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Modelling Retroactive Context Effects in Spoken Word Recognition with
a Simple Recurrent Network

Alain Content
Laboratoire de Psychologie Expérimentale
Université Libre de Bruxelles
Avenue Buyl 117
B-1050 Bruxelles
acontent@ulb.ac.be

Abstract

We present a new variant of a simple recurrent network to
model auditory word recognition in continuous speech and
address the issue of lexical segmentation. Simulations based
on small word sets show that the system provides a near-
optimal solution to the opposite constraints of speed, which
requires that lexical processing be immediate, and reliability,
which imposes that identification decisions be postponed until
unambiguous information is available. Contrary to an often-
heard statement, the simulations show that the existence of
embedded words is not incompatible with the notion of
continuous on-line lexical processing.

Lexical Segmentation and Retroactive Context

Upon hearing the string /serpdddsd/ as in the two French
sentences below,

(1) zevy@Eserpdddsdlatet?ot
J'ai vu un serpent dansant la €te haute
"I saw a snake dancing head held high"
(2) zevydEserpddasdlatet
J'ai vu un cerf pendant sans la téte
"I saw a deer hanging with no head"

how and when does the listener discover the appropriate
lexical parsing to distinguish between the "snake" and the
"deer" interpretation?

The speech signal unfolds in time, and the boundaries
between linguistic units are not explicitly marked. These
characteristics raise problems for theories that postulate that
the mapping process, the comparison between sensory input
and lexical representations, proceeds on-line and
continuously. The immediacy principle yields one important
computational benefit, which is the speed of word
identification. Indeed, access to lexical information becomes
possible as soon as the semsory input is sufficient to
uniquely specify one lexical candidate (Marslen-Wilson &
Welsh, 1978; Marslen-Wilson, 1987). However, one
essential difficulty for such theories consists in stating the
nature of the constraints that guide the mapping process, in
order to avoid the burden of having to entertain the
exhaustive series of lexical hypotheses compatible with any
part of the speech stream (Shillcock. 1990; Harrington &
Johnson, 1987).
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In some theories, among which the Cohort model
(Marslen-Wilson & Welsh, 1978) is probably the most well-
known, the only lexical candidates considered are the ones
that are aligned with the point in the signal corresponding to
the current word onset. An obvious requirement for such a
hypothesis to work is that the onset of a new word can be
reliably identitied in the speech stream. Perhaps the simplest
strategy that may be envisaged to determine word
boundaries consists in predicting the next word's onset
based on the identity (and predicted offset) of the current
word. Such a strategy fits well with the immediacy
requirements, since it would allow to locate a word's be-
ginning very early on, even before its realisation.

However, because natural lexicons comprise embedded
words, i.e., words made of parts of other words (like cerf
and serpent), such a predictive segmentation strategy will
not succeed in all cases. In tact, a count based on a 20,000-
word American English database indicated that less that
40% of words are made of unique phonemic strings (Luce,
19¥6), and experimental data have shown that a substantial
proportion of words are not uniquely identified before their
acoustic oftset (Grosjean, 1985; Bard, Shillcock & Altmann,
1988). Furthennore, as our initial example demonstrates, the
appropriate parsing may depend on information that comes
in much later in the sentence.

It is well known that there are phonetic, phonotactic and
prosodic cues which may help deterinine word boundaries.
Although French ix not a stress-language, prosodic cues to
word segmentation may nevertheless be available.
Intuitively, for a native speaker of French at least, the
presence of stress on the fifth syllable of (1) or the fourth of
(2) seems sufficient to eliminate any ambiguity. Rietveld
(1980) has observed that systematic variations in duration,
mtensity and fundamental frequency are associated with
word boundaries in French. Similarly, for English, Cutler
and Norris (1988) have suggested the use of a metrical
segmentation strategy, whereby a strong syllable 1
processed as a possible word onset.

It is however tar from clear that these kinds of bottom-up
heuristics provide a complete solution to the problem of
lexical segmentation. Recent experimental findings by
Tabossi (1993), wvsing a cross-modal semantic priming
technique in Italian, suggest that embedded words as well as
straddling words may be activated even in contexts in which
clear segmentation cues are available. Such findings point to
an alternative principle, which consists in postponing
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decisions until sufficient information is available.
Experiments based on the phoneme restoration etfect
(Samuel, 1990) and lexical intluence on phonemic
categorisation (Connine, Blasko & Hall, 1991) suggest that
the processing system is indeed capable of revising its
earlier decisions, at least for a limited time period. Of
course, delaying commitment may eliminate any potential
effect of local ambiguity and may thus ensure reliability, but
at the expense of speed.

