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ARTICLE

All-optical dissipative discrete time crystals
Hossein Taheri 1✉, Andrey B. Matsko 2, Lute Maleki3 & Krzysztof Sacha 4

Time crystals are periodic states exhibiting spontaneous symmetry breaking in either time-

independent or periodically-driven quantum many-body systems. Spontaneous modification

of discrete time-translation symmetry in periodically-forced physical systems can create a

discrete time crystal (DTC) constituting a state of matter possessing properties like temporal

rigid long-range order and coherence, which are inherently desirable for quantum computing

and information processing. Despite their appeal, experimental demonstrations of DTCs are

scarce and significant aspects of their behavior remain unexplored. Here, we report the

experimental observation and theoretical investigation of DTCs in a Kerr-nonlinear optical

microcavity. Empowered by the self-injection locking of two independent lasers with arbi-

trarily large frequency separation simultaneously to two same-family cavity modes and a

dissipative Kerr soliton, this versatile platform enables realizing long-awaited phenomena

such as defect-carrying DTCs and phase transitions. Combined with monolithic micro-

fabrication, this room-temperature system paves the way for chip-scale time crystals sup-

porting real-world applications outside sophisticated laboratories.
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Symmetry is a central concept and unifying theme of physics.
In quantum mechanics, stationary solutions of the Schrö-
dinger equation must follow the symmetries of the system

Hamiltonian. A many-body system, however, may fail to obey
these symmetries. The formation of ordinary spatial crystals
constitutes a well-known example in which a periodic distribu-
tion of atoms prevails even though space translation symmetry in
the governing theory does not favor any particular location in the
system1. This epitomizes spontaneous symmetry breaking (SSB),
perhaps the most significant aspect of the universal notion of
symmetry which appears in various branches ranging from
condensed matter physics to the standard model of electroweak
interactions2. At the same time, while for centuries physicists
treated space and time on different footings, Einstein underscored
their shared relative nature and combined them into spacetime. In
2012, Frank Wilczek wondered if this similitude could be
extended by searching for a temporal analogue for the SSB of
ordered atoms in crystalline solids3. This quest flamed a heated
scientific debate4–7, kindled much excitement, and gave rise to a
prolific area of research centered around what is now considered
a new phase of matter, time crystals (TCs).

While the original search for TCs targeted continuous time
translation symmetry (TTS) in non-driven quantum systems3, it
was soon realized that intriguing aspects of temporal SSB can
rather be observed in periodically driven, so-called Floquet, non-
equilibrium systems. An isolated many-body quantum system
driven by a periodic external force may spontaneously assume a
stable state evolving with a period different from that of the
drive8–10. A discrete time crystal (DTC) emerges when the period
of the system response is an integer multiple of the drive period.
DTCs now lie at the focus of intense research, with various time
crystalline states, such as fractional DTCs and quasi-crystals,
proposed and yet waiting to be observed in experiments; see
refs. 11–13 and references therein. In isolated translationally
invariant Floquet systems, interactions and disorder can suppress
driving-induced thermalization to create infinitely long-lived
DTCs. Furthermore, exponentially long-lived DTCs can arise in
such systems in the absence of disorder when the external forcing
frequency is much larger than the system’s local energy scales.
Understanding ergodicity breaking mechanisms in DTCs is
another avenue of current active research14.

Closed systems, while a significant stepping stone, do not
capture the full potential of TCs. In fact, the study of DTCs in
dissipative open quantum systems is highly germane and
immensely important, especially when TC applications, e.g., for
quantum memory and computation, are concerned. Dissipation
can heat up driven isolated quantum many-body systems and
destroy time crystallinity. Yet, coupling to an external environ-
ment drains energy from a driven system and a periodic steady
state can prevail15–17. Only recently has the investigation of
dissipative DTCs gained traction18–26.

