbi.nlm.nih.gov/pubmed/29492605
https://doi.org/10.14366/usg.20068
https://www.ncbi.nlm.nih.gov/pubmed/32660203
https://doi.org/10.1001/jamaoto.2019.3073
https://www.ncbi.nlm.nih.gov/pubmed/31647509
https://doi.org/10.1177/117693510600200030
https://doi.org/10.1016/S1470-2045(18)30762-9
www.cancer.gov/news-events/cancer-currents-blog/2022/artificial-intelligence-cancer-imaging
www.cancer.gov/news-events/cancer-currents-blog/2022/artificial-intelligence-cancer-imaging
https://doi.org/10.1016/0021-9681(85)90090-6
https://doi.org/10.1007/BF00993877
https://doi.org/10.1093/clinchem/38.1.34
https://doi.org/10.1002/1097-0142(19921101)70:9%3C2367::AID-CNCR2820700927%3E3.0.CO;2-B
https://www.ncbi.nlm.nih.gov/pubmed/1394064
https://doi.org/10.1111/j.1600-0749.1997.tb00479.x
https://www.ncbi.nlm.nih.gov/pubmed/9266604
https://www.ncbi.nlm.nih.gov/pubmed/16220832
https://doi.org/10.1002/cam4.6446
https://www.ncbi.nlm.nih.gov/pubmed/37605514
https://doi.org/10.2147/JMDH.S410301
https://www.ncbi.nlm.nih.gov/pubmed/37398894
https://doi.org/10.1186/s12935-021-01981-1
https://doi.org/10.1186/s13073-021-00968-x
https://doi.org/10.3390/cancers11121860
https://doi.org/10.1016/S0140-6736(11)61178-1
https://doi.org/10.35713/aic.v4.i1.1
https://doi.org/10.1021/pr5003774
https://www.ncbi.nlm.nih.gov/pubmed/25117182


Metabolites 2024, 14, 11 14 of 15

24. Aboud, O.; Liu, Y.A.; Fiehn, O.; Brydges, C.; Fragoso, R.; Lee, H.S.; Riess, J.; Hodeify, R.; Bloch, O. Application of machine learning
to metabolomic profile characterization in glioblastoma patients undergoing concurrent chemoradiation. Metabolites 2023, 13, 299.
[CrossRef] [PubMed]

25. Xie, Y.; Meng, W.Y.; Li, R.Z.; Wang, Y.W.; Qian, X.; Chan, C.; Yu, Z.F.; Fan, X.X.; Pan, H.D.; Xie, C.; et al. Early lung cancer
diagnostic biomarker discovery by machine learning methods. Transl. Oncol. 2021, 14, 100907. [CrossRef] [PubMed]

26. Schmidt, D.R.; Patel, R.; Kirsch, D.G.; Lewis, C.A.; Vander Heiden, M.G.; Locasale, J.W. Metabolomics in cancer research and
emerging applications in clinical oncology. CA Cancer J. Clin. 2021, 71, 333–358. [CrossRef] [PubMed]

27. Kouznetsova, V.L.; Kim, E.; Romm, E.L.; Zhu, A.; Tsigelny, I.F. Recognition of early and late stages of bladder cancer using
metabolites and machine learning. Metabolomics 2019, 15, 94. [CrossRef] [PubMed]

28. Kouznetsova, V.L.; Li, J.; Romm, E.; Tsigelny, I.F. Finding distinctions between oral cancer and periodontitis using saliva
metabolites and machine learning. Oral Dis. 2021, 27, 484–493. [CrossRef] [PubMed]

29. Cai, Z.; Xu, D.; Zhang, Q.; Zhang, J.; Ngai, S.M.; Shao, J. Classification of lung cancer using ensemble-based feature selection and
machine learning methods. Mol. Biosyst. 2015, 11, 791–800. [CrossRef]

30. Murata, T.; Yanagisawa, T.; Kurihara, T.; Kaneko, M.; Ota, S.; Enomoto, A.; Tomita, M.; Sugimoto, M.; Sunamura, M.; Hayashida,
T.; et al. Salivary metabolomics with alternative decision tree-based machine learning methods for breast cancer discrimination.
Breast Cancer Res. Treat. 2019, 177, 591–601. [CrossRef]