The TRACE model (McClelland & Elman, 1986)
provides one instance of an optimal compromise between
the two opposite requirements of speed and reliability, The
lexical segmentation problem is solved in TRACE by
combining three sources of constraint : the sequential
reception of sensory information that accumulates
progressively into the "memory trace” constituted by the set
of feature and phoneme detectors for successive time slices;
the mapping from the memory trace to lexicul
representations, based on a parallel, exhaustive and gradual
comparison mechanism; and the direct competition between
lexical hypotheses, implemented through the inhibitory
lateral connections between lexical units. The sequential
upcoming of the input ensures that compatible lexical
hypotheses will be activated as soon as possible, but on the
other hand, the existence of 4 memory trice covering a
substantial interval of time and the gradual nature of the
mapping mechanism permits to modity the strength of
lexical hypotheses to account for the entire portion of signal
available in the trace at each moment. In fact, detailed
simulations have shown that, most of the time, TRACE is
capable of finding the lexical candidates that best fit a given
string of phonemes (Fravenfelder & Peeters, 1990, 1993),

The architecture ot the TRACE model has however been
criticised because of its representation of temporal
information. The spatial time-window metaphor, based on
reduplication of detectors for successive time slices, appears
both unsatisfactory and unplausible. It leads to untractable
numbers of connections with large corpora (Norris, 1990),
and cannot easily handle temporal variability in the signal.
One potential solution stems from the use of recurrent
networks, in which temporal information is not represented
explicitly, but can be encoded dynamically thanks to the
connectivity of the system. One topology of recurrent
network, which has been proposed by Elman (1990), and is
currently known as a Simple Recurrent Network (SRN),
consists in providing a copy of the hidden unit activation
state vector at one cycle as input to the network at the next
time step. Because the connections can be modified to
reflect training experience, the nature of the temporal
information encoded will depend on the particular task
imposed on the network.

One attempt to use a SRN to model spoken word
recognition has been reported by Norris (1990). Norris used
a small corpus of 50 forms, and trained a SRN on a
continuous sequence of words, presented segment after
segment. The output consisted in a bank of 50 word detec-
tors. Norris showed that the network captured some of the
basic properties of the Cohort model. Cohort mmembers, i.e.
lexical candidates aligned with the onset of the upcoming
word, were activated initially and dropped out progressively
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upon reception of diverging intormation. Thus, a single
candidate remained active as soon as the unigueness point
was attained, Despite these observations, Norris concluded
that the SRN could not provide a viable model of human
word recognition, because it appeared unable to
accommodate retroactive context effects. For instance, the
network could not correctly discriminate sequences such as
CATLOG and CATALOG in which CAT corresponds to a
word in the first case but not in the second. Because the
activation corresponding to the word CAT will never
become reliably higher than the activation of its carrier
CATALQOG, the SRN cannot distinguish between these two
situations, Basically, the thrust of the criticism is the point
already raised by late-isolation findings in the gating
paradigm (Grosjean, 1985; Bard er al., 1988): Models that
assume onset alignment and immediate mapping cannot
work when the lexicon includes words which do not become
unigque before their end point. Non-unique strings
(embedded words) will not be wdentified, and the processing
of their immediate successor will be obstructed by the lack
of clear boundary decision,

The wm of the present study was to develop and evaluate
a new variant of the SRN which we thought could help
solve the problem of retroactive context effects. Our main
objectives were to examine the feasibility of the approach
and to explore in details the basic (behavioural) properties
of the system, with regards to current psycholinguistic
models and available empirical findings. The essential idea
was 10 modify the task imposed to the network so that its
state would not only retlect its best choice tor the current
word, but also the best fitting previouy word.

Network Architecture and Training Method

Figure 1 presents the network's topology. The input
consisted of seven units representing simplified acoustic/
phonetic teatures, as in the TRACE II model. Each segment
was represented by  a vector of seven continuous
dimensions (Consonantal, Vocalic, Diftfuse, Acute, Voiced,
Power, Burst Amplitude: see McClelland & Elman, 1986,
p. 15). No information about prosody or durational cues was
provided in the present simulations. Words were presented
as an uninterrupted sequence of segments, without pauses or
silences. The output consisted of 20 word detector units.
Localised output representations were used in order to
alleviate the interpretation of output patterns.

