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Abstract

Herein we report the copper-catalyzed silylation of propargylic difluorides to generate axially 

chiral, tetrasubstituted monofluoroallenes in both good yields (27 examples >80%) and 

enantioselectivities (82–98% ee). Compared to previously reported synthetic routes to axially 

chiral allenes (ACAs) from prochiral substrates, a mechanistically distinct reaction has been 

developed: the enantiodiscrimination between enantiotopic fluorides to set an axial stereocenter. 

DFT calculations and vibrational circular dichroism (VCD) suggest that β-fluoride elimination 

from an alkenyl copper intermediate likely proceeds through a syn-β-fluoride elimination pathway 

rather than an anti-elimination pathway. The effects of the C1-symmetric Josiphos-derived ligand 

on reactivity and enantioselectivity were investigated. Not only does this report showcase that 

alkenyl copper species (like their alkyl counterparts) can undergo β-fluoride elimination, but this 

elimination can be achieved in an enantioselective fashion.
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INTRODUCTION

The pursuit of synthetic methods to access structurally diverse allenes stems from their 

applications in both medicinal and materials chemistry as well as their ability to serve 

as a reactive functional group for further synthetic manipulations.1,2 These cumulenes 

can exhibit axial chirality, and most of the naturally occurring allenic compounds that 

have been isolated are nonracemic.1a-c Although enantiopure bromoallenes have been 

discovered in nature (Scheme 1a) and axially chiral bromo-, chloro-, and iodoallenes have 

been synthesized, the corresponding axially chiral fluoroallenes are largely unknown.3,4 

Specifically, to the best of our knowledge, there is a single report where an enantioenriched 

tetrasubstituted, axially chiral monofluoroallene has been prepared, albeit in modest 

enantioselectivity.4c Due to a lack of general synthetic routes toward this chiral, fluorinated 

motif, their potential applications have remained unexplored.

An emerging route toward the catalytic synthesis of ACAs has been from prochiral 

substrates.5 This strategy overcomes the requirement for a stoichiometric amount of a chiral 

auxiliary and/or enantioenriched substrates. Prochiral substrates that have been transformed 

into ACAs include propargylic electrophiles, 1,3-enynes, terminal alkynes, 1,3-dienes, 

racemic allenes, and vinyl triflates.6 In the case of vinyl triflates, it was demonstrated that 

β-hydride elimination occurred in an enantioselective fashion, revealing a new mechanistic 

route for the synthesis of ACAs.6f Of the classes of ACAs (1,3-di-, tri-, and tetrasubstituted), 

tetrasubstituted ACAs remain difficult to synthesize in high enantiopurity.7

Moreover, the incorporation of a functional group directly attached to ACAs that permits 

further transformations has gained popularity as evidenced by recent reports of boryl and 

silyl substituted ACAs.8,9 Access to tetrasubstituted, boryl, or silyl monofluoro ACAs 

would permit an array of further transformations that could generate quaternary, fluorine-

containing stereocenters by way of axial-to-point chirality transfer.3a,10

The development of defluorination methods of (poly)-fluorinated compounds has emerged 

as a complementary strategy to access complex, fluorine-functionalized motifs that have 

typically been accessed from nonfluorinated substrates.11 Of the metals that catalyze such 
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defluorination reactions, copper has been shown to be exceptionally competent, as evidenced 

by the numerous reports of catalytic hydrodefluorinations, defluoroborylations, and 

defluorosilylations of fluoroarenes and fluoroolefins.12 An emerging trend in this field is the 

enantioselective defluorination of allylic CF3 or CF2R groups, forging stereocenters adjacent 

to mono- and difluoroolefins (Scheme 1b).13 Recently, a rare example of enantioselective 

defluorination via oxidative addition to a gem-difluoride has been reported as a method 

to generate products with a fluorine-containing stereogenic unit.14 We envisioned that a 

mechanistically different approach to the desymmetrization of difluoromethylene groups, 

proceeding through an enantioselective β-fluoride elimination reaction, might be employed 

in the enantioselective synthesis of monofluoro ACAs (Scheme 1c).

