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Functional retinal imaging using adaptive optics swept-source 
OCT at 1.6 MHz

Mehdi Azimipour*,†, Justin V. Migacz†, Robert J. Zawadzki, John S. Werner, Ravi S. Jonnal
Vision Science and Advanced Retinal Imaging Laboratory (VSRI), Department of Ophthalmology 
and Vision Science, UC Davis Eye Center, Sacramento, California 95817, USA

Abstract

Objective optical assessment of photoreceptor function may permit earlier diagnosis of retinal 

disease than current methods such as perimetry, electrophysiology, and clinical imaging. In this 

work, we describe an adaptive optics (AO) optical coherence tomography (OCT) system designed 

to measure functional responses of single cones to visible stimuli. The OCT subsystem consisted 

of a raster-scanning Fourier-domain mode-locked laser that acquires A scans at 1.64 MHz with a 

center wavelength of 1063 nm and an AO system operating in closed-loop. Analysis of serial 

volumetric images revealed phase changes of cone photoreceptors consistent with outer segment 

elongation and proportional to stimulus intensity, as well as other morphological changes in the 

outer segment and retinal pigment epithelium.

Vision begins when photons are absorbed in the photoreceptor outer segment (OS), initiating 

the biochemical process of photo-transduction. In blinding retinal diseases like retinitis 

pigmentosa and age-related macular degeneration, vision is lost when these cells become 

dysfunctional. Current methods for diagnosing and assessing retinal disease, such as 

examining the appearance of the retina in clinical images and assessing visual function with 

clinical exams, are effective after extensive pathological changes, but not in the earliest 

stages of disease. Adaptive optics (AO) flood imaging [1], conventional optical coherence 

tomography (OCT) [2–6], and full-field OCT [7] have revealed changes in the photoreceptor 

OS in response to visible stimuli. Here, we describe an OCT imaging system that leverages 

the three-dimensional (3D) cellular resolution of AO and OCT [8,9] and the speed of a 

Fourier-domain mode-locked (FDML) laser [10,11]. This enabled us to resolve cone 

photoreceptors in three dimensions and characterize changes in single cones OS morphology 

evoked by impulse-like bleaching flashes.

A schematic of the AO-OCT system is shown in Fig. 1(A). The AO-OCT system consisted 

of OCT and AO subsystems. The swept-source (SS) OCT system employed a FDML laser 

(FDM-1060-750-4B-APC, OptoRes GmbH, Munich, Germany) operating at an A-scan rate 

of 1.64 MHz [10,11]. A Michelson interferometer with three 50:50 fiber couplers was used 

to balance spectra of two detection channels. This topology is advantageous in suppressing 

relative intensity noise (RIN) from the laser [12]. The exposure level of the imaging beam 
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was 1.8 mW, which is below the American National Standards Institute (ANSI) limit for the 

safe use of lasers, and the measured sensitivity of the system was −85 dB. The sample arm 

of the system consisted of pairs of spherical mirror telescopes in an out-of-plane 

configuration [Fig. 1(B)] [13] to correct beam distortions and astigmatism that otherwise 

accumulate as light is relayed off-axis by multiple in-plane spherical mirrors. The scanning 

system contained a resonant scanner (SC-30, Electro-Optical Products Corp., Ridgewood, 

New York) oscillating at 5 kHz in the horizontal direction and a galvanometer scanner in the 

slower vertical direction. The scanner configuration, in concert with the A-scan rate, 

permitted acquisition of 32 volumes per second over a field of view of 1° × 1° (160 A scan 

per B scan and 160 B scan per each volume). Table 1 summarizes the significant 

characteristics of the system and data acquisition settings during imaging. The axial 

resolution of the OCT system was estimated experimentally by placing a flat mirror in place 

of the subject’s eye and measuring the full width at half-maximum (FWHM) of the point 

spread function (PSF). As is shown in Fig. 2(B), the axial resolution was 10.8 μm in air, 

which corresponds to 7.8 μm in tissue (n = 1.38). Sensitivity roll-off was determined by 

moving the reference arm while a flat mirror was placed in the sample arm. Based on the 

roll-off in Fig. 2(C), sensitivity was reduced by 6 dB approximately 2 mm from the zero 

path length.

The AO subsystem incorporated a Shack–Hartmann wavefront sensor (SHWS) consisting of 

a 20 × 20 lenslet array (diameter, 10 mm; pitch, 500 μm; f = 30 mm, Northrop-Grumman 

Corp, Arlington, Virginia) in front of a scientific complementary metal–oxide–

semiconductor (sCMOS) camera (Ace acA2040–180 km; Basler AG), and a high-speed 

deformable mirror (DM-97–15; ALPAO SAS, Montbonnot-Saint-Martin, France). The 

wavefront beacon source was a 840 nm superluminescent diode (Superlum Diodes Ltd, 

Cork, Ireland), with power measured at the cornea of 20 μW. The system measured and 

corrected aberrations over a 6.75 mm pupil with a closed loop at a rate of 15 Hz, yielding a 

theoretical lateral resolution of 3.2 μm. Custom software controlled the AO [14] and OCT 

data acquisition, which were developed in Python/Cython and LabVIEW (National 

Instruments, Austin, Texas), respectively. OCT signal processing was done in MATLAB 

computing software (The MathWorks, Inc., Natick, Massachusetts) and Python/Numpy/

Scipy.

