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A B S T R A C T

The demand for local power resilience is promoting the installation of renewable-based microgrids. Plug-in
electric vehicles (PEVs) are rapidly increasing and can play a critical role in microgrid service provision.
The capability of bi-directional charging and discharging will transition PEVs from a simple means of
transportation to multi-purpose value generating assets. They can balance the inherently fluctuating generation
of renewable energy resources and shape customer’s electricity demand, while still providing the core service of
transportation. Value stacking through those additional services allows PEV owners to draw from a number of
revenue streams to offset investment costs. However, accelerated battery degradation is often cited as concern
when using PEV batteries for purposes other than driving, which presents a major barrier for broad market
adoption. This study seeks to assess the economics and trade-offs of bi-directional use of PEVs when utilized
as fleet vehicles. In particular, the usage patterns and benefits for PEV fleet deployment at three U.S. military
bases is presented. The results show operational cost benefits for bi-directional application of up to 60.8 %
annual return on investment without managing battery health, and up to 106.0 % when actively managing
battery health through advanced control strategies. The one year payback period far exceeds the expected
installation lifespan of at least ten years. Given the results, utilizing PEV fleets for additional services at U.S.
military bases can largely offset the additional cost of bi-directional charging hardware and software compared
to standard uni-directional equipment.
1. Introduction

Climate change is leading to more frequent and more intense ex-
treme weather events [1]. Microgrids of renewable distributed energy
resources (DERs), such as solar and wind power, paired with batteries
or other storage, can both slow climate change and provide backup
power in the event of grid outages related to climate change induced
extreme weather, other disasters such as earthquakes, or intentional
acts. Currently, backup power is most often provided by fossil-fuel
powered generators that are only used in emergencies and sit idle the
vast majority of the time. Renewable based DERs and microgrids can be
used continuously, reducing carbon emissions from electric generation
and also provide electric power resilience in the event of grid outages.
Energy storage in microgrids is most often provided by stationary
Lithium-ion batteries, but plug-in electric vehicles (PEVs) with bi-
directional charging and discharging capabilities can serve the same
function. PEVs can be considered a lower cost option than stationary
batteries because they are procured to provide mobility, but with bi-
directional capability can be a substantial energy storage resource. The
U. S. Army has recognized the challenges of climate change and the
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importance of energy resilience for its facilities by committing to install
microgrids and convert to an all electric non-tactical vehicle fleet by
2035 [2].

As the market for PEVs increases, interest in controlling their driv-
etrain batteries to provide vehicle-to-building (V2B) services such as
load shifting and vehicle-to-grid services (V2G) such as frequency
regulation increases [3–6]. In addition to helping stabilize the grid,
V2B and V2G services, collectively referred to as V2X, can provide
economic benefit to PEV owners through either shifting their electricity
consumption to lower cost times of day or other utility compensation.
Frequency regulation is considered an especially promising application
for PEVs as (a) PEVs with bi-directional chargers are able to provide the
service, (b) it requires low energy commitments, and (c) grid operators
often offer reasonable payments for the energy stored in reserve [7].
Peak-load shaving and load shifting is also an attractive option, as
many utility rates utilize either time-of-use (TOU) rates with high prices
during an evening peak period or peak demand charges. PEV batteries
with bi-directional charging capabilities allow buildings to draw power
from the PEV battery instead of the grid, reducing electricity consumed
vailable online 27 May 2023
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Abbreviations

AC Alternating Current
BMS Battery Management System
C-rate Charging Rate
CAISO California Independent System Operator
DC Direct Current
DER Distributed Energy Resources
DER-CAM Distributed Energy Resources-Customer

Adoption Model
DOD Depth of Discharge
DOPER Distributed Optimal Energy Resources
EOL End of Life
FMI Functional Mock-up Interface
GHG Greenhouse Gas
LBNL Lawrence Berkeley National Laboratory
LFP Lithium Iron Phosphate
MPC Model Predictive Control
NCA Nickel Cobalt Aluminum
NMC-LMO Nickel Manganese Cobalt Oxide-Lithium

Manganese Oxide
OASIS Open Access Same-time Information System
PEV Plug-in Electric Vehicle
PV Photovoltaic
RC Resistance-Capacity
ROI Return on Investment
SOC State of Charge
SOH State of Health
SynAS Synthetic Ancillary Service Generator
TOU Time of Use
V2B Vehicle to Building
V2G Vehicle to Grid
V2X Vehicle to Building and Grid

from the grid and mitigating the costs incurred under TOU or peak
demand pricing structures.

Controls for PEVs providing frequency regulation and load shaping
must balance the grid service goals with the PEV owner’s sometimes
uncertain mobility needs while minimizing the cost of operating the
vehicle. Prior research projects have averaged the behavior from groups
of thousands of PEVs [6] or used perfect forecasts [8] when identifying
the optimal charging and discharging frequency regulation schedule.
These approaches work for large installations and for evaluation studies
using historical data, but not for new installations or installations with
few electric vehicles as limited data is available for characterizing
common driving behaviors. Other projects have addressed the uncer-
tainty in inputs using various methods including stochastic dynamic
programming [3], stochastic [9,10], robust [5], or fuzzy optimiza-
tion algorithms [4]. Those models focused on available price data,
typically in the Pennsylvania-New Jersey-Maryland Interconnection
market, and are not applicable to cases with specific participation rules
which can vary considerably across markets. Other recent studies used
mixed-integer linear programming [11], hierarchical scheduling [12],
a centralized secondary controller to minimize the impacts on battery
degradation [13], and a neural-network based on historical data to pre-
dict a charging demand schedule combined with a heuristic algorithm
to minimize operating cost while ensuring the PEV batteries were fully
charged when needed for mobility [14]. All four demonstrated control
improvements. However, they focused on frequency regulation only.
Another study [12] developed a controller for distributed, individual
2

PEVs but did not enable deeper benefits from coordinating a local fleet.
While V2X services can provide economic benefit to PEV owners,
the risk of accelerated electric vehicle battery degradation caused by
increased cycling is commonly cited as a concern. At this time little
quantitative evidence exists to refute or substantiate these concerns for
different grid services. For V2X services to be viable the economic ben-
efit to PEV owners must be higher than the economic cost of providing
the services. Degradation of PEV Lithium-ion batteries used exclusively
for transportation is well understood. Hereby PEV batteries experience
two forms of aging, calendar and cycle aging. Calendar aging refers to
battery degradation over time which is mainly driven by cell age and
temperature. Cycle aging refers to battery degradation caused by the
charging and discharging processes. Prior research studies have shown
that calendar aging is caused by solid-state inter-phase formation at
the negative electrode [15,16] which causes irreversible capacity loss.
Cycle aging is primarily driven by the charging rate (C-rate) of the bat-
tery, temperature of the battery, and total withdrawn energy. C-rate is a
representation of charging current normalized to battery capacity. A 1C
C-rate would charge a fully empty battery in one hour, 2C would charge
a fully empty battery in 30 min, and 0.5C would charge a fully empty
battery in two hours. Recent studies have shown that total withdrawn
energy more accurately captures degradation effects than cycle number
with different depth of discharge (DOD) profiles [17]. Due to the effect
of different state of charges (SOC), a 20% cycle from 100% to 80%
will cause different degradation than a cycle from 40% to 20%. On
the other hand, PEV battery degradation when providing V2X services
is not as well understood. Prior simulation studies have compared the
economic benefit of using V2X for peak load shaving, frequency regu-
lation, and net load shaping to the economic cost of increased battery
degradation [18], sometimes with aging mitigation algorithms [19].
The studies showed negligible increases in battery degradation cost
when performing peak load shaving and frequency regulation, but
that degradation increases can be substantial when providing load
shaping services everyday. While one study [18] provided a general
understanding of V2X impacts on PEV battery degradation, it did so
while assuming that V2X services were either provided identically each
day or provided on only 20 days of the year.

Repurposing PEV batteries at the end of their useful life for trans-
portation, commonly referred to as ‘‘second-life’’, can have significant
impacts on reducing greenhouse gas (GHG) emissions, and provide a
new income stream for PEV owners. To create a second-life battery,
the good cells from a used PEV battery are repackaged and used as
a stationary battery to provide V2X services. The refurbished battery
is expected to be lower cost than a new battery, improving the cost-
effectiveness of V2X services, and will provide another revenue stream
for PEV owners who are able to sell their used batteries at the end of
useful life.

