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Reducing crop losses by gene-editing control of organ 
developmental physiology
Pietro Tonutti1, Stefano Brizzolara1 and Diane M Beckles2

Some physiological processes in reproductive organs, if not 
controlled, can lead to crop loss even in the absence of 
environmental stress. These processes may occur pre- or post- 
harvest, and in diverse species and include abscission 
processes in cereal grain, e.g., shattering and in immature fruit, 
e.g., preharvest drop, preharvest sprouting of cereals, and 
postharvest senescence in fruit. Some of the molecular 
mechanisms and genetic determinants underlying these 
processes are now better detailed, making it possible to refine 
them by gene editing. Here, we discuss using advanced 
genomics to identify genetic determinants underlying crop 
physiological traits. Examples of improved phenotypes 
developed for preharvest problems are provided, and 
suggestions for reducing postharvest fruit losses by gene and 
promoter editing were made.

Addresses
1 Crop Science Research Center, Scuola Superiore Sant’Anna, 56127 
Pisa, Italy 
2 Department of Plant Sciences, University of California, Davis, CA 
95616, USA  

Corresponding author: Beckles, Diane M (dmbeckles@ucdavis.edu)

Current Opinion in Biotechnology 2023, 81:102925

This review comes from a themed issue on Food Biotechnology

Edited by Max I Teplitski and Jorge Fonseca

Available online xxxx

https://doi.org/10.1016/j.copbio.2023.102925

0958–1669/© 2023 The Author(s). Published by Elsevier Ltd. This is 
an open access article under the CC BY-NC-ND license (http:// 
creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction
The factors underlying crop loss are variable. The extent 
of these losses depends on how efficiently a given crop’s 
physiological traits can withstand the combined effects 
of biotic and abiotic stress, which vary in frequency and 
intensity throughout the lifecycle [1–3]. However, in-
dependent of environmental stressors, crop loss can re-
sult from failed physiological processes or those not 
compatible with agricultural production (Box 1). If these 
processes can be inhibited or delayed, more product can 

be harvested, marketed, and consumed. The goal of this 
review is to examine instances where gene editing can 
reduce crop loss in cereals and horticultural crops in the 
absence of environmental stress, by ‘correcting’ physio-
logical processes or by refining their timing. For pre-
harvest processes that occur in the field, causal genes 
have only just been identified, and the challenge is to 
modify these processes with no ill effects on crop yield 
and productivity [4]. This refinement is possible in 
part because genome editing is facilitating the genetic 
dissection of complex developmental traits. In contrast, 
many genes implicated in the postharvest fruit ripe-
ning–senescence pathway have been discovered, there-
fore, we focus on how a deeper understanding of their 
effect and their interconnectedness would be promising 
for precision breeding aimed at reducing crop loss. What 
becomes clear is the juxtaposition of physiological pro-
cesses that evolved for adaptation in natural ecosystem 
versus how those processes have to be further modified 
for modern agriculture.

Processes implicated with losses in the field 
and at harvest
Preharvest sprouting
In cereals, preharvest sprouting (PHS) describes when 
germination occurs in mature seeds (Box 1). This leads 
to significant losses due to lower harvestable yield, lower 
grain quality, storability, and germination capacity, and 
the associated higher moisture content increases myco-
toxin contamination of the grain [5]. PHS results from an 
imbalance between dormancy and germination (Box 1) [5]. 
Dormancy evolved so that seed germination in wild 
species would occur only when conditions are favorable, 
however, selection during domestication was for weak 
dormancy that permits uniform germination of crops al-
most independent of the prevailing conditions [6]. If 
dormancy is too weak, however, the spatiotemporal sig-
nals that trigger germination malfunction and PHS 
occur.

