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ABSTRACT

Motivation: Accurately predicting protein side-chain conformations is

an important subproblem of the broader protein structure prediction

problem. Several methods exist for generating fairly accurate models

for moderate-size proteins in seconds or less. However, a major limi-

tation of these methods is their inability to model post-translational

modifications (PTMs) and unnatural amino acids. In natural living

systems, the chemical groups added following translation are often

critical for the function of the protein. In engineered systems, unnatural

amino acids are incorporated into proteins to explore structure–

function relationships and create novel proteins.

Results: We present a new version of SIDEpro to predict the side

chains of proteins containing non-standard amino acids, including

15 of the most frequently observed PTMs in the Protein Data Bank

and all types of phosphorylation. SIDEpro uses energy functions that

are parameterized by neural networks trained from available data. For

PTMs, the �1 and �1þ2 accuracies are comparable with those obtained

for the precursor amino acid, and so are the RMSD values for the

atoms shared with the precursor amino acid. In addition, SIDEpro

can accommodate any PTM or unnatural amino acid, thus providing

a flexible prediction system for high-throughput modeling of proteins

beyond the standard amino acids.

Availability and implementation: SIDEpro programs and Web server,

rotamer libraries and data are available through the SCRATCH suite of

protein structure predictors at http://scratch.proteomics.ics.uci.edu/

Contact: pfbaldi@uci.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on September 17, 2013; revised on January 18, 2014;

accepted on February 16, 2014

1 INTRODUCTION

Post-translational modifications (PTMs) are critical to the func-

tion of many proteins in living systems, and understanding their

effects at the molecular level is important for both basic and

applied research in biology and medicine. To further this under-

standing, open databases of curated PTM information have been
published. For instance, Phospho.ELM (Dinkel et al., 2010) is a

publicly available database dedicated to phosphorylation. The

database provides the exact positions of experimentally deter-

mined phosphorylation sites as well as information on the spe-

cific kinases that produce the modifications. Other databases

such as PhosphoSitePlus, HPRD and PHOSIDA (Gnad et al.,

2011; Hornbeck et al., 2012; Keshava Prasad et al., 2009) include

information on additional types of PTMs (e.g. ubiquitination,
acetylation, methylation) but are still dominated by phosphoryl-

ation data. An automated curator of information on PTMs
(Khoury et al., 2011) found in Swiss-Prot (Bairoch and

Apweiler, 2000) provides the following summary statistics:

there are a total of 82 505 PTMs determined by experimental
methods, with the following types having a frequency 41%:

phosphorylation, 70.9%; acetylation, 8.2%; N-linked glycosyla-
tion, 6.8%; amidation, 3.5%; hydroxylation, 2.0%; methylation,

1.9%; O-linked glycosylation, 1.4%; ubiquitylation, 1.1% and

pyrrolidone carboxylic acid, 1.0%.
In addition to methods for curating and organizing existing

PTM data, there are also methods for predicting which sites are
modified in sequences with unknown PTM status. These meth-

ods typically use supervised machine learning, statistical and
motif-based approaches to predict sites of phosphorylation

(Blom et al., 1999; Wan et al., 2008), acetylation (Li et al.,

2009), glycosylation (Hamby and Hirst, 2008; Julenius et al.,
2005; Li et al., 2006), sumoylation (Ren et al., 2009; Xu et al.,

2008) and less common types of PTMs as well (Plewczynski
et al., 2012). Some of these methods predict both the specific

phosphorylated sites and the specific kinases responsible for

the phosphorylation (Blom et al., 2004; Kim et al., 2004;
Obenauer et al., 2003).

In contrast with these approaches, the fundamental problem
of predicting accurate three-dimensional (3D) models of PTMs

in proteins has been largely ignored. None of the widely used or
recently published side-chain prediction methods that are free for

academic research (Hartmann et al., 2007; Krivov et al., 2009;

Liang et al., 2011; Lu et al., 2008; Nagata et al., 2012; Zhichao
et al., 2011) are capable of incorporating PTMs or unnatural

amino acids into their predictions. The widely used template-
based modeling software Modeller (Sali and Blundell, 1993)

allows for manual creation of custom residues; however, the pro-

cess for doing so is somewhat cumbersome and not realistic for
most Modeller users. One notable exception is the incorporation

of non-canonical amino acids into Rosetta (Leaver-Fay et al.,
2011) for computational protein–peptide interface design

(Renfrew et al., 2012).
The developers of side-chain prediction methods recognize the

need for generating accurate models that incorporate PTMs;

however, there are a number of practical challenges that have
stymied progress in this area: (i) there are far less data in the

