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GENET ICS

An atlas of regulatory elements in chicken: A resource
for chicken genetics and genomics
Zhangyuan Pan1,2†, YingWang1†, MingshanWang3†, YuzheWang4†, Xiaoning Zhu4, Shenwen Gu1,
Conghao Zhong5, Liqi An1, Mingzhu Shan2, Joana Damas6, Michelle M. Halstead1, Dailu Guan1,
Nares Trakooljul7, Klaus Wimmers7,8, Ye Bi1, Shang Wu1, Mary E. Delany1, Xuechen Bai1,
Hans H. Cheng9, Congjiao Sun5, Ning Yang5, Xiaoxiang Hu3, Harris A. Lewin6,10,
Lingzhao Fang11,12*, Huaijun Zhou1*

A comprehensive characterization of regulatory elements in the chicken genome across tissues will have sub-
stantial impacts on both fundamental and applied research. Here, we systematically identified and characterized
regulatory elements in the chicken genome by integrating 377 genome-wide sequencing datasets from 23 adult
tissues. In total, we annotated 1.57 million regulatory elements, representing 15 distinct chromatin states, and
predicted about 1.2 million enhancer-gene pairs and 7662 super-enhancers. This functional annotation of the
chicken genome should have wide utility on identifying regulatory elements accounting for gene regulation
underlying domestication, selection, and complex trait regulation, which we explored. In short, this comprehen-
sive atlas of regulatory elements provides the scientific community with a valuable resource for chicken genetics
and genomics.
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INTRODUCTION
The chicken was the first farm animal to have its genome sequenced
and is generally considered to be one of the most important domes-
ticated species. Globally, chicken production produces a third of all
animal protein, and as one of the most intensively studied bird
species, chicken fills an important gap in our understanding of
the evolutionary relationship between mammals and birds (1).
Chickens are also an excellent and widely usedmodel species in evo-
lutionary and developmental biology, immunology, and epigenetic
regulation of gene expression (2).

Functional annotation of farm animal genomes is crucial for un-
derstanding the molecular mechanisms of economically important
complex traits, including growth, reproduction, and disease resis-
tance. Protein-coding sequences in humans only account for 1 to
3% of the whole genome, and nearly 90% of all phenotype-associ-
ated single nucleotide polymorphisms (SNPs) identified by
genome-wide association studies (GWAS) lied within noncoding
regions (3), suggesting that the activity of noncoding regions is
the main driver of phenotypic variation. Therefore, the

comprehensive annotation of functional regulatory elements, and
especially noncoding regions, will help to address basic biological
questions (4), interpret the genetic architecture underpinning
disease risks and phenotypic variation (5), and improve the predic-
tion accuracy of polygenic traits (6). The Encyclopedia of DNA El-
ements (ENCODE) projects and Epigenome Roadmap projects
clearly demonstrated the importance of regulatory element annota-
tion in humans and model species (7). Like the ENCODE projects,
the Functional Annotation of Animal Genomes (FAANG) Consor-
tium has made substantial contributions to the improvement of the
annotation of farm animal genomes (8–11). However, current an-
notations of regulatory elements are still limited to only a few
tissues, particularly in chickens (12), and a more complete catalog
of regulatory elements is urgently needed. Furthermore, our study
in pigs showed GWAS SNPs were significantly enriched in tissue-
specific regulatory elements (8). Therefore, a comprehensive atlas of
regulatory elements in the chicken genome would be expected to
improve the identification of potential causative variants for eco-
nomically important traits, with implications for breeding pro-
grams, and furthering the use of chickens in life science research.

In the current study, we systemically generated, collected, and
analyzed a total of 377 epigenomic, transcriptomic, and chromatin
conformation datasets from 23 major tissues in chickens (fig. S1).
By combining these datasets, we built an atlas of regulatory elements
across 23 tissues and explored their tissue-specific functionalities.
We also predicted interactions between enhancers and their target
genes, as well as super-enhancers. Furthermore, we conducted an
exploratory integrative analysis of regulatory elements with selec-
tion signatures and GWAS results. In summary, we provided a com-
prehensive catalog of functional elements in chicken genome and
demonstrated a potential role of regulatory elements in interpreting
domestication and complex trait regulation in chickens.
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RESULTS AND DISCUSSION
Data summary
In total, we uniformly analyzed 377 genome-wide sequencing data-
sets from 23 major tissues in adult chicken (Fig. 1A), including

chromatin immunoprecipitation sequencing (ChIP-seq) for four
histone modifications (H3K4me3, H3K4me1, H3K27ac, and
H3K27me3), CTCF, Assay for Transposase-Accessible Chromatin
using sequencing (ATAC-seq), deoxyribonuclease sequencing

Fig. 1. The summary of chicken epigenomic atlas. (A) The 23 tissues that were profiled for building the epigenomic atlas in chickens. BMarrow, bone marrow; ShellG-
land: shell gland; Cortex: corticoidea dorsolateralis. (B) The average number of peaks detected for each of five epigenetic marks across tissues. (C) The relationship among
assay, tissue, germ layers based on Pearson’s correlations of normalized signal in 1-kb windows stepped across the whole genome. (D) The distribution of assay signals
around CDH17 gene across tissues (chr2:125,878,923-125,908,898, galGal6). Top face is jejunum. The vertical scale of UCSC tracks shows the normalized signal from 0 to
500 for RNA-seq, 0 to 150 for H3K27ac and H3K4me3, and 0 to 100 for other marks and ATAC-seq.

Pan et al., Sci. Adv. 9, eade1204 (2023) 3 May 2023 2 of 14

SC I ENCE ADVANCES | R E S EARCH ART I C L E



(DNase-seq), reduced representation bisulfite sequencing (RRBS),
RNA sequencing (RNA-seq), and Hi-C (table S1 and fig. S1). We
generated 19.8 billon raw reads and retained 12.9 billon mapped
reads, keeping on average 68.29% of reads after alignment and fil-
tering (table S2). Further analysis obtained an average of 53,464,
65,843, 69,157, 23,410, and 65,811 peaks for H3K27ac,
H3K27me3, H3K4me1, H3K4me3, and ATAC, or DNase-seq, re-
spectively, with an average coverage of 4.11, 11.52, 3.84, 2.32, and
4.71% of the entire genome, respectively (Fig. 1B, table S2, and
fig. S2).

To evaluate relationship across different assays and tissues, we
conducted hierarchical clustering of samples based on the signal in-
tensity of epigenetic marks and gene expression profiles. The clus-
ters clearly recapitulated the sequencing assays, followed by tissue
types, and lastly biological replicates (Fig. 1C), which was consistent
with results of principal components analysis (PCA) (fig. S3). The
six sequence assays formed three major clusters: (i) active regulatory
marks (i.e., H3K4me3, H3K27ac, H3K4me1, and ATAC), (ii) Poly-
comb repression (H3K27me3), and (iii) gene expression (RNA-
seq). We also found that the four active regulatory marks were pos-
itively correlated with each other but were negatively correlated with
H3K27me3. The signal intensity of RNA-seq (mainly within gene
bodies) showed a weakly positive correlation with active regulatory
marks and a negative correlation with H3K27me3. Within each
assay, tissues with similar biological functions, such as different
brain regions, intestine-relevant, and immune-relevant tissues,
clustered together. Tissues derived from the same germ layer were
also more likely to cluster together (Fig. 1C).

To explore the relationship between regulatory elements and
gene expression, we first explored the distribution of signals from
each mark near six different types of genes [e.g., protein-coding,
long noncoding RNA (lncRNA), pseudogenes, microRNA
(miRNA), small nucleolar RNA (snoRNA), and small nuclear
RNA (snRNA) genes] and found that transcription start sites
(TSS) of protein-coding genes showed a stronger enrichment of
three active marks (i.e., ATAC, H3K4me3, and H3K27ac) but not
H3K4me1, compared to the other gene types (fig. S4).We took Cad-
herin 17 (CDH17) as an example (Fig. 1D). The protein encoded by
CDH17 is an intestinal proton-dependent peptide transporter (13)
and also plays important roles in gastrointestinal cancer develop-
ment (14). CDH17 was specifically and highly expressed in intesti-
nal tissues and had a specific enrichment for H3K27ac around its
TSS in intestinal tissues compared to other tissues (Fig. 1D). In ad-
dition, the TSS of CDH17 was accessible and enriched for three
other active regulatory marks (e.g., H3K27ac, H3K4me3, and
H3K4me1) but not for Polycomb repression (H3K27me3). These
findings demonstrated coordinated gene regulation among differ-
ent epigenetic marks in a gene expressed in a tissue-specific
manner in the chicken.

Prediction and characterization of chromatin states
By combining all five epigenetic marks across 23 tissues via
ChromHMM (15), we predicted 15 distinct chromatin states, as de-
scribed in our previous pig study (8) (Fig. 2, A to C). These chro-
matin states mainly represented promoters (TssA, TssAHet, and
TssBiv, covering 1.94% of the entire genome), TSS-proximal tran-
scribed regions (TxFlnk, TxFlnkWk, and TxFlnkHet, covering
1.31% of the genome), enhancers (EnhA, EnhAMe, EnhAWk,
EnhAHet, and EnhPois, covering 8.86% of the genome), accessible

islands (ATAC island, 3.64%), repressed regions (Repr and ReprWk,
covering 21.52% of the genome), and quiescent regions (Qui,
62.73%) (Fig. 2D and table S3). In total, we predicted 1,573,399 reg-
ulatory elements (excluding Qui) across 23 tissues. These included
102,907 promoters, 146,045 TSS-proximal transcribed regions,
765,400 enhancers, 351,928 ATAC islands, and 201,377 repressed
regions (fig. S5). As expected, promoters had a higher enrichment
in TSS, 5′ untranslated regions, and CpG islands than enhancers,
and both active promoters and enhancers were significantly en-
riched in the TSS and gene body of expressed genes [transcripts
per million (TPM) ≥ 0.1] compared to repressed genes (fig. S5E).
Among these chromatin states, the activities of enhancers were the
most dynamic, whereas the activities of promoters were the most
conserved among tissues (fig. S6). At the DNA sequence level, pro-
moters were also more conserved than enhancers and Polycomb re-
pressed regions (measured by phyloP score, based on 77
vertebrates) (Fig. 2F).

