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Abstract 
 

Sensory feedback plays an important role in maintaining steady and fluent speech 

production. So far, a majority of research in speech has focused on auditory feedback while not a 

lot has been done on somatosensory feedback. Thus, the current study aims to further explore the 

effect of vocal tract somatosensory feedback on auditory cortex activity during the process of 

audiomotor map learning. Due to extensive evidence for a phenomenon known as motor-induced 

suppression (MIS), the current study hypothesizes that cortical activity will be reduced in 

subjects after the establishment of learning. Using an MEG touchscreen speech synthesizer set- 

up, subjects heard a target vowel sound and were asked to touch a location on the touchscreen 

that matched the sound they heard. With each trial, subjects were given feedback in the form of 

the sound that corresponded to the location on the screen they touched, resulting in them 

eventually learning to map out each vowel sound to a target location on the screen. This set-up 

allowed a paradigm to test for the effect of audiomotor map learning. Then, using the NUTMEG 

software and Champagne source localization algorithm, data from each subject was analyzed 

before and after learning, as well as any potential differences between auditory and motor 

feedback or left and right auditory cortices were noted. Findings across all 4 conditions (left 

auditory cortex with auditory feedback, right auditory cortex with auditory feedback, left 

auditory cortex with auditory and somatomotor feedback, right auditory cortex with auditory and 



vi  

somatomotor feedback) in almost all the subjects found a statistically significant decrease in 

cortical activity following the establishment of audiomotor map learning. The current study sets 

up future work in which a variety of patient populations as well as different forms of feedback 

can be studied using a touchscreen speech synthesizing platform. 
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Chapter 1: Introduction 
 

1.1 Overview 
 

Speech production is a complex neural process which requires linguistic, phonological 

and motor precision. In fact, in order to achieve intelligible speech, we coordinate around 100 

different muscles to produce finely tuned and well-practiced speech sounds1. Understanding the 

neural basis behind such multi-faceted processes provides critical insight into how the brain 

processes and integrates complex signals. Sensory feedback, in particular, plays an important 

role in maintaining steady and fluent speech production to the point where sensory feedback 

impairments can be seen in a multitude of speech disorders. So far, a majority of research in 

speech has focused on auditory feedback while not a lot has been done on somatosensory 

feedback. Thus, the current study aims to further explore the neural mechanism behind sensory 

feedback and its role on speech production by studying the effect of vocal tract somatosensory 

feedback on auditory cortex activity during the process of audiomotor map learning. 

 
 

1.2 Sensory Feedback in Speech 
 

Examples of the importance of feedback in speech are apparent all around us and there is 

much work in the literature to support our understanding of the feedback process. Auditory 

feedback, for example, has been shown to have an effect on speech in a study where 

experimentally delayed auditory feedback led to subjects compensating with lower speech rates2 

as well as a study in which artificially increasing the amplitude of auditory feedback led to 

subjects compensating with louder speech3. Additional support for the importance of auditory 

feedback can be seen in the absence of cochlear implants, where children born deaf can rarely be 

taught to produce more than a few utterances4. The importance of auditory feedback remains 
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even after speech has been explicitly learned, showcased by studies in which post-lingual 

deafened adults retained basic speech intelligibility for years, but many aspects of their speech 

began to immediately degrade after deafness5,6. Similarly, visual feedback, in the form of putting 

children in front of a mirror and having them practice speaking, is even being used as a form of 

speech therapy now7. 

Somatosensory feedback, on the other hand, has not been as extensively studied. The 

current study, in particular, looks at a phenomenon known as motor-induced suppression (MIS) 

that occurs as a result of somatosensory feedback. In MIS, sensory response to stimuli is 

suppressed during a self-initiated task compared to the same stimuli being presented externally. 

For example, in a study looking at MIS, subjects were told to speak and then were later played a 

recording of their own voices saying the same phrase back to them. The results showed a 

decrease in auditory cortex activity when the subjects physically spoke (this is an example of a 

self-initiated task) in comparison to when the same phrase was played back to them through a 

recorder (this is an example of the same stimulus being presented externally)8. Through the 

paradigm of audiomotor map learning via a motor task, the current study expects to witness a 

decrease in audiocortical activity following sensory feedback as a result of MIS. 