Prior studies have shown that advanced controls that take into
account the economic cost of battery degradation improve the viability
of V2X services [19]. Model predictive control (MPC) is an option that
utilizes weather and load forecasts, known data of PEV battery state,
mathematical models of the system, and an optimization algorithm to
identify the optimal control strategy for a control horizon of typically
24 h. The models enable estimation of the financial benefits and costs
of providing V2X services each day, and the MPC determines the best
strategy to minimize total operating cost. Lawrence Berkeley National
Laboratory (LBNL) has previously created a hierarchical control system
that enables V2X services across aggregated fleets of PEVs [20]. The
controller consists of: (a) a fleet scheduling tool gathering input data
from the user’s predicted trip details, (b) day-ahead and hour-ahead
charging and discharging schedules from LBNL’s Distributed Energy
Resources-Customer Adoption Model (DER-CAM) [21,22], and (c) a
real-time controller computing charging instructions [23].

Prior work has utilized MPC for sensitivity studies and deployment
of V2G services at the Los Angeles Air Force Base [20,24] while
providing PEV usability by maintaining high SOCs of the batteries. The

MPC used in these two studies minimized the total cost of operating
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the vehicles by varying (a) the charge and discharge power for each
time interval in the forecast horizon, (b) the hourly up and down
regulation capacity the fleet provides, and (c) the spread of regulation
services across the PEV fleet. The MPC was driven by a fleet model
tracking the PEV energy storage dynamics, limitations of the physical
infrastructure, and the market participation limits. The sensitivity study
showed that the economic impacts of V2G services is highly dependent
on the vehicle driving patterns, the frequency regulation strategy, and
the frequency regulation pricing strategy [20]. Since that work did
not have access to real PEV driving data the authors used randomized
trip schedules. Performing similar work with real driving data would
provide real-world context to their work.

This paper extends prior work by (a) adding a battery degradation
model to the MPC to actively manage battery health, (b) evaluating
the MPC control approach across several uni- and bi-directional system
capabilities, and (c) quantifying the performance of the MPC when
applied to PEV fleets using real data. The data used in the simulation
study represents monitored load and photovoltaic (PV) production
for three military bases in California, and PEV fleet usage data from
one base. This paper demonstrates that MPC controls with battery
degradation models can provide economic value and satisfactory PEV
user experiences.

2. Methodology

This study seeks to quantify the financial benefit of PEVs providing
V2X services utilizing advanced control strategies. In particular, a
novel approach to consider battery degradation was explored, where an
advanced control system actively manages the incurred battery degra-
dation. This section outlines the controller development and evaluation
setup.

2.1. Controller development

To date, most PEVs charging is either not controlled, i.e., fully
charge the battery as soon as the PEV is plugged-in, or follows simple
heuristics, e.g., charge to 80% SOC upon plug-in and then fully charge
to 100% SOC before 6:00. Various approaches for advanced control of
PEVs for different purposes have been studied, but battery degradation
is usually either not accounted for at all, or estimated through post-
processing, i.e., reactive or lagging indication. This study, on the other
hand, adds battery degradation as part of the overall control objective
to predict and actively manage it.

The controller used in this study is based on the Distributed Optimal
and Predictive Energy Resources1 (DOPER) development. DOPER is
n open-source controller utilizing the MPC technique for real-world
ontrol applications. It was introduced in [25] where it was used
o manage PV and behind-the-meter battery storage to reduce cus-
omer electricity cost. Since then it has been further developed and
s currently evaluated for control of smart buildings, microgrids, and
leet electric vehicles. The implementation of PEVs in DOPER uses
ethods in [20] with expansion towards reliable regulation bidding

nd fast execution for real-world application. DOPER also provides
he capability of variable timestep optimization which is essential
hen generating battery dispatches for many PEVs in real-time. In
articular, DOPER typically computes the battery dispatch every 5 min.
ssuming a 24-h horizon and a constant timestep, the optimization
ould have to solve 288 timesteps within a 5 min window. This can be

hallenging, especially for larger PEV fleets. DOPER on the other hand
llows for a variable timestep, and therefore only requires solving 25
imesteps, i.e., 24 hourly forecasts and the first 5-min timestep. Since
he MPC optimization typically scales exponentially, the 91% reduction
n timesteps can enable a multi-fold scale-up.

1 https://github.com/LBNL-ETA/DOPER
3

For this study, DOPER is further expanded with an implementation
of a battery degradation model and mechanisms to internally track and
forecast battery degradation.

The DOPER controller performs the following steps which are fur-
ther described in the subsequent sections:

• Update states: Collect the latest PEV battery SOCs and tempera-
tures from the simulation and update the optimization parameters
accordingly, see Section 2.2.

• Forecast: Collect the latest forecasts for load, PV, and weather
in a 5 min timestep for the optimization horizon of 24 h, see
Section 2.2.1.

• Fit degradation model: Use the latest statistics of average power
usage, average temperature, and age over the current lifetime of
each PEV battery to fit individual linearized battery degradation
models, see Section 2.1.2

• Regulation bidding: When the V2X control option is enabled then
resample the forecast data to hourly timesteps, filter only PEVs
which are scheduled to be available the whole day, and perform
optimization to determine regulation bids. Pass regulation bids to
the simulation.

• Optimization: Conduct the optimization given latest state and
forecast data to establish the optimal dispatch for the next 24 h
in a 5 min timestep. When the V2X control option is enabled then
add placed frequency regulation bids to constraints.

• Update degradation model: Extract and store incremental statis-
tics on PEV battery average power usage, average temperature,
and age, see Section 2.1.2

• Send setpoint: Extract PEV charger setpoints from the results and
pass to the simulation, see Section 2.2.

2.1.1. Battery degradation model
There are several different models describing calendar and cycle

aging characteristics of batteries, as shown in Table 1. Model formu-
lation varies depending on the chemistry of the underlying battery
aging data and whether both calendar and cycling aging are incorpo-
rated or modeled separately. The models available in literature address
three battery chemistries named for their cathode material — Nickel
Cobalt Aluminum (NCA), Lithium Iron Phosphate (LFP), and Nickel
Manganese Cobalt Oxide-Lithium Manganese Oxide (NMC-LMO). The
three most developed of these models are the NREL [26], Wang [16],
and MOBICUS [27] models.

The NREL model includes the most factors related to the coupled
effects of calendar and cycle aging for two chemistries and is based
on aging data primarily from geosynchronous orbit satellite life quali-
fication tests which have different usage requirements and may not be
indicative of aging in PEV use cases. The Wang model was parameter-
ized for the NMC-LMO chemistry, but does not employ actual storage
data for calendar aging as it was assumed that low C-rate, low DoD
cycling data would be comparable to storage conditions. The MOBICUS
project has access to the most robust aging data set from the greatest
variety of battery chemistries. However, the overall modeling approach
to couple calendar and cycle aging is not clear as only separate calendar
and cycle aging models have been published to date.

The Wang model provides the best battery degradation model for
use in this study because it is specific to the vehicle type used in
this study, i.e., Nissan LEAF, with the NMC-LMO battery chemistry.
Furthermore, there is precedence for use of the Wang model, as it was
employed in a previous cost–benefit analysis of PEVs providing grid
services in [31]. However, there are known limitations with employing
the Wang model for economic evaluations of battery degradation:

• Cell-to-Pack Translation: The Wang model was developed with
measurements made with small cylindrical 18,650 cells (18 mm
diameter and 65 mm tall) with 1.5 Ah and NMC-LMO chemistry
produced by Sanyo. Nissan LEAF battery cells are the same chem-

istry, but have greater capacity at 32.5 Ah and are produced

https://github.com/LBNL-ETA/DOPER
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Table 1
Semi-empirical battery degradation models and dependencies.

Calendar aging Cycle aging Chemistry

Temp SOC Time Temp SOC C-rate DoD NCA LFP NMC
-LMO

NREL [26] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Hoke [28] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Neubauer [29] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

J. Wang [16] ✓ ✓ ✓ ✓ 50% ✓

J. Wang [30] ✓ ✓ ✓ ✓

D. Wang [31] ✓ ✓ ✓ ✓ 50% ✓

MOBICUS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[27][32]
Delaille [33] ✓ ✓ ✓ ✓

Gyan [34] ✓ ✓ ✓ ✓ ✓

Petit [35] ✓ ✓ ✓ ✓ ✓ ✓ ✓

Shuangqi [36] ✓ ✓
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by AESC. While there is some evidence that similar chemistries
will exhibit similar general degradation profiles, the extent of
the impact of varying degradation behavior between different
manufacturers of the same chemistry cells remains unknown [27].
It is known, however, that cell-to-pack translation gives biased
results as battery packs experience additional degradation beyond
what is expected at the cell level. This is likely due to non-
uniform temperature distributions due to pack imbalances which
go undetected in the Battery Management System (BMS) [37]. To
prevent non-uniformity, this study uses a homogeneous battery
temperature model where temperatures are evenly distributed
across the battery pack. With this method, it can be reasonably
assumed that all cells experience similar temperatures due to
charge or discharge and therefore are aging similarly.