Two subjects, free of known retinal disease, were imaged after obtaining informed consent. 

Each subject’s eye was dilated and cyclopleged by instilling topical drops of 2.5% 

phenylephrine and 1% tropicamide. All procedures were in accordance with the tenets of the 

Declaration of Helsinki and were approved by the University of California, Davis 

Institutional Review Board. To position and stabilize the subject’s pupil during imaging, a 

bite bar and a forehead rest were employed and assembled on a motorized X -Y -Z 
translation stage. During imaging, a calibrated fixation target was employed to position the 

eye at specified retinal locations as well as to reduce eye movements. For functional 

imaging, subjects were dark-adapted for 15 min and then imaged for 10 s at a retinal 

location 2.5° temporal to the fovea, where the expected cone row spacing was ≈5.0 μm [15]. 

At the 2 s mark a 10 ms visible flash was delivered. A bandpass filter centered at 555 nm 

with 20 nm bandwidth was placed in front of the bleaching light source, which was a fiber-

coupled LED (M565F3, Thorlabs, New Jersey). This light bleaches L and M cones almost 
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identically. Flash intensity was modulated in order to bleach between 1.8% and 70% of L∕M 
photopigment.

A strip-based registration method [16,17] was implemented to track individual cones in the 

volume series. First, the volumetric images were segmented axially and the inner segment 

(IS)/OS and cone OS tip (COST) layers were automatically identified and projected. The en 
face projection of the cone mosaic from a single volume and an average of 30 motion-

corrected volumes is shown in Fig. 3. For each series, a single IS/OS projection was selected 

as a reference image, and the remaining projections were divided into strips of between 5 

and 11 pixels of height and registered to the reference. Cones were automatically identified 

in the reference image. Segmentation and lateral registration together permitted 3D tracking 

of single cones over time. The time series of the complex axial signal (M scans) of each 

cone were recorded. As the phase of the OCT signal provides a sub-resolution measure of 

the object’s motion [18], we recorded the phase difference between the reflection at IS/OS 

and COST [17], which provides an estimate of OS length change that is immune to artifacts 

of axial eye movement:

(Δϕ)tn = ∠ 1
m ∑

i = 1

m
Ai × Bi* , (1)

where A is a complex number corresponding to the OCT signal measured at reflection from 

COST, B* is the complex conjugate of the OCT signal measured at reflection from IS/OS, 

and m is the number of A scans recorded within each single cone. After subtracting the 

initial phase Δϕt0 from each subsequent measurement and unwrapping the series of phase 

values, based on the imaging wavelength λ, the change in optical path length ΔΛ was 

calculated using

ΔΛtn =
(Δϕ)tn

4π λ . (2)

Observed changes in Λ could be due to changes in the physical length L of the OS or to 

changes in its refractive index n, and the OCT signal’s phase cannot distinguish between 

these. However, investigators have used X-ray diffraction by dissected frog OSs to show that 

light exposure increases inter-disc spacing by 1%–3% [19]. Thus, we have assumed the 

change in Λ is due to a change in physical length L, calculated as Λ/n with n = 1.38, which 

is what is shown in the plots. A response of a single cone to a 70% photopigment bleaching 

flash is shown in Fig. 4(A). En face projections of the cone’s neighborhood are shown at the 

top. Next, the amplitude of the cone’s M scan is shown, with the stimulus flash indicated by 

a green line. Changes in the cone’s axial profile subsequent to the flash are visible: the 

IS/OS reflectivity decreases, the distance between COST and IS/OS appears to increase, and 

structural changes are visible in other layers. At the bottom, the phase difference between 

IS/OS and COST is shown as a function of time. Responses of cones to three different flash 

intensities are shown in Fig. 4(B). Each response is the OS elongation corresponding to the 

measured phase difference between IS/OS and COST. It is apparent that the magnitude of 

elongation varies with stimulus strength, as does the time required for the cone to recover its 
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baseline length. This observed elongation of foveal/parafoveal cones, and the dependence of 

elongation on stimulus intensity, is qualitatively consistent with previously reported 

elongation of peripheral cones using full-field OCT with computational aberration correction 

[7]. We hypothesize that the mechanism of this elongation is osmotic swelling of the OS, as 

it is consistent with observations made using conventional OCT images in human rods [5] 

and mouse rods, in which elongation is suppressed in mice lacking transducin [20].