To this end, we hypothesized that reaction of propargylic difluorides with a suitable 

chiral copper nucleophile would form an alkenyl copper species that could undergo 

an enantioselective β-fluoride elimination to generate tetrasubstituted monofluoro ACAs 

(Scheme 1c). Potential obstacles toward achieving this transformation included controlling 

both the regioselectivity15 and enantioselectivity of the process, avoiding undesired 

reactivity of the alkenyl copper intermediate,16 and preventing further silylation of the 

product.17 Herein we demonstrate that β-fluoride elimination from an alkenyl copper species 

is possible and the discrimination of enantiotopic fluorides is a viable elementary process to 

achieve asymmetric synthesis of ACAs. DFT studies predict that this elimination proceeds 

through a syn-elimination pathway, which is in contrast to some studies of alkyl copper 

species that undergo β-fluoride elimination.12b,g-i,13b,c,f,g

RESULTS AND DISCUSSION

We began our investigation by determining if β-fluoride elimination was feasible from a 

vinyl copper intermediate. In the presence of a suitable base, the borylation of 1a with 

B2pin2 generated the desired boryl monofluoroallene in 46% NMR yield (eq 1); however, 

attempts at isolating this product were

(1)

unsuccessful.8b We hypothesized that the corresponding silyl monofluoroallene of 1a would 

be isolable and gratifyingly discovered that the silylation of 1a with PhMe2SiBpin (2) led to 

1b. After a brief optimization of conditions, over 40 chiral ligands were examined for this 

transformation. Of the chiral ligands employed, only four gave the desired allene in greater 

than 20% ee.

Fortunately (R,S)-Josiphos afforded 1b in a modest yield (71%) and promising 

enantioselectivity (20% ee). A series of Josiphos ligands were generated to evaluate 

their steric and electronic effects (see Supporting Information Tables S1 and S2) on the 
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reaction. Josiphos ligands containing aryl groups on both phosphorus atoms demonstrated 

good reactivity and enantioselectivity, specifically when the alkyldiarylphosphorus moiety 

possessed bulky 3,5-substituted arenes (Table 1, compare entries 2 and 3; Supporting 

Information Tables S2 and S3). However, once the 3,5-substituents became sterically too 

demanding, for example, with the TTB derivative, the reactivity dropped significantly (entry 

5). Moreover, it appeared that steric rather than electronic factors played a decisive role in 

determining the enantioselectivity of the transformation (compare entries 3 and 8).

Further optimization led to simplified reaction conditions (Table 2). By lowering the 

temperature and changing the solvent, the enantiomeric excess of 1b improved to 90%, 

but the overall conversion of 1a dropped (entry 1). Increasing the amount of phenoxide 

base resulted in decoordination of the ligand, determined by 31P NMR spectroscopy, and 

erosion of the ee of 1b.18 By use of an insoluble source of fluoride (CsF), an increase in 

the chemical yield of 1b was achieved (83%, entry 2). Possible roles of CsF could be either 

trapping FBpin19 and/or releasing CsOAr from ArOBpin.20 Fortunately, the transformation 

proceeded with CsF as the sole base, removing the chance of phosphine decoordination due 

to excess phenoxide.21 The reaction proceeded well in nonpolar, low coordinating solvents 

(entries 4–7), and the removal of MeCN led to in an increase in catalytic activity (entries 8, 

9). Switching to CuOTf·1/2C6H6 as the copper source afforded the desired allene in almost 

quantitative yield (entry 10).

With the optimal conditions established, an alternative synthetic route employing 

readily available material to prepare propargylic difluorides was developed (Scheme 2). 

The decarboxylative bromination of difluorocarboxylic acids and the copper-catalyzed 

Sonogashira cross-coupling of terminal alkynes with difluorobenzyl bromides afforded 

difluoroalkynes, which were subjected to defluorosilylation under the optimized conditions. 

A range of functional groups were tolerated in the copper catalyzed transformation, 

affording the desired allenes 1–24b in high yields (83–98%) and in good enantioselectivities 

(82–98%) after isolation (Table 3). Notably, alkynes (19b), alkenes (20b), enynes (24b), 

aldehydes (8b), ketones (9b), propargylic acetates (23b) as well as alkyl and aryl halides 

(3b and 6b) were tolerated. Coordinating heterocycles (14–16b, 18b, and 25b), amides 

(7b, 11–13b), and nitriles (5b and 10b) also did not hamper catalysis. Although changing 

the electronics of the aryl ring slightly decreased the enantiomeric excess of the reaction 

(1–6b), increasing the steric bulk of the aryl group was well tolerated (25b). Although many 

functional groups were tolerated, the reaction proved more sensitive to alterations of the 

substituents directly attached to the allene, which could affect the barrier of silylation of the 

alkyne (26–27b) or impact the C─F bond strength (28–29b).