• Time Resolution: Current battery aging models do not take micro-
cycling into account and calculate temperature related degrada-
tion using hourly averaged temperatures. Therefore, they cannot
fully capture the effects of small perturbations in cell tempera-
ture and SOC that frequency regulation will likely entail. This
study uses high-fidelity simulation with sub-second sampling to
accurately capture battery temperature and compute degradation.

• Data Limitation: Battery aging and operation is unclear beyond
30% capacity fade and beyond 10 years time as no empirical
dataset has been generated. Furthermore, operation at extreme
temperatures (below 0 ◦C and above 40 ◦C) is less clear. However,
as battery asset End of Life (EOL) is defined at 30% capac-
ity fade and all batteries are operated within normal operating
temperatures, this is not a limiting factor in this study.

Wang et al. [16] describes calendar aging to be driven by time and
emperature, as shown in Eq. (1).

𝐶𝑎𝑙𝑒𝑛𝑑𝑎𝑟 = 𝐴 ∗ 𝑒𝑥𝑝(−𝐸𝑎∕𝑅𝑇 ) ∗ 𝑡0.5 (1)

The lost capacity from calendar aging, QCalendar in percent, is calcu-
lated with a pre-exponential factor, A defined as 14,876 day−0.5, and
he exponent of the required activation energy, Ea as 24.5 kJ/mol, the
niversal gas constant, R as 8.31 J/(K * mol), the average temperature
f the battery cell, T in Kelvin, and the total lifetime of the battery cell,
in days.

Cycle aging is described in Eq. (2).

𝐶𝑦𝑐𝑙𝑒 = (𝑎 ∗ 𝑇 2 + 𝑏 ∗ 𝑇 + 𝑐) ∗ 𝑒𝑥𝑝[(𝑑 ∗ 𝑇 + 𝑒) ∗ 𝐶𝑟𝑎𝑡𝑒] ∗ 𝐴ℎ𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 (2)

The lost capacity from cycle aging, QCycle in percent, is calculated
ith the average temperature of the battery cell, T in Kelvin, the
verage C-rate, Crate in C, the average energy throughput, Ahthroughput
n Ah, and a set of fitted coefficients. The coefficients are: a = 8.61E−6
Ah*K2)−1, b = −5.13E−3 (Ah*K)−1, c = 7.63E−1 Ah−1, d = −6.73E−3
K*C)−1 and 𝑒 = 2.35 C−1.
4

t

.1.2. Reduced order battery degradation model
In order to implement the non-linear Wang model into the mixed-

nteger linear programming model of DOPER, several steps are taken to
artially linearize the model and, externally to DOPER, track battery
tatistics needed for the Wang model, such as average temperature
nd average energy throughput. The Wang model is implemented in
n external Python function that is run before the actual optimization
n DOPER. This function can quickly compute the incremental bat-
ery degradation for the incremental age of the battery, throughout
he optimization horizon, and a range of incremental average battery
emperatures, e.g., ±1 Kelvin of the average battery cell temperature.
he range of inputs and resulting calendar and cycle aging are then
assed to an optimization algorithm to fit a linear regression defined
n Eqs. (3) and (4).

𝐶𝑎𝑙𝑒𝑛𝑑𝑎𝑟 =
𝑛
∑

𝑡𝑠=1
𝑎(𝑡𝑠) + 𝑏(𝑡𝑠) ∗ 𝑇 (𝑡𝑠) (3)

𝐶𝑦𝑐𝑙𝑒 =
𝑛
∑

𝑡𝑠=1
𝑐(𝑡𝑠) + 𝑑(𝑡𝑠) ∗ 𝐶𝑟𝑎𝑡𝑒(𝑡𝑠) + 𝑒(𝑡𝑠) ∗ 𝐴ℎ𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡(𝑡𝑠) (4)

The fitted coefficients a, b, c, d, and e are all time dependent, where
s refers to the current timestep, to capture the dynamic aging through
ime. The average battery temperature, T in ◦C, is calculated based on
he initial average temperature and a reduced order resistance-capacity
RC) thermal model internal to the MPC to compute instant battery
emperature based on power flow and environment temperature. The
C parameters were empirically derived from field test data, as de-
cribed in Section 2.2.1, and used in both the controller and simulation
odel for evaluation. At each iteration of DOPER, the coefficients

re recomputed with the updated battery statistics for age, average
emperature, and average C-rate over the lifetime, to closely match the
on-linear Wang model. However, mismatch between the full Wang
odel, which is implemented in the simulation model for evaluation,

nd the reduced order model remains. Fig. 1 illustrates the sensitivity
f the Wang model to average battery temperature, the main driver
n this study, and the model mismatch of the reduced order model at
ifferent points.

Depending on the ambient air temperature and degree of utilization
f the battery, the average temperature of the battery cells can vary
reatly. While a lightly utilized battery with an average temperature
f 15 ◦C, shown in blue, might result in long life of up to seven years
efore degrading beyond the 30% EOL criteria, moderate utilization
or V2X services can raise the average temperature. At an average of
0 ◦C, shown in orange, the battery lifetime is reduced to five years. At
n average temperature of 45 ◦C, shown in green, and representative
f hot environments with heavy battery utilization, the battery lifetime
s significantly shortened to approximately 1.5 years before reaching

he 30% EOL criteria. A reduced order model was created to linearize
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Fig. 1. Illustration of battery degradation ranges and reduced order model mismatch.

the non-linear Wang model for defined small temperature ranges and
is represented as purple line in Fig. 1. The sharper the change of
degradation as a function of temperature, i.e., at the beginning of
the battery life, the higher the model mismatch between the Wang
model and the linearized reduced order model. However, while actual
battery degradation values might deviate from the full Wang model,
the slope of impact matches the direction of the Wang model. This
is an important factor as it guides the optimization solver towards a
conservative rather than exploitative control policy.

2.1.3. Battery degradation cost function
To implement the economic impact of battery degradation, a battery

cost transfer function is used. The battery degradation cost, cdegradation
in $, is hereby defined by the sum of incremental calendar and cycle
degradation, defined in Eqs. (3) and (4), multiplied by the battery
replacement cost, cbat in $ and normalized by the end of life criteria,
as shown in Eq. (5).

𝑐𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 = (𝛥𝑄𝐶𝑎𝑙𝑒𝑛𝑑𝑎𝑟 + 𝛥𝑄𝐶𝑦𝑐𝑙𝑒) ∗ 𝑐𝑏𝑎𝑡∕𝐸𝑂𝐿 (5)

In this study, the usable battery capacity is hereby defined by
an EOL of 30% capacity loss. A second EOL condition exists when
internal resistance rise reaches 100% of the original resistance which
limits the instant power delivery. Multi-year test data for Nissan LEAFs
produced by Idaho National Laboratory indicated that no resistance
EOL condition was encountered before the capacity EOL criteria was
reached [38–41] [42]. Therefore, it is assumed that resistance increase
is not a limiting factor for this study and only the capacity EOL
condition is considered for computing the degradation cost.

The objective of DOPER is expanded to include the cost of battery
degradation, shown in Eq. (6).

min 𝑐𝑒𝑛𝑒𝑟𝑔𝑦 + 𝑐𝑑𝑒𝑚𝑎𝑛𝑑 − 𝑟𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 + 𝑐𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 (6)

The original objective to minimize total electricity cost, that is cost
for energy and demand, cenergy and cdemand respectively, and reward
from frequency regulation, rfrequency, is expanded with the total cost
for battery degradation, cdegradation, introduced in Eq. (5).

The implementation of frequency regulation within DOPER is ex-
panded to include individual battery utilization. The original imple-
mentation in [20] accounted for a net power flow at the battery of
zero Watts when symmetric bids were placed. Given Eqs. (3) and (4),
a net power flow of zero Watts does not have an effect on battery
degradation, hence frequency regulation would not lead to any battery
degradation in the controller. To include battery degradation when
providing frequency regulation, the MPC model is expanded to include
inter-timestep power flows where the average of the absolute regulation
up and down bids for each timestep, in case of symmetric bids the full
regulation up or down bid, is accounted as battery power flow. Since
this represents a worst-case scenario where the battery is constantly
5

Fig. 2. Coupling of controller with high-fidelity co-simulation.

cycled with full power over the full hour, a duty-cycle factor is added to
moderate the battery power flow. Analyzing the data from the LAAFB
field demonstration, see Section 2.2.2, typical duty-cycles varied be-
tween 40% and 70%. In this study the duty-cycle of the controller and
simulation were matched to the average of 54.8% from the recorded
data.

