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Abstract 

While naturalistic daylong audio recordings of children’s 
auditory environments have the potential to reveal key insights 
about the input children receive and inform our theories of 
language development, it also presents various methodological 
hurdles. In the present work, we used three fully transcribed 
daylong audio recordings to investigate the challenge of 
manually extrapolating aggregate statistics and quantify the 
kinds of sampling choices daylong researchers can make. Our 
findings highlight sampling choices that maximize sampling 
from the full distribution of the day and potential tradeoffs 
between human effort and obtaining accuracy.  

Keywords: daylong audio; language development; manual 
extrapolation; sampling 

Introduction 
Decades of research has shown that environmental factors 
play a role in shaping a child’s language development 
(Lieven, 2016), and variation in the language environment 
can to some degree explain individual variation in 
development (Goodman, Dale & Li, 2008; Hoff, 2006; 
Huttenlocher et al., 2010).  

Newer advances in technology allow researchers to 
unobtrusively record longform audio of a child’s naturalistic 
auditory environment. Daylong audio provides a rich dataset 
that opens the door to a vast range of inquiries; researchers 
can investigate measures of the overall amount of speech or 
specifically child-directed speech (Casillas et al., 2017; 
Weisleder & Fernald, 2013; Weiss et al., 2022), the temporal 
distribution of words (Montag, 2020), of infant and adult 
vocalizations (Warlaumont et al., 2022), of music (Mendoza 
& Fausey, 2021), and much more. Given the potential for 
uncovering important facts about children’s early language 
experiences, there is a growing interest in collecting 
naturalistic corpora of children’s auditory environments. 
These investigations that aim to systematically investigate 
the patterns and variability of the language environment, 
including cross-culturally (Casillas et al., 2020, Cychosz et 
al., 2021), longitudinally (Warlaumont, 2016), and in clinical 
contexts (McDaniel et al., 2020), not only vitally enrich our 
understanding of developmental trajectories, but also 
ultimately have the potential to strengthen our theories of 
language development.  

For these recordings to be useful, researchers must 
somehow extract features of interest, which presents a major 
methodological challenge, and often employ either 

automated or manual approaches. Automated approaches to 
annotation allow researchers to analyze the entirety of the 
audio, but only a limited number of features can be assessed 
and quality is variable. Software such as the widely used 
Language Environment Analysis (LENA™, the LENA 
Research Foundation, Boulder, CO) system can exhibit 
performance quality that is often context dependent (Xu et 
al., 2009) and has been shown to systematically overestimate 
certain metrics (Ferjan Ramírez et al., 2021). Independent 
assessments highlight that many of its validation studies are 
lacking in thorough independent peer reviews and call for 
improved reporting (Cristia et al., 2020). Open-source 
alternatives, such as ALICE (Räsänen et al., 2021) provide a 
promising and more accessible option, however these tools 
are in their early iterations and likewise require thorough 
evaluation and further development. 

Manual transcription and annotation of a daylong audio is 
a hefty, often years-long process that requires substantial 
funding and training resources, and thus presents a daunting 
task to researchers. Instead, researchers can opt for a less 
laborious path of either transcribing or annotating smaller 
segments of daylong audio recordings and extrapolate or 
narrowing the scope of the transcription or annotation process 
whenever possible (Clemens & Kegel, 2021; Ferjan Ramírez 
et al., 2022; Fields-Olivieri & Cole, 2022), thus limiting the 
information that can be analyzed from the recordings. 

A wide range of sampling methods have been used: 
Weisleder and Fernald (2013) manually transcribed 5-minute 
samples; Ramírez-Esparza et al. (2014, 2017) sampled 30-
second intervals; Casillas et al. (2020, 2021) used 1-minute, 
2.5-minute and 5-minute samples. Prior reviews have 
demonstrated that differing sampling methods can 
misrepresent the daylong distribution of a feature and urge 
for intentional sampling choices (Bergelson et al., 2019; 
Tamis-LeMonda et al., 2017). As the use of daylong audio 
research continues to grow, so too does the need for well-
established methods, including sampling for manual 
extrapolation 

In the present work, we aim to address the methodological 
challenges with manual extrapolation and ask: How can you 
most accurately estimate a daylong statistic by randomly 
sampling from the day? Working from 3 transcribed daylong 
recordings, we investigate how to optimize sampling choices 
to extrapolate more accurate estimates while minimizing the 
amount of human annotation effort that is required. We 
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suggest a pipeline that researchers may implement in their 
sampling methods. 