31. Yao, J.Z.; Tsigelny, I.F.; Kesari, S.; Kouznetsova, V.L. Diagnostics of ovarian cancer via metabolite analysis and machine learning.
Integr. Biol. 2023, 15, zyad005. [CrossRef]

32. Huang, L.; Wang, L.; Hu, X.; Chen, S.; Tao, Y.; Su, H.; Yang, J.; Xu, W.; Vedarethinam, V.; Wu, S.; et al. Machine learning of serum
metabolic patterns encodes early-stage lung adenocarcinoma. Nat. Commun. 2020, 11, 3556. [CrossRef] [PubMed]

33. Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem in 2021:
New data content and improved web interfaces. Nucleic Acids Res 2021, 49, D1388–D1395. [CrossRef] [PubMed]

34. Wishart, D.S.; Tzur, D.; Knox, C.; Eisner, R.; Guo, A.C.; Young, N.; Cheng, D.; Jewell, K.; Arndt, D.; Sawhney, S.; et al. HMDB: The
Human Metabolome Database. Nucleic Acids Res. 2007, 35, D521–D526. [CrossRef] [PubMed]

35. Yap, C.W. PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem. 2011,
32, 1466–1474. [CrossRef] [PubMed]

36. Frank, E.; Hall, M.A.; Witten, I.H. Appendix B: The WEKA Workbench. In Data Mining: Practical Machine Learning Tools and
Techniques, 4th ed.; Morgan Kaufmann: Cambridge, MA, USA, 2016; pp. 573–600.

37. MetaboAnalyst 5.0—User-Friendly, Streamlined Metabolomics Data Analysis. Available online: https://www.metaboanalyst.ca/
(accessed on 13 July 2023).

38. Lu, Y.; Pang, Z.; Xia, J. Comprehensive investigation of pathway enrichment methods for functional interpretation of LC-MS
global metabolomics data. Brief. Bioinform. 2023, 24, bbac553. [CrossRef]

39. Du, Y.; Fan, P.; Zou, L.; Jiang, Y.; Gu, X.; Yu, J.; Zhang, C. Serum metabolomics study of papillary thyroid carcinoma based on
HPLC-Q-TOF-MS/MS. Front. Cell Dev. Biol. 2021, 9, 593510. [CrossRef]

40. Davidson, C.D.; Carr, F.E. Review of pharmacological inhibition of thyroid cancer metabolism. J. Cancer Metastasis Treat. 2021,
7, 45. [CrossRef]

41. Wang, H.; Wang, X.; Xu, L.; Zhang, J.; Cao, H. High expression levels of pyrimidine metabolic rate–limiting enzymes are adverse
prognostic factors in lung adenocarcinoma: A study based on The Cancer Genome Atlas and Gene Expression Omnibus datasets.
Purinergic Signal 2020, 16, 347–366. [CrossRef]

42. Lai, H.S.; Lee, J.C.; Lee, P.H.; Wang, S.T.; Chen, W.J. Plasma free amino acid profile in cancer patients. Semin Cancer Biol. 2005, 15,
267–276. [CrossRef]

43. Wiggins, T.; Kumar, S.; Markar, S.R.; Antonowicz, S.; Hanna, G.B. Tyrosine, phenylalanine, and tryptophan in gastroesophageal
malignancy: A systematic review. Cancer Epidemiol. Biomark. Prev. 2015, 24, 32–38. [CrossRef]

44. Watanabe, A.; Higashi, T.; Sakata, T.; Nagashima, H. Serum amino acid levels in patients with hepatocellular carcinoma. Cancer
1984, 54, 1875–1882. [CrossRef] [PubMed]

45. Nguen, T.N.; Nguen, H.Q.; Le, D.H. Unveiling prognostics biomarkers of tyrosine metabolism reprogramming in liver cancer by
cross-platform gene expression analyses. PLoS ONE 2020, 15, e0229276. [CrossRef] [PubMed]