Differences in the regulatory landscape within and near evolu-
tionary breakpoint regions (EBRs) have been found to be associated
with changes in gene expression relating to species-specific traits
(16). Here, to determine what types of regulatory elements were as-
sociated with chicken-specific EBRs [breakpoints with extended
1000 base pairs (bp) on each side], we found that they were signifi-
cantly enriched for promoters and particularly for active promoters
(TssA) (Fig. 2G). This promoter set included seven genes (i.e.,
ANKRD10, UVRAG, APBB3, XYLT2, XPO1, CALM2, and
RCHY1) that were involved in multiple diseases relevant to brain
development, immune response, and intestine function (table S4).
These results suggest that chicken-specific EBRs could be associated
with chicken-specific gene expression profiles. Nonetheless, further
research is needed to verify this hypothesis.

Then, we further explored the relationship between DNA meth-
ylation and regulatory elements. We found that promoters had the
lowest methylation level, followed by ATAC islands, enhancers, and
Polycomb repressed regions (Fig. 2E), which was consistent with
how these regulatory elements regulate gene expression and the
general negative correlation between methylation level and gene ex-
pression. We also observed that enhancers with ATAC signal (i.e.,
EnhA and EnhAMe) had a lower methylation level than enhancers
without ATAC, which was in line with our previous findings in
pigs (8).

To validate enhancers predicted in our study in silico, we queried
the VISTA database (17), which contains information on function-
ally validated enhancers in humans and mice. As expected, we
found that strong (EnhA) and medium (EnhAme) enhancers dem-
onstrated higher enrichments in the VISTA enhancers than the
other types of enhancers (Fig. 2H). In addition, the enrichment
pattern exhibited strong tissue specificity (fig. S7). These findings
not only provided additional evidence for the functionality of en-
hancers identified in our study but also suggested potential conser-
vation of some enhancers among humans, mice, and birds.

Linking enhancers to specific target genes is essential for under-
standing how gene expression is regulated. To predict the target
gene(s) for each enhancer, we correlated the signal intensity of
H3K27ac and the expression level of genes within the same predict-
ed CTCF loop region (see Materials and Methods). In total, we ob-
tained ~1.2 million enhancer-gene pairs with a median distance of
249,346 bp across all tissues. On average, each gene was linked to 18
enhancers, whereas each enhancer targeted three genes (Fig. 2I).
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The significance (i.e., q value) of enhancer-gene pairs was signifi-
cantly negatively correlated with the distance between each enhanc-
er and its target genes (fig. S8). We then separated genes into three
groups based on the number of enhancers to which they were
linked. We found that genes with more enhancers had higher
gene expression levels, weaker tissue-specific expression patterns,
and more sequence-level conservation compared to genes linked
to fewer enhancers (Fig. 2J). Gene Ontology (GO) enrichment anal-
ysis showed that genes with only one enhancer were more likely to
have a tissue-specific function (e.g., neuropeptide signaling pathway
for brain), genes with the medium number of enhancers were

related with metabolic processes, and genes with the highest
number of enhancers were involved in basic biological functions
(e.g., ribosomal DNA heterochromatin assembly) (Fig. 2K and
table S5). The ovalbumin-related protein (OVAL) gene locus, as
an example, illustrated how regulatory elements control gene ex-
pression across tissues (Fig. 2L). This locus contained several
OVAL genes that were highly and specifically expressed in shell
gland, and nearby regulatory elements had active chromatin
states. On the basis of enhancer-gene pair predictions, several en-
hancers, located up to 50 kb away from TSS, may regulate the

Fig. 2. Discovery and characterization of chromatin states and enhancer-gene interactions in chicken. The definition (A) and abbreviation (B) for 15 predicted
chromatin states. (C) Emission probabilities of five epigenetic marks for each chromatin state. (D) Genomic coverage for each chromatin state. M, mean. (E) Methylation
level in each state. Whiskers show 1.5× interquartile range. Each dot represents one tissue. (F) Fold enrichments of chromatin states for conserved region based on phyloP
score. Whiskers show 1.5× interquartile range. Each dot represents one of 23 different tissues. (G) Fold enrichments of chromatin states in chicken specific evolution
breakpoint. Whiskers show 1.5× interquartile range. Each dot represents one of 23 different tissues. (H) Chromatin state enrichment of enhancer datasets from VISTA
database. Whiskers show 1.5× interquartile range. Each dot represents one of 23 different tissues. The y axes label on (E) to (H) has the same label as on (A). (I) The
summary of enhancer-gene pairs across all tissues. RE, regulatory element. (J) The gene expression, tissue-specific value (Tau), and conservation score for genes
linked to different numbers of enhancers (bottom = 1, 10 ≤ middle ≤ 20, top ≥ 50 enhancers). *P < 0.05, **P < 0.01, and ****P < 0.0001. ns, not significant. (K) The
top four GO terms for the three gene groups. (L) Chromatin state landscape and mRNA expression at OVAL locus (chr2:67,664,385-67,749,248, galGal6) across 23 tissues.
Vertical scale of UCSC tracks shows normalized signal from 0 to 100 for RNA-seq.
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expression of OVAL genes (Fig. 2L). Similar patterns were also ob-
served for TMPRSS15, VMO1, and MEIOC (figs. S9 and S10).

Tissue-specific chromatin states and their functional
annotation
Tissue-specific regulatory elements play important roles in deter-
mining tissue identity. Here, we identified a total of 790,279
tissue-specific regulatory elements (excluding Qui), representing
50.2% of all regulatory elements identified in this study (table.
S6). As expected, a great number of enhancers exhibited tissue-spe-
cific activity compared to promoters (table S6). Furthermore, we
defined an additional three types of EnhAs based on their tissue
specificities, including all-common EnhAs (shared among all
tissues), gut-common EnhAs (shared among all gut-associated
tissues), and brain-common EnhAs (shared among three brain
regions). We identified a total of 64,657 tissue-specific EnhAs
among 23 tissues, ranging from 149 in ileum to 6702 in hypothal-
amus (Fig. 3A). The GO analysis of their target genes revealed dis-
tinct biological functions, clearly reflecting the known tissue
biology (Fig. 3B). For instance, genes targeted by the all-common
EnhAs were involved in basic biological functions (e.g., DNA tem-
plate transcription), and those targeted by brain-common EnhAs
were involved in the regulation of nervous system development. Re-
garding the gut-associated tissues, genes targeted by EnhAs specific
to each tissue had distinct functions (e.g., proventriculus for diges-
tive system development, gizzard for muscle contraction, intestine
for nutrition absorption and immune responses, and cecum for
mononuclear cell differentiation). In the reproductive system,
genes targeted by shell gland–specific EnhAs participated in stem
cell development, while genes targeted by oocyte- and testis-specific
EnhAs were involved in chromatin remodeling at the centromere,
which may be related to spermospore meiosis. In addition, after
lifting the regulators to human genome, these conserved enhancers
also showed tissue-specific biological function and were associated
with tissue-relevant phenotypes in humans and mice (fig. S11A).
Furthermore, we observed that putative target genes of tissue-spe-
cific EnhAs were highly expressed in the corresponding tissues
(Fig. 4C). These collective results suggest that the activities of
these tissue-specific enhancers regulate the expression of their
target genes, contributing to the unique biological function of
each tissue.

To explore how transcriptional factors (TFs) were involved in
tissue-specific regulation, we conducted motif enrichment analysis
for these tissue-specific EnhAs. Multiple notable motifs were en-
riched in tissue-specific EnhAs, such as NF1 and NEUROD1 in
the brain, MEF2C in the muscle, and HNF1B and HNF4G in the
liver and intestinal tissues (Fig. 4D and figs. S12A and S13A).
These findings were in line with previous results in humans (18)
and pigs (8), suggesting the conservation of TF regulation of gene
expression across species. Specifically, we found that the binding
motif of NR5A2, which is important for horse steroidogenesis
(19), was significantly enriched in testis-specific EnhAs, and the
NR5A2 gene was highly expressed in chicken testis (fig. S13B).
The binding motif of ARID3B, an important regulator of ovarian
cancer in mammals (20), was significantly enriched in shell
gland–specific EnhAs, indicating that it may also play a role in re-
production in chickens. Bursa is one of major immune organs pro-
ducing B cells in chickens (21). In line with the function of bursa,
the binding motif of an important TF in B cell development, IRF8,

was enriched in bursa-specific EnhAs (fig. S13C). In addition, we
found that expression levels of the inferred TFs were higher in the
corresponding tissues than in other tissues (fig. S12B), indicating
that these tissue-specific enhancers are hotspots for TF activity
and play important roles in the tissue-specific regulation of gene
expression.

Identification and characterization of super-enhancers
Super-enhancers, which are clusters of enhancers in close genomic
proximity (within 12.5 kb) that bind various transcription factors,
are proposed to play key roles in the control of cell identity, and
their dysfunction may cause diseases (22, 23). Here, we identified
an average number of 1823 super-enhancers across tissues,
ranging from 775 in thymus to 2676 in jejunum, by integrating
H3K27ac signals and enhancers (all five types of enhancers).
These super-enhancers had an average size of 42,534 bp, represent-
ed 40% of all enhancers and covered 7.3% of the chicken genome
(Fig. 4, A and B, and fig. S14). Each super-enhancer consisted of
about 30 enhancers on average with an average distance of 664 bp
between adjacent enhancers (fig. S14A). Among all five types of en-
hancers, the super-enhancers had many more strong-enhancers
(EnhA) and fewer poised-enhancers (EnhPois) compared to the
other three types of enhancers (fig. S14, B and C). Further analysis
revealed that the genes regulated by super-enhancers showed signif-
icantly higher expression levels and were more conserved at the se-
quence level (Fig. 4C) than the genes without super-enhancers,
which was consistent with previous findings in humans (24).

After merging super-enhancers from 23 tissues, we obtained a
total of nonredundant 7662 super-enhancers. These super-enhanc-
ers showed strong tissue-specific activity, as only 31 of 7662 super-
enhancers were identified in all tissues (fig. S14D). We then clus-
tered all super-enhancers based on their activity in all 23 tissues
and revealed distinct tissue sharing patterns for each cluster of
super-enhancers (Fig. 4D). Further GO enrichment analysis of pu-
tative target genes of these different super-enhancer clusters sug-
gested distinct biological functions for each cluster (Fig. 4E and
table S7). For instance, the function of genes targeted by the
super-enhancers in C1 (cluster 1) (widely active in most of
tissues) were involved in basic biological functions (e.g., Ras
protein signal transduction). On the other hand, the super-enhanc-
ers in C3 were specifically active in gut and immune tissues, and
their target genes participated in immune function (e.g., leukocyte
apoptotic process). The super-enhancers in C4 and C5 were specif-
ically active in brain tissues, and their target genes participated in
nerve development and synapse organization. The super-enhancers
in C6 were specifically active in muscle and were relevant to muscle
development, and C8 super-enhancers, specifically active in shell
gland, were related to female sex differentiation. The super-enhanc-
ers in C10, specific to liver, participated in small-molecule catabolic
processes, whereas super-enhancers in C7, specific to kidney, heart,
and testis, participated in kidney development, heart morphogene-
sis, and sex differentiation. Some well-known genes associated with
super-enhancers of each cluster are presented in Fig. 4E. Further-
more, we observed that genes with tissue-specific super-enhancers
were specifically and highly expressed in the corresponding tissues
(fig. S14D).