To explore the scalability of this method, 1b was synthesized on a 6 mmol scale without 

a significant loss in enantioselectivity or chemical yield. It was discovered that other 

silylboranes could be utilized for this transformation when (R,S)-3,5-Trip-Josiphos was 

employed as the ligand (1b-BnMe2Si, 1b-CyMe2Si, and 1b-Et3Si). These allenyl silanes 

were synthesized on gram scales with comparable yields and enantioselectivities to 1b-
PhMe2Si.
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Determination of the absolute configuration of allene 10b was achieved using vibrational 

circular dichroism (VCD).22 After a careful conformational search (see Supporting 

Information for details) at four levels of theory, B3LYP/6-31G(d), B3PW91/6-31G(d), 

B3LYP/cc-pVTZ, and B3PW91/cc-pVTZ,23 the resulting conformers were Boltzmann 

averaged and plotted with a line width of 5 cm−1 to produce the final theoretical spectra. The 

IR and VCD spectra were then frequency scaled23 for comparison to the experimental data. 

Calculations at all four levels of theory matched well, proving the absolute configuration 

of 10b to be S. Of the four methods employed, the best agreement with experimental data 

was from the B3PW91/cc-pVTZ level. The comparison of experimental and theoretical 

spectra was quantified24 using BioTools (Jupiter, FL) CompareVOA software, with high 

neighborhood similarity for IR (90.4) and VCD (69.6), ESI (enantiomeric similarity index) 

for VCD (62.9), and a confidence level of 99%. Of particular note was the asymmetric allene 

C─C─C stretch observed at 1933 cm−1, which was one of many closely correlated bands 

between experiment and theory. In addition to allene 10b, the absolute configuration of 

1b-Et3Si, 12b, 17b, and 25b were also determined to be S by VCD analysis (see Supporting 

Information).

On the basis of previous reports regarding CuF12c,e,16a,21,25 and copper silyl 

species,15b,f,17d,26 we propose the following mechanism for the copper-catalyzed reaction 

(Figure 1). First, a complex between Josiphos and [CuOTf] undergoes salt metathesis with 

CsF to generate JosiphosCuF (Cu1).16a,21,25d σ-Bond metathesis with PhMe2SiBpin (2) 

generates JosiphosCuSiMe2Ph (Cu2) and releases FBpin.12c-e Subsequent coordination and 

silylation of the triple bond generates an alkenyl Cu species (Cu3).15a,e,27 A β-fluoride 

elimination12g regenerates Cu1, which is trapped by FBpin,19,28 215c or decomposes the 

formed allenylsilane (c). As FBpin is more Lewis acidic than B2pin2,28 the same is likely 

true with 2. By using a judicious amount of CsF and a nonpolar solvent, we propose that the 

precipitation of Cs[F2Bpin]19,20 drives this reaction forward. 1H, 19F, and 11B NMR studies 

have identified Cu1, Cu2, LCuF2Bpin, as well as LCuOH and confirmed the generation 

of Cu2 from both Cu1 and LCuF2Bpin (see Supporting Information section 7). Cu2 was 

also shown to react with alkyne 1a, generating both allene 1b and FBpin. It appears that 

LCuF2Bpin acts as a reservoir of CuIF, and under catalytic conditions, a monomeric or 

dimeric CuF was not observed. Over the course of the reaction only Cu2, LCuF2Bpin, 

and LCuOH were observed, which converged to Cu2 after the alkyne has been consumed 

(see Supporting Information section 7). Although the exact structure of Cu1 is unknown, 

the speciation of Cu1 appears to be both solvent and temperature dependent, in which 

the former has been observed for other Josiphos copper halide complexes (see Supporting 

Information section 7).29 On the basis of our experiments, we propose that the silylation of 

the alkyne and the β-fluoride elimination reactions are the rate- and selectivity-determining 

steps, respectively. Using (R,S)-3,5-TES-JosiphosCuF2Bpin as a catalyst, the desired allene 

1b was obtained in a similar yield and enantiomeric excess, demonstrating its catalytic 

competence (see Supporting Information section 7).