Protein Data Bank (PDB) (Berman et al., 2002) for PTM*To whom correspondence should be addressed.
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residues than native residues for building rotamer libraries or

developing statistical potentials; (ii) although one-character

codes (e.g. A for alanine) work well for efficiently defining pro-

tein sequences, it is unfeasible to use one-character codes for all

possible PTMs (there are4100 PTMs documented in the litera-

ture); (iii) some important modifications (e.g. O-linked glycosy-

lation) correspond to broad classes of chemical structures rather

than a unique chemical structure, and each of the possible mol-

ecules would need to be uniquely identified; and (iv) modified

residues are generally larger and contain more rotatable bonds

than their natural counterparts.
Beyond the 20 standard amino acids and their PTMs, there are

also other natural or synthetic amino acids that can be incorpo-

rated into proteins. Two additional natural amino acids,

selenocysteine (Sec,U) and pyrrolysine (Pyl,O), are coded in

some species by codons that are usually interpreted as stop

codons. Pyrrolysine, for instance, is used by some methanogenic

archaea in enzymes used to produce methane. In addition,440

unnatural amino acids have been incorporated into proteins

through synthetic biology projects, often by creating a unique

codon (recoding) and a corresponding transfer RNA, to explore

protein structure and function and create novel proteins (Wang

et al., 2009; Xie and Schultz, 2005). A tool for modeling the side

chains of these rare natural or unnatural amino acids would also

be desirable.
Thus, despite the challenges described above, we have taken

on the problem of rapidly generating reasonably accurate 3D

side-chain models of proteins that incorporate amino acids

beyond the standard 20 amino acids. In the remainder of this

article, the term ‘non-standard amino acid’ (NSA) is used to refer

to any amino acid other than the 20 standard amino acids. This

includes PTMs, rare natural amino acids and unnatural amino

acids.

2 METHODS

2.1 Training and testing datasets

Because we use machine learning methods to predict the side-chain con-

formations of NSAs, we first describe our curated datasets. We distin-

guish the 15 more frequent post-translational modifications (FPTMs)

from all the other NSAs because there are far more data available for

them in the PDB.

2.1.1 NSA dataset The PDB assigns a three-letter identifier to unique

chemical structures. The system is used for standard amino acids as well

as other chemical structures (e.g. ligands, NSAs) that have coordinates in

PDB files. To curate a set of NSAs observed in protein structures, we

started from a set of 1449 chemical structures identified as ‘non-standard

polymeric components’ by the PDB. From this starting set, we first

removed molecules that were not amino acids, leaving 614 amino acids

after this step. Then, we downloaded all of the PDB structure files that

contained one or more of these 614 identifiers, yielding 12 294 PDB files.

Next, we checked the integrity of the peptide backbone for each potential

NSA. If either peptide bond distance was 41.5Å, a feature typically

observed with less-constrained amino acids located at the beginning or

tail of a protein, the NSA was excluded from the dataset, leaving 603

NSAs after this step. Next, we excluded any NSA that did not have at

least one standard amino acid adjacent to it in the peptide chain. After

this step, 549 distinct NSAs contained in 12 045 PDB files remained. The

reason for this step was to exclude NSAs observed only in short peptides

composed exclusively of NSAs that are never observed integrated into

proteins. Then, we excluded NSAs that have no carbon � or multiple

carbon �s because only amino acids with a single �1 angle are considered

for the prediction stage. After this step, 459 NSAs contained in 11 543

PDB files remained. Next, we excluded proteins with NSAs with high

B-factors (440) because of the uncertainty in the corresponding conform-

ations. Finally, we removed redundancy at the protein sequence level

using a sequence similarity threshold of 30% and set aside the data cor-

responding to the 15 most frequent PTMs (see next section on FPTMs).

The final NSA (non-FPTM) dataset consists of 316 unique NSAs con-

tained in 1308 PDBs files. The NSA (non-FTPM) dataset is used exclu-

sively for estimating the generalization accuracy of SIDEpro (see below).

2.1.2 FPTM dataset Our main criterion for categorizing an NSA as

a PTM was that a substructure of the NSA must be one of the standard

20 amino acids. We sought to discover the set of PTMs with sufficient

instances in the PDB to allow for training and creating rotamer libraries.

For this purpose, we set a threshold of at least 50 instances. We sorted the

curated NSA dataset by the total number of times the NSA is observed in

the PDB. Multiple occurrences in the same PDB file were counted as

unique occurrences. After ordering the dataset, we observed that there

were 15 NSAs with450 occurrences, and all of them were PTMs accord-

ing to our definition. Table 1 shows the chemical structures of the PTMs

and their precursor standard amino acids (e.g. tyrosine is the precursor of

phosphotyrosine) using the PDB atom naming scheme to label individual

atoms.

Selenomethionine (MSE) was associated with a particularly large

number of PDB files, and thus we selected 500 of them at random.

Finally, for each PTM, the corresponding files were split into five equal

folds for cross-validation purposes. The total number of PDB files in the

FPTM set is 1168. Supplementary Tables S1 and S2 contain summary

information for all the NSAs in the final NSA and FPTM datasets,

including PDB three-letter codes, SMILES representations and the cor-

responding list of PDB file names. Supplementary Table S3 contains the

original training set for SIDEpro (Nagata et al., 2012).

2.2 Building rotamer libraries for NSAs

A fixed rotamer is defined by a specific set of � angles whose values are

typically equal to the mean of the values observed in a set of correspond-

ing side-chain conformations that cluster in 3D space. A flexible rotamer

is defined by both the means and variances of each one of its � angles.