2.2. Evaluation

This study evaluates the capability of various advanced control
strategies to assess the financial benefit of PEVs. While simple rule-
based control algorithms can be simulated offline, i.e., pre-computed
control setpoints are passed as input to a simulation, advanced control
algorithms such as MPC require feedback from the resources being
controlled as well as time-synchronized weather and load forecasts. It
is, therefore, crucial to evaluate advanced control algorithms through
online simulations, also known as co-simulation, where at each simu-
lation timestep information is exchanged with the controller, and new
setpoints are passed to the simulation model. While various ad-hoc ap-
proaches to couple controllers with simulation models exist, this study
leverages the Functional Mock-up Interface2 (FMI) standard which is
widely adopted by industry including large companies such as Bosch
and Siemens [43]. The simulation model is developed in the modeling
language Modelica3 and exported as a stand-alone simulation model
using the FMI standard. A Python script, PyFMI,4 binds the DOPER
controller and simulation model. Fig. 2 illustrates the functionality of
the co-simulation and data flow.

The simulation model is developed to realistically represent a fleet
of PEVs, illustrated as purple boxes. The PEV drivetrain battery is
modeled using the high-fidelity electrical model of a stationary battery
from the Modelica Buildings Library5 (MBL), illustrated as electric
vehicle in the purple box, and expanded to use real driving profiles
obtained from the LAAFB fleet management data and external input of
battery health. An PEV charger model, black outline in the purple box,
is implemented by expanding the MBL implementation with external

2 https://fmi-standard.org/
3 https://modelica.org/
4 https://github.com/modelon-community/PyFMI
5 https://github.com/lbl-srg/modelica-buildings

https://fmi-standard.org/
https://modelica.org/
https://github.com/modelon-community/PyFMI
https://github.com/lbl-srg/modelica-buildings
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inputs for alternating current (AC) power setpoint control and the
functionality to disconnect from the power grid, i.e., un-plug the PEV.
The charger model takes an AC power setpoint as input and returns
the resulting AC power flow, Pcharger, and PEV battery SOC, subject
o available capacity of the PEV battery and conversion losses, see
able 2. Additional models are added to simulate the battery health
ased on the Wang battery degradation and RC thermal models. The
C model is derived from empirically collected data, see Section 2.2.1,
nd computes PEV battery pack temperature, Tbatt, based on the battery

direct current (DC) power flow, Pbatt, and ambient air temperature
supplied by external data. The Wang degradation model takes the
battery DC power flow and pack temperature as input to compute the
state of health, SOH, of the battery. The SOH is used as a scaling factor
between 0 to 100% and applied to the battery capacity parameter.
The PEV drivetrain battery exchanges SOC and electric power flow
information with the charging station. The PEV, charger, and battery
health models, i.e., all models in purple outline, are instantiated with a
new set of parameters for each PEV within the fleet. The load models,
green outline, use the external load and PV profiles from the respective
military bases to provide a net-load profile. The utility meter, black
outline, combines the individual PEVs and load power flows to the site
AC power flow, Psite. The controller, yellow outline, receives the site
power flow information and each charging station’s AC power flow and
SOC information, if an PEV connected. The controller then computes
the charging station AC power setpoints for each available PEV. While
the evaluation of the controller is set to a 5 min interval, the simulation
models are continuously evaluated with the CVODE6 variable timestep
solver and a minimal timestep of 1 ms. The continuous evaluation is
important to accurately represent and capture simulation state events,
for example when a PEV battery is fully empty or full the battery power
drops to zero instantly instead of awaiting the next fixed timestep
evaluation. The PEV simulation model and the aggregated fleet model
are publicly available through the Smart Control of Distributed Energy
Resources7 (SCooDER) package [25].

2.2.1. Input data
All input data for the evaluation of the different scenarios is sum-

marized in Table 2 and further described in this section.
To test the variability in performance this study uses datasets from

three U.S. military bases:

• Los Angeles Air Force Base (LAAFB) is a United States Air Force
base and the headquarters for the Space and Missile Systems Cen-
ter. Located in El Segundo, California, LAAFB is responsible for
research and development of space-based military systems as well
as equipment acquisition. There are currently 1300 active duty
military members at LAAFB, as well as 1700 civilian workers. The
available data includes (a) base load data from April 1, 2016 to
November 8, 2018, (b) PEV trip data from January 1, 2016 to
September 6, 2018, and (c) PV data from January 1, 2016 to May
1, 2019. The base load and PV data both have 5-min sampling
frequencies.

• Parks Reserve Forces Training Area (PRFTA) serves both the
Army Reserve and the Joint Force. Located in Dublin, California,
this base supports military readiness by educating service mem-
bers, performing military intelligence operations, and providing
battlefield simulation opportunities. The available data set for
PRFTA includes base load data with a 15 min sampling frequency
spanning 2019 and 2020. PRFTA does not have PV or PEV fleet
data.

6 https://computing.llnl.gov/projects/sundials/cvode
7 https://github.com/LBNL-ETA/SCooDER
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• Fort Hunter Liggett (FHL) is considered a top training center
for the U.S. military. This 65,000 acre facility is often used for
large-scale joint exercises using both on base and nearby PRFTA
sub-installations. FHL has a permanent population of only 265
civilians and military residents, but houses up to 40,000 people
during large training exercises. The base load dataset for FHL
contains data from October 2017 through September 2019 with
a 15 min sampling frequency. The PV data spans 2011 to 2020.

The datasets were in different formats, from different times, and
used different sampling frequencies. Combining the data sets required
pre-processing to ensure compatibility. Since the LAAFB dataset already
satisfied the requirements for simulation, all other datasets were re-
formatted to match. In particular, data was filtered for missing or
outlier data, resampled to 5 min intervals, and shifted to align with
the weekdays in the LAAFB dataset for the year 2017. To resolve
erroneous data, all points more than three standard deviations below
the mean in a rolling 30 day window were replaced with interpolated
values between the prior and following points. PRFTA had a prolonged
data gap from July 22 to July 31 which was filled with data from
the previous week. All bases with PV generation had large data gaps
in PV generation. PV and load was disaggregated using simulated PV
generation based on historic weather data obtained through DarkSky8

and PV nameplate capacity. Historic weather data for the periods of the
datasets was used to model environmental conditions. LAAFB shows
the highest electric load, with a mean of 2696 kW and a maximum of
5760 kW. PRFTA shows the lowest load, with a mean of 989 kW and
a maximum of 1854 kW. FHL shows a moderate load, with a mean of
1026 kW and a maximum of 2993 kW.

Datasets for fleet trip data was obtained from the respective fleet
management entity for the LAAFB base. The fleet management at mili-
tary bases usually require day-ahead scheduling of fleet vehicles which
results in little uncertainty about PEV availability for V2X services.
For this study it was assumed that the modeled fleet matches the
LAAFB fleet of 12 Nissan LEAFs model 2012. The dataset includes 1247
trips with reservation start and end times and the miles driven. The
availability of a vehicle is defined as the time that it is not out on a trip
compared to the total duration of the data set. The average availability
across the fleet was 92.0%. Trip energy consumption was estimated
using the 30 kWh/mile rated efficiency of a 2012 Nissan LEAF. Fig. 3
shows the actual fleet of Nissan LEAFs at the LAAFB, where each PEV
is connected to a 15 kW bi-directional charging station.

Data pre-processing options for the PEV fleet data are grouped in
the following scenarios:

1. Original: The original option uses the PEV fleet data as it occurs
in the dataset. This scenario uses the same number of PEVs as
are installed in the field, and assignes the driving trips to the
PEVs as observed in the dataset.

2. Optimized Fleet: The optimized fleet option identifies the min-
imum number of PEVs needed to meet the observed driving
demands, simulates a fleet with that number of vehicles, and
reassigns driving trips based on availability and total miles
driven. A minimum plug-in time between trips of 30 min is
used to ensure batteries can be recharged. This parameter was
empirically determined and may vary based on specific fleet
utilization.

3. Optimized Fleet, Extras Plugged: This option uses the same
fleet optimization code, but assumes that it uses the existing
PEVs in the optimized manner and not through purchasing fewer
PEVs. The extra PEVs which are not needed to satisfy trips are
assumed to be plugged-in constantly, and essentially serve as
stationary batteries.