Density functional theory (DFT) calculations were performed to investigate the 

reaction mechanism and origin of enantioselectivity of this Cu-catalyzed asymmetric 

silylation of propargylic difluorides. The DFT calculations were performed at the M06/
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SDD(Cu,Fe,Cs)-6-311+G(d,p)/SMD-(toluene)//B3LYP-D3(zero)/SDD(Cu,Fe,Cs)-6-31G(d) 

level of theory using difluoroalkyne 27a and PhMe2SiBpin (2) as model substrates. The 

(R,S)-3,5-TMS-Josiphos ligand was used in the DFT calculations for simplicity because 

the use of this ligand in the ligand screening provided only slightly lower ee than using 

(R,S)-3,5-TES-Josiphos (Table 1, entries 6 and 7). On the basis of the proposed catalytic 

cycle, the computed reaction energy profile is shown in Figure 2. The association of 

FBpin to monomeric LCuF (26) to form a heterodimer (29) is exergonic by 4.0 kcal/mol, 

suggesting that the more stable complex 29 can be an off-cycle reservoir of CuIF. Although 

the dimerization of LCuF is exergonic by 7.3 kcal/mol, its formation is expected to be less 

favorable than forming 29 due to the low concentrations of LCuF under catalytic conditions 

(see Figure S1 for detailed discussions about the equilibrium of 26, 29, and the dimer of 

LCuF).

The σ-bond metathesis between monomeric LCuF (26) and PhMe2SiBpin30 (2) takes place 

via a four-membered cyclic transition state (TS-1) to form silyl copper intermediate 30 and 

FBpin. This step requires a low activation barrier of 6.7 kcal/mol with respect to 26 and is 

exergonic by 24.7 kcal/mol. Migratory insertion of alkyne 27a into the silyl copper (TS-2) 

gives alkenyl copper species 31. This migratory insertion is highly regioselective for the 

formation of Cu─C bond at the alkyne terminus adjacent to the difluoromethylene. The 

transition state leading to the other regioisomer, TS-2′, is 10.9 kcal/mol higher in energy 

than TS-2. The high level of regioselectivity is due to steric repulsions between the silyl and 

the more hindered alkyne terminus (C1) in TS-2′ as well as inductive effects of the difluoro 

substituents that stabilize the building of negative charge at C1 in TS-2. From 31, both 

syn12g-i and anti13b β-fluoride elimination pathways were calculated. The syn-elimination of 

either of the two diastereotopic β-F in 31 (via TS-3 and TS-4) involves a four-membered 

cyclic transition state, while the anti-β-fluoride elimination is facilitated by CsF as a Lewis 

acid (via TS-5 and TS-6). The FBPin-facilitated anti-elimination was also computed and is 

also less favorable than the syn-elimination (see Figure S3). The syn-elimination pathways 

require much lower barriers than the anti-elimination, which is in contrast to a computational 

study by Hoveyda and Torker that suggested the β-fluoride elimination from alkyl copper 

species favors the anti-pathway due to Lewis acid (i.e., Na+) coordination to the F− leaving 

group and the Bpin group on the substrate.13b In the present study, the lack of such chelating 

Lewis-acid coordination in the anti-pathway, the weaker Lewis acidity of CsF, and the 

strain release effect that alleviates steric repulsions between the SiMe2Ph group and the 

Cu in the syn-elimination transition state changed the reaction mechanism to favor the 

syn-elimination.31

Among the three key elementary steps in the catalytic cycle, the alkyne migratory insertion 

(TS-2) has the highest activation free energy (ΔG‡ = 19.9 kcal/mol with respect to 30). 

This finding is consistent with our experimental results that suggest this step being the rate-

determining step (vide supra). The enantioselectivity-determining step is the syn-β-fluoride 

elimination. TS-3, which leads to the (S)-enantiomer of the monofluoroallene product, 

is 1.9 kcal/mol more stable than TS-4 that leads to the (R)-enantiomer. The predicted 

enantioselectivity is consistent with the absolute configuration of the product identified by 

the VCD analysis.
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Next, we performed a detailed analysis to investigate the effects of the Josiphos ligand 

on the reactivity and enantioselectivity of the β-fluoride elimination. Because of the 

conformational flexibility of the (R,S)-3,5-TMS-Josiphos ligand,32 a careful conformational 

search was performed for all intermediates and transition states in the catalytic cycle. These 

calculations revealed at least four different conformers of the 3,5-TMS-Josiphos-supported 

copper complexes. The two most stable and catalytically active ligand conformations A 
and B are shown in Table 4 (see Figures S4-S6 for all possible ligand conformations). 