Word unis. I

A

Memory
30 mdden unds

K=

i Context | Features

Figure 1. Architecture of the Network
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A further set of external input units, the Probes, served to
determine the nature of the task imposed to the Net. Two
values were used in this study. Under the C probe, the
desired response was the unit corresponding to the word
currently being presented. Under probe P, the expected
response was the preceding word (Cf. St John &
McClelland, 1990, for a similar approach 1o sentence
processing). During learning, one probe was selected
randomly at each cycle, so that the two tasks were
completely interwoven.

From a cognitive standpoint, the Probes are not meant to
represent real external stimulation. Rather, they can be seen
as an abstract means of implementing the two opposite
constraints of immediacy and delayed commitnent on the
way the network learns to encode, organise and preserve
information in its distributed memory trace. The C task acts
as a pressure to produce the desired response as soon as
possible, since the target output was given throughout the
presentation of the word. The P task requires that the desired
output be maintained during the following word,

In terms of processing mechanisms, the first set of hidden
units elaborates a compact distributed representation of the
input sequence, and the second bank of hidden units serves
to combine the distributed trace with the probes to extract
lexical hypotheses. Although in the present implementation,
this extraction mechanism cannot deal with the C and P
tasks simultaneously, it could be assumed that the
alternation is much faster than the time scale of the external
input, or that duplicate sub-networks using fixed probe
values extract information about the current and previous
word in parallel, so that in practice, both sets of lexical
hypotheses would be continuously available.

Results from four simulations will be reported, each based
on a small corpus of 20 forms, from 2 to S-segment-long.
LEX1 included ten words (e.a. stak, star, stap, rad, rak, rab)
and their reversals (kats, rats, pats, dar, kar, bar).
Uniqueness points varied from position 1 to position 4,
LEX2 was identical to LEX1 except that the tinal segment
of four words was stripped out to create left-embedding
conditions (e.g. sta derived fromstak, ra from rab). LEX3
and LEX4 were constructed in a similar way and included
respectively four center- and four final-embedded items.
The four runs uvsed the same training regimen and
parameters (lrate=.05, no momentum, plain back-
propagation), but ditferent initial weight values. Each epoch
consisted of a continuous sequence of 40() words presented
segment by segment without explicit word boundary
markings. Sequences were generated randomly with the
constraint that 10% of all pairs were kept out to test
generalisation. Each word was thus seen with 18
predecessors and 18 followers. All the words had equal
probabilities of occurrence during training. No attempl was
made to manipulate or capture higher-order distributional
regularities, such as sentence or constituency relations.

Results

To analyse the network's behaviour, all possible
combinations of three words were generated. Each triplet
was preceded by two cycles of "noise” (.5 feature vector)
and context units were reset o their initial state (.S) at the
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onset of each sequence. The main analyses concern
responses o the C probe during the presentation of the
second word, and responses to the P probe during the third
word. Responses (o the first word were not analysed in
detail, because they are influenced by the initial state of the
network and do not reflect its general behaviour.

According to the Cohort model, a word can be identitied
at its Unigueness Point (UP), i.e. as soon as it remains the
sole lexical candidate compatible with the input. Figure 2
displays the activation of the target and the most active non-
target candidate at each time step for LEX1. The left part of
the graph corresponds to the C task and activations have
been averaged across words aligned on their UP. The
target's activation gradually increases, with an abrupt
acceleration at the UP, which also corresponds to the first
cycle at which targets can be discriminated from other
candidates, Similar curves came out tor the other runs. Like
the SRN used by Norris (1990), the network appears to
implement a gradual activation version of the Cohort theory.
However, even though the UP appears as an important
factor in accounting for the variations of activation, the size
of the standard deviation at the UP and the further increase
after the UP indicate that other factors come into play.

90+
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30+
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Figure 2. Activation of target and most active non-target
unit (LEX1). Left punel is for C probe, right panel for P

probe. Bars show standard deviations.

The right part of Figure 2 shows the results of the P task,
and it appears that the target unit remains active during the
presentation of the following word, while it gradually
decreases towards the end. The most visible effect of the
dual task architecture is that the activation corresponding to
the target is maintained at a high level during several cycles
(generally, trom the TP of the current word until the end of
the successor). This temporal stability might provide a
stronger and more reliable signal for other processing
components.

To further clarify the relation between the network's
behaviour and Cohort theory, we computed the isolation
point for the second word of each test triplet. It commesponds
to the first ime step during the presentation of the word, at
which the activation of the target unit exceeds that of all
other output units by a difference of 5. Table 1 presents the
percentage of isolated words for training and test sequences.
For three simulation runs, on-line isolation rates are close o
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90%. The lower pertormance for LEX2 on the C task is as
expected: recall that LEX2 includes four left-embedded
words, which cannot be isolated on-line.