8 https://darksky.net

https://computing.llnl.gov/projects/sundials/cvode
https://github.com/LBNL-ETA/SCooDER
https://darksky.net
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Table 2
Overview of evaluation scenarios.
Base load LAAFB (5.8 MW-peak) or PRFTA (1.9 MW-peak)

or FHL (3.0 MW-peak)

PV 1.8 MW-peak based on LAAFB dataset

Tariff SCE TOU-8

Frequency
Regulation

1 or 100 kW minimum bid (54.8% duty cycle)

Control Scenarios see Table 3

Fleet Size Original (12 PEVs) or Optimized (8 PEVs)
based on LAAFB dataset

Charging Stations One dedicated per PEV

PEV Model Nissan LEAF 2012 Nissan LEAF 2022

PEV
Battery Capacity

24 kWh 60 kWh

Charger Power 7.6 kW (uni-dir)
or 15 kW (bi-dir)

7.6 kW (uni-dir)
or 50 kW (bi-dir)

Second-Life
Battery Capacity

None
or 144 kWh (Original Fleet)
or 96 kWh (Optimized Fleet)

None
or 360 kWh (Original Fleet)
or 240 kWh (Optimized Fleet)

Second-Life Power None
or 72 kW (Original Fleet)
or 48 kW (Optimized Fleet)

None
or 180 kW (Original Fleet)
or 120 kW (Optimized Fleet)

Second-Life
Thermal Parameter

C = 14.6 MJ/K
R = 7.5 mK/W

C = 36.4 MJ/K
R = 18.7 mK/W

PEV Battery
Thermal Parameter

C = 7.28 MJ/K
R = 3.74 mK/W (plugged-in) or 1.87 mK/W (driving)

PEV Efficiency Charging = 96%, Discharging = 96%
(combined charger and PEV efficiencies)

PEV Battery
End of Life

30% loss of capacity
Fig. 3. Plug-in electric vehicle fleet of Nissan LEAFs at the Los Angeles Air Force Base.

The PEV battery thermal model for both the controller and simula-
tion is derived from empirical test data from the field demonstration
at LAAFB. An extensive battery cycling for three of the Nissan LEAFs
over the course of a day was performed while monitoring battery pack
temperate, battery DC power flow, and ambient air temperature. Note
that the 2012 Nissan LEAFs report four battery pack temperatures
which are averaged for this analysis. The resulting data is used to fit
a first order RC model, i.e., single resistor and single capacitor. The
resulting parameters are 𝑅 = 3.73 mK/W and 𝐶 = 7.28 MJ/K. Since
data is only available for parked vehicles, it is assumed that the thermal
resistance when driving is 1/2 of R, while the thermal mass of the
7

battery, C, remains constant. The thermal parameters for the second-life
battery are scaled based on total energy.

The initial approach of this study was to model the original LAAFB
fleet with the deployed model 2012 Nissan LEAFs. In order to project
results for newer vehicles, the newest version of the Nissan LEAF model
2022 with an increased battery size from 24 kWh to 60 kWh is also
included. The RC parameters for the 2022 Nissan LEAF are the same as
the observed ones for the 2012 Nissan LEAF, assuming that battery pack
size remains equivalent and capacity increase is solely attributed to cell
chemistry improvement. The capabilities of the PEV charging stations
are matched to the LAAFB field installation with maximum power of
7.6 kW for uni-directional and 15 and 50 kW, respectively for the
24 and 60 kWh Nissan LEAFs, for the bi-directional charging stations.
The number of charging stations is equal to the fleet size. Based on
LAAFB field test results, it was determined that the battery replacement
cost for the 2012 Nissan LEAF is $ 6000 (250 $/kWh) while the
battery replacement cost for the 2022 Nissan LEAF was researched
online and estimated to be $ 10,500 (175 $/kWh). Military facilities
typically separate infrastructure investment, e.g., for uni-directional
PEV charging infrastructure, from fleet acquisition. The incremental
investment cost considered in this study includes the cost for additional
controls and software maintenance, estimated to be $ 5000 per PEV,
and the difference between a uni- and bi-directional charging station
where applicable, estimated to be $ 5000 per PEV for a 15 kW charger
and $ 10,000 for a 50 kW one. Depending on the type of charging
station this results in a total incremental investment cost of either $
5000 or $ 10,000 per PEV. The cost for the bi-directional charging
station is based on the assumption that a consumer grade bi-directional
charging station costs about $ 1500, for example the 12 kW Empo-
ria V2X Charging Station [44], and a consumer grade uni-directional
charging station costs about $ 500, which results in an incremental cost
of $ 1000. Assuming that a commercial uni-directional charger costs
around $ 2000, based on experience of the LBNL team working with
field installations at military facilities, the cost is four times higher,
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Fig. 4. Overview of time-of-use tariff and hourly regulation prices.

which results in an incremental cost of the bi-directional charging
station of $ 4000. Another $ 1000 is added for miscellaneous items
such as approvals, switch gear, and commissioning, which then results
in the described $ 5000 incremental cost for a 15 kW bi-directional
charging station per PEV. The 50 kW bi-directional charging station is
assumed to have double the incremental cost, i.e., $ 10,000 per PEV.
The cost for controls and software maintenance are based on LBNL’s
experience with field installations at military facilities, and includes
the assumption that a moderately sized fleet of 20 PEVs would incur
$ 100,000 investment cost, which can be broken down into $ 20,000
for control design, hardware, and commissioning, and a remaining $
80,000 for maintenance, which is assumed to cover 12 months of full
time equivalent labor. Over a 10 year life cycle this results in about one
month of maintenance per year, or two days per month.

2.2.2. Tariff data
The tariff data used in this study is Southern California Edison’s

TOU-8 tariff9 with option D for the 2 to 50 kV interconnection released
on June 1, 2022. It defines two price periods in summer, 16:00 to 21:00
for high-peak and 21:00 to 16:00 for off-peak, and three price periods
in winter, 16:00 to 21:00 for high-peak, 8:00 to 16:00 for off-peak,
and 21:00 to 8:00 for mid-peak. The prices for energy are 9.0 and
12.8 ¢/kWh in summer for off-peak and high-peak, and are 7.5, 9.5,
and 10.6 ¢/kWh in winter for off-peak, mid-peak, and on-peak periods.
In addition, the TOU-8 tariff incurs a monthly demand charge for the
overall peak of 19.1 $/kW throughout the year, and an additional 41.1
$/kW for the high-peak period in summer and 10.4 $/kW for the high-
peak period in winter. Rates on weekends and holidays follow the same
time periods, but are slightly lower. The TOU-8 tariff is applied to all
simulation scenarios, including those located outside of SCE’s territory.

The prices for frequency regulation were obtained from the Cali-
fornia Independent System Operator’s (CAISO) Open Access Same-time
Information System (OASIS) website.10 Data was analyzed for the full
year of 2021 and processed to align weekdays with those from the base
load dataset. Fig. 4 illustrates the TOU-8 prices in summer on the upper
subplot and prices for frequency regulation on the lower subplot.

The dynamic prices for frequency regulation are shown as hourly
plots of median prices, in bold, and associated upper and lower whisker,
defined as 25th or 75th quartile plus 1.5 times the inner quartile
range of 75th minus 25th quartile, in dashed lines. Regulation down,
where on-site resources consume grid electricity, is shown in blue and
regulation up, where on-site resources feed-in electricity, is shown in

9 https://www.sce.com/business/rates/large-business
10 http://oasis.caiso.com/mrioasis/logon.do
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orange. In this dataset, prices for regulation down are higher during the
daytime, while prices for regulation up are higher during the afternoon.
This corresponds to the general trend in California where renewable
generation, especially from PV, tends to cause over-supply during the
daytime, and under-supply during late afternoon peaks, also known as
the California ‘‘duck-curve’’ [45]. However, instant regulation requests
can largely vary in time and far exceed median prices. The three
occurrences of highest prices for regulation up are all in the afternoon,
i.e., 2021-09-09 17:00 with 43.8 ¢/kWh, 2021-06-17 18:00 with 42.6
¢/kWh, and 2021-07-12 18:00 with 42.6 ¢/kWh, while the ones for
regulation down are throughout the day, i.e., 2021-01-30 12:00 with
22.1 ¢/kWh, 2021-02-15 08:00 with 20.0 ¢/kWh, and 2021-02-14
13:00 with 16.7 ¢/kWh. In order to participate in the CAISO day-
ahead market for frequency regulation, hourly bids of at least 100 kW
must be submitted. Depending on the bids and resources, CAISO then
seeks to balance utilization based on resource type. In the case of
batteries, symmetric bids for regulation up and down are advised, and
CAISO seeks to balance the energy demand at net-zero or slightly
towards regulation down to account for resource efficiency and keep
SOCs near the middle of resource-specified minimums and maximums.
However, resource utilization can largely vary based on the instant
needs of the electric power grid. In [46] the CAISO regulation dispatch
for the LAAFB was analyzed, and an open-source Synthetic Ancillary
Service Generator (SynAS) package11 to generate synthetic dispatches
was introduced. This study uses the SynAS package to simulate the
regulation dispatch and its impact on battery health.