Both types of rotamers are widely used in side-chain conformation pre-

diction, with rigid rotamer libraries (Bhuyan and Gao, 2011; Scouras and

Daggett, 2011) generally leading to faster, but slightly less accurate, al-

gorithms than flexible rotamer libraries (Krivov et al., 2009; Lovell et al.,

2000; Nagata et al., 2012). Although several rotamer libraries have been

published for natural amino acids, only a few exist for NSAs (Gfeller

et al., 2012; Renfrew et al., 2012).

2.2.1 Flexible rotamer library for FPTMs For 14 of the 15 PTMs

in this study, the atoms of the precursor amino acid that is being modified

are a subset of the atoms in the modified residue. The exception is

selenomethionine. Of the 14 FPTMs where the precursor atoms are a

subset, 12 introduce new rotatable bonds (i.e. additional � angles) that

must be dealt with. The two FPTMs with proline as the precursor are the

exceptions. For instance, serine (SER) has only one � angle, whereas

phosphorylated serine (SEP) has three � angles.

In Table 1, when FPTMs have additional � angles, the last � angle of

the precursor amino acid is highlighted in red, and the additional � angles

in the FPTM are highlighted in green. For instance, in Table 1 the last �

angle of serine, corresponding to the CA-CB bond, is highlighted in red.

The two additional � angles, corresponding to the CB-OG and OG-P

bonds in phosphoserine, are highlighted in green. Note that for

phosphotyrosine (PTR), with tyrosine (TYR) as the precursor, the first
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Table 1. Frequent post-translational modifications (FPTMs)

Precursor PTM

AA Structure ID Name Structure

ALA ABA alpha-Aminobutyric acid

CYS

CSO S-Hydroxycysteine

CSD 3-Sulfinoalanine

CME S,S-(2-Hydroxyethyl) thiocysteine

OCS Cysteinesulfonic acid

LYS

KCX Lysine NZ-carboxylic acid

LLP

2-Lysine(3-Hydroxy-2-Methyl-5-

Phosphonooxymethyl-pyridin-4-

ylmethane)

MLY N-dimethyl-lysine

M3L N-trimethyl-lysine

MET MSE Selenomethionine

(continued)

1683

Modeling of protein structures



� angle is treated as the last � angle because the second (and final) � angle

corresponding to the CB-CG bond is non-rotameric (Shapovalov and

Dunbrack, 2011).

The � angles present in the precursor will be denoted by �p, and those

that are additional in the modified residue by �a. To model the � angles

in FPTM residues that are present in the precursor residues (�p), a stand-

ard native amino acid rotamer library was used without modification

(Shapovalov and Dunbrack, 2011). The additional � angles in �a were

handled with a new customized method designed to accommodate cases

where only few training instances are available, relative to the case of

natural amino acids. For each FPTM type, except LLP and CME, we

placed each i-th � angle (�ai) in �a into one of three angle bins: (0, 120�),

(120, 240�) and (240, 360�). We calculated the corresponding means �rai
ai

and standard deviations �raiai where rai is a rotamer type for �ai. By assum-

ing that each � angle is independent, �a can be assigned to a maximum of

Ra ¼ 3j�a j rotamers (rotamers with zero counts are eliminated).

For symmetric bonds (O-P bonds in LLP, SEP, TPO and PTR;

CB-SG bond in OCS; NZ-C bond in KCX; and CE-NZ bond in

M3L), because their � angles are almost constant, we set their mean �

angle to 180� in the rotamer library. The � angles for PCA are also

constant, and thus we set �1 ¼ 0�, �2 ¼ 0� and �3 ¼ 180� for PCA. In

all these cases, we set the standard deviations to a small default value

equal to 10�.

For LLP and CME, because they have many additional � angles and

more possible rotamers, we found that the prediction accuracy is lower

comparing with other FPTMs, when using the library defined above.

Because of this, we decreased the number of possible rotamers by decreas-

ing the size of the bins. For LLP, the bins are (0, 120�) and (120, 360�) for

�a1; (0, 240
�) and (240, 360�) for �a2 and �a4; (0, 180

�) and (180, 360�) for

�a3; and a single bin (0, 360�) for �a5. For CME, the bins are (0, 180�)

and (180, 360�) for �a1 and �a2; we treated �a3 and �a4 as fixed bonds

with values 180 and 300�. These bins were determined from the empirical

distribution of �a.

We assume that �a is dependent on the last � angle in �p, marked in

red in Table 1, and referred to as �p, last. This angle (�p, last) is associated

with one of three bins of equal size 120� as above. For each rotamer of

�p, last, we calculated the rotamer probabilities pðrajrp, lastÞ, where ra is the

rotamer types for the additional � angles, and rp, last is the rotamer type

Table 1. Continued

Precursor PTM

AA Structure ID Name Structure

PRO

PCA Pyroglutamic acid

HYP 4-Hydroxyproline

SER SEP Phosphoserine

THR TPO Phosphothreonine

TYR PTR O-Phosphotyrosine
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for �p, last. Because there are Ra rotamers for the additional � angles in �a
and Rp rotamers for the precursor residue, the total number of rotamers

for a FPTM is Ra �Rp, and the probability of combined rotamer ðrp, raÞ

is p
rp
p � pðrajrp, lastÞ normalized by the sum of all Ra � Rp probabilities

where rp is a rotamer for the precursor residue.