 
 

1.3 Clinical Relevance 
 

Speech impairments are also noted in a wide range of neurological disorders such as 

Parkinson’s disease-induced hypophonia, schizophrenia, autism, epilepsy and ADHD9,10,11,12. 

These disorders can lead to further downstream language and learning disorders, which are 

associated with developmental and social deficits13. In fact, around 55% of children (ages 3-5) 

who report having a disability also report being given speech services as part of their treatment14. 
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Moreover, the specific impairment of sensory feedback is apparent in many of these speech 

production disorders as well. For example, in Parkinson’s disease-induced hypophonia, patients 

are unaware of their lower than normal volume while speaking15. In addition, when volume or 

formant alterations are artificially altered in their feedback, they respond with reduced 

compensation to healthy controls16. Similarly, in stuttering, an artificial delay in auditory 

feedback can temporarily cause an improvement in fluency17. Therefore, studying the neural 

mechanisms of how the brain processes sensory feedback and ultimately being able to 

understand the complex processes of speech production and perception can have a tremendous 

scientific and clinical impact. 

 
 

1.4 MEG Imaging 
 

The current study utilizes MEG imaging, also known as magnetoencephalography, as the 

imaging modality of choice. This is due to a multitude of reasons, one of the main being that 

MEG imaging is a non-invasive form of functional imaging and the current study can therefore 

measure brain activity in a way that does not require introducing instruments into a subject’s 

body18. Furthermore, unlike other non-invasive functional imaging modalities such as fMRI, 

MEG imaging measures direct neuronal activity by measuring microscopic changes in the 

magnetic field (on the order of femto-teslas to pico-teslas) that are caused by firing of neurons in 

the brain19. These changes are measured in a magnetic shielded room using magnetometers 

called SQUIDS (superconducting quantum intereference devices) that are bathed in liquid 

helium to provide low impedance by which they can amplify neuron-generated magnetic fields a 

few centimeters away from the sensor helmet on the participant’s head20. In comparison, fMRI 

imaging utilizes a BOLD signal, which measures the blood oxygen level in various regions of the 
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brain and assumes a correlation of brain activity from that measurement. Thus, MEG imaging 

offers a unique non-invasive functional imaging method that has the capability of measuring 

direct neuronal activity. 

Moreover, MEG imaging is known to be one of the imaging modalities with the highest 

temporal resolutions (on the order of milliseconds) making it the ideal measuring tool for events, 

such as speech, that happen on rapid time scales. EEG imaging, also known an 

electroencephalography, also functions on similar temporal resolutions but is subject to more 

distortion by inhomogeneities in the scalp’s conductivity and is thus not able to spatially localize 

signals as well as those from an MEG scanner21,22. 

Apart from being criticized for picking up a lot of noise since MEG imaging is known for 

measuring miniscule disturbances in the magnetic field, one of the major criticisms that MEG 

faces is its lack of excellence in spatial resolution (especially when compared with other 

functional imaging modalities, such as fMRI, that boast excellent sub-millimeter resolutions)19. 

To address this issue, the current study utilizes a novel Bayesian estimation method of source 

localization on the market known as the Champagne source localization algorithm23. 

 
 

1.4.1 Champagne Source Localization Algorithm 
 

Source localization has been known to be a challenging task in MEG imaging24. Since the 

MEG instrument can pick up changes in the magnetic field on the range of femtoteslas, lots of 

noise in the background can often be misconstrued as signal coming from the brain. 

Additionally, SQUID sensors themselves can sometimes cause interference in signal acquisition 

as can other biological artifacts, resulting in an inherent lack of accurately being able to localize 

brain activity as a result of MEG signaling. In order to tackle this “inverse issue” of correctly 
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mapping the signal back to its source brain region, however, there are a multitude of different 

source localization algorithms currently on the market. The current study utilizes one particular 

one, the Champagne algorithm, in order to estimate source activity. 