Methods 
Sampling simulations were performed upon 3 fully 
transcribed daylong recordings, and are referred to as 
Transcripts A, B, and C in this paper. All recordings were 
collected using LENA recorders within English-speaking 
homes. Transcript A was collected and transcribed by 
VanDam (2018) and is publicly available on the HomeBank 
database (VanDam et al., 2016). Transcripts B and C were 
collected by Fausey and Mendoza (2018) and transcribed by 
Montag (2020). All recordings were manually transcribed 
following ACLEW conventions (Soderstrom et al., 2021).  

Figure 1 presents the cumulative speech distribution of 
each recording. Small gaps in speech indicate moments 
where the child is napping or temporarily out of the home 
(Transcript A in Figure 1) and thus no speech was 
transcribed, whereas large gaps, such as in Transcript C 
where speech is transcribed only in the morning and evening, 
indicate that the child was out of the home for most of the 
day. Other features of the individual transcripts are presented 
in Table 1.  

Table 1: Select transcript features 
 

 Child Age  Recording 
Length 
(min) 

Total 
Spoken 
Time 
(min) 

Total  
Words 

A 1 yr., 7 days 839.95 536.51 27,604 
B 10 mo., 9 days 683.32 313.64 26,423 
C 11 mo., 7 days 748.32 179.47 15,010 

General Sampling Procedure 
We manipulated sampling choices along two primary 
dimensions: (1) the total amount of time sampled per daylong 

recording and (2) sampling interval size. Sampling more from 
the day should yield better extrapolated estimates, but at the 
cost of greater human effort. Likewise, shorter sampling 
interval sizes rather than larger continuous intervals should 
improve extrapolation, and the present analyses will probe to 
what extent, quantitatively, extrapolation can be improved. 
Another dimension by which sampling methods vary is how 
and from where sampling intervals are selected. There are 
many ways in which researchers might sample, such as 
sampling from particularly dense periods of recording, 
randomly sampling, or some combination of pre-processing 
the audio followed by random sampling. We first identified 
only long intervals of silence, then generated random 
intervals across the remaining audio. We aimed to quantify 
the trade-offs between human effort and extrapolation 
accuracy and understand how different sampling choices 
contribute to overall accuracy.  

A sampling algorithm was implemented using Python, 
with the intention that this may be a general workflow when 
working with a raw, untranscribed daylong recording: 
1. Identify large intervals of silence (>30 minutes) that 

indicate the target child is napping/out of the home and 
should not be sampled from. We found that manually 
identifying long periods of silence prior to sampling 
improved our extrapolated estimates.  

2. Select a sampling interval size (length of each sample 30 
seconds – 60 minutes) and desired total sampled time 
(i.e., number of total samples, n). For example, if 
sampling interval size is 10 minutes and desired total 
sampled time is 100 minutes, then n=10 sampling 
windows will be randomly selected 

3. Generate n random sampling windows that do not 
overlap into identified intervals of silence 

4. Sample words/desired linguistic feature within generated 
sampling windows  

5. Use sampled count to calculate the daylong estimate: 
 

total audio length-total silence intervals
 total sampled audio time

× sampled count 

 
The present work implements this sampling procedure to 

estimate total word counts, however this method can be 
implemented to estimate any feature of interest from the 
environment, such as conversational turns, child-directed 
speech, select phrases/words, etc. 

Variations on the Sampling Method 
A challenge that emerges with any sampling method is how 
to sample utterances that overlap into sampling boundaries 
(see Figure 2). Different methods of counting, or not 
counting, utterances that partially fall in sampling boundaries 
may have consequences for the extrapolated counts. We 
compared four different sampling methods. 

 
Method 1: “Conservative” Sampling Method 1 only 
samples from utterances that are fully within the generated 

Figure 1: Cumulative speech distribution (per minute) for each 
transcript. 
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interval window and disregards utterances that overlap across 
the interval (Figure 2, in blue).  
 
Method 2: Include Utterance Past Boundary Method 2 
samples from utterances that begin within but end outside the 
desired sampling interval. To account for words sampled 
outside the sampling interval, the boundary is extended to the 
end of the overlapping utterance (Figure 2, in pink). Thus, 
when extrapolating the daylong estimate, this observed total 
sampled time is used. 
 

 
Figure 2: Visualization of audio segmented into utterances 
and partitioned by speaker. Different sampling methods 
treat sampling boundaries that fall within utterances 
differently. Sampling methods 1 & 4 retain the generated 
sampling boundary (in blue), while methods 2 and 3 extend 
the boundary (in pink and green, respectively). 
 