To explore potential TFs that bind super-enhancers, we also per-
formed motif enrichment analysis for each super-enhancer cluster.
We observed that distinct TFs motifs were enriched in each cluster,
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Fig. 3. Tissue-specific strong enhancers (EnhA) and their potential functions in 23 tissues. (A) Twenty-six modules of tissue-specific strong enhancers (EnhA) and
their number in each module. (B) The GO functional enrichment for target genes of tissue-specific strong enhancers in each module. The columns represent 26 modules
of strong enhancers. The rows represent GO terms in each module. (C) The expression (TPM) of EnhAs’ putative target genes within the top three GO terms of each
module. The rows represent the target genes within the top GO terms of each module, and the columns represent each tissue. (D) The enrichment of transcription factor
motifs in each module. The columns represent 26 modules of EnhAs. The rows represent motifs in each module.
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reflecting corresponding tissue-specific functions (Fig. 4F).
Notably, HNF4A plays important roles in liver (25), and its motif
was significantly enriched in C10 (liver-specific super-enhancers).
The HNRNPK motif was enriched in C4, which was related to mul-
tiple brain diseases in humans (26). The motif of ZC3H14 was en-
riched in testis-specific super-enhancers, which was relevant with
testis size in mice (27). The motif of PHD1 was enriched in
kidney-specific super-enhancers, which plays a role in acute
kidney injury (28). The motif of FOXQ1 enriched in C9, which
plays roles in gastrointestinal function (29). Here, we took GRM7

as an example (Fig. 4G). GRM7 was linked to brain-specific
super-enhancers with strong brain-specific H3K4me1 and
H3K27ac signal, and it also showed strong brain-specific expres-
sion. GRM7, a neuro-related gene, is involved in schizophrenia in
humans (30). These results collectively suggest that super-enhanc-
ers play a key role in tissue identity and function in chickens.

Fig. 4. Super-enhancers and their potential functions. (A) Super-enhancers (SEs) identified by ROSE based on H3K27ac signal in each tissue. Super-enhancers are
colored based on tissue and show exceptionally high signal. Tissue color is the same with (B). (B) The number of super-enhancers in each tissue. (C) The expression and
conservation difference between genes with (8338) and without (8441) super-enhancers. The gene conservation score is sequence identity (%) from chicken gene to
orthologous human gene. (D) Clustering of 7662 nonredundant super-enhancers based on their activity in each tissue. (E) GO function and representative genes in each
super-enhancer cluster. (F) Motifs enriched in each super-enhancer cluster. (G) A brain-specific super-enhancer present at the GRM7 locus (chr12:19,167,915-19,582,314).
The following sections are Hi-C, chromatin state, H3K4me1, H3K27ac, and RNA-seq. Vertical scale of UCSC tracks shows normalized signal from 0 to 100 for RNA-seq, 0 to
150 for H3K27ac, and 0 to 50 for H3K4me1.
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Exploring the utility of enhanced genome annotation to
inform chicken biology
For monogenic traits, it is more feasible to identify the underlying
mechanism when amino acid changes or structural variants are in-
volved. However, there are clear examples where polymorphisms in
regulators have been found such as the role of the Shh regulatory
element on polydactyly in both humans and mice (31, 32), suggest-
ing that the identification of regulator elements, especially enhanc-
ers, may provide more insights. To explore the potential role of
regulatory elements on the genetic control of monogenic traits in
chicken, we examined eight noncoding causal or likely causal vari-
ant(s) of seven chicken monogenic traits in the Online Mendelian
Inheritance in Animals (OMIA) database (https://omia.org/home/)
and found that six (75%) of them are located in active regulatory
elements in at least one tissue (table S8). For instance, the potential
causal SNP (rs80659072) of polydactyly (33) is located in an active
enhancer of SHH in bone morrow, which has a high DNA sequence
constraint score (PhyloP > 4) (Fig. 5A and fig. S15A). Another
noted example is a 7.6k deletion (g.51035106_51042744delins) at
12 K upstream of SOX10 that causes dark brown/yellow plumage
in chickens (34, 35). This deletion exclusively overlaps with a
brain-specific enhancer region, particularly in hypothalamus
(Fig. 5B and fig. S15B). Furthermore, a single causal variant
(rs316090093) of the Silky/Silkie feathering in chickens (36)
resides in a strong promoter (TssA) of PDSS2 with a clear ATAC-
seq foot-printing across multiple chicken tissues (fig. S15C).

There is a clear role of regulatory elements in complex traits;
however, understanding the underlying genetic architecture of
complex traits is important but challenging, as the majority of
trait-associated loci have small genetic effects and exhibit linkage
disequilibrium (LD) that include nearby variants (37). We hypoth-
esized that functional annotation of regulatory elements across
tissues may provide new multidimensional functional information
to interpret the GWAS results of complex traits and help pinpoint
potential causal variants of complex traits in chickens. Through ex-
amining GWAS summary statistics from 44 complex traits of eco-
nomic importance in chickens, including growth and egg
production traits (table S9) (38, 39), we observed that active regula-
tory elements had a higher enrichment for GWAS signals compared
to quiescent regions, and TssA and TssBiv had the highest enrich-
ments (fig. S16A), which was consistent with previous findings in
pigs (8) and humans (40). To explore whether tissue-specific regu-
latory elements in the trait-relevant tissues had more regulatory
effects on GWAS SNPs than in the other tissues, we performed
GWAS signal enrichment analysis using tissue-specific EnhAs
across all 44 complex traits (Fig. 5C). We found that most
growth-related traits (e.g., growth and carcass weight) showed the
highest enrichment in intestine-shared regulatory elements,
whereas feed intake and efficiency were enriched in ileum-specific
EnhAs. These findings raise new and interesting hypotheses: Genes
that are actively regulated across gut tissues were essential in affect-
ing growth, whereas genes that are specifically regulated in ileum
were associated with feed efficiency. Of particular note, weight
gain and growth rate from 4 to 6 weeks were significantly enriched
in ileum-specific EnhAs, whereas these traits from 10 to 12 weeks
were significantly enriched in adipose-specific EnhAs. This finding
was in line with the principle of animal growth, in which the
protein-to-fat ratio is high at early developmental stages (4 to 6
weeks) but significantly decreases during late developmental

stages (10 to 12 weeks) (41, 42). Most egg production traits were
significantly enriched in intestine-specific EnhAs, except for age
at first egg (enriched in brain-shared EnhAs), which was consistent
with a previous report that the hypothalamus-pituitary-gonad axis
plays important roles in age at first egg (43).

Last, we conducted an exploratory analysis to investigate whether
domestication and selection were associated with regulatory ele-
ments. By examining selective sweeps in chicken domestication
(red jungle fowls versus domesticated chickens) from a previous
study (table S10) (44), we found that hypothalamus and shell
gland–specific enhancers were significantly depleted [false discov-
ery rate (FDR) < 0.05] in both datasets of selective sweeps by using
two different outgroups (G. g. murghi and G. g. jabouillei.) (table
S12). This result provides the notion that domestication likely
induced changes in brain and reproductive system via tissue-specif-
ic regulation through enhancers. Furthermore, we examined selec-
tion sweeps between modern broilers and layers (table S11 and fig.
S16, B and C), and we found that intestine-shared enhancers were
significantly enriched (FDR = 0.0496) for selection sweeps in broiler
(Fig. 5E), representing two genes: MYO10 and CDH18 (table S12).
Together, our results show that this atlas of regulatory elements pro-
vides candidates further characterization that may lead to a greater
understanding of the molecular mechanisms underlying monogen-
ic and complex traits as well as adaptive evolution and selection in
chickens.

In summary, we generated and characterized a comprehensive
landscape of regulatory elements in 23 adult chicken tissues. To
our knowledge, this is the most comprehensive catalog of regulatory
elements in any farm animals, including a total of 1,573,399 regu-
latory elements (102,907 promoters, 146,045 TSS-proximal tran-
scribed regions, 765,400 enhancers, 351,928 ATAC islands, and
201,377 repressed regions). Furthermore, we identified a total of
790,279 tissue-specific regulatory elements, 7662 nonredundant
super enhancers, and more than 1.2 million enhancer-gene pairs
across 23 tissues. Using this rich resource, we find that GWAS
signals associated with growth traits were significantly enriched in
intestine-specific enhancers. We revealed that tissue-specific en-
hancers may be involved in different developmental stages of
growth. Ileum-specific enhancers contributed to the early stage of
growth, whereas adipose-specific enhancers were related to the late
stage of growth. However, functional genome data from different
development stages are required to further verify these hypotheses.
As the FAANG project keeps going, more epigenomic data in
diverse biological contexts, such as additional developmental
stages, breeds, and single cells, will add more information to the
chicken functional genome annotation and enhance the under-
standing of regulation biology in chicken. Overall, this extensive an-
notation of regulatory elements in the chicken genome will help
researchers to decode the molecular mechanisms underlying
complex traits and adaptive evolution, as well as provide a powerful
resource in realizing the genetic improvement of economically im-
portant traits in poultry.