Champagne has been shown to improve upon existing methods of source reconstruction 

in terms of accuracy, robustness and computational efficiency25. First, with preliminary 

simulated and real data, it was proven that Champagne was more robust to correlated sources and 

noisy data when compared with other commonly-used source localization algorithms26. Then, 

using real MEG/EEG data, Champagne was compared to three other benchmark algorithms on 

the market (namely, MVAB, sLORETA/dSPM and MCE)27. The results from this study are laid 

out in Figure 1.1 below. Figure 1.1A shows significant improvements in aggregate performance 

using the Champagne source localization algorithm with a high SNR as well as a low SNR 

across a range of inter-dipole distances. Furthermore, Figure 1.1B provides additional support for 

the robustness of Champagne by providing a visual depiction of source localization performance 

in cases of both a high and low SNIR of Champagne compared with three other algorithms 

currently being used on the market. Given the compelling evidence for accuracy and robustness 

in source localization compared to other algorithms that are available, the current study utilizes 

Champagne as the chosen method of source localization. 
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Figure 1.1A27: Aggregate performance of the Champagne algorithm. Note: aggregate 
performance measured by the Aggregate Performance Metric (AP). Figure 1.1B27: Single 
example of localization results for 5 dipoles with Champagne. Note: ground truth shown only 
for comparison 

 
 

1.5 Goals & Hypothesis 
 

Using a touchscreen speech synthesizer to replicate target sounds, a previous study was 

able to use a motor task with sensory feedback to establish the presence of audiomotor map 

learning28. The current study now focuses on using the said established paradigm of audiomotor 

map learning from the previous study to compare peak cortical activity in both the left and the 

right auditory cortex before and after audiomotor map learning has occurred. Furthermore, 

cortical activity is averaged to the onset of the target sound so as to capture the effects of solely 

auditory feedback as well as to the onset of the response so as to capture the effects of auditory 

as well as somatomotor feedback. The neural basis of MIS is thought to be based on one’s 

expectation of what they are about to hear in comparison with what they actually hear8. For 

example, prior to learning, the auditory feedback response that they hear may not necessarily 

match their expectations since they have not yet developed a complete audiomotor map. On the 

other hand, once learning has occurred and subjects know where in the audiomotor map to 

expect certain sounds, the auditory feedback response will likely match their expectations. It is in 

A. B. 
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this latter case that MIS has occurred and we can expect a decrease in cortical activity. Thus, the 

current study hypothesizes that (H1) participants will show a reduction in cortical activity after 

audiomotor map learning has occurred and that (H2) this trend will be seen in both the paradigm 

that measures solely auditory feedback as well as the paradigm that takes into account both 

auditory and motor feedback. 
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Chapter 2: Methods 
 

2.1 Data Acquisition 
 

2.1.1 Participants 
 

All experimental procedures were approved by the Institutional Review Board at the 

University of California, San Francisco. All participants provided informed consent for their 

participation in said study, with a total of eighteen healthy participants (8 female, ages 18-43, 

mean 26.4, standard deviation 6.65). Inclusion criteria for aforementioned experiment was: 1.) 

participants had no prior knowledge of the mapping of screen areas to playback sounds, 2.) 

English was self-reported to be their first language, 3.) No known speech, language, hearing, 

learning or motor deficits were self-reported to be evident. 

 
 

2.1.2 Equipment 
 

A touchscreen-based speech synthesizer was attached to an MEG machine so that 

participant was lying supine and touchscreen was present a few meters above them at eye level. 

Contact with the 41.8cm by 23.6cm touchscreen (Surface Acoustic Wave Touch Panel AD-ETP- 

TS-LEOXXXYYZZZAA, AD Metro, Ottawa, Ontario, Canada) resulted in instant playback of a 

vowel sound that was dependent on the location of touch. Sound was presented through 

circumaural headphones to the participants and vowels were synthesized in real-time using a 

MATLAB program adapted from the Rabiner and Schafer Vowel Synthesis toolbox29. Axes of 

the touchscreen were associated with continuous F2 (800Hz-2500Hz) and F1 (100-900Hz) 

formant frequencies to span even the most conservative ranges for vowel discrimination in the 

literature30 with selective fixed values of F0 corresponding to 100Hz, F3 corresponding to 
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2500Hz and F4 corresponding to 4000Hz. All locations corresponded to a clear, intelligible adult 

male speaker. 