Ligand conformation A involves a twist-boat-type six-membered ring and is more favorable 

in the copper fluoride (26), the σ-bond metathesis transition state (TS-1), and the silyl 

copper intermediate (30). In more sterically encumbered structures, including the migratory 

insertion transition state (TS-2), alkenyl copper (31), and the β-fluoride elimination 

transition states (TS-3 and TS-4), ligand conformation B becomes more favorable. This 

ligand conformation involves a half-chair type six-membered ring, which points the Ar and 

Ph groups in quadrants I and II away from the Cu center. As such, the bulky SiMe2Ph group 

is placed between these unoccupied quadrants to minimize steric repulsions between the 

ligand and the SiMe2Ph group on the substrate.

Ligand conformation B not only stabilizes the silylalkenyl copper species but also plays 

a significant role in controlling the enantioselectivity of the β-fluoride elimination. The 

P-phenyl group in quadrant III and the P-3,5-TMS-phenyl group in quadrant IV point 

toward the Cu center and thus occupy these quadrants. The larger size of the 3,5-TMS-

phenyl compared to phenyl indicates that the ligand–substrate repulsions in quadrant IV 

would be more pronounced than those in quadrant III. Indeed, quadrant diagrams of the β-

fluoride elimination transition states (Figure 3) support this hypothesis. In the less favorable 

transition state TS-4, the phenyl group on the substrate is located in the more occupied 

quadrant IV, leading to steric repulsion with a TMS group on the ligand. By contrast, in the 

more favorable β-fluoride elimination transition state TS-3, the much smaller fluoro group 

is located in quadrant IV, and thus the ligand–substrate steric repulsions are diminished. 

Next, we performed energy decomposition analysis (EDA)33 calculations to quantitatively 

analyze the ligand–substrate noncovalent interactions in TS-3 and TS-4 (see Supporting 

Information for computational details). The EDA calculations revealed that the dominant 

factor controlling the enantioselectivity is the Pauli repulsion (i.e., steric repulsion) between 

the (R,S)-3,5-TMS-Josiphos ligand and the substrate. The Pauli repulsion energy (ΔEPauli) 

in TS-4 is 1.7 kcal/mol higher than that in TS-3 and thus destabilizes the former transition 

state.

Finally, we calculated the enantioselectivity-determining syn-β-F elimination transition 

states of the reaction of the same substrate (27a) catalyzed by a SegPhos-supported Cu 

complex. The computed enantioselectivity is diminished (ΔΔG‡ = 0.2 kcal/mol, Figure S7), 

indicating the C2-symmetric SegPhos ligand is not effective for asymmetric induction. This 

prediction is consistent with the low ee of 12% obtained experimentally at 65°C with 5 

mol % CuCl, 40 mol % sodium phenoxide, and 6 mol % SegPhos ligand. Taken together, 

these ligand effect analyses revealed the unique roles of the conformationally flexible C1-

symmetric Josiphos ligand, where it lowers the activation barrier for the rate-determining 

alkyne migratory insertion step and improves the enantioselectivity of the β-F elimination.
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CONCLUSION

The first copper-catalyzed, enantioselective β-fluoride elimination has been achieved. The 

resulting monofluoro ACAs represent the first examples of fluorine-containing, chiral 

tetrasubtituted allenes.34 It is expected that such a motif will find value in pharmaceutical 

and agrochemical chemistry in addition to being a valuable building block for the generation 

of more elaborate fluorine-containing stereocenters. DFT calculations of the reaction 

mechanisms predicted that this elimination occurs in a syn-fashion, which is promoted 

by strain release of the Z-β-silylalkenyl copper intermediate. The unique roles of the 