MATERIALS AND METHODS
Animals and tissues
The animal experiment was conducted according to the Animal
Care and Use protocol (#18464), which was approved by the Insti-
tutional Animal Care and Use Committee, University of California,
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Fig. 5. The regulatory elements involved in chicken monogenic traits, complex traits, and selection signatures. (A) The predicted chromatin states around a
potential causal SNP (chr2:8553470G>T, rs80659072) of polydactyly (chr2:8,546,000-8,561,000) in chickens. The red line indicates the position of the SNP. (B) The pre-
dicted chromatin states around a 7.6k deletion (g.51035106_51042744delins, highlighted in blue) at the upstream of SOX10which causes dark brown/yellow plumage in
chickens (chr1:51,034,163-51,064,718). The highlighted region means the deletion region. (C) GWAS enrichment in tissue-specific enhancers (EnhA). “*” indicates that P
value is the smallest in this trait, and P < 0.05. (D and E) The enrichment of tissue-specific strong enhancer (EnhA) in selection signatures of layer and broiler, respectively.
The dashed lines indicate P < 0.05 (red) and FDR < 0.05 (blue).
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Davis. All the birds were euthanized with CO2 under U.S. Depart-
ment of Agriculture (USDA) inspection. A total of four birds were
selected from the F1 cross of two highly inbred lines: line 6 and line
7, maintained in the USDA, ARS, Avian Disease and Oncology Lab-
oratory. A total of 21 tissues were collected from two male birds (20
weeks of age) as in our previous report (12, 45), including cortex,
hypothalamus, cerebellum, testis, muscle, heart, adipose, kidney,
spleen, bone marrow, lung, trachea, thymus, liver, proventriculus,
gizzard, duodenum, jejunum, ileum, colon, and cecum. Shell
glands were collected from two female birds at 20 weeks of age.
Bursa tissues were collected from four birds of two highly inbred
lines (two for each line) at 3 weeks of age, Fayoumi (M15.2) and
Leghorn (GHs6), maintained at Iowa State University (Ames, IA,
USA), which have been described previously (46). All tissues have
been flash frozen in liquid nitrogen and stored at −80°C before
further using.

Library construction and sequencing
RNA-seq, RRBS, ATAC-seq, and ChIP-seq (H3K4me3, H3K4me1,
H3K27ac, and H3K27me3) experiments were performed on flash-
frozen tissue samples. For RNA-seq experiments, total RNAwas ex-
tracted using TRIzol (Thermo Fisher Scientific, #15596026) and
treated with DNase I (Thermo Fisher Scientific, #EN0521). RNA
integrity number (RIN) was determined using an Agilent Bioana-
lyzer (Agilent Technologies, Santa Clara, CA, USA), and RNA
samples with RIN > 8 were selected for constructing directional
RNA-seq libraries using an NEBNext Ultra RNA Library Prep Kit
of Illumina (New England BioLabs, #E7530L), followed by sequenc-
ing on an Illumina Hiseq 4000 platform (Illumina, San Diego, CA,
USA) with paired-end 150-bp reads. RRBS datasets were generate
by an Illumina HiSeq 4000 platform with 150-bp paired-end
reads after library construction by Novogene (Sacramento, CA,
USA). For ATAC-seq experiments, libraries were generated using
a modified protocol (https://figshare.com/articles/dataset/Final_
ATAC_protocol_docx/13891268) according to OmniATAC and
cryopreserved nuclei protocols (47, 48). For ChIP-seq experiments,
samples were processed as described previously (8). Libraries of
both ATAC-seq and ChIP-seq were sequenced on an Illumina
HiSeq 4000 platform with 50-bp paired-end and single-end reads,
respectively.

Raw sequence data processing
In total, 217 new sequence datasets, including 140 ChIP-seq
(H3K4me3, H3K4me1, H3K27ac, H3K27me3, and input control),
28 ATAC-seq, and 27 RNA-seq from 14 tissues, 18 RRBS from 9
tissues, and 4 ATAC-seq from bursa, were generated (table S1).
We also uniformly analyzed another 160 existing chicken datasets,
including 116 ChIP-seq (H3K4me3, H3K4me1, H3K27ac,
H3K27me3, CTCF, and input control), 15 DNase-seq, 2 ATAC-
seq, and 20 RNA-seq from eight tissues (i.e., adipose, cerebellum,
brain cortex, hypothalamus, liver, lung, muscle, and spleen) in the
FAANG pilot project (PRJEB14330) (12) and four bursa samples
from PRJEB38600 and PRJEB3859 (46), three RNA-seq samples
of bone marrow from PRJNA279487 (49), and four liver Hi-C data-
sets from PRJEB27364 (10). The processing of ChIP-seq, ATAC-seq,
DNase-seq, and RNA-seq data followed the UC Davis FAANG
Functional Annotation Pipeline (https://github.com/kernco/
functional-annotation) (12). Briefly, the galGal6 genome assembly
and Ensembl genome annotation (v100) have been used as

reference. Trim Galore! (50) (v.0.6.5) was used to trim raw sequenc-
ing reads. STAR (51) (v.2.5.4a) was used for the alignment of RNA-
seq reads to the reference genome, while BWA (52) (v0.7.17) was
used for the alignment of sequence reads from other assays. The
reads with mapping quality (MAPQ) scores less than 30 have
been removed using Samtools (53) (v.1.9). For RNA-seq, the
htseq-count (54) (v.0.13.5) was used to extract the read counts of
genes, and then the trimmed mean of M values (TMM) and TPM
were calculated as the normalized gene expression with EdgeR
(v3.32.0) and StringTie2 (v.1.3.3), respectively (55). For ChIP-seq,
duplicated reads were removed by Picard (v.2.18.7), and then peaks
were called by MACS2 (56) (v.2.1.1). Various quality metrics of
ChIP-seq (e.g., Jensen-Shannon divergence; table S2) were calculat-
ed following the method described by Kern et al. (12). Bismark (57)
(v.0.22.1) pipeline was used to process RRBS data, and Juicer pipe-
line (58) was applied for analyzing Hi-C data, including the detec-
tion of topologically associating domains (TADs).

Sample clustering
The global relationship among all samples from different assays,
tissues, and germ layers was exploited by deepTools (59) (v.3.5.0).
Briefly, the mark signals (bigWig) of each sample were created by
bamCompare, Z-score was normalized by scipy.stats.zscore func-
tion in Scipy (60) (v.1.8.0), and then the Z-score–normalized
signals of all samples within 1-kb windows were calculated bymulti-
BigwigSummary. The relationships among samples were measured
by the Pearson’s correlation of Z-score–normalized read signals by
plotCorrelation. The PCA analysis of samples was conducted using
plotPCA (59) (fig. S3). The Z-score–normalized signals of protein_-
coding gene, lncRNA, pseudogene, miRNA, snRNA, and snoRNA
were calculated by computeMatrix scale-regions function in deep-
Tools (59) (v.3.5.0) with setting of -a 2500 -b 2500 (fig. S4).

Annotation of chromatin states
To predict chromatin states, ChromHMM (15) (v.1.20) was used to
combine all the datasets of ChIP-seq (H3K4me3, H3K4me1,
H3K27ac, H3K27me3, and input control), ATAC-seq, and
DNase-seq from two biological replicates of 23 tissues. The 15-
state model was selected because it had the maximum number of
chromatin states with distinct epigenetic mark combinations.
These 15 chromatin states were named according to the combina-
tions of epigenome modifications and enrichments around TSS of
genes (9, 18), including TssA, TssAHet, TxFlnk, TxFlnkWk,
TxFlnkHet, EnhA, EnhAMe, EnhAWk, EnhAHet, EnhPois,
ATAC_Is, TssBiv, Repr, ReprWk, and Qui.

Enrichment of chromatin states in genomic features
The enrichment of chromatin states in distinct genomic features
(e.g., exon, TSS, and CpG islands) was assessed by (C/A)/(B/D)
(15), where A is the number of bases in a state, B is the number
of bases in a genomic feature, C is the number of bases in the over-
lapped region of the state and the genomic feature, and D is the
number of bases in the entire genome. The genomic features also
included sequence conserved regions, EBRs, and VISTA enhancers.
For sequence conserved regions, we first download the chicken
base-wise conservation scores (phyloP) based on 77 vertebrate
genomes from UCSC (https://hgdownload.soe.ucsc.edu/
goldenPath/galGal6/phyloP77way/). The conserved sites were ex-
tracted on the basis of conservation scores of more than 5 and
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then were merged into a conserved region by bedtools merge (61)
with parameter a of -d 10 -c 5 -o mean. Given that the majority of
regulatory regions are located in the noncoding region, the con-
served region within the coding region was excluded in the
current study. For chicken-specific chromosome evolutionary
breakpoints, we compared genomes of 38 species (33 mammals,
the chicken, and the alligator), identified breakpoints by the
method described in recent work (16), and then extended each
breakpoint 1000 bp on each side. For experimentally validated
VISTA enhancers, they were obtained from the VISTA database
(https://enhancer.lbl.gov/), and the positive human enhancers
from all tissue (n = 998), forebrain (n = 324), and heart (n = 141)
were selected. The significance of enrichment was calculated using
the Fisher’s exact test.

Methylation level of chromatin states
The methylation level of each CpG site in each tissue was extracted
by Bismark (v.0.22.1) (57). The average methylation level of each
chromatin state in each tissuewas then calculated using the bedtools
map function in BEDTools (v.2.29.2) (61).

Chromatin states variability
To investigate the changes of chromatin states across tissues, the
nonredundant regulatory elements across all 23 tissues were first
generated (fig. S5) using the merge function in BEDtools
(v.2.29.2) (61). The chromatin state variability and switching
between tissues were then calculated using the methods described
previously (fig. S6) (8).

Enhancer-gene pair prediction
The enhancer-gene interaction was predicted by the method de-
scribed previously (8). First, CTCF-mediated loops from CTCF
ChIP-seq data of eight tissues were identified by FIMO (62), follow-
ing the pipeline described by Oti et al. (63). The CTCF-mediated
loops were then merged to generate the non-overlapping CTCF
loops using merge function in BEDtools (v.2.29.2) (61). The en-
hancer-gene pairs were predicated on the basis of the Spearman’s
correlation of signal density of H3K27ac and gene expression
(TMM) within each loop region across all 46 samples. After Benja-
mini-Hochberg correction formultiple testing, enhancer-gene pairs
with FDR < 0.05 were considered as confident interactions. The en-
hancer-gene pairs were predicted for all five different kinds of en-
hancers annotated above. On the basis of the number of strong
enhancers (EnhA) linking to a gene, genes were clustered into the
following categories: (i) genes with only one EnhA (bottom, n =
1049), (ii) genes with more than 10 but less than 20 (middle, n =
3489), (iii) genes with more than 50 (top, n = 726). The tissue-spe-
cific expression of a gene was measured using the Tau method (64).
The sequence conservation scores of orthologous genes between
human and chicken were downloaded from Ensembl (v 100). The
GO enrichment analysis of these three groups of genes was per-
formed by clusterProfiler (v.4.4.1) (65).