 
 

2.1.3. Procedures 
 

Experimenters investigated whether participants could reproduce specific vowel sounds 

by touching a target location on the touchscreen. Over the course of 4 trial blocks of 120 trials 

each, participants were asked to repeat one of three randomized auditory vowel sounds 

(consisting of /a/, /e/, and /i/) by touching a target location on the screen that matched the given 

sound. For each trial, participants reached from the same starting position (lower right-hand 

corner of the screen, within a range of 52.25mm x 59mm) to a point on the screen. The /a/, /e/, 

and /i/ targets were 191.28mm, 271.60mm and 362.06mm away from the bottom-right corner of 

the touchscreen, respectively. A layout of the touchscreen can be visualized in Figure 2.1. Once 

they made contact, participants were met with feedback that corresponded to the auditory vowel 

sound that resulted from a combination of formants that mapped the coordinates of the location 

they contacted on the screen. Participants were further instructed to close their eyes for the 

duration of the experiment to eliminate interference from visual feedback. 

The vowel targets were presented to participants at random with equal frequencies of 

occurrence and a set loudness level of 60dB and duration of 600ms. These particular three target 

vowels were selected due to their frequent usage in speech experiments and that, together, they 

largely span the space of the touchscreen. Similarly, formant values for target locations were 

selected to reflect mean formant production values for adult male speakers31,32 subject to minor 

adjustment for synthesis sound quality and clarity in accordance with KTH Royal Institute of 

Technology’s text-to-speech vowel synthesis33,34. 
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Once participants made contact with the starting position, a 300ms “continue” sound 

consisting of a pure 1000Hz tone played. This frequency was specifically chosen in an effort to 

distinguish this tone from the rest of the synthesized vowel sounds as much as possible so as to 

not integrate into the audiomotor map. Following this tone was a 600-900ms randomly jittered 

silent delay period, which was subsequently followed by auditory presentation of the next target 

vowel sound. After participants attempted to map the location of the vowel sound on the 

touchscreen, the auditory feedback they received was also displayed with the same parameters of 

the target sound (60dB loudness and duration of 600ms). 

 
Figure 2.128: Visual 
representation of touchscreen 
layout. Note:  both dimensions in 
Hz as well as mm are included. 
Starting position is depicted in red 
(bottom right hand corner) and 
trained targets are indicated with 
a colored * (red for /a/, blue for 
/e/, and green for /i/) 
 

 

2.1.4 Presence of Learning Established 
 

Results from participants across 480 trials are shown below in Figure 2.2. Accuracy of 

the mapped target location was measured by averaging the Euclidean distance of the point of 

contact from the actual point of the target sound. As can be seen by Figure 2.2A, average 

accuracy across all subjects drastically and rapidly improved even within the first 30 trials 

(p=0.5697e-14) for all trained targets (p=1.381e-6). For /a/, accuracy improved from 187.66mm 

(+/-21.5) to 42.48mm (+/-9.07), whereas for /e/, accuracy improved from 102.23mm (+/-11.5) to 



11  

56.11mm (+/-10.26) and for /i/, accuracy improved from 161.61mm (+/-18.45) to 61.22mm (+/- 

9.96). Furthermore, consistency (measured by averaging the Euclidean distance between 

responses in Figure 2.2B) also drastically and rapidly improved within the first 30 trials 

(p=1.261e-23). Collectively, these results indicate the presence of audiomotor map learning and 

set the parameters for the current study to study the effects of sensory feedback on cortical 

activity during this process of audiomotor map learning. 

 
 

Figure 2.2A28: Response accuracy in identifying mapped target vowel sound locations. Note: 
improvement measured by a decrease in average Euclidean distance from target over the course of 
480 trials. Figure 2.2B28: Response consistency in identifying mapped target vowel sound locations. 
Note: improvement measured by a decrease in average Euclidean distance between responses over the 
course of 480 trials. 
 
 

 
2.2 Data Analysis 

 
2.2.1 Overview of NUTMEG Pipeline 

 
NUTMEG (Neurodynamic Utility Toolbox for Magnetoencephalo- and 

 
Electroencephalo- Graphy) is the chosen source analysis toolbox used to conduct data analysis in 

the current study. Primarily written in MATLAB and interoperable with a variety of other 

software, some other advantages of using NUTMEG include: 1. being able to utilize an inverse 

algorithm of choice, 2. intuitive viewing and navigation of results, and 3. several methods of 
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source space functional connectivity analysis35. The NUTMEG workflow contains multiple 

steps, illustrated in Figure 2.3. The first step involves loading in the MEG data as well as MRI 

and coregistration information, while the next step focuses on preprocessing the data from the 

MEG sensor map and applying that onto the head model to calculate spatial filter weights. 