2.2.2 Restricted flexible rotamer library for NSAs (non-
FPTM) Our approach to the generic prediction of NSAs, which do

not correspond to FPTMs, treats only the first �1 (usually CA-CB) as

rotatable and considers the rest of the NSA structure as fixed. We built a

general backbone independent flexible rotamer library for the �1 angle

using the original SIDEpro training dataset (Nagata et al., 2012) (listed in

of Supplementary Table S3). First, the �1 angles for all natural amino

acids (except alanine and glycine, which have no �1 angle) in the training

set combined (not type specific) were calculated and placed into one of

three bins: (0, 120�), (120, 240�) and (240, 360�). The mean and standard

deviation of the �1 angles for each rotamer bin were calculated. By de-

fault, the values of the �i, i � 2 angles are fixed to those of the original

NSA structure. If a user provides multiple structures for a given NSA,

SIDEpro automatically builds a uniform rotamer library for �i, i � 2.

For the SIDEpro Web server and downloadable program, we use the

COSMOS program (Andronico et al., 2011) for predicting the conform-

ations of small molecules to produce 10 conformations for each NSA that

is not an FPTM. The FPTM/NSA rotamer library is given in

Supplementary Table S4.

2.3 Training energy and prediction

To predict side chains, SIDEpro uses an additive energy function para-

meterized using a large number of neural networks trained from the data.

All the neural networks have similar structure with one input unit cor-

responding to a distance between a pair of atoms, one hidden layer of

hidden units and one linear output unit computing the corresponding

energy term.

2.3.1 Neural networks For natural amino acids, there are 156 neural

networks, one per amino acid type and per atom pair type. For instance,

the carbon–carbon neural network for valine computes the ‘energy’ con-

tribution associated with any pair of carbon atoms, where the first carbon

atom is a non-backbone carbon atom in the valine residue under consid-

eration and the second non-valine carbon atom is contained in a spherical

neighborhood of 7Å (this carbon atom could be on the backbone or side

chain of another residue or in a ligand). These neural networks are part of

the original SIDEpro program (Nagata et al., 2012); all the remaining

ones are new. For the most FPTMs, there are 130 new neural networks,

one per FPTM type and per atom-pair type. Thus, for instance, there is

one carbon–carbon neural network for phosphorylated serine. For NSAs

(non-FPTMs), we use a more generic approach with 25 neural networks,

one per atom pair type. Note that as a slight simplification in all cases, we

consider only five atom types (C, H, N, O, S), treating P as if it were C

and using H only in the second position of an interaction.

2.3.2 Training The training pipeline is summarized in Figure 1. For a

given protein in the training set with a fixed backbone, we initialize each

rotamer to the value closest to the native conformation. Then, we cycle

once through each protein in the training set from the C-terminus to the

N-terminus. When a given amino acid is being considered, we compute

the energy of all its rotamers using the corresponding neural networks.

These energies are converted into probabilities and then compared with

the native conformation. The mismatch information is used to adjust the

weights of the neural networks using Markov chain Monte Carlo meth-

ods [see (Nagata et al., 2012) for more details]. For NSAs (non-FPTMs),

we use the original SIDEpro training set (Supplementary Materials) of

252 proteins to train generic energy function neural networks using dis-

tances between pairs of atoms in all types of natural amino acids. The

SIDEpro training set has no redundancy, at the 25% sequence similarity

threshold, with the SCWRL4 (Krivov et al., 2009) test set. We experi-

mented with hidden layers of size 5, 10 and 15, noting in general, a deg-

radation of performance with 5, but only small differences between 10

and 15. In all cases, we selected the hidden layer size, which maximizes the

cross-validated accuracy (Supplementary Materials). Although we used

5-fold cross-validation to asses the approach, the final production server

is trained on the entire data.

Fig. 1. Training pipeline
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2.3.3 Prediction The prediction pipeline is summarized in Figure 2. In

prediction, we are given a protein with a fixed backbone and possibly,

also a set of additional atoms with fixed coordinates, which typically

correspond to fixed side chains or atoms in ligand molecules. For the

remaining amino acids, we cycle through them in random uniform order

without replacement. Each amino acid has its own library of rotamers,

and rotamer probabilities as described in Section 2.2. This is true for

natural amino acids, FPTMs and other NSAs initialized uniformly

over 10 conformations produced by COSMOS. For a given non-fixed

amino acid, we compute the expected energy of each one of its rotamers,

given all the other fixed atoms, rotamers and rotamer probabilities. These

energy values are converted to probabilities, and the corresponding rota-

mer probability table is updated. The full cycle is repeated six times for

each protein.

It is important to note that the neural networks are used only once to

compute all the possible energy values because the set of all possible

pairwise distances, across all possible rotamer values, does not change

during the prediction phase. For the final prediction, we choose the most

likely rotamer configuration for each amino acid that is not fixed by the

user. Finally, we run the same clash reduction algorithm as in (Nagata

et al., 2012).

3 RESULTS

We evaluate the approach using three standard metrics: (i)

RMSD for the side chain, which is calculated using the coordin-

ates of the experimental structure, exactly as described in (Krivov

et al., 2009); (ii) percentage of side chains where �1 is within 40�

of the experimental value; and (iii) percentage of side chains

where both �1 and �2 are within 40� of the experimental values.