2.2.3. Scenarios
This study evaluates a large range of parameters to quantify the

benefit of PEVs for various applications. This includes uni-directional
charging, V2B, and V2X applications. The evaluation scenarios are
listed in Table 3 and include a parametric grid of base load (LAAFB,
PRFTA, or FHL), PEV battery size (24 or 60 kWh), minimum bid size for
frequency regulation (1 or 100 kW), fleet size (original or optimized),
and fleet scale relative to the base load.

A total of 11 control scenarios are explored. The ChFull scenario
is the reference scenario for this analysis where it fully charges the
PEV as soon as it is plugged in. The Ch80% scenario utilizes simple
logic to immediately charge to 80% SOC when the PEV is plugged in,
and then charge the remaining 20% in-time for the next trip, reducing
the SOC level when not used. Both cases only provide uni-directional
charging without capability to discharge the PEV. The first advanced
control case is uni-dir where only charging of the PEV is enabled, but
scheduled using MPC. The V2B and V2X cases enable bi-directional
charging and provide either building, or building and grid support, if
the MPC controller requests it. The V2B (Stat) and V2X (Stat) cases
provide the same functionality, but include two stationary second-
life batteries. The second-life batteries are assumed to use the first
batch of fleet PEV batteries that reached EOL and were removed from
the fleet PEVs. The second-life battery capacity is assumed to have a
capacity equal to 50% of the PEV fleet battery capacity. While all of
the above cases are associated with the same electric power meter, the
cases labeled with (sep.) have PEVs located at a separate meter which
disaggregates the building load from the PEV fleet. Note that all MPC
cases are evaluated with and without the battery degradation model in
the controller objective, to quantify the benefit of including such.

3. Results

The results were derived from 720 individual multi-year co-
simulations. This section first introduces the high-level summary results
with the main findings. It then dives deeper into the mechanics of
frequency regulation revenue and bidding, battery degradation, and
sensitivity of the results by analyzing one specific scenario (referred to
as Example-A) for LAAFB load and PV data, model 2012 Nissan LEAFs,
optimized fleet size, and 1 kW minimum regulation bid.

11 https://github.com/LBNL-ETA/SynAS

https://www.sce.com/business/rates/large-business
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Table 3
Overview of control scenarios.

Controller Charger Vehicle building
support

Vehicle grid
support

Visible base
load

Second-life
stationary storage

ChFull on/off uni-dir False False False False
Ch80% heuristic uni-dir False False False False
uni-dir mpc uni-dir False False False False
V2B mpc bi-dir True False True False
V2B (Stat) mpc bi-dir True False True True
V2X mpc bi-dir True True True False
V2X (Stat) mpc bi-dir True True True True
ChFull (sep.) on/off uni-dir False False False False
Ch80% (sep.) heuristic uni-dir False False False False
uni-dir (sep.) mpc uni-dir False False False False
V2X (sep.) mpc bi-dir False True False False
Fig. 5. Annual return on investment rates across control scenarios with and without
considering battery degradation.

3.1. Summary results

The benefit of controlled charging and discharging of PEVs to pro-
vide services is assessed by computing the annual return on investment
(ROI) in percent, defined as annual operational cost savings divided by
the total investment cost. Using the ROI metric allows quantifying the
benefit of the PEV fleet as an independent service without close ties
to the actual load size. Fig. 5 summarizes the results for the different
control scenarios.

The results for all parametric simulations, including the three base
loads, two fleet sizes, and two minimum regulation bids are grouped
into box-whisker plots to illustrate the data trends. The 𝑦-axis shows
the annual ROI, in %, for both the 24 kWh (top) and 60 kWh (bottom)
scenarios. The 𝑥-axis lists all seven MPC control scenarios defined in
Table 3. Each control scenario includes a set of box-whisker plots for
MPC without consideration of battery degradation in the objective, in
blue, and MPC with consideration of battery degradation, in green. The
first two control scenarios uni-dir (sep.) and V2X (sep.) are presenting
scenarios where the PEV fleet is located on separate utility meters and
therefore cannot impact the electricity bill of the military base. For both
cases no significant benefit to include battery degradation in the control
objective is apparent. The uni-dir (sep.) case for the 24 kWh battery
size shows annual ROIs between 16.4 and 25.0 (median at 20.7) %
while the 60 kWh battery size shows savings between 15.9 and 25.0
(median at 16.5) %. The cases with V2X (sep.), where PEVs can utilize
bi-directional charging to either offset demand charges from charging
other PEVs or bid into the regulation market, show little variation with
a median of 12.8 and 2.3%, respectively for the 24 and 60 kWh battery
sizes with degradation. All other control scenarios include a single
9

utility meter for the military base load and PEV fleet. The uni-dir case
allows the MPC controller to control each PEV’s charging behavior to
avoid increasing monthly demand charges for the military base and to
shift charging to lower-priced times. The benefit of MPC for this uni-dir
case is negligible, with median ROIs of 1.3%. The V2B control scenario
on the other hand, where the fleet PEVs can be used to shift base load
demand, yields great benefit for both with and without considering
battery degradation. The annual ROIs range between 34.0 and 53.2
(median at 41.6) % and between 23.1 and 60.8 (median at 34.5) %
respectively for the 24 and 60 kWh battery size. When considering
battery degradation the benefits increase respectively between 55.4 and
66.3 (median at 63.8) % and between 61.7 and 106.0 (median at 71.9)
%. The V2X case, where in addition to V2B also V2G is enabled, the
annual ROIs without considering battery degradation range between
23.5 and 53.3 (median at 37.2) % and 13.6 and 58.8 (median at 31.9)
% respectively for the 24 and 60 kWh battery sizes. The benefit of
considering battery degradation increases the ROIs respectively to 49.5
and 65.5 (median at 58.1) % and 52.2 and 97.5 (median at 66.2) %.
The last two control scenarios, V2B (Stat.) and V2X (Stat.) add the sta-
tionary second-life storage to the available resources. The annual ROIs
are moderately higher than in the cases without stationary storage, and
the general trend of great incremental benefit when including battery
degradation is apparent. The detailed results for the Example-A are
given in Table 4.

The Example-A uses the optimize fleet function which reduces the
fleet size from the original 12 to 8 PEVs. This results in an investment
cost of $ 40k for the uni-directional cases and $ 80k for the bi-
directional cases. The base case, ChFull, results in a total electricity
cost of $ 3479k and an accumulated battery degradation cost of $
7.7k, which results in total operational cost of $ 3487k per year. The
Ch80% and uni-dir cases lead to equivalent cost. Without considering
degradation in the controller, the V2B case reduces the electricity cost
by $ 39k but increases the degradation cost by $ 6k which leads to total
operational cost savings of $ 33k per year or an annual return of 41.1%.
The V2X case results in higher electricity cost with $ 37k reduction
from the base case, but regulation revenue of $ 9k, resulting in savings
of $ 46k which is $ 7k higher than the V2B case. However, the
degradation cost increases to $ 24k which results in total operational
cost savings of $ 31k per year or an annual return of 38.5%, which
is lower than V2B. When considering degradation to actively manage
PEV battery health, both the V2B and V2X cases significantly reduce
the degradation cost respectively by 22.9 and 36.9%. At the same time
electricity cost is also reduced in both cases, leading to increased annual
return rates of 55.5 and 56.0% respectively for the V2B and V2X cases.

A summary of the median results for all cases and across all scenar-
ios can be found in the detailed table in Appendix.

3.2. Regulation bidding

The establishment of regulation bids for the day-ahead market is a
complex trade-off where available resources, such as the fleet PEVs,
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Table 4
Detailed results for Example-A.

ChFull Ch80% uni-dir V2B V2X

Total Electricity Cost [k$/a] 3479.0 3479.0 3478.6 3439.9 3441.7
Regulation Revenue [k$/a] 0.0 0.0 0.0 0.0 9.3
Total Operational Cost [k$/a] 3486.7 3486.7 3486.3 3453.8 3456.0
Operational Cost Savings [k$/a] 0.0 0.1 0.4 32.9 30.8
Investment Cost [k$] 40.0 40.0 40.0 80.0 80.0
Degradation Cost [k$/a] 7.7 7.7 7.7 14.0 23.6
Annual Return [%] 0.0 0.2 1.0 41.1 38.5
Total Electricity Cost w Deg. [k$/a] n/a n/a 3478.6 3431.6 3434.2
Regulation Revenue w Deg. [k$/a] n/a n/a 0.0 0.0 7.2
Total Operational Cost w Deg. [k$/a] n/a n/a 3486.3 3442.4 3442.0
Operational Cost Savings w Deg. [k$/a] n/a n/a 0.4 44.4 44.8
Degradation Cost w Deg. [k$/a] n/a n/a 7.7 10.8 14.9
Annual Return w Deg. [%] n/a n/a 1.1 55.5 56.0
Fig. 6. Frequency regulation bidding pattern for V2X control scenario with and without
considering battery degradation in the controller.

need to be balanced between providing V2B and V2G services. The
Fig. 6 illustrates this regulation bidding behavior for the Example-A.