We report in this work the experimental demonstration and
theoretical study of all-optical, room-temperature, quantum
DTCs in Kerr-nonlinear microresonators. This demonstration
relies on the simultaneous self-injection locking of two inde-
pendent continuous-wave (CW) pump lasers to two same-family
cavity modes with arbitrary multi-FSR (free spectral range) fre-
quency separation and a dissipative optical soliton. A DTC is
realized when the periodicity of the soliton pulse train becomes
an integer multiple of the drive period defined by the beating of
the pumps through robust subharmonic generation. The exis-
tence of patent discrete TTS and its spontaneous breaking via the
emergence of discrete symmetry with a larger integer-multiple
period distinguishes DTC formation in our system from sub-
harmonic entrainment27,28. Compared to a recent theoretical
proposal for continuous-time SSB and boundary TCs in coupled

Kerr cavities29, our work demonstrates discrete-time SSB, and
moreover in a simpler experimental setup constituting one
resonator. We observe different m-tupling DTCs in which the
integer m (the response-to-drive period ratio) can be chosen
much larger than 2, hence readily realizing recently-predicted so-
called big DTCs30–33. We present a thorough analysis, empha-
sizing that DTC size m and its state can be tuned by frequency
tuning of the external laser pumps, and illustrating that these
photonic DTCs possess temporal long-range order and can be
realized robustly over a range of system parameters. We explore
possible extensions to new states such as imperfect DTCs, the
temporal counterpart of solid-state crystals with defects (i.e.,
vacancies, dislocations, and interstitials)34. Our results inaugurate
an ideal photonic platform to experimentally demonstrate a
whole set of time crystalline phenomena which not only have
remained inaccessible in hitherto explored systems, but some
have not even been deemed possible thus far. This platform will
empower future theoretical and experimental investigations of
long-sought DTC properties such as phase transitions, and sup-
port applications demanding coherence and precision like
quantum computation and timekeeping. Combined with the
highly developed microfabrication of monolithic optical high-Q
(quality factor) resonators, our proposed system can lead to the
demonstration of compact low–phase-noise photonic frequency
dividers as well as chip-scale DTCs, not only creating unprece-
dented opportunities for further exploration of the physics of
TCs, but also paving the way for liberating them from complex
laboratories and adopting TCs in real applications.

Results
Concept. Many-body Hamiltonian of a bosonic system can
possess spatial or temporal translation symmetry which may be
spontaneously broken if bosons interact sufficiently strongly.
Formation of optical or matter-wave solitons—robust solitary
waves preserving their shape upon propagation—in systems of
photons or massive particles exhibits a prominent example stu-
died theoretically and experimentally over the past few
decades35–43. These symmetry-broken states represent stable
solutions which can accurately be described through mean-field
models.

In ultra-cold atomic ensembles, if inter-atomic interactions are
attractive and sufficiently strong, it becomes energetically
favorable for the atoms to group into a single localized wave-
packet evolving along a classical orbit with a period that is an
integer multiple of the external drive periodicity13. Such a
Bose–Einstein condensate (BEC) breaks the discrete TTS, thereby
realizing a DTC. In the optical platform utilized here, a localized
photon wave-packet (a self-synchronized dissipative optical
soliton) arises from the nonlinear interaction of photons in the
Kerr resonator44,45. While a monochromatically pumped Kerr
microcomb does not define a discrete TTS (see the Supplementary
Information), two energetic pumps with judiciously chosen
power and frequency can excite subharmonics and hence break
the discrete symmetry defined by their beatnote. Specifically, the
simultaneous driving of a high-Q Kerr-nonlinear resonator at two
different frequencies f P1 and f P2 primarily creates a periodic
pattern (henceforth called the modulated background waveform)
rotating around the cavity, whose periodicity is dictated by the
spectral spacing between the two pump frequencies. For two
pumps separated by M FSRs of the resonator (M being an

integer), the periodicity is given by T ¼ 1= f P2 � f P1

� �
¼ TR=M,

where TR= L/vg is the round-trip time of the cavity, L denotes the
resonator circumference and vg the group velocity at the relevant
frequency range. The modulated background creates a potential
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grid in the resonator and acts as a rotating lattice trap for optical
solitons. For a certain region in the power vs. pump-resonance
detuning plane for the driving lasers, the system can sponta-
neously generate one or multiple solitons per cavity round-trip
time which will reside on top of the background pattern, trapped
in the potential array. The periodicity of the resulting pulse train
will in general differ from that of the modulated background and
effective driving field (T), giving rise to discrete temporal SSB.
Depending on the number of soliton peaks per cavity round-trip
time and their distribution with respect to the modulated
background, the periodicity of the generated pulse train will be
mT, where 1 ≤m ≤M is an integer. Period multiplication and
DTC formation occurs for m > 1.