Method 3: Include Utterance Past Interval Boundary & 
Following Silence In Method 3, utterances that begin within 
but end outside the desired sampling boundary are sampled 
from as they are in Method 2. To balance out the proportion 
of speech and silence within the samples (potential issues 
extending each random sample with time that only ever 
includes speech), the sampling interval boundary is extended 
even further to include any silence following the overlapping 
utterance before the next utterance (Figure 2, in green). This 
observed total sampled time is used to extrapolate. 
 
Method 4: Sample ~Half of Overlapping Utterances 
Method 4 samples from half of the words in utterances that 
overlap either at the beginning or the end of the desired 
sampling interval. This is done to approximate which words 
from the overlapping utterances that may fall into the desired 
sampling interval boundary. Since this method only considers 
about half of the words from overlapping utterances, 
sampling boundaries are not extended to the start or end 
timestamps of the overlapping utterances (Figure 2, in blue). 

Results 
Sampling estimates of daylong word counts were obtained 
for each combination of sampling interval size (30-seconds, 
1, 5, 10, 30, and 60-minutes) and a total sampled time ranging 
from 30 to 120 minutes. Results will present the distribution 
of estimate accuracy obtained for 100 simulations. 

Performance of Sampling Methods 
Figure 3 presents the distribution of estimate accuracy across 
the 4 sampling methods for sampling interval sizes of 30 
seconds, 5 minutes, and 60 minutes and a total sampled time 
of 120 minutes. Many of the observed results are consistent 
with what one might intuit from logical consequences of 
sampling but show a magnitude of these logical effects.  

The performance across the 4 sampling methods first 
highlights that the choice of sampling method appears to 
matter the most at shorter sampling interval sizes (column 1 
of Figure 3). Intuitively, this makes sense. These sampling 
methods aim to address different ways on how to count 
utterances that overlap across sampling boundaries. A 
smaller sampling interval, and thus a greater number of 
samples, will result in more instances of overlapping 
utterances and a greater opportunity for different sampling 
methods to affect the results.  

Additionally, across the 3 transcripts, the 4th sampling 
method (“Sample ~Half”) seems to produce the most narrow 
and accurate distributions. Contrastingly, within the shortest 
sampling interval size, the 3rd sampling method (“Sample 
Overlapping & Silence”) produces the widest range of 
daylong estimates across the transcripts (the long tails). This 
also intuitively makes sense; if the length of time between 
one utterance to the next varies widely and inconsistently in 
naturalistic speech, then the size of the observed sampling 
boundary varies widely and inconsistently, and thus does the 
calculated daylong estimate.     

Further, as sampling interval size increases, it is not the 
choice of sampling method that seems to matter most, but 
rather the choice of sampling interval size. With longer 
sampling intervals, there is a greater overlap in the 
distribution curves of the individual sampling methods 
(columns 2 and 3 of Figure 3, respectively).  However, more 
notably, there is a greater shift along the x axis further away 
from a proportion of 1, particularly for Transcripts B and C. 
Longer sampling intervals seem to over-estimate the total 
word counts of the day, the reasons for which we will probe 
in following sections. Overall, the 4th sampling method in 
which about half of the words from overlapping utterances 
are sampled seems to perform the best and is the sampling 
method used to compare choices of sampling interval and 
total sampled time.  

Performance across Sampling Interval Size and 
Total Sampled Time 
It might be inferred without any sampling that shorter 
sampling interval sizes and greater total time sampled would 
yield both more accurate and more precise estimates of total 
counts. These analyses allow us to quantify these effects to 
make clear recommendations about the trade-off between 
human transcription effort and extrapolation quality.  

Figure 4 presents the estimate accuracy distributions across 
total sampled time (30 minutes, 60 minutes, 100 minutes, and 
120 minutes) and sampling interval sizes (30 seconds to 60 
minutes). As expected, across all transcripts and regardless of 
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total sampled time, shorter sampling interval sizes produce 
more accurate estimates. Compared to sampling from a single 
continuous portion of the day, using shorter sampling 
intervals essentially allows sampling from the full range of 
the day, and thus produces more accurate estimates.  

Additionally, these plots demonstrate that increasing the 
total sampled time produces more narrow distributions. 
Sampling more of the day sensibly will make estimates more 
precise; however, these plots reveal some caveats to this 
point. First, depending on the sampling interval size, 
sampling a full 2 hours may not be necessary. For example, 
in Transcript A, while the distributions across sampling 
interval sizes narrow when increasing total sampled time, 
these distributions are not markedly different from 100 
minutes to 120 minutes, particularly when using shorter 
sampling intervals. This indicates that sampling 100 minutes 
rather than a full 120 minutes in conjunction with a shorter 
sampling interval may be sufficient and is an important point 
to note due to the time and resource intensive nature of 
manual transcription.  