The V2X control strategy, where participation in the frequency reg-
ulation market is allowed, is shown when the MPC controller includes
battery degradation, in blue, and when it does not, in orange. The 𝑦-axis
shows the symmetric regulation bid as percentage of full fleet capacity.
Note that full fleet capacity is defined as the sum of maximal charging
or discharging power for each of the PEVs. The plot shows the median,
in bold, and 25th and 75th percentiles, as dashed lines. The data is
filtered to only include days where at least one hourly bid is submitted.
While participation of the V2X scenario without degradation is 56.1%
of time, participation decreases to 29.5% of time when considering bat-
tery degradation. Both control scenarios show median and percentiles
of 0% until 6:00, but with outlier maximum values of up to 100% in
rare cases. This can be explained by the MPC controller prioritizing the
PEV battery SOC management for the upcoming day over the typically
low regulation revenue during this period, as shown in Fig. 4. Starting
from 6:00 to 14:00 the scenarios without degradation range between a
median of 48 and 60% for most of the time. A significant dip from
15:00 to 16:00 is present which can be attributed to the switch in
regulation rewards, shown in Fig. 4, where rewards for regulation down
start to decline while rewards for regulation up are still low. The MPC
controller therefore prioritizes V2B over V2G to reduce the electricity
bill. Regulation bidding reverts to mid-day levels until the late evening
hours where it initiates preparation of the PEV batteries for the next
day. The control scenario with degradation on the other hand shows
bids well below, with median bids only present from 8:00 to 11:00
and 17:00 to 18:00, where they range between 36 and 48%. Bidding
at the 75th percentile remains at levels similar to the scenario without
degradation.
10
Fig. 7. Distribution of battery temperatures across control scenarios.

3.3. Battery degradation

The quantification of battery degradation is a major focus of this
study. The following plots focus on the calendar aging, which mainly
depends on the passed time and average battery temperature. Since
passed time cannot be influenced, the major variable to control is the
average battery temperature. Fig. 7 illustrates the battery temperature
distribution across different control scenarios and Fig. 8 illustrates the
effect on battery degradation. Both figures are derived from Example-A.

The Fig. 8 is divided into two subplots, the 24 kWh battery size
on top and 60 kWh battery size on the bottom. The 𝑦-axis shows the
battery temperature distribution for all fleet PEVs across the multi-year
study. The 𝑥-axis shows six selected control scenarios. The ChFull is the
base case where PEVs are immediately fully charged when plugged-in.
Temperatures range between 6.7 and 44.7 (median at 18.4) ◦C. The
uni-dir scenarios use MPC to perform smart charging, which results in
slightly lower temperatures between 6.7 and 39.9 (median at 18.5) ◦C.
All other V2B and V2X cases result in median and average temperatures
higher than the base case, regardless whether battery degradation
is considered or not. However, control scenarios considering battery
degradation show lower median temperatures, e.g., for 24 kWh battery
size the MPC (V2B) deg reduces median temperatures by 3.3 ◦C and
MPC (V2X) deg reduces median temperatures by 9.4 ◦C. Maximum
temperatures across all cases are 59.6 ◦C for 24 kWh and 61.6 ◦C for 60
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Fig. 8. Battery degradation across multiple control scenarios.

kWh battery sizes which is within the typical operating range of 60 ◦C
for PEV drivetrain batteries. Fig. 8 illustrates the effect of the different
control scenarios and battery temperatures on the battery health.

Similar to the previous figure, Fig. 8 is divided into two subplots
for 24 and 60 kWh battery sizes. The primary 𝑦-axis shows evaluated
battery degradation, as solid lines in percent, and the secondary 𝑦-axis
shows the incremental battery degradation, as dotted lines in percent,
in comparison to the base case of fully charging PEVs upon arrival. Note
that the simulated battery degradation reflects the true degradation
outside the controller, i.e., is obtained from the simulation results and
not the controller projections. It is independently computed for each
control scenario, regardless if battery degradation was considered or
not. The 𝑥-axis is the time, in years, of useful PEV battery life. The
difference in PEV battery temperatures illustrated in Fig. 7 is reflected
in the spread of battery degradation and useful life across the control
scenarios. It can be seen that for both battery sizes the uni-dir MPC
control scenario results in a useful life of nearly seven years before
the battery degradation reaches the 30% EOL threshold, defined in
Section 2.2.3. The MPC control scenarios without managing battery
degradation, MPC (V2B) and MPC (V2X), result in lowest useful life
of 4.0 and 2.1 years respectively for the 24 kWh battery size and 2.3
and 1.6 years for the 60 kWh battery size. The MPC control cases which
actively manage battery degradation, MPC (V2B)-d and MPC (V2X)-d,
result in moderated useful life of 5.0 and 3.5 years respectively for the
24 kWh battery size and 2.9 and 2.5 years for the 60 kWh battery size.
For all control cases the incremental battery degradation remains flat
throughout the useful life, indicating that the respective control systems
consistently utilize the PEV batteries.

3.4. Sensitivity

As described at the beginning of the Results section the relative
size between fleet PEVs and base load impacts the benefit controlled
charging and discharging of PEVs to provide. For example larger ag-
gregated energy storage will be able to shift more energy and reduce
higher and wider peak load demands than smaller storage, but also
require higher investment cost. The following sensitivity study assesses
the impact of fleet PEV size relative to base load size. Fig. 9 illustrates
this relationship for Example-A.

The figure includes two subplots for two evaluation scenarios. The
first one represents control cases without second-life stationary storage
and the second one with second-life storage. The 𝑦-axis shows the
11
Fig. 9. Sensitivity of annual return rates of load versus PEV fleet sizes across multiple
control scenarios.

annual ROI, as defined at the beginning of the Results section. The 𝑥-
axis shows the base load scale where 100% corresponds to the full base
load, i.e., LAAFB load and PV generation. The three control scenarios
are MPC with uni-directional control, in blue, MPC with V2B support,
in orange, and MPC with V2X support, in green, represent MPC control
without consideration of battery degradation. The V2B and V2X cases
show results for the inclusion of battery degradation in the objective,
shown with dashed lines in the respective colors. It can be seen that for
both, with and without stationary storage, the ROIs follow exponential
functions starting from about 20% ROI at 10% base load and plateauing
around 60% ROI between 100 to 200% base load, for V2B and V2X
when considering battery degradation. The uni-directional case on the
other hand remains flat at nearly 0% ROI.

4. Discussion

This study seeks to asses the benefit of advanced control strategies
for PEV applications. This includes the active management of PEV
drivetrain battery degradation, uni-directional smart charging, and bi-
directional strategies including V2B and V2G. The input data for this
study was obtained from a field demonstration at LAAFB and from
other military facilities. The demonstration at LAAFB started in 2015
with a fleet of model 2012 Nissan LEAFs. Given the fast moving
pace of new drivetrain battery development, this study used both,
the original model 2012 and currently available model 2022 Nissan
LEAFs. Obtained data from the 2012 Nissan LEAFs was used to project
performance of a model 2022, e.g., the empirically developed battery
thermal and degradation models for the 2012 model were applied to
the 2022 model.

Battery degradation is complex to assess and causes of such are
difficult to evaluate in non-laboratory environments. The implemented
Wang battery degradation model was originally developed using small
cylindrical battery cells with the same NMC-LMO chemistry as 2012
Nissan LEAFs. This empirical model cycled cells with high C-rates
between 0.5 and 6.5 C to establish the model. All those C-rates were
well above the ones experienced in this study, e.g., typical C-rates were
up to 0.01 C for uni-directional and 0.14 C for bi-directional scenarios.
Due to the limited applicability of the Wang model for low C-rates, the
cycle aging portion of the Wang model was disabled for both the sim-
ulation and controller implementation. With only the calendar aging
remaining, the core drivers of battery degradation in this study were the
battery age and battery temperate, which in turn was modeled using the
empirically developed RC thermal model. While the simulation model
used the exact implementation of the Wang calendar aging model, the
controller used a linearized model which lead to model mismatch. This
mismatch might reduce effectiveness of the explored DOPER controller,
but given the significant benefit of inclusion of such shown in the
results, the proposed method proved viable.
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Table 5
Summary table of median results across all scenarios.