Current word Previous word

Corpus  Training Test Training Test
LEX1 87.2 75.0 87.2 80.1
LEX2 77.8 75.0 0953 91.5
LEX3 95.3 97.5 95.6 914
LEX4 95.8 95.0 93.5 89.6

Table 1. Isolation rates on training and test sequences for the
C and P identification task.

As regards previous word isolation, performance is again
around 90%. Most of the time, P isolation was obtained on
the first segment of the following word, confirming that the
previous word was correctly recalled immediately after its

offset. Finally, it may be worth mentioning that the level of

performance on the 10% of word sequences that did not
appear during training is quite high. In fact, in most cases,
isolation rates and isolation point values on the test
sequences are hardly discriminable from performance on
training materials, Other tests using pseudo-word contexts
led to analogous high generalisation rates. The high level of
transfer leads to the reassuring conclusion, contrary (o
Norris' (1990) assertion, that the network need not see all
the sentences of the language to identify the words. It also
implies that the processing is more sophisticated than rote
memorising of sequences of events.

4 —
3.5
= gl o
c
& 25 8
& =
= 1.5 o
o
85 14 ;
0.5 %Variance Slope  Intercept
’ 795 0.63 1.23
0 l | I =3
0 1 2 3 4

Uniqueness Point

Figure 3. Observed relation between isolation points and
uniqueness points. The line corresponds to the Cohort
prediction (data trom LEX1).

As discussed previously, the optimal behaviour, which
corresponds to the Cohort prediction, would be that words
are isolated on-line at soon as they become unigue, so that
the IP is identical to the UP. The network's behaviour comes
close to these expectations (Figure 3), particularly for late
positions. At early positions within words, on-line isolation
tends to be delayed relative to the theoretical prediction of
the Cohort model. Similar regression lines were obtained tor
all four simulations, with slope values smaller than 1 and
positive intercepts. Interestingly, the fact that the network
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underestimates the UP effect is analogous to human
observations (Radeau, Mousty & Bertelson, 1989; Radeau
& Morais, 1900).

Further analyses were performed on the C task to
determine the nature of the tactors that influence lexical
activation. Two factors were considered, cohort size, the
number of cohort members before the UP, and stimulus
guantity, the number of segments of the input string counted
from current word onset. This choice was motivated by the
following considerations. Previous analyses suggested that
stiunulus quantity could have an effect, in that the deviation
from Cohort behaviour was more marked for early UP
words. On the other hand, it has been shown that under
conditions in which a single unit response is required, the
SRN's output will approximate the conditional probability
distribution of the response set (Servan-Schreiber,
Cleeremans & McClelland, 1991). Under this analysis
activation would be expected to vary strictly as an inverse
tunction of cohort size.

- small —O— large
50 4 LEX1 LEX2
=4
2 30
4]
=
£ 104 O/o
-10 1 1 1 |
1 2 1 2
50 4 LEX3 LEX4
_ .,/ /——4
S 30 A
o
2
£ 104 O O’/
-10 | 4 1 1 1 Y I |
1 2 3 1 2 3

Position within word

Figure 4. Mean activation of the current word as a function
of cohort size betore UP and of position within word (see
text for explanation).

In each corpus, a contrast could be devised between
subsets of words with late UPs (positions 3 or 4), whose
cohort includes either few members (i.e., 1) or many (3 in
LEX1 and LEX2, 2 in LEX3 and LEX4). Moreover, in all
the cases examined, cohort size was stable up to the UP, so
that position effects could be assessed independently of
cohort size.

As shown in Figure 4, both factors appear to influence the
activation of words before their UP. A large etfect of cohort
size 1s observed in all cases, and the probability distribution
hypothesis does not fall too far from the observed data.
Thus, even though the information tlow does not incorporate
any kind of direct competition between responses, contrary
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to models such as TRACE in which there is lateral
inhibition, the strength of lexical hypotheses may depend on
the number of compatible candidates. Mixed patterns ciune
out for the effect of position: resvlts from LEX1 and LEX2
show large activation increases between the two initial
positions, but only when cohort size is small. On the
contrary, in LEX3 and LEX4, activation increases only
marginally before the UP, suggesting that cohort size is the
major force determining lexical activation. Further
simulation work is needed to establish whether this is a
general feature of the present model.

