Title
CORRECT UNITARIZATION OF "EFFECTIVE POTENTIALS"

Permalink
https://escholarship.org/uc/item/0492b3kb

Author
Ingber, Lester.

Publication Date
1967-03-27
CORRECT UNITARIZATION OF "EFFECTIVE POTENTIALS"

TWO-WEEK LOAN COPY

This is a Library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division, Ext. 5545

Berkeley, California
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
CORRECT UNITARIZATION OF "EFFECTIVE POTENTIALS"

Lester Ingber

March 27, 1967
CORRECT UNITARIZATION OF "EFFECTIVE POTENTIALS"*

Lester Ingber†

Lawrence Radiation Laboratory
University of California
Berkeley, California

March 27, 1967

ABSTRACT

The two-particle Feynman graph, usually described as a function of energy and momentum-transfer, is correctly used as a potential in Schrödinger's equation after the graph is described as a function of momentum and a radial parameter.
A current procedure in calculating the S matrix for elastic scattering of various elementary particles is to unitarize the Feynman amplitude for the scattering process via Schrödinger's equation. This procedure is meaningful only if this unitarization is done correctly.

The amplitude for the scattering process is written as $A(s,t)$, where t is the momentum transfer and s the center-of-mass energy defined by

$$\sqrt{s} = \left(p^2 + m_1^2\right)^{1/2} + \left(p^2 + m_2^2\right)^{1/2}. \quad (1)$$

Here m_1 and m_2 are the masses and p^2 is the momentum-square in the elastic-scattering process. By means of Fourier (or Laplace) transforms with respect to t, one obtains an amplitude as a function of r, the radial parameter:

$$V(s,r) = \mathcal{F}_t [A(s,t)]. \quad (2)$$

Treating s as a parameter, one solves the Schrödinger equation

$$\left[-\frac{1}{\mu} \nabla_r^2 + V(s,r) \right] \psi = \frac{K^2}{\mu} \psi, \quad (3)$$

where μ is the reduced mass, and K^2 is the energy eigenvalue. A partial-wave reduction can be made and the familiar set of partial-wave amplitudes calculated.

This is clearly incorrect: For example, a nonrelativistic reduction of equations arising from minimization of the Action of the free Lagrangian for the two scattering particles would yield the homogenous Schrödinger equation,
If one includes interaction with the virtual particle fields, Eq. (3) is obtained. In Eq. (1), p^2 then "means"

\[\frac{1}{\mu} (\nabla^2 + \kappa^2) \psi = 0. \quad (4) \]

The sign is used, because the operator ∇^2 is not yet defined; however s is clearly not a parameter, but a function of the momentum of the scattering particle.

Such a problem has recently been solved for the nucleon-nucleon interaction mediated by one-meson exchanges. Detailed calculation of nucleon-nucleon scattering over a range of 0 to 310-MeV incident laboratory energy, as well as detailed calculations of the deuteron and of nuclear matter were entirely successful. Besides giving encouragement that an understanding of nuclear forces is in sight, these calculations also illustrate the importance of exact treatment of momentum-dependence (arising from the nonrelativistic reduction of Feynman amplitudes) and the incorrectness of treating such potentials in an energy-dependent manner.

The nonrelativistic procedure is straightforward. One collects all polynomials of p from spinor factors of the scattering particles, and expands all energy factors.
\[E_1 = (K^2 + m_1^2)^{\frac{1}{2}} \approx 1 + \frac{K^2}{2m_1^2} + \ldots \quad (6a) \]

and

\[E_2 = (K^2 + m_2^2)^{\frac{1}{2}} \approx 1 + \frac{K^2}{2m_2^2} + \ldots \quad (6b) \]

Then all powers of \(K \) higher than \(K^2 \) are dropped. These results are clearly only valid for \(K/m_\ll < 1 \), where \(m_\ll \) is the lesser of \(m_1 \) and \(m_2 \). Even though this is a severe restriction for such processes as \(\pi K \rightarrow \pi K \), at least the problem will be done correctly. If one admits some rather questionable mathematics, higher terms of the expansion (6) might be used in the following treatment.