Finally, the third step is to use the spatial filter weights to reconstruct the source of the signal (in 

this case, we have utilized Champagne as the chosen source reconstruction algorithm) and then 

run statistics on the resulting data. 

 

 
Figure 2.335: NUTMEG workflow summarized in a visual flowchart 

 
 

2.2.2 Raw Sensor Data 
 

From the previous study that established audiomotor map learning, raw MEG data across 

120 trials was averaged to create 4 blocks totaling 480 trials in order to phase-lock cortical 

activity across all trials in each block. Data from block 1 and block 4 (prior to learning and after 

learning, respectively) was analyzed in the current study across 17 subjects. Due to an undetected 

contraindication to MRI, one of the data sets from this previous study is excluded from data 

analysis in the current study. Each block was averaged in two forms using the DataEditor 
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software: 1. averaged to the onset of the target vowel sound playing represented solely auditory 

feedback, whereas 2. averaged to the onset of the response sound being played back represented 

auditory as well as components of somatomotor feedback. Therefore, raw sensor data resulted in 

4 files of 120 trials each averaged for 17 different subjects: 1. block 1 (prior to learning) 

averaged to target vowel sound, 2. block 1 (prior to learning) averaged to response sound 

playback, 3. block 4 (after learning has occurred) averaged to target vowel sound, and 4. block 4 

(after learning has occurred) averaged to response sound playback. For the purposes of 

simplicity, these 4 data sets will be referred to as the 4 “conditions” from here on out. In this 

way, the effects of auditory feedback as well as auditory and somatomotor feedback combined 

can be interpreted during the process of audiomotor map learning. 

 
 

2.2.3 Preprocessing 
 

After loading the raw data into NUTMEG, a specific time window of interest as well as 

specific sensors to be picked for further processing can be specified. Furthermore, baseline 

removal, filtering and automated artifact rejection can also be applied. In the current study, the 

time window was the entirety of the trial (all 1800 time points were kept) and all sensors were 

selected to be processed (totaling to approximately 275 channels). Moreover, the current study 

utilized a bandpass filter of 1-100Hz in order to remove additional noise. 

 
 

2.2.4 Head Model 
 

NUTMEG includes a default multisphere model for MEG head models, but also includes 

an option to import individual subject’s structural MRIs. In the current study, each subject’s 

structural MRI was spatially normalized and the corresponding fiducials were manually imported 
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using the SPM8 software. Then, using the Coregistration Tool Graphical User Interface in 

NUTMEG, the spatially normalized MRIs and fiducials were used to create a lead field model 

that was then used as a model for source estimation. Note: All lead fields were specified at an 

8mm resolution. 

 
 

2.2.5 Spatial Filter Weights 
 

Applying the Champagne source localization algorithm on the lead field model, spatial 

filter weights were extracted. Champagne combines SEFA modeling of background noise with 

sparse Bayesian inference of source activity in all voxels simultaneously using fast, robust 

update rules with guaranteed convergence under many realistic conditions, bearing some 

similarities to the SAKETINI model with the difference being that SAKETINI considers each 

voxel sequentially while Champagne considers all voxels simultaneously35. This step of the data 

analysis was conducted with the help of postdoctoral fellow, Chang Cai. 

 
 

2.2.6 Source Reconstruction 
 

Multiplying the processed MEG signal with the calculated spatial filter weights resulted 

in 8 individual time series for each subject. This process was done manually, where the MEG 

signal voxels were first plotted onto a 3D graph and then subsequently split into the left auditory 

cortex (LAC) and the right auditory cortex (RAC) by dividing the plotted brain voxels in half. 