46. Ciavardelli, D.; Bellomo, M.; Consalvo, A.; Crescimanno, C.; Vella, V. Metabolic alterations of thyroid cancer as potential
therapeutic targets. Biomed Res. Int. 2017, 2017, 2545031. [CrossRef] [PubMed]

47. Sun, W.Y.; Kim, H.M.; Jung, W.H.; Koo, J.S. Expression of serine/glycine metabolism-related proteins is different according to the
thyroid cancer subtype. J. Transl. Med. 2016, 14, 168. [CrossRef] [PubMed]

48. Czumaj, A.; Szrok-Jurga, S.; Hebanowska, A.; Turyn, J.; Swierczynski, J.; Sledzinski, T.; Stelmanska, E. The pathophysiological
role of CoA. Int. J. Mol. Sci. 2020, 21, 9057. [CrossRef] [PubMed]

49. McAllister, R.A.; Fixter, L.M.; Campbell, E.H. The effect of tumour growth on liver pantothenate, CoA, and fatty acid synthetase
activity in the mouse. Br. J. Cancer 1988, 57, 83–86. [CrossRef]

50. Chen, C.L.; Hsu, S.C.; Ann, D.K.; Yen, Y.; Kung, H.J. Arginine signaling and cancer metabolism. Cancers 2021, 13, 3541. [CrossRef]
51. Qiu, F.; Chen, Y.R.; Liu, X.; Chu, C.Y.; Shen, L.J.; Xu, J.; Gaur, S.; Forman, H.J.; Zhang, H.; Zheng, S.; et al. Arginine starvation

impairs mitochondrial respiratory function in ASS1-deficient breast cancer cells. Sci. Signal 2014, 7, ra31. [CrossRef]

https://doi.org/10.3390/metabo13020299
https://www.ncbi.nlm.nih.gov/pubmed/36837918
https://doi.org/10.1016/j.tranon.2020.100907
https://www.ncbi.nlm.nih.gov/pubmed/33217646
https://doi.org/10.3322/caac.21670
https://www.ncbi.nlm.nih.gov/pubmed/33982817
https://doi.org/10.1007/s11306-019-1555-9
https://www.ncbi.nlm.nih.gov/pubmed/31222577
https://doi.org/10.1111/odi.13591
https://www.ncbi.nlm.nih.gov/pubmed/32762095
https://doi.org/10.1039/C4MB00659C
https://doi.org/10.1007/s10549-019-05330-9
https://doi.org/10.1093/intbio/zyad005
https://doi.org/10.1038/s41467-020-17347-6
https://www.ncbi.nlm.nih.gov/pubmed/32678093
https://doi.org/10.1093/nar/gkaa971
https://www.ncbi.nlm.nih.gov/pubmed/33151290
https://doi.org/10.1093/nar/gkl923
https://www.ncbi.nlm.nih.gov/pubmed/17202168
https://doi.org/10.1002/jcc.21707
https://www.ncbi.nlm.nih.gov/pubmed/21425294
https://www.metaboanalyst.ca/
https://doi.org/10.1093/bib/bbac553
https://doi.org/10.3389/fcell.2021.593510
https://doi.org/10.20517/2394-4722.2021.77
https://doi.org/10.1007/s11302-020-09711-4
https://doi.org/10.1016/j.semcancer.2005.04.003
https://doi.org/10.1158/1055-9965.EPI-14-0980
https://doi.org/10.1002/1097-0142(19841101)54:9%3C1875::AID-CNCR2820540918%3E3.0.CO;2-O
https://www.ncbi.nlm.nih.gov/pubmed/6090002
https://doi.org/10.1371/journal.pone.0229276
https://www.ncbi.nlm.nih.gov/pubmed/32542016
https://doi.org/10.1155/2017/2545031
https://www.ncbi.nlm.nih.gov/pubmed/29234677
https://doi.org/10.1186/s12967-016-0915-8
https://www.ncbi.nlm.nih.gov/pubmed/27277113
https://doi.org/10.3390/ijms21239057
https://www.ncbi.nlm.nih.gov/pubmed/33260564
https://doi.org/10.1038/bjc.1988.14
https://doi.org/10.3390/cancers13143541
https://doi.org/10.1126/scisignal.2004761


Metabolites 2024, 14, 11 15 of 15

52. Zou, S.; Wang, X.; Liu, P.; Ke, C.; Xu, S. Arginine metabolism and deprivation in cancer therapy. Biomed. Pharmacother. 2019,
118, 109210. [CrossRef]

53. Kapalka, G.M. Depression. In Nutritional and Herbal Therapies for Children and Adolescents: A Handbook for Mental Health Clinicians;
Academic Press: London, UK, 2010; Chapter 6; pp. 141–188.