3.1 Generic energy versus amino acid-specific energy

The generic neural networks and the corresponding energy can

first be tested on the 20 natural amino acids and compared with

the amino acid-specific neural networks of SIDEpro.

Comparison of these two approaches on the SCWRL4 test set,

using the SCWRL4 rotamers (Krivov et al., 2009), are reported

in Table 2, with a summary for each amino acid of the RMSD,

the average �1 and average �1þ2 and the corresponding P-values

for a paired t-test on the RMSD. For each metric and each

amino acid, the best results are shown in bold together with all

P50.15. When all amino acid types are considered as a single

large test set, the amino acid-specific neural networks produce

slightly more accurate models according to all three metrics with

high significance (P50:001). For 10 amino acid types, the amino

acid-specific neural networks perform better than the generic

neural networks significantly P50:03. Note that the generic

neural networks produce better results for all three metrics for

tyrosine and phenylalanine and for at least one of the three met-

rics for four other residue types. However, these differences are

not statistically significant because there is no amino acid type

Fig. 2. Prediction pipeline for optimizing all the rotamer probabilities. Once the optimization is completed, final predictions are produced by first

selecting the most likely rotamer and then going through a clash reduction algorithm

Table 2. AA-specific energy versus generic energy tested on standard

amino acids

AA type AA specific Generic P-value

RMSD �1 �1þ2 RMSD �1 �1þ2

ARG 2.21 78.7 64.8 2.23 77.9 64.6 0.1019

ASN 1.04 85.4 62.5 1.08 83.9 60.9 0.0002

ASP 0.80 84.9 76.9 0.82 84.3 75.5 0.0272

CYS 0.49 90.0 – 0.47 90.6 – 0.1755

GLN 1.69 77.3 58.7 1.69 77.4 58.5 0.8869

GLU 1.46 74.1 58.0 1.48 73.7 57.4 0.0178

HIS 1.31 88.3 54.8 1.29 89.4 53.2 0.3103

ILE 0.44 95.7 84.5 0.46 95.4 82.7 0.0002

LEU 0.53 93.9 87.6 0.55 93.4 86.8 0.0001

LYS 1.63 79.5 66.2 1.69 77.9 64.9 50.0001

MET 1.09 85.7 77.2 1.11 85.1 75.8 0.1881

PHE 0.67 95.0 92.9 0.66 95.3 93.0 0.1979

PRO 0.26 84.7 81.0 0.30 85.3 79.9 50.0001

SER 0.75 73.2 – 0.78 71.5 – 0.0004

THR 0.39 90.7 – 0.40 90.1 – 0.0239

TRP 1.09 92.7 84.4 1.14 92.7 82.7 0.1724

TYR 0.85 94.0 91.4 0.83 94.5 91.6 0.2292

VAL 0.32 93.1 – 0.34 92.5 – 0.0057

ALL 0.91 86.2 74.7 0.93 85.7 73.8 50.0001
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for which the generic neural networks perform better at a signifi-

cant level P50:15. Taken together, these results show overall

that (i) as expected, the amino acid-specific neural networks per-

form better than the generic neural networks on the natural

amino acids; (ii) the generic neural networks are not far

behind, with RMSDs below 1Å most of the time, and provide

reasonable models and a reasonable alternative, with consider-

ably less parameters.

3.2 Prediction of FPTMs

Here we compare the performance of the FPTM-specific neural

networks and the generic neural networks for the prediction

of FPTMs. One FTPM type, PCA, is excluded from the com-

parison because it has only one rotamer. We used 5-fold cross-

validation on the FPTM datasets. Table 3 shows the average

number of atom pairs used for training the FPTM-specific

neural networks, the number of neural networks, the ratio of

these two numbers and the corresponding cross-validated

RMSDs and P-values for a paired t-test on the RMSDs of

each fold. The best RMSD values are in bold together with

P50.15. The number of training atom pairs divided by the

number of neural networks provides a rough estimate of the

number of examples used for training the neural networks of

each FPTM. For four FPTM types (LLP, MLY, PTR and

MSE), the FPTM-specific neural networks perform better than

the generic neural networks with significance P50:15. These

four types correspond also to the four highest values of the aver-

age number of training pairs per neural network, excluding

KCX, which has a high P-value. For all FPTMs, except OCS

and SEP, the specific neural networks perform better, although

the difference is small. In the final program, we use the specific

energy for all FPTMs.
Table 4 summarizes the cross-validated prediction accuracy

results for the FPTMs, grouped according to their precursor

amino acid, on the FPTM datasets. Each precursor amino acid

is shown in bold together with the corresponding SIDEpro

results. The table shows the average number of instances

observed in the test set for each of the 15 FPTMs as well as

the cross-validated results for the three accuracy metrics

(RMSD, �1 and �1þ2). Two average RMSD results are presented

using: (i) only the atoms in common with the precursor amino

acid; and (ii) all the atoms. The former allows for a direct com-

parison with the accuracy of SIDEpro on the precursor amino

acid.
Considering the RMSD metric, and only atoms shared with

the precursor, the accuracy of the FPTMs is comparable with the

accuracy of SIDEpro on the precursor amino acids. Four PTMs

have lower mean RMSD than their precursor: KCX-lysine,

M3L-lysine, MLY-lysine and MSE-methionine. When all the

atoms in the PTM amino acid are considered, the average

RMSD results are significantly higher, as expected because

of the increase in size and number of rotatable bonds of

each PTM side chain with respect to its precursor amino

acid. Considering the �1 metric, six of the FPTMs have higher

accuracy values than their precursor amino acid: CSD-cysteine,

KCX-lysine, LLP-lysine, M3L-lysine, MSE-methionine and

PCA-proline. Six other PTMs have �1 accuracy that is within

10% of the corresponding precursor amino acid result.