Detection of tissue-specific regulatory elements
The tissue-specific regulatory elements (TSRs) for all chromatin
states (except for Qui) were identified using the previous pipeline
(8). Briefly, if a RRAT presents in a tissue, then it is given as “1”
for this tissue, otherwise “0.” A total of 26 categories of tissue-spe-
cific regulatory elements were detected, including all-common

(presented in all tissues), gut-common (presented in all five intes-
tinal tissues), brain-common (presented in all three brain tissues),
and single tissue-specific. The GO enrichment analyses of target
genes of TSRs were performed using clusterProfiler (v.4.4.1) (65).
The HOMER (66) (v.4.11) was used to identify motifs significantly
(FDR < 0.05) enriched with tissue-specific EnhAs. The top three en-
riched motifs with tissue-relevant function were selected as the can-
didate motifs in each tissue. The expression level of corresponding
TFs was obtained from RNA-seq of the same samples.

Identification of super-enhancers
The five kinds of enhancers (i.e., EnhA, EnhAMe, EnhAWk,
EnhAHet, and EnhPois) in each tissue have been combined in a
gff file. ROSE v1.3.1 (67, 68) was then used to identify super-en-
hancers with default parameters based on the H3K27ac signals of
each sample in each tissue. Super-enhancers were then combined
among samples within the same tissue. A total of 7662 nonredun-
dant of super-enhancers were detected after combining and
merging (at least an overlap of 10,000 bp) them across all tissues.
Tissue-specific super-enhancers were then detected using the
same approach as above for tissue-specific regulatory elements.
The clustering of super-enhancers was conducted using k-
means (n = 10) in ComplexHeatmap (v.2.9.3) (69). The GO enrich-
ment analysis of genes with super-enhancers was performed using
clusterProfiler (v.4.4.1) (65). The significant motifs of super-en-
hancers were identified by HOMER (66) (v.4.11) with FDR < 0.05.

Causal variants of monogenic traits in chromatin states
We downloaded 56 causal or potential causal mutations of chicken
Mendelian traits/disorders in the OMIA database (https://omia.
org/home/). After filtering the mutations without chromosome po-
sition information or located in coding region, we only analyzed
eight noncoding causal variants (table S8). We identified whether
a causal mutation is overlapped with regulatory elements using
the intersect function in BEDTools (v.2.29.2) (61).

GWAS signal enrichment of chromatin states
The GWAS summary statistics of 44 complex traits was obtained
from two distinct chicken populations. The first one is an intercross
population derived from two divergent chicken lines (a native
Chinese breed and a broiler line) (38), including 33 complex
traits with different sample size (table S9). These traits included
body weight, growth rate, organ weight, feed intake, efficiency,
and so on (table S9). All samples were resequenced on MGISEQ-
2000 platform to approximately 0.8× depth. The BaseVar algorithm
was used to identify polymorphic sites and infer allele frequencies
and STITCH to impute genotypes (7.9M SNPs) (70). The linear
mixed model, implemented in the fastGWA package (71), was
used to perform the GWAS based on common SNPs with minor
allele frequency (MAF) > 0.05. The second population with 1512
F2 hens, derived from a White Leghorn and Dongxiang reciprocal
cross (39), included 11 egg production traits. The birds were geno-
typed using the chicken 600K SNP genotyping array and then
imputed to sequence level (4.8M SNPs) using Beagle (version
5.2). GWAS for these traits was performed with the same approach
as above. The GWAS signal enrichment of 44 complex traits for each
chromatin state across 23 tissues was conducted using a genotype
cyclical permutation test (10,000 times) (72).
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Selection signature enrichment analysis of
chromatin states
The selection signatures between domesticated chickens and wild
ones detected by locus-specific branch length (LSBL) using two out-
groups (G. g. murghi or G. g. jabouillei) were obtained from a pre-
vious study (44). The selection signatures between layers and
broilers were detected using the same method based on a public
dataset, including whole-genome sequence data from 35 red
jungle fowl (RJF), 40 broilers, and 50 layers (73). The trimmo-
matic-0.39 with parameters “LEADING:3 TRAILING:3 SLIDING-
WINDOW:4:15 MINLEN:36” was used to filter out low-quality
reads and bases. Clean reads were mapped to the chicken reference
genome (Galgal6) using BWA-MEMwith default settings except for
the “-t 8 -M” options (52). The mapped bam files were sorted using
SortSam, and the duplicates of genome were marked using Mark-
Duplicates in Picard Tools (v.1.56) (http://picard.sourceforge.net).
Reads mapped around InDels were realigned using RealignerTar-
getCreator and IndelRealigner tools from the Genome Analysis
Toolkit (GenomeAnalysisTK-3.7.0, GATK). The UnifiedGenotyper
function in GATK -3.7.0 with default parameter was used to call
variants, and then VariantFiltration with options “QUAL < 40.0
MQ < 25.0 MQ0 >= 4 && ((MQ0/(1.0*DP)) > 0.1)” was used to
filter out low-quality variants (44). The variants with more than
two alleles were discarded. The LSBL statistics was used to estimate
differentiation of each SNP in either Broiler or Layer with RJF as
outgroup. The sliding windows analysis with 20 adjacent SNPs
was applied, and the top 0.1% windows with the largest LSBL sta-
tistics were retrieved, which were used to perform the enrichment
analysis of TSR. LSBL was calculated on the basis of the FST value
among the three groups using the formula: LSBL = [FST(AB) +
FST(AC) − FST(BC)]/2 (74). The fold enrichment of selection sig-
natures for chromatin states was performed by the Genomic Asso-
ciation Test (GAT) (75). We used GAT to estimate the significance
(P value) based on 10,000 simulations of the regions in all chicken
chromosomes. Multiple testing (FDR) were performed by P adjust-
ed based on the “BH” method in R. Genes associated with the en-
richment were extracted from enhancer-gene pairs. The LD
(r2)between target SNPs with surrounding variants was calculated
using plink (v1.9) (76) with options: --ld-window-kb 1000 --ld-
window 99999 --ld-snp targets.snp --r2 --ld-window-r2 0.

Supplementary Materials
This PDF file includes:
Figs. S1 to S16
Legends for tables S1 to S12
References

Other Supplementary Material for this
manuscript includes the following:
Tables S1 to S12

View/request a protocol for this paper from Bio-protocol.

REFERENCES AND NOTES
1. D. W. Burt, Chicken genome: Current status and future opportunities. Genome Res. 15,

1692–1698 (2005).
2. T. H. Beacon, J. R. Davie, The chicken model organism for epigenomic research. Genome

64, 476–489 (2021).

3. H. Giral, U. Landmesser, A. Kratzer, Into the wild: GWAS exploration of non-coding RNAs.
Front. Cardiovasc. Med. 5, 181 (2018).

4. C. M. Carnielli, F. V. Winck, A. F. Paes Leme, Functional annotation and biological inter-
pretation of proteomics data. Biochim. Biophys. Acta 1854, 46–54 (2015).

5. E. Cano-Gamez, G. Trynka, From GWAS to function: Using functional genomics to identify
the mechanisms underlying complex diseases. Front. Genet. 11, 424 (2020).

6. C. Márquez-Luna, S. Gazal, P.-R. Loh, S. S. Kim, N. Furlotte, A. Auton; 23andMe Research
Team, A. L. Price, Incorporating functional priors improves polygenic prediction accuracy
in UK Biobank and 23andMe data sets. Nat. Commun. 12, 6052 (2021).

7. D. U. Gorkin, I. Barozzi, Y. Zhao, Y. Zhang, H. Huang, A. Y. Lee, B. Li, J. Chiou, A. Wildberg,
B. Ding, B. Zhang, M. Wang, J. S. Strattan, J. M. Davidson, Y. Qiu, V. Afzal, J. A. Akiyama,
I. Plajzer-Frick, C. S. Novak, M. Kato, T. H. Garvin, Q. T. Pham, A. N. Harrington, B. J. Mannion,
E. A. Lee, Y. Fukuda-Yuzawa, Y. He, S. Preissl, S. Chee, J. Y. Han, B. A. Williams, D. Trout,
H. Amrhein, H. Yang, J. M. Cherry, W. Wang, K. Gaulton, J. R. Ecker, Y. Shen, D. E. Dickel,
A. Visel, L. A. Pennacchio, B. Ren, An atlas of dynamic chromatin landscapes in mouse fetal
development. Nature 583, 744–751 (2020).

8. Z. Pan, Y. Yao, H. Yin, Z. Cai, Y. Wang, L. Bai, C. Kern, M. Halstead, G. Chanthavixay,
N. Trakooljul, K. Wimmers, G. Sahana, G. Su, M. S. Lund, M. Fredholm, P. Karlskov-Mortensen,
C. W. Ernst, P. Ross, C. K. Tuggle, L. Fang, H. Zhou, Pig genome functional annotation en-
hances the biological interpretation of complex traits and human disease. Nat. Commun.
12, 5848 (2021).

9. L. Fang, S. Liu, M. Liu, X. Kang, S. Lin, B. Li, E. E. Connor, R. L. Baldwin VI, A. Tenesa, L. Ma,
G. E. Liu, C. J. Li, Functional annotation of the cattle genome through systematic discovery
and characterization of chromatin states and butyrate-induced variations. BMC Biol. 17,
68 (2019).

10. S. Foissac, S. Djebali, K. Munyard, N. Vialaneix, A. Rau, K. Muret, D. Esquerré, M. Zytnicki,
T. Derrien, P. Bardou, F. Blanc, C. Cabau, E. Crisci, S. Dhorne-Pollet, F. Drouet, T. Faraut,
I. Gonzalez, A. Goubil, S. Lacroix-Lamandé, F. Laurent, S. Marthey, M. Marti-Marimon,
R. Momal-Leisenring, F. Mompart, P. Quéré, D. Robelin, M. S. Cristobal, G. Tosser-Klopp,
S. Vincent-Naulleau, S. Fabre, M. H. Pinard-van der Laan, C. Klopp, M. Tixier-Boichard,
H. Acloque, S. Lagarrigue, E. Giuffra, Multi-species annotation of transcriptome and
chromatin structure in domesticated animals. BMC Biol. 17, 108 (2019).

11. S. Liu, Y. Yu, S. Zhang, J. B. Cole, A. Tenesa, T. Wang, T. G. McDaneld, L. Ma, G. E. Liu, L. Fang,
Epigenomics and genotype-phenotype association analyses reveal conserved genetic ar-
chitecture of complex traits in cattle and human. BMC Biol. 18, 80 (2020).