Further, regardless of total sampled time, larger sampling 
intervals (>10 minutes) present markedly different 
distributions across transcripts. In Transcript A (row 1 of 
Figure 4), estimate accuracy distributions for larger sampling 
intervals are wider but still generally centered around a 
proportion of 1.0. In Transcript B and even more so for 
Transcript C (row 2 and 3 of Figure 4, respectively), 
corresponding distributions are skewed to the right, 
indicating systematic overestimation with larger sampling 
intervals. The following analysis aims to further probe this 
disparity and provide an answer to why this systematic 
overestimation occurs for some, but not all, the transcripts.  

Proportion of Speech Sampled 
As discussed, for Transcripts B and particularly Transcript C, 
larger sampling interval sizes (> 10 minutes) produce  
consistent overestimates. Why is there systematic 
overestimation when employing larger sampling interval 
sizes for Transcripts B and C, but not for A, and how can this 

Figure 3: Kernel distribution estimation plots of the proportion of the estimated daylong word count to the true daylong word 
count of select sampling interval sizes (30 seconds, 5 minutes, 60 minutes) and a total sampled time of 120 minutes across 
the 4 implemented sampling methods (see Legend) over 100 simulations. A proportion less than 1.0 indicates that a given 
estimate is less than the true daylong count (underestimate) and a proportion greater than 1.0 indicates that a given estimate is 
greater than the true daylong count (overestimate). A dotted pink line at x = 1.0 is included for interpretability. The first row 
presents these plots for Transcript A, the second for Transcript B, and the third for Transcript C. 
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inform sampling choices? 
A possible explanation may reside in the differences in 

actual speech distributions of the transcripts and its 
consequences on what and how much gets sampled. While all 
three transcripts came from daylong recordings of 
approximately 700-800 minutes, the transcripts’ individual 
speech distributions are markedly different due to when the 
target child was in the home and/or when the family decided 
to record. Transcript A’s speech is distributed more widely 
across the audio with about 63.8% of the recording 
containing transcribed speech. Conversely, Transcript B and 
C’s speech is densely grouped in smaller consecutive periods 
of the audio, with about 45.8% and 23.9% of the recording 
containing transcribed speech, respectively. Thus, the 
proportion of speech sampled across the three transcripts 
differs notably from transcript to transcript and can 
potentially elucidate the disparity in the estimate distributions 
identified prior. 

When sampling from Transcript A, interval sizes of 30 
seconds totaling 120 minutes sample an average of 0.225 (SD 
= 0.013) of total words, whereas 60-minute intervals sample 
an average 0.250 (SD = 0.061) of total words. While both 
estimate accuracy distributions (see row 1 of Figure 4) are 
relatively centered around 1.0, the 30 second interval 
estimate distribution is much more narrow because sampling 
120 minutes over 30 second intervals produces a smaller 
range of sampled word counts from which to extrapolate. 
Contrastingly, sampling with 60-minute intervals produces a 

wider range of total sampled words, and thus increases the 
likelihood of over- or under-estimating the daylong word 
count.  

For Transcript B, while the proportion of speech sampled 
across simulations for both 30 second (M = 0.382, SD = 
0.013) and 60-minute (M = 0.412, SD = 0.0156) sampling 
intervals have similar standard deviations, the 60-minute 
interval samples slightly more of the day. Transcript B 
contains an interval of speech in the middle of the day; 
however, its duration is too short to be sampled from with 60-
minute intervals. This means that sampling is limited to the 
beginning and end of the day, which are denser intervals of 
input, and increases the likelihood of overestimation (row 2 
of Figure 4). Likewise, Transcript C only contains speech in 
the beginning and end of the day, and the proportion of 
speech sampled with 30-second (M = 0.670, SD = 0.025132) 
versus 60-minute (M = 0.73, SD = 0.041027) intervals differs 
enough to generate relatively accurate and precise daylong 
estimates for smaller sampling intervals and systematic 
overestimates for larger sampling intervals.  