54. Abasov, I.T. Chromatographic analysis of free amino acids of gastric juice in patients with cancer and other stomach diseases.
Gastroenterol. Jpn. 1969, 4, 269–273. [CrossRef]

55. Wang, T.; Sun, Z.; Wang, Y.; Li, F.; Zhou, X.; Tian, X.; Wang, S. Diagnosis of papillary thyroid carcinoma by 1H NMR spectroscopy-
based metabolomic analysis of whole blood. Drug Discov. Ther. 2020, 14, 187–196. [CrossRef] [PubMed]

56. Wojakowska, A.; Chekan, M.; Marczak, Ł.; Polanski, K.; Lange, D.; Pietrowska, M.; Widlak, P. Detection of metabolites
discriminating subtypes of thyroid cancer: Molecular profiling of FFPE samples using the GC/MS approach. Mol. Cell Endocrinol.
2015, 417, 149–157. [CrossRef] [PubMed]

57. Obermeyer, Z.; Emanuel, E.J. Predicting the Future-Big Data, Machine Learning, and Clinical Medicine. N. Engl. J. Med. 2016, 375,
1216–1219. [CrossRef] [PubMed]

58. Ferro, M.; Falagario, U.G.; Barone, B.; Maggi, M.; Crocetto, F.; Busetto, G.M.; Giudice, F.D.; Terracciano, D.; Lucarelli, G.; Lasorsa,
F.; et al. Artificial Intelligence in the Advanced Diagnosis of Bladder Cancer-Comprehensive Literature Review and Future
Advancement. Diagnostics 2023, 13, 2308. [CrossRef]

59. Teng, X.; Gong, Y. Research on application of machine learning in Data Mining. IOP Conf. Ser. Mater. Sci. Eng. 2018, 392, 062202.
[CrossRef]

60. Chen, P.; Pan, C. Diabetes classification model based on boosting algorithms. BMC Bioinform. 2018, 19, 109. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.biopha.2019.109210
https://doi.org/10.1007/BF02775798
https://doi.org/10.5582/ddt.2020.03062
https://www.ncbi.nlm.nih.gov/pubmed/32848112
https://doi.org/10.1016/j.mce.2015.09.021
https://www.ncbi.nlm.nih.gov/pubmed/26415588
https://doi.org/10.1056/NEJMp1606181
https://www.ncbi.nlm.nih.gov/pubmed/27682033
https://doi.org/10.3390/diagnostics13132308
https://doi.org/10.1088/1757-899X/392/6/062202
https://doi.org/10.1186/s12859-018-2090-9

	Introduction 
	Artificial Intelligence, Computer-Aided Diagnostics, and Machine Learning in Cancer Therapy 
	Radiomics and AI for Diagnostics of TC 
	Metabolomics in Cancer Diagnosis 

	Materials and Methods 
	Approaches Overview 
	PubChem 
	The Human Metabolome Database 
	PaDEL-Descriptor 
	Waikato Environment for Knowledge Analysis 
	MetaboAnalyst 

	Results 
	Metabolite Set 
	Metabolic Pathways 
	Pyrimidine Metabolism 
	Tyrosine Metabolism 
	Glycine, Serine, and Threonine Metabolism 
	Pantothenate and CoA Biosynthesis 
	Arginine Biosynthesis 
	Phenylalanine Metabolism 
	Phenylalanine, Tyrosine, and Tryptophan Biosynthesis 

	Machine-Learning Classifiers 
	Receiver Operating Characteristics 
	Independent Testing 

	Discussion 
	Conclusions 
	Future Work 
	References