12. C. Kern, Y. Wang, X. Xu, Z. Pan, M. Halstead, G. Chanthavixay, P. Saelao, S. Waters, R. Xiang,
A. Chamberlain, I. Korf, M. E. Delany, H. H. Cheng, J. F. Medrano, A. L. van Eenennaam,
C. K. Tuggle, C. Ernst, P. Flicek, G. Quon, P. Ross, H. Zhou, Functional annotations of three
domestic animal genomes provide vital resources for comparative and agricultural re-
search. Nat. Commun. 12, 1821 (2021).

13. N. Couto, Z. M. al-Majdoub, S. Gibson, P. J. Davies, B. Achour, M. D. Harwood, G. Carlson,
J. Barber, A. Rostami-Hodjegan, G. Warhurst, Quantitative proteomics of clinically relevant
drug-metabolizing enzymes and drug transporters and their intercorrelations in the
human small intestine. Drug Metab. Dispos. 48, 245–254 (2020).

14. N. C. Panarelli, R. K. Yantiss, M. M. Yeh, Y. Liu, Y.-T. Chen, Tissue-specific cadherin CDH17 is a
useful marker of gastrointestinal adenocarcinomas with higher sensitivity than CDX2.
Am. J. Clin. Pathol. 138, 211–222 (2012).

15. J. Ernst,M. Kellis, ChromHMM: Automating chromatin-state discovery and characterization.
Nat. Methods 9, 215–216 (2012).

16. M. Farré, J. Kim, A. A. Proskuryakova, Y. Zhang, A. I. Kulemzina, Q. Li, Y. Zhou, Y. Xiong,
J. L. Johnson, P. Perelman, W. E. Johnson, W. C. Warren, A. V. Kukekova, G. Zhang,
S. J. O’Brien, O. A. Ryder, A. S. Graphodatsky, J. Ma, H. A. Lewin, D. M. Larkin, Evolution of
gene regulation in ruminants differs between evolutionary breakpoint regions and ho-
mologous synteny blocks. Genome Res. 29, 576–589 (2019).

17. A. Visel, S. Minovitsky, I. Dubchak, L. A. Pennacchio, VISTA Enhancer Browser—A database
of tissue-specific human enhancers. Nucleic Acids Res. 35, D88–D92 (2007).

18. Roadmap Epigenomics Consortium, A. Kundaje, W. Meuleman, J. Ernst, M. Bilenky, A. Yen,
A. Heravi-Moussavi, P. Kheradpour, Z. Zhang, J. Wang, M. J. Ziller, V. Amin, J. W. Whitaker,
M. D. Schultz, L. D. Ward, A. Sarkar, G. Quon, R. S. Sandstrom, M. L. Eaton, Y.-C. Wu,
A. R. Pfenning, X. Wang, M. Claussnitzer, Y. Liu, C. Coarfa, R. A. Harris, N. Shoresh,
C. B. Epstein, E. Gjoneska, D. Leung, W. Xie, R. D. Hawkins, R. Lister, C. Hong, P. Gascard,
A. J. Mungall, R. Moore, E. Chuah, A. Tam, T. K. Canfield, R. S. Hansen, R. Kaul, P. J. Sabo,
M. S. Bansal, A. Carles, J. R. Dixon, K.-H. Farh, S. Feizi, R. Karlic, A.-R. Kim, A. Kulkarni, D. Li,
R. Lowdon, G. N. Elliott, T. R. Mercer, S. J. Neph, V. Onuchic, P. Polak, N. Rajagopal, P. Ray,
R. C. Sallari, K. T. Siebenthall, N. A. Sinnott-Armstrong, M. Stevens, R. E. Thurman, J. Wu,
B. Zhang, X. Zhou, A. E. Beaudet, L. A. Boyer, P. L. De Jager, P. J. Farnham, S. J. Fisher,
D. Haussler, S. J. M. Jones, W. Li, M. A. Marra, M. T. McManus, S. Sunyaev, J. A. Thomson,
T. D. Tlsty, L.-H. Tsai, W. Wang, R. A. Waterland, M. Q. Zhang, L. H. Chadwick, B. E. Bernstein,
J. F. Costello, J. R. Ecker, M. Hirst, A. Meissner, A. Milosavljevic, B. Ren,

Pan et al., Sci. Adv. 9, eade1204 (2023) 3 May 2023 12 of 14

SC I ENCE ADVANCES | R E S EARCH ART I C L E

http://picard.sourceforge.net
https://en.bio-protocol.org/cjrap.aspx?eid=10.1126/sciadv.ade1204


J. A. Stamatoyannopoulos, T. Wang, M. Kellis, Integrative analysis of 111 reference human
epigenomes. Nature 518, 317–330 (2015).

19. R. Valdez, C. A. Cavinder, D. D. Varner, T. H. Welsh Jr., M. M. Vogelsang, N. H. Ing, Dexa-
methasone downregulates expression of several genes encoding orphan nuclear receptors
that are important to steroidogenesis in stallion testes. J. Biochem. Mol. Toxicol. 33,
e22309 (2019).

20. A. Bobbs, K. Gellerman, W. M. Hallas, S. Joseph, C. Yang, J. Kurkewich, K. D. Cowden Dahl,
ARID3B directly regulates ovarian cancer promoting genes. PLOS ONE 10,
e0131961 (2015).

21. H. Wang, S. Jain, P. Li, J. X. Lin, J. Oh, C. Qi, Y. Gao, J. Sun, T. Sakai, Z. Naghashfar, S. Abbasi,
A. L. Kovalchuk, S. Bolland, S. L. Nutt, W. J. Leonard, H. C. Morse III, Transcription factors IRF8
and PU. 1 are required for follicular B cell development and BCL6-driven germinal center
responses. Proc. Natl. Acad. Sci. U.S.A. 116, 9511–9520 (2019).

22. D. Hnisz, B. J. Abraham, T. I. Lee, A. Lau, V. Saint-André, A. A. Sigova, H. A. Hoke, R. A. Young,
Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).

23. X. Wang, M. J. Cairns, J. Yan, Super-enhancers in transcriptional regulation and genome
organization. Nucleic Acids Res. 47, 11481–11496 (2019).

24. T. Van Groningen, J. Koster, L. J. Valentijn, D. A. Zwijnenburg, N. Akogul, N. E. Hasselt,
M. Broekmans, F. Haneveld, N. E. Nowakowska, J. Bras, C. J. M. van Noesel, A. Jongejan,
A. H. van Kampen, L. Koster, F. Baas, L. van Dijk-Kerkhoven, M. Huizer-Smit, M. C. Lecca,
A. Chan, A. Lakeman, P. Molenaar, R. Volckmann, E. M.Westerhout, M. Hamdi, P. G. van Sluis,
M. E. Ebus, J. J. Molenaar, G. A. Tytgat, B. A. Westerman, J. van Nes, R. Versteeg, Neuro-
blastoma is composed of two super-enhancer-associated differentiation states. Nat. Genet.
49, 1261–1266 (2017).

25. A. L. Hunter, T. M. Poolman, D. Kim, F. J. Gonzalez, D. A. Bechtold, A. S. I. Loudon, M. Iqbal,
D. W. Ray, HNF4Amodulates glucocorticoid action in the liver. Cell Rep. 39, 110697 (2022).

26. R. Valverde, L. Edwards, L. Regan, Structure and function of KH domains. FEBS J. 275,
2712–2726 (2008).

27. J. Rha, S. K. Jones, J. Fidler, A. Banerjee, S. W. Leung, K. J. Morris, J. C. Wong, G. A. S. Inglis,
L. Shapiro, Q. Deng, A. A. Cutler, A. M. Hanif, M. T. Pardue, A. Schaffer, N. T. Seyfried,
K. H. Moberg, G. J. Bassell, A. Escayg, P. S. García, A. H. Corbett, The RNA-binding protein,
ZC3H14, is required for proper poly (A) tail length control, expression of synaptic proteins,
and brain function in mice. Hum. Mol. Genet. 26, 3663–3681 (2017).

28. J. Schödel, B. Klanke, A. Weidemann, B. Buchholz, W. Bernhardt, M. Bertog, K. Amann,
C. Korbmacher, M. Wiesener, C. Warnecke, A. Kurtz, K. U. Eckardt, C. Willam, HIF-prolyl
hydroxylases in the rat kidney: Physiologic expression patterns and regulation in acute
kidney injury. Am. J. Pathol. 174, 1663–1674 (2009).

29. M. Yang, Q. Liu, M. Dai, R. Peng, X. Li, W. Zuo, J. Gou, F. Zhou, S. Yu, H. Liu, M. Huang, FOXQ1-
mediated SIRT1 upregulation enhances stemness and radio-resistance of colorectal cancer
cells and restores intestinal microbiota function by promoting β-catenin nuclear translo-
cation. J. Exp. Clin. Cancer Res. 41, 70 (2022).

30. T. Ohtsuki, M. Koga, H. Ishiguro, Y. Horiuchi, M. Arai, K. Niizato, M. Itokawa, T. Inada, N. Iwata,
S. Iritani, N. Ozaki, H. Kunugi, H. Ujike, Y. Watanabe, T. Someya, T. Arinami, A polymorphism
of the metabotropic glutamate receptor mGluR7 (GRM7) gene is associated with schizo-
phrenia. Schizophr. Res. 101, 9–16 (2008).

31. L. A. Lettice, S. J. Heaney, L. A. Purdie, L. Li, P. de Beer, B. A. Oostra, D. Goode, G. Elgar,
R. E. Hill, E. de Graaff, A long-range Shh enhancer regulates expression in the developing
limb and fin and is associated with preaxial polydactyly. Hum. Mol. Genet. 12,
1725–1735 (2003).

32. J. Sharpe, L. Lettice, J. Hecksher-Sørensen, M. Fox, R. Hill, R. Krumlauf, Identification of sonic
hedgehog as a candidate gene responsible for the polydactylous mouse mutant Sas-
quatch. Curr. Biol. 9, 97–100 (1999).

33. Q. Chu, Z. Yan, J. Zhang, T. Usman, Y. Zhang, H. Liu, H. Wang, A. Geng, H. Liu, Association of
SNP rs80659072 in the ZRS with polydactyly in Beijing You chickens. PLOS ONE 12,
e0185953 (2017).

34. T. Zhu, M. Liu, S. Peng, X. Zhang, Y. Chen, X. Lv, W. Yang, K. Li, J. Zhang, H. Wang, H. Li,
Z. Ning, L. Wang, L. Qu, A deletion upstream of SOX10 causes light yellow plumage colour
in chicken. Genes 13, 327 (2022).