Considering the �1þ2 metric, only the PTMs associated with

lysine, tyrosine, methionine and proline can be compared. Of

the eight corresponding PTMs, where a direct comparison with

the precursor atoms can be made, four have higher accuracy

values than their precursor: KCX-lysine, M3L-lysine, MSE-

methionine and PCA-proline. In short, by multiple metrics, the

Table 4. Accuracy for FPTMs and their precursor amino acids

AA type Count RMSD(Å) �1 (%) �1þ2(%)

Precursor All

ALA

ABA 12 0.99 0.99 61.5

CYS 1001 0.49 90.0

CME 16.4 0.86 2.83 75.4 48.0

CSD 16.6 0.56 1.46 91.7 44.0

CSO 44.8 0.64 1.17 88.0 57.1

OCS 17.2 0.60 0.89 86.4 81.6

LYS 3901 1.63 79.5 66.2

KCX 14 1.20 1.72 91.3 66.3

LLP 29.4 1.82 4.08 85.9 36.4

M3L 10 1.31 1.71 82.2 70.6

MLY 51.8 1.43 2.06 76.6 64.6

TYR 2346 0.85 94.0 91.4

PTR 13.8 1.24 2.02 88.1 79.1

SER 4107 0.75 73.2

SEP 17.2 0.88 1.77 68.0 39.2

THR 3790 0.39 90.7

TPO 10.4 0.91 1.43 71.9 66.3

MET 1410 1.09 85.7 77.2

MSE 742.6 1.06 1.06 88.0 80.5

PRO 3233 0.26 84.7 81.0

HYP 45.8 0.87 1.05 78.7 67.1

PCA 15.2 0.43 0.48 100 100

Table 3. PTM-specific versus generic energy for frequent PTMs

AA type Number

of pairs

Number

of NNs

Number of Pairs
Number of NNs

RMSD P-value

Specific Generic

ABA 6807 5 1361 0.99 1.1433 0.512

CME 408706 15 27 247 2.83 2.9194 0.650

CSD 108032 10 10 803 1.46 1.598 0.606

CSO 173731 10 17 373 1.17 1.18584 0.709

HYP 54104 10 5410 1.05 1.2102 0.411

KCX 1392310 15 92 821 1.72 1.79402 0.745

LLP 69 02687 15 4 60 179 4.08 5.084 0.002

M3L 309919 10 30 992 1.71 1.903 0.195

MLY 1654694 10 1 65 469 2.06 2.1562 0.128

MSE 8102641 10 8 10 264 1.06 1.0818 0.105

OCS 45379 10 4538 0.89 0.8572 0.491

PTR 926740 10 92 674 2.02 2.2858 0.143

SEP 121541 10 12 154 1.77 1.7664 0.993

TPO 102497 10 10 250 1.43 1.4888 0.255
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prediction accuracy of SIDepro on the 15 FPTMs is roughly

comparable with its accuracy on the natural amino acids.

3.3 Prediction of NSAs

The generic NSA prediction method requires a 3D structure

model of the NSA be provided as input, and to test the NSA

method with more data, we tested it on both the FPTM and the

NSA (non-FPTM) test sets. Structure models are derived from

two sources: (i) true structures from the PDB; and (ii) conform-

ations generated by COSMOS (Andronico et al., 2011). Results

obtained using true structures do not reflect what can be ex-

pected from prediction in a realistic setting, but rather provide

a sense of the limits of the methods. In true prediction mode, the

structure of the NSAs must be generated by a small molecule

structure predictor.
Table 5 reports the results of the generic NSA prediction

method on the FPTM set, when the FPTM amino acids are

treated as non-standard. The best results for each metric and

each FPTM are in bold. In this experiment, for each modified

amino acid, we use a single predicted structure obtained with

COSMOS. As shown below, further improvements can be ob-

tained by using multiple predicted structures. As expected, with a

few exceptions, when the true structures are used as input the

resulting models are more accurate than when predicted struc-

tures are used as input. Overall, the predicted structures lead to

reasonable performance, given the complexity of the problem

and the high-throughput nature of the approach. In all cases

using predicted structure leads to RMSD values that are

always5 2.5Å on the shared atoms.