The relative balance of abscisic (ABA) and gibberellic 
acid has been implicated in the regulation of dormancy 
control and hence in the occurrence of PHS [5]. When 
edited, several genes, many ABA-related, have modified 
dormancy and germination traits and as a result, im-
proved PHS. Rice overexpressing OsMFT2, a positive 
regulator of ABA response genes, has delayed germina-
tion and a lower rate of PHS [7]. A reduction of PHS in 
rice was also obtained by controlling glutaredoxin- 
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mediated ABA and reactive oxygen species signaling [8]. 
CRISPR-Cas9 (Clustered Regularly Interspaced Palin-
dromic Repeats-Cas9) mutations of OsABA8ox and 
especially OsABA8ox1 increased ABA levels and seed 
dormancy (SD6) in japonica rice [8], and PHS resistance 
also improved, with no significant effects on the main 
agronomic traits [9]. Additional genes that regulate ABA- 
mediated dormancy have been discovered. Two bHLH 
(basic Helix Loop Helix) transcription factors (TFs), that 
is, SD6 and Inducer of C-repeat binding factors expression 2, 
function antagonistically to control SD6 by directly 
regulating ABA metabolism. Novel SD6 alleles created 
by CRISPR–Cas9 editing reduced PHS in rice and 
wheat [6]. Genes involved in diverse pathways not re-
lated to ABA, also influence PHS [5]. CRISPR–Cas9- 
targeted mutagenesis of wheat TaQsd1, which encodes 
an alanine amino transferase, prolonged the dormancy 
and germination period and prevented PHS [10]. Given 
the many pathways that intertwine to regulate the dor-
mancy–germination nexus, it seems likely that addi-
tional genes will be discovered [5].

Abscission
The process of leaf, grain, or fruit separation from the 
mother plant, is described as abscission, and it has im-
portant functions in plant development (Box 1). For 
example, fruit drop (Box 1) during early development 
occurs in several species and evolved as a physiological 
self-regulatory mechanism to establish an optimal re-
productive–vegetative balance. In some fruit species, for 
example, olive, this process is pronounced contributing 
to reduced yield at harvest. In other crops, for example, 
peach and apple, the intensity of fruitlet drop is not 
optimal, so fruit thinning using manual, mechanical, or 
chemical methods is unavoidable and must be per-
formed to guarantee an adequate fruit size at harvest. 
The shedding of mature reproductive organs, that is, 
seeds and fruits of cultivated crops, inevitably causes 
yield losses and reduced harvesting efficiency.

Seed-shattering
Seed-shattering (Box 1) is essential for seed dispersal in 
natural ecosystems, but is undesirable in cultivation, so there 

was heavy selective pressure for nonshattering mutants 
during domestication [11]. In some species, this trait is 
tightly linked to others that are commercially valuable and 
so have been introgressed from wild species into cultivars 
[11]. In rice, because seed shattering improves threshability, 
this trait has been retained in several cultivars, especially in 
indica types [12]. Several genes that play a role in abscission 
zone (AZ) differentiation in rice have been identified 
[13,14]. The YABBY transcription factor Sh1 is associated 
with loss of seed shattering in cereals [13–15]. Editing the 
rice homolog OsSh1 (Rice Shattering 1) in a Chinese high- 
yielding indica rice cultivar which has an easy-shattering 
phenotype, led to remarkable resistance to shattering com-
pared with the wild type [16]. In green millet (Setaria vir-
idis), a mutation of the MYB (Myeloblastosis) transcription 
factor gene Less Shattering1 (SvLes1) was associated with re-
duced shattering [16]. Furthermore, CRISPR–Cas9 editing 
of SvLes1 produced novel alleles that led to high tensile 
strength of the AZ as fewer seeds were released from the 
inflorescence in a wind tunnel experiment, thereby con-
firming a reduced shattering habit [16].

Fruit preharvest drop and abscission zone formation
Preharvest drop is an abscission-related event leading to 
quantitative losses and/or reduced harvesting efficiency. 
Preharvest drop of mature fruits is characteristic of spe-
cific crops such as citrus and apple, with the severity of 
drop varying among cultivars. The phenomenon is the 
result of early activation of the AZ, leading to a reduction 
of cell-to-cell adhesion and, hence, to the drop of the 
fruit. This causes a significant reduction of harvested 
produce; only breeding resistant varieties, and, under 
certain environmental conditions and for specific geno-
types, the use of plant growth regulators such as ethy-
lene antagonists, have so far limited the incidence of this 
problem in the field.