35. U. Gunnarsson, S. Kerje, B. Bed’hom, A. S. Sahlqvist, O. Ekwall, M. Tixier-Boichard, O. Kämpe,
L. Andersson, The Dark brown plumage color in chickens is caused by an 8.3-kb deletion
upstream of SOX10. Pigment Cell Melanoma Res. 24, 268–274 (2011).

36. C. Feng, Y. Gao, B. Dorshorst, C. Song, X. Gu, Q. Li, J. Li, T. Liu, C. J. Rubin, Y. Zhao, Y. Wang,
J. Fei, H. Li, K. Chen, H. Qu, D. Shu, C. Ashwell, Y. da, L. Andersson, X. Hu, N. Li, A cis-reg-
ulatory mutation of PDSS2 causes silky-feather in chickens. PLOS Genet. 10,
e1004576 (2014).

37. C. A. Boix, B. T. James, Y. P. Park, W. Meuleman, M. Kellis, Regulatory genomic circuitry of
human disease loci by integrative epigenomics. Nature 590, 300–307 (2021).

38. Y. Wang, X. Cao, C. Luo, Z. Sheng, C. Zhang, C. Bian, C. Feng, J. Li, F. Gao, Y. Zhao, Z. Jiang,
H. Qu, D. Shu, Ö. Carlborg, X. Hu, N. Li, Multiple ancestral haplotypes harboring regulatory

mutations cumulatively contribute to a QTL affecting chicken growth traits. Commun. Biol.
3, 472 (2020).

39. J. Yuan, K. Wang, G. Yi, M. Ma, T. Dou, C. Sun, L. J. Qu, M. Shen, L. Qu, N. Yang, Genome-wide
association studies for feed intake and efficiency in two laying periods of chickens. Genet.
Sel. Evol. 47, 82 (2015).

40. H. K. Finucane, B. Bulik-Sullivan, A. Gusev, G. Trynka, Y. Reshef, P.-R. Loh, V. Anttila, H. Xu,
C. Zang, K. Farh, S. Ripke, F. R. Day; ReproGen Consortium; Schizophrenia Working Group of
the Psychiatric Genomics Consortium; RACI Consortium, S. Purcell, E. Stahl, S. Lindstrom,
J. R. B. Perry, Y. Okada, S. Raychaudhuri, M. J. Daly, N. Patterson, B. M. Neale, A. L. Price,
Partitioning heritability by functional annotation using genome-wide association
summary statistics. Nat. Genet. 47, 1228–1235 (2015).

41. D. Murawska, The effect of age on growth performance and carcass quality parameters in
different poultry species. Poult. Sci., 33–50 (2017).

42. G. Wang, W. K. Kim, M. A. Cline, E. R. Gilbert, Factors affecting adipose tissue development
in chickens: A review. Poult. Sci. 96, 3687–3699 (2017).

43. Y. G. Tan, X. L. Xu, H. Y. Cao, W. Zhou, Z. Z. Yin, Effect of age at first egg on reproduction
performance and characterization of the hypothalamo-pituitary-gonadal axis in chickens.
Poult. Sci. 100, 101325 (2021).

44. M. S. Wang, M. Thakur, M. S. Peng, Y. Jiang, L. A. F. Frantz, M. Li, J. J. Zhang, S. Wang, J. Peters,
N. O. Otecko, C. Suwannapoom, X. Guo, Z. Q. Zheng, A. Esmailizadeh, N. Y. Hirimuthugoda,
H. Ashari, S. Suladari, M. S. A. Zein, S. Kusza, S. Sohrabi, H. Kharrati-Koopaee, Q. K. Shen,
L. Zeng, M. M. Yang, Y. J. Wu, X. Y. Yang, X. M. Lu, X. Z. Jia, Q. H. Nie, S. J. Lamont, E. Lasagna,
S. Ceccobelli, H. G. T. N. Gunwardana, T. M. Senasige, S. H. Feng, J. F. Si, H. Zhang, J. Q. Jin,
M. L. Li, Y. H. Liu, H. M. Chen, C. Ma, S. S. Dai, A. K. F. H. Bhuiyan, M. S. Khan, G. L. L. P. Silva,
T. T. le, O. A. Mwai, M. N. M. Ibrahim, M. Supple, B. Shapiro, O. Hanotte, G. Zhang, G. Larson,
J. L. Han, D. D. Wu, Y. P. Zhang, 863 genomes reveal the origin and domestication of
chicken. Cell Res. 30, 693–701 (2020).

45. M. Tixier-Boichard, S. Fabre, S. Dhorne-Pollet, A. Goubil, H. Acloque, S. Vincent-Naulleau,
P. Ross, Y. Wang, G. Chanthavixay, H. Cheng, C. Ernst, V. Leesburg, E. Giuffra, H. Zhou;
Collaborative Working Group, Tissue resources for the functional annotation of animal
genomes. Front. Genet. 12, 666265 (2021).

46. G. Chanthavixay, C. Kern, Y. Wang, P. Saelao, S. J. Lamont, R. A. Gallardo, G. Rincon, H. Zhou,
Integrated transcriptome and histone modification analysis reveals NDV infection under
heat stress affects bursa development and proliferation in susceptible chicken line. Front.
Genet. 11, 567812 (2020).

47. M. R. Corces, A. E. Trevino, E. G. Hamilton, P. G. Greenside, N. A. Sinnott-Armstrong,
S. Vesuna, A. T. Satpathy, A. J. Rubin, K. S. Montine, B. Wu, A. Kathiria, S. W. Cho,
M. R. Mumbach, A. C. Carter, M. Kasowski, L. A. Orloff, V. I. Risca, A. Kundaje, P. A. Khavari,
T. J. Montine, W. J. Greenleaf, H. Y. Chang, An improved ATAC-seq protocol reduces
background and enables interrogation of frozen tissues. Nat. Methods 14, 959–962 (2017).

48. M. Halstead, C. Kern, P. Saelao, G. Chanthavixay, Y. Wang, M. E. Delany, H. Zhou, P. J. Ross,
Systematic alteration of ATAC-seq for profiling open chromatin in cryopreserved nuclei
preparations from livestock tissues. Sci. Rep. 10, 5230 (2020).

49. H. Sun, P. Liu, L. K. Nolan, S. J. Lamont, Avian pathogenic Escherichia coli (APEC) infection
alters bone marrow transcriptome in chickens. BMC Genomics 16, 690 (2015).

50. F. Krueger, Trim Galore!: Awrapper tool around Cutadapt and FastQC to consistently apply
quality and adapter trimming to FastQ files (2015); https://www.bioinformatics.babraham.
ac.uk/projects/trim_galore/.

51. A. Dobin, C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M. Chaisson,
T. R. Gingeras, STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

52. H. Li, Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
arXiv:1303.3997 (2013).

53. H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis,
R. Durbin; 1000 Genome Project Data Processing Subgroup, The Sequence Alignment/
Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

54. S. Anders, P. T. Pyl, W. Huber, HTSeq—A Python framework to work with high-throughput
sequencing data. Bioinformatics 31, 166–169 (2015).

55. S. Kovaka, A. V. Zimin, G. M. Pertea, R. Razaghi, S. L. Salzberg, M. Pertea, Transcriptome
assembly from long-read RNA-seq alignments with StringTie2. Genome Biol. 20,
278 (2019).

56. Y. Zhang, T. Liu, C. A. Meyer, J. Eeckhoute, D. S. Johnson, B. E. Bernstein, C. Nusbaum,
R. M. Myers, M. Brown, W. Li, X. S. Liu, Model-based analysis of ChIP-Seq (MACS). Genome
Biol. 9, R137 (2008).

57. F. Krueger, S. R. Andrews, Bismark: A flexible aligner andmethylation caller for Bisulfite-Seq
applications. Bioinformatics 27, 1571–1572 (2011).

58. N. C. Durand, M. S. Shamim, I. Machol, S. S. P. Rao, M. H. Huntley, E. S. Lander, E. L. Aiden,
Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst.
3, 95–98 (2016).

Pan et al., Sci. Adv. 9, eade1204 (2023) 3 May 2023 13 of 14

SC I ENCE ADVANCES | R E S EARCH ART I C L E

https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/


59. F. Ramírez, D. P. Ryan, B. Grüning, V. Bhardwaj, F. Kilpert, A. S. Richter, S. Heyne, F. Dündar,
T. Manke, deepTools2: A next generation web server for deep-sequencing data analysis.
Nucleic Acids Res. 44, W160–W165 (2016).

60. P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski,
P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman,
N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng,
E. W. Moore, J. V. Plas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero,
C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt; SciPy 1.0 Con-
tributors, SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat.
Methods 17, 261–272 (2020).

61. A. R. Quinlan, BEDTools: The Swiss-army tool for genome feature analysis. Curr. Protoc.
Bioinformatics 47, 11.12.1–11.12.34 (2014).

62. C. E. Grant, T. L. Bailey, W. S. Noble, FIMO: Scanning for occurrences of a given motif. Bi-
oinformatics 27, 1017–1018 (2011).

63. M. Oti, J. Falck, M. A. Huynen, H. Zhou, CTCF-mediated chromatin loops enclose inducible
gene regulatory domains. BMC Genomics 17, 252 (2016).

64. I. Yanai, H. Benjamin, M. Shmoish, V. Chalifa-Caspi, M. Shklar, R. Ophir, A. Bar-Even, S. Horn-
Saban, M. Safran, E. Domany, D. Lancet, O. Shmueli, Genome-wide midrange transcription
profiles reveal expression level relationships in human tissue specification. Bioinformatics
21, 650–659 (2005).

65. T. Wu, E. Hu, S. Xu, M. Chen, P. Guo, Z. Dai, T. Feng, L. Zhou, W. Tang, L. Zhan, X. Fu, S. Liu,
X. Bo, G. Yu, clusterProfiler 4.0: A universal enrichment tool for interpreting omics data.
Innovation 2, 100141 (2021).

66. S. Heinz, C. Benner, N. Spann, E. Bertolino, Y. C. Lin, P. Laslo, J. X. Cheng, C. Murre, H. Singh,
C. K. Glass, Simple combinations of lineage-determining transcription factors prime cis-
regulatory elements required for macrophage and B cell identities. Mol. Cell 38,
576–589 (2010).

67. W. A. Whyte, D. A. Orlando, D. Hnisz, B. J. Abraham, C. Y. Lin, M. H. Kagey, P. B. Rahl, T. I. Lee,
R. A. Young, Master transcription factors and mediator establish super-enhancers at key
cell identity genes. Cell 153, 307–319 (2013).