Then, the power of each individual voxel within the given region (either LAC or RAC) is 

calculated and the voxel with the maximum power is found. The power of said voxel is defined 

as peak cortical activity and is plotted over the course of the duration of the trial (1800 time 

points). This resulting plot is two time series of the peak cortical activity plotted against time 
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points for block 1 (first 120 trials) and block 4 (last 120 trials). Each of the four conditions 

resulted in two time series of block 1 and block 4, ultimately resulting in 8 time series total from 

each subject: LAC before learning (averaged to onset of target vowel sound), LAC after learning 

(averaged to onset of target vowel sound), RAC before learning (averaged to onset of target 

vowel sound), RAC after learning (averaged to onset of target vowel sound), LAC before 

learning (averaged to onset of response sound playback), LAC after learning (averaged to onset 

of response sound playback), RAC before learning (averaged to onset of response sound 

playback), RAC after learning (averaged to onset of response sound playback). A visual 

representation of the multi-step process of obtaining two time series for one of the conditions in 

one subject is shown in Figure 2.4 below. 

 
 

Figure 2.4: Multi-step process of obtaining two time series of peak cortical activity. 1. Plot 3D 
graph of MEG signal voxels (top left), 2,3. Split into LAC and RAC (top middle, top right), 4,5. 
Calculate voxel power and identify voxel with maximum power, 6. Plot peak cortical activity 
(measured by maximum voxel power) against time (in milliseconds) to obtain time series 
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     2.2.7  Statistics 

From each time series, peak cortical activity was measured by extracting the maximum 

point of cortical activity across all 1800 time points. The average of these maximum values 

across all 17 subjects was considered the average of peak cortical activity. Furthermore, 

differences between peak cortical activity before and after the establishment of learning (prior to 

learning minus after learning) were calculated as a measure of the degree of decrease in cortical 

activity. A paired t-test was utilized (specifically, the Wilcoxon Ranked Sign test to account for 

nonparametric data) in all 4 conditions to compare the statistical significance of cortical activity 

before and after learning as well as to compare the statistical significance of any possible 

differing trends between the LAC and RAC and between auditory feedback and motor feedback. 

Note: When measuring for cortical activity before and after learning, peak cortical activity was 

used in contrast with measuring for differences between auditory and motor feedback (in which 

the difference between activity prior to learning and activity after learning was used). The 

threshold for statistical significance was set at p</=0.01 and all values were measured to 5 

significant figures. 
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Chapter 3: Results 
 

3.1 Overview of Trends 
 

In accordance with our first hypothesis (H1), subjects showed a decrease in cortical 

activity following the presence of audiomotor map learning. Furthermore, this trend—in 

accordance with our second hypothesis (H2)—held true during both the paradigm that measured 

solely for auditory feedback as well as the paradigm that measured for both auditory as well as 

motor feedback. The decrease in cortical activity between the auditory feedback paradigm was 

noted to be less than the decrease in cortical activity between the auditory and motor feedback 

paradigm with a medium effect size, but this effect was not statistically significant. Similarly, 

differences between reduction in the LAC in comparison to reduction in the RAC were also 

noted to not be of statistical significance. 

 
 

3.2 Before vs. After Learning 
 

A decrease in cortical activity following the presence of audiomotor map learning can be 

seen across all 4 paradigms/conditions in Table 3.1. Peak cortical activity was measured as the 

maximum point of cortical activity through the duration of individual time series (8 total from 

each subject). Moreover, this trend is statistically significant (Note: A limit of p</=0.05 was 

used to measure statistical significance) across each condition: LAC activity averaged to onset 

of target vowel sound decreased after learning with a medium effect size of 0.368 (p=0.002000), 

LAC activity averaged to onset of response sound playback decreased after learning with a 

medium effect size of 0.348 (p=0.0003740), RAC activity averaged to onset of target vowel 

sound decreased after learning with a medium effect size of 0.426 (p=.0058480), and RAC 

activity averaged to onset of response sound playback decreased after learning with a small 

effect size of 0.265 (p=0.0200000). Each condition had 3 subjects in which this trend did not 
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hold true (*), but it was noted that each of these outliers differed by no more than 3 magnitudes 

of each other (in comparison to the range of differing magnitudes from 1 to 10 seen in subjects 

where cortical activity did in fact decrease after the establishment of audiomotor map learning). 

Figure 3.1 compares the average peak cortical activity across all the subjects before and after 

learning with the standard error bars being derived from the standard deviation of the means. 