C1-symmetric Josiphos-derived ligand in promoting the reactivity and enantioselectivity 

were investigated. It is believed that lessons learned from this desymmetrization could 

be leveraged for the creation of other fluorine-containing stereocenters via defluorination 

pathways.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Proposed catalytic cycle.
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Figure 2. 
Computed reaction energy profiles of the Cu-catalyzed silylation and asymmetric β-fluoride 

elimination. Gibbs free energies and enthalpies (in kcal/mol) are with respect to the 

monomeric copper fluoride 26.
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Figure 3. 
Origin of enantioselectivity in syn-β-fluoride elimination. Most hydrogen atoms are omitted 

for clarity. Gibbs free energies and enthalpies are with respect to 31. ΔEPauli is the Pauli 

repulsion energy between the substrate and the Josiphos ligand from EDA calculations.
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Scheme 1. 
Allenyl Halide Natural Products and Synthesis of Monofluoro ACAs via Enantioselective 

β-Fluoride Elimination
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Scheme 2. 
Improved Synthesis of Propargylic Difluorides
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Table 1.

Structural Effect of Josiphos on Transformation
a

entry R; R' yield (SM %)
b

ee (%)
c

1 Me; H 59% (23) 45

2 Me; OMe 31% (14) 44

3 tBu; OMe 41% (<1) 70

4 Mes; H 58% (38) 75

5 TTB; H 3% (79) nd

6 TMS; H 73% (<1) 75

7 TES; H 66% (<1) 83

8 CF3; H 43% (<2) 71

9 iPr(F7); H 44% (43) 86

a
Standard conditions: 1a (0.10 mmol, 1.0 equiv), 2 (0.135 mmol, 1.35 equiv), CuCl (5 mol %), L (6 mol %), THF (1.0 mL), 65 °C, 24 h.

b
Yield was determined by 19F NMR of crude reaction, using PhF as an internal standard.

c
Determined by HPLC with a chiral stationary phase.

J Am Chem Soc. Author manuscript; available in PMC 2022 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

O’Connor et al. Page 21

Ta
b

le
 2

.

R
ea

ct
io

n 
O

pt
im

iz
at

io
na

en
tr

y
C

u
ba

se
 (

m
ol

 %
)

so
lv

en
t

yi
el

d 
(S

M
 %

)b
ee

 (
%

)c

1
C

u(
M

eC
N

) 4
B

F 4
A

 (
20

)
Ph

M
e

50
%

 (
49

)
90

2
“

A
 (

20
),

 C
sF

 (
10

0)
“

83
%

 (
13

)
90

3
“

C
sF

 (
15

0)
“

75
%

 (
11

)
91

4
C

u(
M

eC
N

) 4
B

F 4
“

T
H

F
39

%
 (

48
)

74

5
“

“
di

ox
an

e
65

%
 (

20
)

91

6
“

“
cy

cl
oh

ex
an

e
50

%
 (

31
)

87

7
“

“
M

T
B

E
75

%
 (

10
)

92

8
“d

“
“

74
%

 (
<

1)
91

9
C

u(
M

eC
N

) 4
O

T
fd

“
“

82
%

 (
4)

90

10
C

uO
T

f·
1 /

2C
6H

6
C

sF
 (

16
0)

98
%

 (
–)

90

a St
an

da
rd

 c
on

di
tio

ns
: 1

a 
(0

.1
0 

m
m

ol
, 1

.0
 e

qu
iv

),
 2

 (
0.

13
5 

m
m

ol
, 1

.3
5 

eq
ui

v)
, [

C
u]

 (
5 

m
ol

 %
),

 L
 (

6 
m

ol
 %

),
 s

ol
ve

nt
 (

1.
5 

m
L

),
 3

2 
°C

, 2
4 

h.
 A

 =
 N

aO
(2

-O
M

eC
6H

4)
.

b Y
ie

ld
 w

as
 d

et
er

m
in

ed
 b

y 
19

F 
N

M
R

 o
f 

cr
ud

e 
re

ac
tio

n,
 u

si
ng

 P
hF

 a
s 

an
 in

te
rn

al
 s

ta
nd

ar
d.

c D
et

er
m

in
ed

 b
y 

H
PL

C
 w

ith
 a

 c
hi

ra
l s

ta
tio

na
ry

 p
ha

se
.

d M
eC

N
 r

em
ov

ed
 b

ef
or

e 
re

ac
tio

n.

J Am Chem Soc. Author manuscript; available in PMC 2022 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

O’Connor et al. Page 22

Ta
b

le
 3

.