Now one solves

\[\left[-\frac{\nabla^2}{\mu} + V(r, \nabla) \right] \psi = \frac{K^2}{\mu} \psi \quad (7) \]

The potential term is made Hermitian; \(V \) is symmetrized in particles 1 and 2, and \(\nabla^2 \) is symmetrically treated:

\[\nabla^2 \rightarrow \frac{1}{2} (\nabla^2 + W^2) \quad (8) \]

There is no problem in solving the differential Eq. (8). However, if \(V \) is to be useful, it should be applicable to other physics problems (such as three-particle scattering), most of which are understood in integral-equation formulations:

\[\psi(Kr) = \phi(Kr) + \int \frac{d^3r'}{G(K, r, r')} V(r', \nabla_r') \psi(Kr') \quad (9) \]
\(\phi \) is the solution to the homogeneous equation, \(G \) the Green's function solution, and the arrow implies that \(\nabla_{r'} \) operates on \(\psi(Kr') \).

After a partial-wave reduction, one has

\[
\psi_{\ell}(Kr) = J_{\ell}(Kr) + \int dr' G_{\ell}(Kr,r') V_{\ell}(r',\nabla_{r'}) \psi_{\ell}(Kr').
\]
(10)

For a scattering problem one can write

\[
G_{\ell}(Kr,r',r) = -j_{\ell}(Kr_<) n_{\ell}(Kr_>,)
\]
(11)
where respectively \(j_{\ell} \) and \(n_{\ell} \) are Bessel and Neumann functions, and \(r_< \) and \(r_> \) are the lesser and greater of \(r \) and \(r' \). Integration by parts now allows \(V_{\ell} \) to operate on \(G_{\ell} \).

The phase shift for the scattering problem, corresponding to standing-wave conditions, is

\[
\tan \delta_{\ell} = -\frac{\hbar}{K} \int dr j_{\ell}(Kr) \overleftarrow{V_{\ell}(Kr)} \psi_{\ell}(Kr),
\]
(12)
where \(\delta_{\ell} \) is the same \(\delta_{\ell} \) in \(e^{i\delta_{\ell}} \sin \delta_{\ell} \), which is the matrix element obtained for the outgoing wave solution. Notice that for

\[
V_{\ell} = X_{\ell} + Y_{\ell} \frac{d}{dr} + Z_{\ell} \frac{d^2}{dr^2},
\]
(13)

Eq. (10) becomes

\[
(1 + Z_{\ell})\psi_{\ell} = J_{\ell} + \int \overleftarrow{G_{\ell} V_{\ell}} \psi_{\ell} \]
(14)
\[\text{// If possible, as was} \]
done in the nucleon-nucleon case, it is most desirable to first project
the invariant helicity amplitudes of the Feynman graph onto a complete
set of eigenoperators of the eigenfunctions ψ_l.

Cutoffs should be made to insure that $V(r, V')$ is an analytic
function over all coordinate space. Then there is no problem in
integrating by parts in Eq. (10). As G_l is composed of polynomials,
sines and cosines for the scattering problem and polynomials and
exponentials for the bound-state problem, the resulting equation is
no harder to solve, numerically, than one with a potential given as a
simple function of the radial parameter, r. For the nucleon-nucleon
case, it was found convenient to solve the radial form of Eq. (14) by
matrix inversion (the diagonal elements of the matrix to be inverted
do not equal zero, so that a 'pivot' element need not be searched for)
using three 10-point Gaussian quadrature meshes. Coupled equations,
(as arise from tensor forces for nucleons) were similarly treated.

As was mentioned, proper treatment of momentum-dependence is
essential to solve the eigenvalue equation (10); solutions of the integral
and differential equations agree only if the momentum-dependence is treated
correctly.

The potential as defined is nonlocal:

$$ \frac{1}{G(r, r')} \ V_l(r', V_{r'}) \ G_l(r, r') = V_{eff}(r', r), \quad (15) $$

where V_{eff} is a function of just r and r' (involving sines, cosines,
or exponentials). Only for two-body problems, for
\[F(r', \nabla_r') = W \frac{d^2}{dr^2} + \frac{d^2}{dr^2} W, \quad (16) \]

is this not true. Here one obtains

\[\frac{1}{G} F G = \left\{ \frac{d^2 W}{dr^2} + \left[\frac{L^2}{r^2} \begin{pmatrix} -k^2 \\ +\alpha^2 \end{pmatrix} \right] W \right\}, \quad (17) \]

which gives a local potential. In Eq. (17), one has \(L^2 = \ell(\ell + 1) \), and \(-k^2\) is taken for the scattering problem, and \(+\alpha^2\) for the bound-state problem.
FOOTNOTE AND REFERENCE

* Work supported in part by the U. S. Atomic Energy Commission.
† Postdoctoral fellow, National Science Foundation.
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.