Table 3.1: Peak cortical activity for 8 time series. LAC averaged to onset of target (top left), LAC 
averaged to onset of response (top right), RAC averaged to onset of target (bottom left), RAC 
averaged to onset of response (bottom right). Difference (fourth column in each section) was 
measured by subtracting the peak cortical activity value prior to learning from the peak cortical 
activity after the establishment of learning. Note: Negative values (*) were included in the 
calculations for average cortical activity 

 
Figure 3.1: Average peak 
cortical activity across all 
subjects before and after 
learning. Note: A logarithmic 
scale is used to account for 
magnitudes of change in cortical 
activity; before learning is shown 
by blue and after learning is 
indicated by orange
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3.4 Auditory vs. Motor Feedback 
 

In order to evaluate any potential differences between the conditions averaged to the 

onset of the target vowel sound (a paradigm for measuring solely auditory feedback) with the 

conditions averaged to the onset of the response sound playback (a paradigm for measuring 

auditory as well as motor feedback), differences in activity (after learning minus prior to learning 

peak cortical activity, column 4 from Table 3.1) were compared. Across both conditions, no 

differences were found to be statistically significant: LAC activity averaged to onset of response 

decreased when compared to LAC activity averaged to onset of target with a medium effect size 

of 0.56 (p=0.0770992) while RAC activity averaged to onset of response decreased when 

compared to RAC activity averaged to onset of target with a small effect size of 0.16 

(p=0.178180). Note: In these conditions, prior to learning and after learning blocks were 

combined together to measure cortical activity averaged to a specific onset and were not 

compared against each other.  

Similarly, in order to analyze any potential differences with reduced cortical activity 

between the LAC and the RAC, differences in activity (column 4 from Table 3.1) between each 

of the 4 conditions in the LAC were compared to their corresponding condition in the RAC. 

Across all 4 conditions, no differences were found to be statistically significant: RAC activity 

averaged to onset of target vowel sound decreased when compared to LAC activity averaged to 

onset of target vowel sound with a medium effect of 0.46 (p=0.510170), LAC activity averaged 

to onset of response sound playback decreased when compared to RAC activity averaged to 

onset of response sound playback with a medium effect of 0.41 (p=0.650307). Note: In these 

conditions as well, prior to learning and after learning blocks were combined together to 

measure cortical activity averaged to a specific onset and were not compared against each other.
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Chapter 4: Discussion 
 

4.1 Interpretation of Trends 
 

In accordance with our first hypothesis (H1), almost all the subjects showed a statistically 

significant decrease in cortical activity following the presence of audiomotor map learning. This 

finding hints at the presence of MIS and provides further support for the neurological mechanism 

of a reduction in brain activity following a subject’s expectations matching with the presented 

auditory stimulus. Furthermore, this trend—in accordance with our second hypothesis (H2)—is 

robust enough to remain true when the current study analyzes both paradigms with auditory 

feedback as well as a combination of auditory and motor feedback. This result gives us insight 

from a neurological perspective on how different types of feedback are processed in speech, 

specifically suggesting that each form of feedback (in this case, auditory or motor) are not 

independent of each other since when both are present they do not have an additive effect leading 

to a higher reduction in cortical activity. Rather, this result provides support for a combined 

feedback processing mechanism in which the auditory cortex and motor cortex collectively 

receive and analyze speech signals. Previous work has looked at the potential interactions 

between the auditory and motor cortices during speech36,37, but few have looked at the specific 

differences in cortical activity between auditory and motor feedback. Thus, these results have the 

potential to provide novel and important evidence in support for a coupling mechanism between 

the auditory and motor cortex during speech processing. 

Moreover, seeing a smaller difference in average cortical activity after the establishment 

of learning (by a magnitude of 2) specifically in the LAC across all the subjects inspired the 

current study to analyze any potential differences in cortical activity between the two lobes of the 

brain. While the effect size between the cortical activity difference in the two lobes was deemed 
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statistically insignificant, the fact that the LAC showed a two-fold larger value of cortical 

activity even after the establishment of learning than the RAC did provides further support for 

the well-known phenomenon that the left hemisphere auditory areas of the brain are more active 

during the process of speech than the right38,39,40,41. Previous studies on brain laterality have 

shown auditory areas in the left hemisphere of the brain to be primarily involved in the acoustical 

analysis of speech signals42, phonological mapping of speech signals to conceptual 

representations in the brain43,44,45, as well as the semantic processing of words46,47. Thus, by 

showing a more active LAC the current study hints at the dominant trend of the left brain 

continuing during the process of auditory feedback as well. 