õPhysical damage of fruit during harvest can lead to crop 
loss. Machine-harvested tomato fruit with the floral stem 
attached causes wounding of other fruit during transporta-
tion. Such tomatoes have an AZ, called a ‘joint’ in their 
pedicel, causing the calyx and stem to remain attached to 
the fruit when they separate from the inflorescence axis [17]. 

Box 1 Definitions of physiological processes.  

PREHARVEST SPROUTING: Seeds germinate while still in the maternal tissue, and not after dispersal.

DORMANCY: Viable seed remains in suspension even if conditions permit germination.

ABSCISSION: The separation of organs from the mother plant before harvest.
• Shedding: the dispersal of leaves and seeds from plants.
• Preharvest drop: fruit falls to the ground before harvest.
• Seed shattering: loss of grain and seed from plants.

RIPENING: The coordinated physiological processes and compositional changes that make fruit attractive to frugivores.

SENESCENCE: The final stage of organ development during which spoilage occurs.

2 Food Biotechnology 
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Some tomato species lack this joint, facilitating stem-free 
fruit removal [17]. The first locus associated with a failure to 
develop an AZ in the pedicel was the MADS-box jointless (j) 
locus [18], then, the jointless2 (J2) locus was identified as a 
key regulator of AZ development in tomato [19]. J2 loss-of- 
function mutants are ‘j’, that is, do not have an AZ, and this 
reduces the frequency of fruit drop and enables better 
mechanical harvesting [20]. However, introgression of this 
mutation into fresh market lines led to undesirable in-
florescence branching, abnormally large number of flowers, 
and a higher incidence of fruit cracking and off-shapes 
[21,22]. This was overcome in Florida tomato breeding 
lines, where the j2 alleles were specifically edited using 
CRISPR–Cas9 to avoid the linkage drag associated with 
sexual hybridization. The edited lines have both the ‘j’ 
phenotype and normal inflorescence architecture [23], and 
in a field trial, there was no difference in fruit yield [17].

Greater understanding of the ‘j’ trait was developed with 
the discovery that there is a negative epistatic interaction 
between j2 and ENHANCER OF JOINTLESS2 (EJ2). 
The latter is a cryptic variant of J2, that is, a mutation 
that would only influence the ‘j’ phenotype under cer-
tain genetic and environmental conditions [23]. The 
negative relationship between j2 and EJ2 was neu-
tralized by CRISPR–Cas9 editing of other genes asso-
ciated with ‘j’ locus — suppressor of branching 1 and 3, 
which led to a ‘j’ phenotype and normal inflorescence 
[23]. Discovering these interactions expands the 
breeding toolkit, and provides more flexibility and pre-
cision in crop improvement programs. While the phy-
siology and regulation of abscission by AZ activation are 
well described, the molecular mechanisms underlying 
fruit AZ differentiation are less known.

If the function of ‘j’ and other MADS-box genes is 
conserved across plant species, fundamental studies 
discovering additional AZ-associated genes might be 
translated for managing immature and mature fruit drop 
in different species using gene editing. This is the case 
of climacteric melon in which the CRISPR–Cas9-medi-
ated knockout of CmNAC-NOR (Melon NAC-NON 
RIPENING) (a homolog of the tomato NOR gene) al-
tered the formation of the fruit AZ [24].

Processes implicated with postharvest losses
A third of all crops are never consumed because their nat-
ural physiological processes after-harvest are not optimal for 
modern agriculture [3,25]. Horticultural crops are especially 
perishable; however, postharvest losses of the relatively 
metabolically inert grain and legumes are of such a scale 
that they should not be ignored [3,25]. Losses from my-
cotoxin contamination of cereals are costly, but approaches 
for reducing its occurrence are beyond the scope of this 
review and the reader is referred to others [26,27]. Like-
wise, overviews of postharvest losses of horticultural crops 

due to biotic and abiotic stress are also available [28–33]. 
Studies where fruit have edited alleles of cell wall-mod-
ifying enzymes [34] and other ripening TFs [35] that ripen 
without excessive softening offer exciting developments for 
commercialization, but are not discussed here. In this entry, 
we focus on how the knowledge derived from editing 
regulatory genes in tomato, especially those that control 
ripening and senescence, could reduce postharvest losses.