Finally, Table 6 summarizes the results obtained on the NSA

(non-FPTM) test set. For this experiment, we compare the re-

sults obtained using the true structure from the PDB, a single

predicted structure and multiple (10) predicted structures as

structural models for the NSAs. The best results for each

metric are shown in bold. As expected, using the true structure

provides the most accurate results, with an average RMSD of

1.75Å and a �1 of 66.63%. Using multiple predicted structures

helps improve the performance. For instance, the average

RMSD improves from 3.54 to 3:08 A, a value that is reasonable,

given the high-throughput nature of the approach and the com-

plexity and variability of NSAs, but requiring further refinements

for high-precision tasks. In terms of the �1 metric, using 10 struc-

tures improves the performance from 56.39 to 65.30%, a value

close to the performance obtained using the PDB structures.

4 CONCLUSION

The strength of SIDEpro is that it uses the wealth of data in the

PDB to learn energy functions, parameterized by neural net-

works, to model and predict protein side-chain conformations.

In this study, we have extended the capabilities of SIDEpro to

PTMs and NSAs.
For natural amino acids and FPTMs, when sufficient training

examples are available, SIDEpro uses amino acid-specific energy

functions. For all other PTMs and NSAs, SIDEpro uses a gen-

eric energy function. To flexibly accommodate for any NSA,

Table 5. Accuracy of NSA method on FPTM set

AA type Count True structure COSMOS

RMSD(Å) �1ð%Þ �1þ2ð%Þ RMSD(Å) �1ð%Þ �1þ2ð%Þ

Precursor All Precursor All

ABA 60 1.054 1.054 60 1.162 1.162 55

CME 82 0.6276 0.3462 86.59 86.59 0.6648 4.783 89.02 3.659

CSD 83 0.6829 0.782 86.75 86.75 1.17 2.387 71.08 12.05

CSO 224 0.6782 0.6404 85.2 84.75 0.8186 1.892 81.25 8.482

HYP 229 0.1067 0.1331 100 100 0.5366 0.5366 95.2 29.26

KCX 70 0.3971 0.5761 98.57 98.57 2.151 3.377 74.29 47.14

LLP 147 1.056 2.029 89.12 89.12 1.919 6.709 87.76 42.86

M3L 50 1.125 1.407 80 80 2.059 2.535 64 56

MLY 259 1.044 1.259 83.01 83.01 2.098 2.777 64.48 52.12

MSE 3713 0.367 0.367 85.38 85.29 2.023 2.023 82.01 50.9

OCS 86 0.5527 0.7119 91.86 91.86 0.785 1.096 86.05 74.42

PCA 76 0.08948 0.08601 100 100 0.7811 0.8356 56.58 55.26

PTR 69 1.43 2.019 82.61 82.61 2.215 3.553 69.57 60.87

SEP 86 0.8974 1.411 65.12 65.12 0.9638 2.054 66.28 25.58

TPO 52 0.9129 1.397 70.59 70.59 0.9065 1.793 75 63.46

Table 6. Accuracy of NSA method on NSA (non-FPTM) test set

Default structures RMSD(Å) �1ð%Þ

Single predicted structure 3.54 56.39

10 predicted structures 3.08 65.30

True structure 1.75 66.63
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SIDEpro allow users to provide 3D structures of NSAs to be

incorporated into SIDEpro models. Alternatively, the COSMOS

(Andronico et al., 2011)program isused topredict these structures,

and any other similar program [e.g. OpenBabel (O’Boyle et al.,

2011)] can be used for the same purposes. The generic neural net-

works, trained on all possible pairs of atom types agnostic of resi-

due type, are used to score the atom–atom interactions for these

NSAs. Naturally, as more data on NSAs become available in the

PDB, it will be possible to further expand the set of specific energy

functions, thereby increasing the accuracy of the program over

time. As demonstrated here for some of the NSAs, accuracy can

also be improved by increasing the number of 3D samples pro-

duced by COSMOS, at the expense of time.
Finally, SIDEpro is to be used in protein structure prediction

and engineering projects for the rapid prediction of side-chains

conformations in high-throughput mode, or to provide good

starting points for molecular or quantum mechanics simulations

of side-chain atoms, for both standard and non-standard amino

acids.

ACKNOWLEDGMENTS

The authors acknowledge the support of the UCI Institute for

Genomics and Bioinformatics and a hardware donation by

NVIDIA. Additional support of our computational infrastruc-

ture has been provided by Yuzo Kanomata.

Funding: Grants (NIH LM010235, NIH NLM T15 LM07443

and NSF IIS 1321053 to P.B.; NIH/NLM Pathway to

Independence Award K99LM010821 to A.R.).

Conflict of Interest: none declared.

REFERENCES

Andronico,A. et al. (2011) Data-driven high-throughput prediction of the 3-D struc-

ture of small molecules: review and progress. J. Chem. Inf. Model., 51, 760–766.

Bairoch,A. and Apweiler,R. (2000) The swiss-prot protein sequence database and its

supplement trembl in 2000. Nucleic Acids Res., 28, 45–48.

Berman,H. et al. (2002) The protein data bank. Acta Crystallogr. D Biol.

Crystallogr., 58, 899–907.

Bhuyan,M.S. and Gao,X. (2011) A protein-dependent side-chain rotamer library.

BMC Bioinformatics, 12 (Suppl. 14), S10.

Blom,N. et al. (1999) Sequence and structure-based prediction of eukaryotic protein

phosphorylation sites. J. Mol. Biol., 294, 1351–1362.