Ambiguous boundaries

90 4| ® embedded
A carrier
701| m follower
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Figure 5. Activation of embedded words and their carriers
during the presentation of the embedded words (-2, -1, final)
and followers (nl to nd4). Panels a-b for left-embedding
(/kau-/katS/). Panels c-d for right-embedding (/at/-/kat/).
Black lines are for C task, grey lines for P task.
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Given the nature of the word sets used, the only case in
which the immediate analysis does not permit to reach a
decision is LEX2, which includes left-embedded words, The
following malyses imed at establishing whether the
network can indeed resolve such ambiguities. The upper
panel of Figure 5 shows the mean activation of embedded
words and their carriers. The nature of the following word
determines two possible conditions. Figure 5a corresponds
to the case in which the follower is incompatible with the
carrier (katpl®s, CAT PLUS). In this case, the activation of
the embedded word (CAT) increases and the activation of
the carrier (CATCH) drops on the first segment of the next
word (position nl), resulting in late isolation of the
embedded word.

Figure 5b corresponds to the lexical garden-path situation
in which the follower is indeed compatible with the carrier
(katSip, CAT SHIP). In this case, the carrier word is
erroneously isolated on the first segment of the follower, but
the network recovers from this inappropriate interpretation
at the next cycle. Thus, the appropriate pattern of activation
is attained at position n2. Similar response patterns have
been observed in the gating task (Grosjean, 1985). The cost
of immediacy is the transient activation of the carrier word,
and a one-time-slice delay in the isolation of the embedded
word. But a possible way to recover from immediate
commitment is to rely on the accumulation of evidence over
several time slices. Interestingly, as shown by the activation
curves for the following word in Fig. 5a and 5b, the
presence of a boundary wunbiguity has only minimal etfects
on the on-line activation of the follower.

The lower panels displays the symmetric condition, from
the LEX4 data, in which right-embedded words are
preceded by a word which is either compatible with the
carrier (Figure 5c¢, ex.: stakat, STACK AT) or not (Figure
5d, ex.: pl"sat  PLUS AT). Although there is no real
ambiguity here (since the initial part of the predecessor —
sta or pl*— can never be a word), the straddling carrier
word (CAT) is clearly activated. Similar tindings came out
with center-embedded words, as a tunction of both the
predecessor and the successor's compatibility. Thus, for
mstance, CATCH would be highly activated on the §
segment in the sequence stakatSip (STACK AT SHIP). The
response of the network is reminiscent of findings reported
by Tabossi (1093).

Conclusions

In the present study, we opted for small scale simulations,
which in return permitted to conduct detailed analyses of
performance. Further simulations are in progress to examine
how performance would scale up under various extensions
(corpus size, number and nature of probes, information grain
of the input signal).

Besides training time, one liniting factor is the nature of
output representations, The use of localised codes offers the
advantage of making performance analysis more tractable.
But it constitutes an important drawback to the processing
of more realistic data sets. Obviously, a distributed scheme
would need to be devised to handle larger corpora, and
richer input representations would also be required. In
particular, it seems interesting to explore how the system
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would cope with prosodic/metrical input information.
Lexical segmentation ambiguities were Kept (o a4 minimum
in our word sets, and complementary cues would probably
help avoiding massive ambiguity.

Despite the limitations of the present study, the system
presents a number of interesting properties. It belongs with
other direct, continuous and on-line activation models. As in
the TRACE model, onset alignment dominates even though
no explicit alighment constraint has been implemented.
However, the mapping mechanisms differ in two main re-
spects. While TRACE uses a fixed architecture based on
spatial reduplication to represent the time dimension, and
cannot cope with varying rates of speech, the SRN
dynamically encodes temporal information as i compressed
distributed representation. Secondly, while in TRACE,
lexical activation depends on both sensory information and
lateral inhibition, the SRN involves no direct competition
the level of response units. Lexical units activation is
entirely determined by bindings between the probes and the
distributed trace forged by the recurrent loop of the network.

In a recently published discussion paper, the tollowing
gquestion was put torth: "If the processor operates
sequentially and receives the acoustic-phonetic information
relative to an upcoming word while still engaged in the
‘selection’ of the preceding one, how can it identify that
information on-line as word initial and use it to build the
cohort that is so crucial to recognising the new word?"
(Tabossi, 1993, p. 289). The SRN with multiple probes
appears to provide an original solution to this problem. The
multiple task used makes it possible for the system (o
rapidly extract hypotheses about the current word, which
might be utilised by other components of the language
processor, as soon as they get sufficient strength. When the
information about lexical hypotheses is not clear, it sutfices
to wait a while, but the uncertainty about the current word
offset point does not prevent the network from rapidly
isolating the following word.
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