Controlling fruit progression to senescence
At peak ripeness, fruit are at a high risk for loss by 
physical damage, and beyond that time frame, senes-
cence occurs, which renders the fruit unpalatable 
(Figure 1a) [36].

Both ripening and senescence have evolved to distribute 
and release seeds, either by frugivore dissemination, or 
by disintegration and rot by necrotic fungi. The com-
plicated distribution logistics of the produce supply 
chain makes it necessary to control fruit ripening and 
senescence after-harvest to stymy losses and improve 
quality [25,36]. A desired outcome would be to widen 
the window between ripening and senescence, either by 
incrementally slowing the rate of progression to-
ward aging, or by pausing and then restarting ripening, 
with minimal loss of quality (Figure 1a) [37]. Unlike the 
genes that regulate preharvest physiological processes, 
there has been an explosion in the discovery of the 
molecular components of ripening (Figure 1b; Table S1) 
[28–30]. The next step will be to understand how these 
factors interact with each other, and in turn, regulate 
their downstream targets. Fruit-ripening TFs (Box 2) 
regulate organ physiology by controlling gene(s), some of 
which are part of the fruit developmental pathways de-
scribed in Figure 1a and which are part of hormonal 
signal transduction pathways [38]. These TFs may re-
quire coactivators or physical interaction with other 
proteins to function [39–41], and may be regulated by 
epigenetic modifications (Box 2) [32]. Collectively, these 
regulators drive fruit development to the senescent 
phase [42–45].

The goal of Figure 1b is to show our growing knowledge 
of the complexity of the global ripening network (Figure 
1; Table S2), and to see this complexity as an extra-
ordinary opportunity for modulating fruit quality and 
storability. Mutations in the cis-regulatory elements 
(CREs) of individual ripening TFs, and histone and 
DNA modifiers (Box 2), should generate gain-, loss-of- 
function, and transgressive alleles, creating quantitative 
trait variation for fruit ripening, which is nuanced, pro-
gressive, and of a large dynamic range [46]. Even richer 
data and genotypes would be uncovered by simulta-
neously editing the CREs of multiple ripening reg-
ulatory genes — a massive number of edited lines, with 
unique epistatic interactions, some presumably, with 
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incremental differences in fruit lifespan and quality. 
Some nonlinear relationships between gene dosage and 
trait intensity may be expected, which may create even 
more novel and diverse time-to-senescence phenotypes 
[46–48]. Further, promoter engineering might break the 
negative link between shelf life and quality [49], which 
is observed as a divergence in the fruit ‘physiological 
state’ and its ‘chronological age’ [50,51]. Dissecting 
these molecular switches would allow for precise 

breeding of traits that could reduce postharvest losses, 
by allowing flexible quality management along the 
supply chain and deliver high-quality fruit to consumers.

There are still many gaps in knowledge and unanswered 
questions that need to be addressed to control fruit se-
nescence. (1) First, many of the genes specific to the 
onset of fruit senescence have not been functionally 
dissected. Determining accurate physiological markers 