Blom,N. et al. (2004) Prediction of post-translational glycosylation and phosphor-

ylation of proteins from the amino acid sequence. Proteomics, 4, 1633–1649.

Dinkel,H. et al. (2010) Phospho.ELM: a database of phosphorylation sitesupdate

2011. Nucleic Acids Res., 39, D261–D267.

Gfeller,D. et al. (2012) Expanding molecular modeling and design tools to non-

natural sidechains. J. Comput. Chem., 33, 1525–1535.

Gnad,F. et al. (2011) Phosida 2011: the posttranslational modification database.

Nucleic Acids Res., 39 (Suppl. 1), D253–D260.

Hamby,S. and Hirst,J. (2008) Prediction of glycosylation sites using random forests.

BMC Bioinformatics, 9, 500.

Hartmann,C. et al. (2007) Irecs: a new algorithm for the selection of most probable

ensembles of side-chain conformations in protein models. Protein Sci., 16,

1294–1307.

Hornbeck,P.V. et al. (2012) Phosphositeplus: a comprehensive resource for

investigating the structure and function of experimentally determined post-

translational modifications in man and mouse. Nucleic Acids Res., 40,

D261–D270.

Julenius,K. et al. (2005) Prediction, conservation analysis, and structural character-

ization of mammalian mucin-type O-glycosylation sites. Glycobiology, 15,

153–164.

Keshava Prasad,T.S. et al. (2009) Human protein reference database2009 update.

Nucleic Acids Res., 37 (Suppl. 1), D767–D772.

Khoury,G.A. et al. (2011) Proteome-wide post-translational modification statistics:

frequency analysis and curation of the swiss-prot database. Sci. Rep., 1, 90.

Kim,J.H. et al. (2004) Prediction of phosphorylation sites using SVMs.

Bioinformatics, 20, 3179–3184.

Krivov,G.G. et al. (2009) Improved prediction of protein side-chain conformations

with SCWRL4. Proteins, 77, 778–795.

Leaver-Fay,A. et al. (2011) ROSETTA3: an object-oriented software suite for the

simulation and design of macromolecules. Methods Enzymol., 487, 545–574.

Li,S. et al. (2006) Predicting O-glycosylation sites in mammalian proteins by using

SVMs. Comput. Biol. Chem., 30, 203–208.

Li,S. et al. (2009) Improved prediction of lysine acetylation by support vector ma-

chines. Protein Pept. Lett., 16, 977–983.

Liang,S. et al. (2011) Fast and accurate prediction of protein side-chain conform-

ations. Bioinformatics, 27, 2913–2914.

Lovell,S.C. et al. (2000) The penultimate rotamer library. Proteins, 40, 389–408.

Lu,M. et al. (2008) OPUS-Rota: a fast and accurate method for side-chain model-

ing. Protein Sci., 17, 1576–1585.

Nagata,K. et al. (2012) Sidepro: a novel machine learning approach for the fast and

accurate prediction of side-chain conformations. Proteins, 80, 142–153.

Obenauer,J.C. et al. (2003) Scansite 2.0: proteome-wide prediction of cell signaling

interactions using short sequence motifs. Nucleic Acids Res., 31, 3635–3641.

O’Boyle,N. et al. (2011) Open babel: an open chemical toolbox. J. Chemoinform., 3,

33.

Plewczynski,D. et al. (2012) AMS 4.0: consensus prediction of post-translational

modifications in protein sequences. Amino Acids, 43, 573–582.

Ren,J. et al. (2009) Systematic study of protein sumoylation: development of a site-

specific predictor of SUMOsp 2.0. Proteomics, 9, 3409–3412.

Renfrew,P.D. et al. (2012) Incorporation of noncanonical amino acids into Rosetta

and use in computational protein-peptide interface design. PLoS One, 7, e32637.

Sali,A. and Blundell,T. (1993) Comparative protein modeling by satisfaction of

spatial restraints. J. Mol. Biol., 234, 779–815.

Scouras,A.D. and Daggett,V. (2011) The Dynameomics rotamer library: amino

acid side chain conformations and dynamics from comprehensive molecular

dynamics simulations in water. Protein Sci., 20, 341–352.

Shapovalov,M.V. and Dunbrack,R.L. Jr. (2011) A smoothed backbone-dependent

rotamer library for proteins derived from adaptive kernel density estimates and

regressions. Structure, 19, 844–858.

Wan,J. et al. (2008) Meta-prediction of phosphorylation sites with weighted voting

and restricted grid search parameter selection. Nucleic Acids Res., 36, e22.

Wang,Q. et al. (2009) Expanding the genetic code for biological studies. Chem. Biol.,

16, 323.

Xie,J. and Schultz,P.G. (2005) Adding amino acids to the genetic repertoire. Curr.

Opin. Chem. Biol., 9, 548–554.

Xu,J. et al. (2008) A novel method for high accuracy sumoylation from protein

sequences. BMC Bioinformatics, 9, 8.

Zhichao,M. et al. (2011) Rasp: rapid modeling of protein side-chain conformations.

Bioinformatics, 27, 3117–3122.

1689

Modeling of protein structures

)
(
)
-
s
NSAs