Sc
op

e 
of

 A
sy

m
m

et
ri

c 
β-

Fl
uo

ri
de

 E
lim

in
at

io
na

a St
an

da
rd

 c
on

di
tio

ns
: 1

–2
5a

 (
0.

20
 m

m
ol

, 1
.0

 e
qu

iv
),

 2
 (

0.
27

 m
m

ol
, 1

.3
5 

eq
ui

v)
, C

uO
T

f·
½

C
6H

6 
(6

 m
ol

 %
),

 L
 (

7 
m

ol
 %

),
 C

sF
 (

1.
6–

1.
8 

eq
ui

v)
, 9

:1
 P

hM
e:

M
T

B
E

 o
r 

M
T

B
E

 (
3.

0 
m

L
),

 3
5–

45
 °

C
, 2

4 
h.

 

R
ep

or
te

d 
yi

el
ds

 a
re

 o
f 

is
ol

at
ed

 a
lle

ne
. E

na
nt

io
m

er
ic

 e
xc

es
s 

w
as

 d
et

er
m

in
ed

 b
y 

H
PL

C
 w

ith
 a

 c
hi

ra
l s

ta
tio

na
ry

 p
ha

se
.

J Am Chem Soc. Author manuscript; available in PMC 2022 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

O’Connor et al. Page 23
b 1a

 (
6.

0 
m

m
ol

),
 C

sF
(2

5%
)–

C
aF

2 
(1

.6
 e

qu
iv

),
 3

0 
h.

c 1a
 (

2.
5–

3.
0 

m
m

ol
),

 R
3S

iB
pi

n 
(1

.3
5–

1.
45

 e
qu

iv
),

 C
u 

(8
–9

 m
ol

 %
),

 3
,5

-T
ri

pJ
os

ip
ho

s 
(9

–1
0 

m
ol

 %
),

 C
sF

(2
5%

)–
C

aF
2 

(1
.8

–2
.5

 e
qu

iv
),

 M
T

B
E

, 2
8–

45
°C

, 3
0–

48
 h

.

d N
aO

(2
-O

M
eC

6H
4)

 (
30

 m
ol

 %
),

 C
sF

 (
1.

0 
eq

ui
v)

, P
hM

e,
 2

7 
°C

.

J Am Chem Soc. Author manuscript; available in PMC 2022 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

O’Connor et al. Page 24

Ta
b

le
 4

.

R
el

at
iv

e 
Fr

ee
 E

ne
rg

ie
s 

of
 C

on
fo

rm
er

s 
of

 (
R

,S
)-

3,
5-

T
M

S-
Jo

si
ph

os
-S

up
po

rt
ed

 C
op

pe
r 

C
om

pl
ex

es
 a

nd
 T

ra
ns

iti
on

 S
ta

te
sa

sy
n-
β-

fl
uo

ri
de

el
im

in
at

io
n

lig
an

d 
co

nf
or

m
at

io
n

L
C

uF
 (

26
)

σ-
bo

nd
 m

et
at

he
si

s 
(T

S-
1)

si
ly

l c
op

pe
r 

(3
0)

m
ig

ra
to

ry
 in

se
rt

io
n 

(T
S-

2)
al

ke
ny

l c
op

pe
r 

(3
1)

T
S-

3
T

S-
4

A
0.

0
6.

7
−2

4.
7

2.
9

−
42

.8
−

26
.7

−
28

.4

B
4.

8
10

.8
−

23
.5

−4
.8

−4
7.

1
−3

2.
5

−3
0.

6

a A
ll 

G
ib

bs
 f

re
e 

en
er

gi
es

 a
re

 in
 k

ca
l/m

ol
 w

ith
 r

es
pe

ct
 to

 th
e 

m
on

om
er

ic
 c

op
pe

r 
fl

uo
ri

de
 2

6.
 B

ol
d 

nu
m

be
rs

 in
di

ca
te

 th
e 

fa
vo

ra
bl

e 
lig

an
d 

co
nf

or
m

at
io

n.

J Am Chem Soc. Author manuscript; available in PMC 2022 September 01.


	Abstract
	Graphical Abstract
	INTRODUCTION
	RESULTS AND DISCUSSION
	CONCLUSION
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Scheme 1.
	Scheme 2.
	Table 1.
	Table 2.
	Table 3.
	Table 4.