In addition to OS elongation, changes in axial morphology were often observed subsequent 

to the stimulus flash. Representative M scans of single cones for photopigment bleaching 

percentages of 1.8, 7, and 70 are shown in Fig. 5. A common observation was the 

appearance and/or movement of an extra band between IS/OS and COST, indicated by red 

arrows in Fig. 5. The reflectivity of this band and its maximal axial distance from IS/OS 

appear to be proportional to the bleaching light intensity, and it is most evident in the 70% 

bleaching trials (5 C), where it moves half the length of the OS within 1–2 s. Generally, 

OCT signals are attributed to refractive index mismatch, and the movement of this band is 

consistent with the movement of a refractive index boundary. Such a boundary could be 

generated, for instance, by an abrupt change in disc spacing or concentration of a visual 

cycle intermediate. The observation is also consistent with coherent effects of modulation in 

disc spacing [20]. Another common observation was a change in the appearance of the space 

distal to COST, including the subretinal space (SRS) and retinal pigment epithelium (RPE). 

The RPE band appears to split, with its apical portion moving inward, toward COST. If 

melanosomes are an important source of RPE scattering [21], the observed movement could 

be an indication of melanosome movement into the apical part of the RPE cell. This is 

consistent with light-driven translocation of melanin observed in amphibians [22] but not 

previously reported in mammals. It may also be a consequence of inward water movement 

across the Bruchs RPE complex.

A critical feature of this system’s design is its speed. For the most intense stimuli, we 

observed initial phase changes of up to 50 rad/s. In order to correctly unwrap the phase, the 

phase change between consecutive samples should be less than π radians. This suggests that 

the minimal rate at which cones must be imaged, i.e., the minimal volume rate, is 16 Hz. In 

the presence of noise, it is likely that a higher rate is required. Our volume rate of 32 Hz 

proved sufficient for measuring these fast changes. Another benefit of high-speed acquisition 

is the reduction of intraframe eye movement artifacts, which permits better registration of 

frames and tracking of cones.

We have demonstrated that AO-OCT may be used to detect and measure functional 

responses of foveal cone photoreceptors. It reveals stimulus-evoked OS phase changes, 

consistent with OS elongation, similar to those previously detected in foveal cones using AO 

flood illumination and peripheral cones using full-field SS-OCT, and consistent with 

elongation observed in human and mouse rods. In addition, our images reveal stimulus-

evoked changes in the intensity and organization of the outer retinal bands. These functional 

responses together represent a rich set of biomarkers of photoreceptor function.

Azimipour et al. Page 4

Optica. Author manuscript; available in PMC 2021 January 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgment.

The authors acknowledge the assistance of Susan Garcia. R. S. J., J. S. W., and R. J. Z. acknowledge the support 
from NEI.

Funding. National Eye Institute (NEI) (R01-EY-024239, R00-EY-026068, R01-EY-026556, P30-EY012576).

REFERENCES

1. Jonnal RS, Rha J, Zhang Y, Cense B, Gao W, and Miller DT, Opt. Express 15, 16141 (2007).

2. Srinivasan V, Chen Y, Duker J, and Fujimoto J, Opt. Express 17, 3861 (2009). [PubMed: 19259228] 

3. Abràmoff MD, Mullins RF, Lee K, Hoffmann JM, Sonka M, Critser DB, Stasheff SF, and Stone 
EM, Invest. Ophthalmol. Visual Sci 54, 3721 (2013). [PubMed: 23633665] 

4. Li Y, Fariss R, Qian J, Cohen E, and Qian H, Invest. Ophthalmol. Visual Sci 57, 105 (2016). 
[PubMed: 26780314] 

5. Lu CD, Lee B, Schottenhamml J, Maier A, Pugh EN, and Fujimoto JG, Invest. Ophthalmol. Visual 
Sci 58, 4632 (2017). [PubMed: 28898357] 

6. Berkowitz BA, Podolsky RH, Qian H, Li Y, Jiang K, Nellissery J, Swaroop A, and Roberts R, 
Invest. Ophthalmol. Visual Sci 59, 5957 (2018). [PubMed: 30551203] 

7. Hillmann D, Spahr H, Pfäffle C, Sudkamp H, Franke G, and Hüttmann G, Proc. Natl. Acad. Sci. 
USA 113, 13138 (2016). [PubMed: 27729536] 

8. Zhang Y, Rha J, Jonnal RS, and Miller DT, Opt. Express 13, 4792 (2005). [PubMed: 19495398] 

9. Zawadzki R, Jones S, Olivier S, Zhao M, Bower B, Izatt J, Choi S, Laut S, and Werner J, Opt. 
Express 13, 8532 (2005). [PubMed: 19096728] 