Figure 1  

Current Opinion in Biotechnology

A snapshot of some of the regulatory components that coordinate the physiological changes occurring during the ripening-to-senescence transition in 
tomato fruit, these components may be edited singly or in combination to delay ripening and senescence and hence reduce postharvest losses. (a). 
Multiple biological pathways that make fruit desirable for consumption, also make them susceptible to damage and loss. Several processes are 
accelerated (orange) or suppressed (blue) as fruit undergoes the final stages of development. Abbreviations: lipoxygenase products (LOPs), reactive 
oxygen species (ROS). (b). Some TFs (green boxes) regulate ethylene biosynthesis but are also in turn, regulated by ethylene, or may develop 
regulatory loops with others (purple lines). Hormones, (white boxes) are key parts of the fruit developmental pathways: ethylene is the ‘central’ 
ripening hormone in tomato fruit, yet ABA, brassinosteroids (BR), and jasmonic acid (JA) act antagonistically or synergistically to effect fruit ripening. 
Epigenetic marks (pink boxes) and the genes that determine these marks (pink ovals) and microRNAs (yellow ovals) are supra-regulatory agents. 
Arrowed lines indicate positive regulation, bunt-ended lines indicate inhibition. Lines are dashed for clarity. The full gene list and references are found 
in the Supplementary materials. This figure was drawn using BioRender.  
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for ‘fruit senescence’ and identifying genes that are in-
itiated or negatively or positively co-expressed as se-
nescence progressed might be helpful. (2) The mode of 
action of many of the ‘characterized’ genes that regulate 
ripening, although expanding, still remains unclear 
[49,52–55], and without more complete information, 
predicting their mode of action may not be as accurate as 
desired. (3) Genes that regulate the spatial development 
of ripening andsenescence are still being unearthed and 
they offer opportunities for controlling senescence 
[35,56,57].

Controlling vegetative organ progression to senescence
Differently from fruits, functional analyses of genes that 
would reduce losses of leafy greens and vegetables have 
only partially explored, but progress is being made [50]. 
In lettuce, modifying cell wall xyloglucan en-
dotransglucosylase/hydrolases maintained turgor texture 
and postharvest shelf life [58]. Reducing browning in cut 
tissues by altering polyphenol oxidases has been suc-
cessful in many species, improving the likelihood that 
they will be consumed and not discarded [25]. Leafy 
greens and green cruciferous vegetables could be mar-
ketable after extended storage if chlorophyll contents 
could be retained — generating favorable stay-green al-
leles by gene editing may be a viable approach [59]. 
Directing attention to these questions could expand the 
toolkit for preserving fruit and delaying the onset and 
progression of senescence.

Conclusion
Losses of yield in cereals and horticultural crops occur at 
almost every stage of the plant or organ lifecycle, as a 
result of a failure of, or poor timing of key physiological 
processes. We have provided examples of genes that 
have been edited, or are excellent candidates for editing, 
that could help to minimize these losses, both pre- and 

after-harvest. Delving into the signal transduction 
pathways of key physiological processes in plants would 
identify additional genes or gene networks that could be 
dissected to deliver precision phenotypes.
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Box 2 Definitions of gene-regulatory factors and processes.  

TFs: Proteins that bind to specific sequences in the promoter region of single or multiple genes to activate or repress their transcription to mRNA.

CREs: Specific sequence motifs in gene promoters to which TFs or other proteins bind to regulate gene transcription.

EPIGENETIC REGULATION: Modification of gene expression, by mechanisms that do not involve changes in DNA sequence. This includes DNA 
methylation, histone modification, and the action of noncoding RNAs such as microRNAs.

CHROMATIN: The complex formed with DNA and histone proteins. Chromatin structure determines the physical accessibility of TFs to gene 
promoters.

DNA METHYLATION: The reversible addition of methyl groups to DNA sequence. Methylation of DNA influences accessibility to DNA, and is 
determined by the balance between DNA methylase and demethylase activity.

HISTONE MODIFICATION: The process of acetylating, methylating, or phosphorylating histone proteins, which alters the accessibility of TFs to 
gene promoters. The degree of acetylation is regulated by the balance between the activities of acetylases and deacetylases, for example, HDA1 
(Histone deacetlyation), HDA3, HDT3, and methylation are controlled by the relative activity of methylases and demethylases, for example, EZ1 
(Enhancer of zeste - histone methyltransferases), EZ2, and JMJ6 (Jumonji - Histone demethylase).

MICRORNA: Noncoding RNAs that regulate gene expression, either by degrading mRNA, or by directly influencing translation. These include 
miR157, miR172A, and miR164.
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Appendix A. Supporting information
Supplementary data associated with this article can be 
found in the online version at doi:10.1016/j.copbio.2023. 
102925.
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