68. J. Lovén, H. A. Hoke, C. Y. Lin, A. Lau, D. A. Orlando, C. R. Vakoc, J. E. Bradner, T. I. Lee,
R. A. Young, Selective inhibition of tumor oncogenes by disruption of super-enhancers.
Cell 153, 320–334 (2013).

69. Z. Gu, R. Eils, M. Schlesner, Complex heatmaps reveal patterns and correlations in multi-
dimensional genomic data. Bioinformatics 32, 2847–2849 (2016).

70. R. Yang, X. Guo, D. Zhu, C. Tan, C. Bian, J. Ren, Z. Huang, Y. Zhao, G. Cai, D. Liu, Z. Wu,
Y. Wang, N. Li, X. Hu, Accelerated deciphering of the genetic architecture of agricultural
economic traits in pigs using a low-coverage whole-genome sequencing strategy. Giga-
science 10, giab048 (2021).

71. L. Jiang, Z. Zheng, T. Qi, K. E. Kemper, N. R. Wray, P. M. Visscher, J. Yang, A resource-efficient
tool for mixed model association analysis of large-scale data. Nat. Genet. 51,
1749–1755 (2019).

72. L. Fang, W. Cai, S. Liu, O. Canela-Xandri, Y. Gao, J. Jiang, K. Rawlik, B. Li, S. G. Schroeder,
B. D. Rosen, C. J. Li, T. S. Sonstegard, L. J. Alexander, C. P. van Tassell, P. M. VanRaden,
J. B. Cole, Y. Yu, S. Zhang, A. Tenesa, L. Ma, G. E. Liu, Comprehensive analyses of 723
transcriptomes enhance genetic and biological interpretations for complex traits in cattle.
Genome Res. 30, 790–801 (2020).

73. S. Qanbari, C. J. Rubin, K. Maqbool, S. Weigend, A. Weigend, J. Geibel, S. Kerje, C. Wurmser,
A. T. Peterson, I. L. Brisbin, R. Preisinger, R. Fries, H. Simianer, L. Andersson, Genetics of
adaptation in modern chicken. PLOS Genet. 15, e1007989 (2019).

74. M. D. Shriver, G. C. Kennedy, E. J. Parra, H. A. Lawson, V. Sonpar, J. Huang, J. M. Akey,
K. W. Jones, The genomic distribution of population substructure in four populations using
8,525 autosomal SNPs. Hum. Genomics 1, 274–286 (2004).

75. A. Heger, C. Webber, M. Goodson, C. P. Ponting, G. Lunter, GAT: A simulation framework for
testing the association of genomic intervals. Bioinformatics 29, 2046–2048 (2013).

76. C. C. Chang, C. C. Chow, L. C. A. M. Tellier, S. Vattikuti, S. M. Purcell, J. J. Lee, Second-
generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience 4,
7 (2015).

77. C. Kern, Functional annotations of three domestic animal genomes provide vital resources
for comparative and agricultural research (2021); https://github.com/kernco/functional-
annotation, https://doi.org/10.5281/zenodo.4540293.

78. Z. Pan, Pig genome functional annotation enhances the biological interpretation of
complex traits and human disease (2021);
https://github.com/zhypan/Functional-Annotation-of-Pig, https://doi.org/10.5281/
zenodo.5338812.

79. Z. Pan, An atlas of regulatory elements in 23 chicken tissues informs complex trait variation
and domestication selection (2022); https://github.com/zhypan/FAANG_chicken, https://
doi.org/10.5281/zenodo.6609263.

80. B. Dorshorst, R. Okimoto, C. Ashwell, Genomic regions associated with dermal hyperpig-
mentation, polydactyly and other morphological traits in the Silkie chicken. J. Hered. 101,
339–350 (2010).

81. J. Li, M. O. Lee, J. Chen, B. W. Davis, B. J. Dorshorst, P. B. Siegel, M. Inaba, T. X. Jiang,
C. M. Chuong, L. Andersson, Cis-acting mutation affecting GJA5 transcription is underlying
the Melanotic within-feather pigmentation pattern in chickens. Proc. Natl. Acad. Sci. U.S.A.
118, e2109363118 (2021).

82. G. W. Zhang, Y. Liao, W. X. Zhang, Y. Wu, A. Liu, A new dominant haplotype of MC1R gene in
Chinese black plumage chicken. Anim. Genet. 48, 624 (2017).

83. J. Li, M.-O. Lee, B. W. Davis, P. Wu, S.-M. Hsieh Li, C.-M. Chuong, L. Andersson, The crest
phenotype in domestic chicken is caused by a 197 bp duplication in the intron of HOXC10.
G3 11, jkaa048 (2021).

84. J. Li, M. O. Lee, B. W. Davis, S. Lamichhaney, B. J. Dorshorst, P. B. Siegel, L. Andersson,
Mutations upstream of the TBX5 and PITX1 transcription factor genes are associated with
feathered legs in the domestic chicken. Mol. Biol. Evol. 37, 2477–2486 (2020).

85. C. Bortoluzzi, H. J. Megens, M. Bosse, M. F. L. Derks, B. Dibbits, K. Laport, S. Weigend,
M. A. M. Groenen, R. P. M. A. Crooijmans, Parallel genetic origin of foot feathering in birds.
Mol. Biol. Evol. 37, 2465–2476 (2020).

Acknowledgments
Funding: This study was supported by Agriculture and Food Research Initiative Competitive
grants nos. 2020-67015-31175 and 2015-67015-22940 (H.Z.) from the USDA National Institute
of Food and Agriculture, Multistate Research Project NRSP8 and NC1170 (H.Z.), and the
California Agricultural Experimental Station (H.Z.) and partial support from National Natural
Science Foundation of China (NSFC 31961133003 and 31902143). Author contributions: H.Z.,
L.F., and Z.P. conceived and designed the study. Yi.W. and H.H.C. were responsible for sample
collection. Yi.W., Z.P., L.A., Y.B., and M.M.H. performed ChIP-seq, ATAC-seq, and RNA-seq. N.T.
and K.W. contributed to RRBS data collection. Z.P., S.G., J.D., S.W., and M.S. conducted
bioinformatic analysis. Yu.W., X.Z., C.Z., C.S., N.Y., and X.H. were responsible for chicken GWAS
data collection and analysis. M.W. and Z.P. were responsible for chicken selection signature
analysis. Z.P., Yi.W., L.F., M.W., and H.Z. wrote the initial draft of the manuscript. M.M.H., N.Y., and
X.H. revised the manuscript. All coauthors contributed to the final manuscript. Competing
interests: The authors declare that they have no competing interests. Data and materials
availability: All the high-throughput sequencing data from 15 tissues generated in this study
were deposited in European Nucleotide Archive (ENA) with accession number PRJEB53920
(www.ebi.ac.uk/ena/browser/view/PRJEB37735). High-throughput sequencing data of eight
tissues in the FANNG pilot project are available the Gene Expression Omnibus (GEO) under
accession number GSE158430 (www.ebi.ac.uk/ena/browser/view/PRJEB14330). All raw data are
also available through the FAANG portal (https://data.faang.org/dataset). All processed data are
publicly available at https://farm.cse.ucdavis.edu/~zhypan/Chicken_FAANG/ and https://doi.
org/10.6084/m9.figshare.13480425. Chromatin states of chicken are available through the
UCSC Genome Browser: http://genome.ucsc.edu/s/zhypan/galGal6_FAANG_V1. All data
needed to evaluate the conclusions in the paper are present in the paper and/or the
Supplementary Materials. The pipeline for RNA-seq, ATAC-seq, DNase-seq, and ChIP-seq
processing is available at GitHub (https://github.com/kernco/functional-annotation) and
Zenodo (https://doi.org/10.5281/zenodo.4540293) (77). The RRBS pipeline and other
processing codes are publicly available at GitHub (https://github.com/zhypan/Functional-
Annotation-of-Pig and https://github.com/zhypan/FAANG_chicken) and Zenodo (https://doi.
org/10.5281/zenodo.5338812 and https://doi.org/10.5281/zenodo.6609263) (78, 79).

Submitted 5 August 2022
Accepted 3 April 2023
Published 3 May 2023
10.1126/sciadv.ade1204

Pan et al., Sci. Adv. 9, eade1204 (2023) 3 May 2023 14 of 14

SC I ENCE ADVANCES | R E S EARCH ART I C L E

http://dx.doi.org/10.5281/zenodo.4540293
http://dx.doi.org/10.5281/zenodo.5338812
http://dx.doi.org/10.5281/zenodo.5338812
http://dx.doi.org/10.5281/zenodo.6609263
http://dx.doi.org/10.5281/zenodo.6609263
http://www.ebi.ac.uk/ena/browser/view/PRJEB37735
http://www.ebi.ac.uk/ena/browser/view/PRJEB14330
https://data.faang.org/dataset
https://farm.cse.ucdavis.edu/~zhypan/Chicken_FAANG/
https://doi.org/10.6084/m9.figshare.13480425
https://doi.org/10.6084/m9.figshare.13480425
http://genome.ucsc.edu/s/zhypan/galGal6_FAANG_V1
https://github.com/kernco/functional-annotation
https://doi.org/10.5281/zenodo.4540293
https://github.com/zhypan/Functional-Annotation-of-Pig
https://github.com/zhypan/Functional-Annotation-of-Pig
https://github.com/zhypan/FAANG_chicken
https://doi.org/10.5281/zenodo.5338812
https://doi.org/10.5281/zenodo.5338812
https://doi.org/10.5281/zenodo.6609263

	INTRODUCTION
	RESULTS AND DISCUSSION
	Data summary
	Prediction and characterization of chromatin states
	Tissue-specific chromatin states and their functional annotation
	Identification and characterization of super-enhancers
	Exploring the utility of enhanced genome annotation to inform chicken biology

	MATERIALS AND METHODS
	Animals and tissues
	Library construction and sequencing
	Raw sequence data processing
	Sample clustering
	Annotation of chromatin states
	Enrichment of chromatin states in genomic features
	Methylation level of chromatin states
	Chromatin states variability
	Enhancer-gene pair prediction
	Detection of tissue-specific regulatory elements
	Identification of super-enhancers
	Causal variants of monogenic traits in chromatin states
	GWAS signal enrichment of chromatin states
	Selection signature enrichment analysis of chromatin states

	Supplementary Materials
	This PDF file includes:
	Other Supplementary Material for this manuscript includes the following:

	REFERENCES AND NOTES
	Acknowledgments