 
 

4.2 Limitations & Future Directions 
 

As is true of all research, the current study also had a series of limitations. Amongst the 

most prominent was having a small sample size of 17 subjects, resulting in the inherent 

limitation of weak to medium statistical power. Furthermore, since MEG data is known to be 

noisy due to hyper-sensitivity on SQUID sensors, it is difficult to be able to completely shield 

the data from noise. Even within our sample, despite multiple rounds of filtering and cleaning the 

signal through NUTMEG, some data sets contained choppy portions of noise. This noise can be 

attributed to improper shielding in the magnetically shielded MEG room, interference from the 

SQUID sensors themselves causing disruptions, or other external factors such as excessive 

movement or potential feelings of nervousness that can cause physiological responses and alter 

brain activity. 

Learning from these limitations, the current study hopes that future work will be done on 

increasing the filtering ability of NUTMEG as well as possibly developing new algorithms for 
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making MEG data less noisy than the status quo. Studying other forms of feedback using a 

similar touchscreen platform set-up for speech is another area for future work that has 

tremendous potential (i.e. analyzing the effects of musical training, analyzing the effects of 

visual feedback by allowing subjects to keep their eyes open, analyzing the effects of being able 

to speak vowels aloud while touching their location on the screen, etc.) The potential for utilizing 

this touchscreen platform set-up for speech can further be extended by studying the effects of 

auditory and somatomotor feedback across a variety of different populations with speech 

impairments (i.e. patients with speech disorders such as spasmodic dysphonia, Parkinson’s- 

induced hypophonia, apraxia, dysarthria, and aphasia or patients with disorders that can result in 

speech defects such as ADHD, Huntington’s disease, dementia, ALS, and autism). Lastly, the 

number of applications for the Champagne source localization algorithm are practically 

boundless, ranging from analyzing MEG data on patients to controls across a plethora of 

different experimental set-ups and paradigms. The current study hopes to inspire and propel 

more studies in the future that will utilize the Champagne algorithm to better understand the 

neural mechanisms behind the complex and multifaceted processes of speech production and 

perception. 



23  

Chapter 5: Conclusion 
 

From a previous experiment, the presence of audiomotor map learning was established. 

In this touchscreen speech synthesizing set-up, subjects were asked to match a location on the 

screen with a target vowel sound that they heard. Subjects were also given feedback as to the 

sound that corresponded with the location on the screen that they chose, allowing them to learn 

over the course of many trials how to map each vowel sound to a target location on the screen. 

Using this experiment as a paradigm for audiomotor map learning, the current study analyzed 

differences in cortical activity before and after the presence of audiomotor map learning across 

all subjects. The NUTMEG software pipeline was utilized to filter, sort and categorize the MEG 

data, whereas the Champagne source localization algorithm allowed accuracy in pinpointing the 

signal to either the LAC or RAC. Data was split into before and after learning, as well as 

averaged to the target vowel sound (giving us a paradigm to study solely auditory feedback) and 

averaged to the response sound playback (giving us a paradigm to study auditory as well as 

motor feedback). Data was further split into the LAC and RAC, allowing the current study to 

analyze brain laterality along with the effects of specific forms of feedback during learning. 

Across all 4 conditions, a statistically significant decrease in cortical activity was noted after the 

establishment of audiomotor map learning. This suggests the presence of MIS and provides 

support for our first hypothesis (H1). Furthermore, no statistically significant differences in 

cortical activity were found between auditory versus somatomotor feedback, hinting at a 

coupling interaction between the auditory and motor cortices in processing speech. Although the 

differences were not significant, the fact that both conditions (auditory feedback as well as a 

combination of auditory and somatomotor feedback) resulted in decreased cortical activity 
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ultimately supports our second hypothesis (H2). Moreover, higher activity after learning in the 

LAC (by a magnitude of 2) suggests support for previous literature claiming that the left 

hemisphere auditory areas of the brain are more active during speech. Now, future work can focus 

on further exploring the touchscreen speech synthesizer paradigm as well as NUTMEG and the 

Champagne algorithm to better understand the neural mechanisms behind the complex processes of 

speech production and perception. 
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