10. Huber R, Wojtkowski M, and Fujimoto JG, Opt. Express 14, 3225 (2006). [PubMed: 19516464] 

11. Klein T, Wieser W, Eigenwillig CM, Biedermann BR, and Huber R, Opt. Express 19, 3044 (2011). 
[PubMed: 21369128] 

12. Chen Y, de Bruin DM, Kerbage C, and de Boer JF, Opt. Express 15, 16390 (2007). [PubMed: 
19550929] 

13. Lee S-H, Werner JS, and Zawadzki RJ, Biomed. Opt. Express 4, 2508 (2013). [PubMed: 
24298411] 

14. Jonnal RS, Kocaoglu OP, Zawadzki RJ, Lee S-H, Werner JS, and Miller DT, Invest. Ophthalmol. 
Visual Sci 55, 7904 (2014). [PubMed: 25324288] 

15. Curcio C, Sloan K, Kalina R, and Hendrickson A, J. Comp. Neurol 292, 497 (1990). [PubMed: 
2324310] 

16. Stevenson S and Roorda A, Proc. SPIE 5688, 145 (2005).

17. Jonnal RS, Kocaoglu OP, Wang Q, Lee S, and Miller DT, Biomed. Opt. Express 3, 104 (2012). 
[PubMed: 22254172] 

18. Choma MA, Ellerbee AK, Yang C, Creazzo TL, and Izatt JA, Opt. Lett 30, 1162 (2005). [PubMed: 
15945141] 

19. Chabre M and Cavaggioni A, Nature 244, 118 (1973).

20. Zhang P, Zawadzki RJ, Goswami M, Nguyen PT, Yarov-Yarovoy V,Burns ME, and Jr ENP, Proc. 
Natl. Acad. Sci. USA 114, 2937 (2017).

21. Götzinger E, Pircher M, Geitzenauer W, Ahlers C, Baumann B, Michels S, Schmidt-Erfurth U, and 
Hitzenberger CK, Opt. Express 16, 16410 (2008). [PubMed: 18852747] 

22. Zhang Q-X, Lu R-W, Messinger JD, Curcio CA, Guarcello V, and Yao X-C, Sci. Rep 3, 2644 
(2013). [PubMed: 24025778] 

Azimipour et al. Page 5

Optica. Author manuscript; available in PMC 2021 January 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
(A) Schematic of the AO-FDML OCT imaging system integrated with Maxwellian-view 

optical system for bleaching photoreceptors. (B) An expanded view of the AO scanning 

system: DM, deformable mirror; SHWS, Shack–Hartmann wavefront sensor; AL, 

achromatic lens; S, spherical mirror; FM, flat mirror; BS, beam splitter; DBS, dichroic beam 

splitter; HS, horizontal scanner; VS, vertical scanner; BD, beam dump; OI, optical isolator.
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Fig. 2. 
(A) Spectrum of FDML laser. (B) Axial point spread function and (C) sensitivity roll-off of 

the imaging system.
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Fig. 3. 
Strip-based registration permits averaging of AO-OCT volumes. Top panel shows (A) single 

B scan and (B) average of 30 B scans. En face projection of cone mosaic from a (C) single 

and (D) average of 30 motion-corrected volumes of a 1° patch acquired at 2.5° temporal 

from the foveal center.
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Fig. 4. 
(A) Response of a single cone to 70% photopigment bleaching stimuli. The top row shows 

examples of motion-corrected en face projections of the cone’s neighborhood. A time series 

of the cone’s axial profile (M scan) is shown below the en face projections, with a green line 

indicating the stimulus flash. The phase difference between the IS/OS and COST was 

monitored as a function of time and can be seen in the bottom plot. (B) OS length change as 

a function of time for lower L/M photopigment bleaching percentages of 1.8, 3.5, and 7. 

Each curve was produced by averaging responses of 10–30 cones. Error bars indicate ± one 

standard deviation.
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Fig. 5. 
Changes in the axial morphology of cones for photopigment bleaching percentages of (A) 

1.8, (B) 7, and (C) 70. As shown by red arrows, appearance of an extra band between IS/OS 

and COST was observed in most of the cones. The reflectivity of this extra band and also its 

axial distance from IS/OS seems to be proportional to the bleaching light intensity. The blue 

arrow indicates changes observed in the RPE and SRS.
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Table 1.

Specifications of the AO-FDML System and Scanning Parameters During Imaging

Laser center wavelength 1063 nm

Spectral bandwidth (FWHM) 78 nm

Laser A-scan rate 1.64 MHz

B-scan rate 5 kHz

Volume rate 32 Hz

Optical power at cornea 1.8 mW

Axial resolution in air 10.8 μm

Measured sensitivity −85.4 dB

Laser phase noise (rms) 2.6 mrad
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