Accuracies of Sampling Intervals 
To further quantify accuracy rates across different sampling 
intervals, Figure 5 presents the number of estimates with a 
percent error greater than 10% using 30-second, 5-minute, 
and 60-minute intervals for a total sampled time of 120 
minutes. These results show how “lucky” an extrapolated 
estimate is when using smaller sampling intervals compared 

Figure 4: Kernel distribution estimation plots of the proportion of the estimated daylong word count to the true daylong word 
count for select total sampled times (30 minutes, 60 minutes, 100 minutes, 120 minutes) across different sampling interval sizes 
(30 seconds up to 60 minutes; see Legend) over 100 simulations. A dotted line at x = 1.0 is included for interpretability. The 
first row presents these results for Transcript A, the second for Transcript B, and the third for Transcript C. 
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to larger sampling intervals. When using 60-minute intervals, 
72 out of 100 estimates from Transcript A had a percent error 
greater than 10%; Transcripts B and C had corresponding 
counts of 30 and 47, respectively. Conversely, 30-second 
intervals were much more likely to produce more accurate 
estimates: in Transcript A, only 10 out of 100 estimates had 
a 10% error or greater; for Transcripts B and C, 0 estimates 
were observed at this measure. The notable differences in 
counts for large sampling intervals for Transcript A 
compared to Transcripts B and C is likely due to the 
differences in their respective speech distributions, as 
investigated in the previous section. Consistent with our 
previous analyses, these results demonstrate just how much 
more likely an estimate will be closer to the true total count 
when using smaller sampling interval sizes (30 seconds) 
compared to larger intervals (60 minutes).  

Discussion 
The present analyses explore the kinds of sampling choices 
one can make to optimize manual extrapolation with daylong 
audio data. Working from 3 fully transcribed recordings, we 
investigated sampling choices along 3 dimensions: (1)   how 
overlapping utterances are handled (2) the total amount of 
time sampled, and (3) the size of individual sampling 
intervals. We demonstrated that the choice of sampling 
method in cases of overlapping utterances is most salient at 
smaller sampling interval sizes. Additionally, we quantified 
the effect of both total time sampled and sampling interval 
size. Smaller sampling intervals and longer durations of total 
sampled time lead to more accurate estimates, and we 
quantify how likely, in our audio transcripts, various 
sampling methods might be to yield accurate or extreme 
extrapolation estimates of features of interest. 

While our results suggest that the smaller the sampling 
interval size the better, there are also practical limitations. 
Manually transcribing 30 second isolated intervals may not 

be efficient, because it involves meticulous records to extract, 
annotate, and reunite potentially hundreds of small audio 
clips. Thus using 1-minute or 5-minute intervals may yield a 
more manageable workflow. However, because past research 
has employed 30 second intervals (Ramírez-Esparza et al., 
2014; 2017), and we see a substantial benefit for these short 
recordings we recommend it as a feasible and worthwhile 
sampling choice that should be thoughtfully implemented.  

These results also demonstrate how increasing total 
sampled time sensibly improves estimate accuracy; however, 
in conjunction with smaller sampling intervals, the maximum 
analyzed total sampled time does not seem to notably 
improve estimate accuracy. Thus, with smaller sampling 
intervals, manually transcribing a full 2 hours may not be 
“worth it”, and researchers can devote their finite resources 
and time elsewhere in their pipeline.  

Finally, our analyses illustrate how the actual speech 
distribution of a given recording has downstream 
consequences for what and how much gets sampled and 
estimate accuracy. These analyses, in conjunction with our 
recommended step of identifying major intervals of silence 
(see Methods) underline the importance of preprocessing 
prior to sampling. While the true speech distribution of a 
recording certainly cannot be entirely known without full 
transcription, implementing these preprocessing steps will 
give a general sense of the recording’s speech distribution; 
knowing whether speech is distributed more widely and 
variably (like Transcript A) or is densely grouped (like 
Transcripts B and C) help inform which sampling choices are 
better suited for the given recording. Recent efforts in 
developing automatic classifiers that intervals of sleep (Bang 
et al., 2021) present useful tools that can facilitate the 
preprocessing of this data and subsequently improve manual 
extrapolation.  

To further elucidate the trade-offs between human effort 
and estimate accuracy, follow-up analyses are needed, 
particularly to thoroughly quantify how much total time 
sampled may be sufficient to ensure an accurate estimate. We 
also plan to include more daylong transcripts in our analyses 
that have differing speech distributions to validate our results. 
Additionally, we intend to simulate sampling with other 
linguistic features of interest, such as estimating select words, 
speech from select speakers, and child-direct/adult direct 
speech. Finally, we aim to compare manually extrapolated 
estimates with automated estimates from systems such as 
LENA to further inform daylong researchers about the 
methodological advantages and drawbacks of both 
alternatives.  

Daylong audio presents an exciting avenue of research that 
has the potential to guide and enrich our theories of language 
development. As the establishment of thoroughly validated 
methods and tools is still in its early stages, we urge daylong 
researchers to thoughtfully implement their methodological 
choices.  

Figure 5: Number of estimates with more than 10% error 
using 30-second, 5-minute, and 60-minute sampling 
intervals and 120 minutes total sampled. For each sampling 
interval group, 100 estimates were obtained. 
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