
UC San Diego
Technical Reports

Title
Comparison between multistage filters and sketches for finding heavy 
hitters

Permalink
https://escholarship.org/uc/item/04c5k8bn

Author
Estan, Cristian

Publication Date
2004-04-27
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/04c5k8bn
https://escholarship.org
http://www.cdlib.org/


Comparison between multistage filters and sketches for finding

heavy hitters

Cristian Estan

March 19, 2004

1 Overview

The purpose of this write-up is to compare multistage filters [3] and sketches with respect to their ability
to identify heavy hitters. In a nutshell, the conclusion is that multistage filters as I use them identify
heavy hitters with less memory than sketches, but some sketches support important other operations,
more specifically they can be added and subtracted without any need to re-read the data stream(s).

Both multistage filters and sketches work in the streaming model: data items with various identifiers
make up a stream of traffic or updates that the data structures operate on. Both hash these updates
to counters based on the identifiers. The main difference between sketches and multistage filters is that
sketches see these counters as a summary of the traffic that can be used for many operations while filters
use these counters only as a means for identifying the heavy hitters. After discussing the differences in
more detail, I will compare the memory usage of these solutions for the heavy hitter problem.

Since there are many types of sketches and there are many things they are used for, I am going to
focus on three papers that use sketches for detecting heavy hitters. [1] is a widely quoted paper that
addresses exactly the problem of finding heavy hitters. [2] is a more recent paper that proposes improved
sketches for finding heavy hitters. [4] applies sketches to detect big changes in network traffic, which
is related to but different from finding heavy hitters. One thing worth pointing out is that many of the
sketch papers papers (and all three discussed here) are concurrent with or published after my paper on
multistage filters [3].

2 Comparison

Table 1 enumerates the main differences between multistage filters and various types of sketches. I will
discuss each of these sketches separately and point out the differences.

The sketch in [4] is a multistage filter without conservative update and the other optimizations we
have. It is used as a first block in detecting large changes. It does not have a stream memory as my
solution, so it does not actually give the identity of the heavy hitter, but it can answer questions such as
is X a heavy hitter or not. The advantage of this structure is that sketches can be added and subtracted
and this allows easy change detection and various time series analyses (on series of sketches). The way
in which the traffic of the heavy hitters is estimated is also different. With multistage filters we consider
the smallest counter an identifier hashes to an upper bound on the size of its traffic and use it as the
estimate that guides the creation of new entries in the “stream memory”. Thus our estimate is biased

1



Feature Filters [4] [1] [2]

Explicit set “stream memory” none heap none
Identity of h.h. yes no yes yes

Subtraction no yes yes, extra cost yes
Estimation method minimum median median not applicable

Bias biased unbiased unbiased not applicable
Memory usage O(k/ǫ log(n)) muddy O(k/ǫ2 log(N/δ) O(k log(k/δ) log(m))

Table 1: Main differences between sketches and multistage filters. In the memory usage formulas, k is
the ratio between the total traffic and the size of the heavy hitters, ǫ is the relative error in the traffic
estimates, δ is the probability of failure, N is the number of updates, n is the number of distinct identifiers
in the data and m is the number of possible identifiers.

(the filter never underestimates). This sketch uses the median counter minus some correction factor, and
their estimates are unbiased. The paper does have an analysis of the variance of the estimates, but the
results depend on the distribution of stream sizes, and they give no rules for dimensioning the sketch so
I cannot compare its memory usage with ours. However [1] is very similar and uses significantly more
memory than multistage filters.

The sketch in [1] is very similar to the one from [4]1. The estimate is the median of the counters. This
sketch also has a heap with explicit entries for heavy hitters which operates very similarly to the “stream
memory” used with multistage filters. Therefore, it can also give the actual identity of the heavy hitters
since they are stored in the heap. One can subtract two sketches, but to also find the identities of the
streams that change much, one needs a second traversal over the data. The memory cost scales as 1/ǫ2

instead of 1/ǫ as for the multistage filters, so this is a solution with much larger memory requirements.
The basic reason is that they use a large number of counters in a stage to decrease the variance of the
estimates (which decreases linearly with the number of counters) whereas we use the large number of
counters to decrease the average size of the error linearly with the number of counters. The analysis
of this sketch also contains a failure probability δ. The results I presented do not capture the failure
probability of multistage filters (which can only happen when the stream memory is full), but this does
not affect the asymptotic memory requirements because we can reduce this probability by adding more
“stream memory” and the correction factor is additive, not multiplicative because it does not affect the
stages of counters (which dominate asymptoticly).

The sketch in [2] has a remarkable feature: one can compute the difference between two sketches and
find the streams that changed much, no matter how small the total change is with respect to the total
traffic described by the two sketches. I has no explicit set of heavy hitters (which would be useless in
detecting change if the heavy hitters stay the same). It encodes the identity of the heavy hitters in the
positions of the counters. I uses coding theory approaches to recover the identities of the heavy hitters
from the positions of the large counters. The analysis of this sketch focuses on the probability that one
can recover the identity of the heavy hitters. The paper does not talk at all about the error in estimating
the traffic of these heavy hitters from the sketch, hence the ǫ is not in its asymptotic memory usage.
My opinion is that one could add guarantees of the accuracy of the estimates at the cost of adding a
multiplicative factor of 1/ǫ. The total memory usage of the sketch would be larger than that of multistage

1One difference is that the individual identifiers are also randomly mapped to a sign: some have their traffic added to

the counters, some have it subtracted.

2



filters, but this sketch clearly provides significantly more functionality.

References

[1] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data streams. In
International Colloquium on Automata, Languages and Programming, pages 693–703, 2002.

[2] Graham Cormode and S. Muthukrishnan. What’s hot and what’s not: Tracking most frequent items
dynamically. In Symposium on Principles of Database Systems, pages 296–306, June 2003.

[3] Cristian Estan and George Varghese. New directions in traffic measurement and accounting. In
Proceedings of the ACM SIGCOMM, August 2002.

[4] Balachander Krishnamurthy, Subhabrata Sen, Yin Zhang, and Yan Chen. Sketch-based change de-
tection: Methods, evaluation, and applications. In Internet Measurement Conference, pages 234–247,
October 2003.

3