Control
scenario

Vehicle
battery
size
[kWh]

Total
elec.
cost
[k$/a]

Reg.
rev.
[k$/a]

Total
oper.
cost
[k$/a]

Oper.
cost
savings
[k$/a]

Invest.
cost
[k$]

Annual
return
[%]

Total
elec.
cost
w
deg.
[k$/a]

Reg.
rev.
w
deg.
[k$/a]

Total
oper.
cost
w
deg.
[k$/a]

Oper.
cost
savings
w
deg.
[k$/a]

Annual
return
w
deg.
[%]

Ch80% 24 3479.0 0.0 3488.6 0.1 50.0 0.1 n/a n/a n/a n/a n/a
Ch80% (sep.) 24 12.5 0.0 21.1 −1.7 50.0 −3.5 n/a n/a n/a n/a n/a
ChFull 24 3479.0 0.0 3488.6 0.0 50.0 0.0 n/a n/a n/a n/a n/a
ChFull (sep.) 24 10.8 0.0 19.4 0.0 50.0 0.0 n/a n/a n/a n/a n/a
V2B 24 3429.5 0.0 3446.9 41.7 100.0 41.6 3419.4 0.0 3433.1 59.9 63.8
V2B (Stat) 24 3414.2 0.0 3429.0 64.3 130.0 45.8 3396.9 0.0 3408.8 84.0 67.1
V2X 24 3432.0 12.2 3458.3 33.2 100.0 37.2 3426.4 10.1 3436.5 55.9 58.1
V2X (Stat) 24 3419.4 18.6 3439.0 53.3 130.0 39.9 3410.9 16.0 3417.9 76.6 59.4
V2X (sep.) 24 2.8 12.9 8.1 11.1 100.0 11.6 2.3 10.7 5.6 13.3 12.8
uni-dir 24 3478.6 0.0 3488.2 0.7 50.0 1.3 3478.6 0.0 3488.2 0.7 1.3
uni-dir (sep.) 24 0.8 0.0 9.4 9.9 50.0 20.7 0.8 0.0 9.5 9.9 20.7
Ch80% 60 3478.5 0.0 3498.6 0.6 40.0 1.5 n/a n/a n/a n/a n/a
Ch80% (sep.) 60 12.0 0.0 25.5 −1.2 40.0 −3.0 n/a n/a n/a n/a n/a
ChFull 60 3479.0 0.0 3499.1 0.0 40.0 0.0 n/a n/a n/a n/a n/a
ChFull (sep.) 60 10.8 0.0 24.3 0.0 40.0 0.0 n/a n/a n/a n/a n/a
V2B 60 3399.1 0.0 3441.7 53.3 120.0 34.5 3371.2 0.0 3406.3 111.0 71.9
V2B (Stat) 60 3376.4 0.0 3416.3 86.8 165.0 46.2 3345.9 0.0 3372.2 145.6 76.7
V2X 60 3394.6 10.2 3471.0 49.2 120.0 31.9 3382.1 8.6 3413.1 99.4 66.2
V2X (Stat) 60 3370.7 7.8 3433.1 75.1 165.0 39.1 3348.3 10.4 3377.0 132.2 70.0
V2X (sep.) 60 13.2 7.7 39.8 −12.4 120.0 −6.9 8.2 5.6 22.1 2.7 2.3
uni-dir 60 3478.6 0.0 3498.7 0.7 40.0 1.2 3478.6 0.0 3498.7 0.7 1.1
uni-dir (sep.) 60 0.8 0.0 15.6 9.9 40.0 16.5 0.8 0.0 15.6 9.9 16.5
Several inputs of the controller were perfectly matched with the
imulation, which in reality would always include some level of un-
ertainty. Examples are the perfect knowledge of weather forecast
ata over the next 24 h or the perfect projection of base electricity
onsumption over the next 24 h. Those were matched to assess the
echnical potential in a best-case scenario, and also because field uncer-
ainty is not well researched and can range widely based on the used
orecast methodology. However, in [47] the authors found that due to
he regular updating of controller inputs, e.g., at each 5-min control
imestep, and in conjunction with on-site environmental measurements,
he performance impact of typical weather forecast uncertainty across
.S. on an MPC controlling a smart building was largely eliminated.
nother area which is challenging for predictive control systems is the
ncertain and spontaneous human behavior in the way PEVs are used in
heir primary function as transportation. It is therefore very challenging
o develop accurate prediction models for PEV availability to provide
2X services. This study focused on U.S. military facilities where day-
head reservations though a fleet management system are typically
equired. In this scenario the uncertainty of PEV availability is low,
hich, based on LBNL’s experience with the PEV fleet operations at the
AAFB, is consistent with non-work hours and diligent use of a fleet
eservation system. Also, the DOPER controller excluded all vehicles
rom daily V2G participation which had any associated trips during the
ay. This would provide additional reserves in case of unforeseen fleet
emand.

The way frequency regulation participation was modeled was differ-
nt than carried out during the field demonstration at LAAFB. In this
tudy PEVs were able to individually bid any amount, given power and
nergy limits and overall minimum regulation requirements, and total
ower provided for regulation was subtracted from the site’s utility
eter. While this methodology is accurate in simulation, real-world
eployments likely would require post-processing of utility meter data
o disaggregate frequency regulation dispatch from base load demand.
oad aggregators could facilitate between utilities and customers to
treamline this process. Several PEV manufacturers such as Ford and
esla already sell bi-directional charging stations and offer load aggre-
ation services to end-users. While such expansion of the traditional
utomotive industry into electric power grid providers can be challeng-
ng, it also likely reduces barriers for market entry. PEV manufacturers
12
have the most accurate data about their drivetrain battery degradation
behavior, and also can provide extended warranty when providing such
services.

The participation of PEVs in dynamic ancillary service markets such
as CAISO’s frequency regulation is rare and usually related to research
activity. One of the first demonstrations was at the LAAFB where
the PEV fleet of Nissan LEAFs actively participated in the frequency
regulation market for over 20 months providing a total of 255 MWh
of regulation up and 118 MWh of regulation down [24]. While it is
technically feasible, the trade offs for providing V2X remain uncertain.
This study showed that PEV drivetrain battery temperatures, Fig. 7, sig-
nificantly increased when providing V2X. While PEV drivetrain battery
temperatures mostly remained within a 60 ◦C threshold, the larger 60
kWh battery size led to higher median temperatures than the 24 kWh
one, which can be attributed to the assumption of same form factor with
the 24 kWh model and equivalent exposed surfaces for heat exchange
with the environment. However, it can be seen that the cases with
battery degradation in the control objective have a reduced median
battery temperature. In those cases the DOPER controller actively
managed the expected battery temperature and associated degradation
to the economical optimum between cost of battery replacement and
monetary benefit from electricity cost savings and regulation revenue.
While this study only considered symmetric bidding, i.e., equal bids
of regulation up and down, non-symmetric bidding could increase
revenue from regulation. For example instead of charging PEV batteries
through the site demand, a strategic bid for regulation down could be
placed. However, this strategy is risky since actual regulation dispatch
is unknown which can result in a lack or excess of energy.

The active management of battery degradation led to a significant
increase in battery lifetime, see Fig. 8. While the MPC (V2X) scenario
without considering battery degradation shortened the battery lifetime
to 2.1 years, the same scenario with active management of battery
degradation increased it to 3.5 years. Combining the trade-offs in a full
cost analysis, Fig. 5, it can be seen that the V2B and V2X scenarios
far exceed uni-directional benefits, with annual return on investment
rates of up to 66.3% for the 24 kWh battery size, and up to 106.0%
for the 60 kWh, essentially resulting in a payback period of one to two
years for an installation which typically lasts for more than 10 years.
However, PEV drivetrain batteries will need to be replaced throughout
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their life cycle. While DOPER considered the cost of replacing the
battery, the associated unavailability of the vehicle, arrangement of
service, etc. were not considered in this study. Given that annual
ROIs for V2X are equivalent to V2B, i.e., not providing V2G service,
but battery lifetime is increased by 42.8%, from 3.5 to 5.0 years, it
might be more practical to only provide V2B services. However, other
drivetrain systems with active battery conditioning might be able to
mitigate degradation effects and therefore make V2G more attractive.
Also higher prices for providing frequency regulation could change V2G
participation in the future.

5. Conclusion

Plug-in electric vehicles pose a tremendous potential to reshape the
way vehicles are used today. Especially PEV fleets with predictable us-
age patterns can provide great benefit through vehicle-to-building and
vehicle-to-grid operations. While premature drivetrain battery degrada-
tion is often cited as major concern of PEV owners, this study showed
that advanced control strategies can actively predict and manage bat-
tery degradation to maximize the benefits of PEVs.
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