Were we interested in spatial crystals, we would inquire about
the periodicity of the system in space at a fixed moment of time,
i.e., the moment of detection. We are, however, interested in
temporal crystalline structures and should therefore exchange the
roles of space and time to observe the TTS described above and
its spontaneous breaking. We choose a spatial point in the path of
the photons (i.e., the location of an imaginary detector) and
observe whether the probability of the detector clicking (counting
photons) evolves periodically with time13. Two examples
illustrating the two different cases of even and odd integer M
(i.e., M= 8 and M= 5 FSR spacing between the pumps with
periodicity T1= TR/8 and T2= TR/5, respectively) are shown in
Fig. 1. Here we look at the collective photon waveform in a co-
rotating reference frame in a ring-shaped resonator, which can be
accurately modeled using a variant of the nonlinear Schrödinger
equation (NLSE), including detuning, damping, and two-pump
driving; see the Methods Section. The potential lattice created by
the beating of the pumps is shown in Fig. 1a, e. For M= 8, if a
soliton is spontaneously formed in every second well of the lattice
potential, as in Fig. 1b, discrete TTS will be broken such that the

system evolves with period 2T1, giving rise to a period-doubling
DTC. If, however, a trapped soliton is missing from every fourth
well, then SSB forms a period-quadrupling DTCs (i.e., period
4T1); Fig. 1c. Finally, if only one soliton per round-trip spins
around the resonator, or if the positioning of multiple solitons in
the periodic lattice does not possess any certain symmetry, the
pattern should traverse a full circle to resume its original shape
and a period-octupling DTC, one evolving with periodicity 8T1,
will be created; see Fig. 1d for an example depicting 6 solitons
asymmetrically distributed around the resonator circumference.
We note that if one soliton is trapped in each of the potential
wells, then discrete TTS will not be violated. In this case, when the
system is observed in the laboratory frame (e.g., as the pulse train
couples out of the microresonator), a soliton arrives every
subsequent driving period T1 at a given point in space.

For M= 5 too, when one soliton is trapped in each potential
well, discrete-time SSB will not occur; (Fig. 1h). Symmetry
considerations, however, reduce the variety of observable DTCs
in this case. If only one soliton is trapped in the modulated
background potential lattice (Fig. 1f), or if all but one of
the potential wells host a soliton (Fig. 1g), then TTS will
be spontaneously broken and a period-quintupling DTC will be
formed (periodicity 5T2). Different ratios of the response to drive
periodicity, and hence realizations of discrete TTS breaking, can
be envisioned for other pump separations. For instance, if solitons
sit in every third periodic lattice site in a resonator driven by two
pumps spectrally spaced by M= 9 FSRs, then a period-tripling
DTC will be realized. Indeed the DTC platform introduced here
can readily accommodate m-tupling DTCs with m≫ 1, creating
so-called big DTCs with dramatic SSB33.

We should emphasize that DTCs can be formed in a
microresonator driven by two pumps over a range of laser
frequencies and powers. Figure 2a, b show steady-state comb

Fig. 1 DTCs in a Kerr nonlinear optical resonator pumped by two lasers. Symmetry breaking, period multiplication, and DTC formation in an optical
resonator pumped by two lasers separated by a–d M= 8 and e–h M= 5 cavity FSRs. a, e The beating between the two pumps modulates the background
waveform and creates a rotating lattice trap near the resonator periphery, where optical modes are localized. a For M= 8 the temporal periodicity of the
lattice trap is T1= TR/8. b Spontaneous formation of a soliton in every second well of the lattice potential breaks the discrete TTS giving rise to a period-
doubling DTC (periodicity 2T1). c When a trapped soliton is missing in every fourth potential well, a period-quadrupling DTC (with period 4T1) is formed.
d If the distribution of multiple solitons in the lattice does not possess any certain symmetry, a period-octupling DTC (with periodicity 8T1) will be created.
Here, 6 solitons are asymmetrically trapped around the lattice. e Lattice periodicity is T2= TR/5 for M= 5. Symmetry considerations reduce the variety of
observable DTCs in this case. When only one soliton is trapped in the potential lattice (f), or when all but one of the potential wells host a soliton (g), a
period-quintupling DTC is formed (periodicity 5T2), while if one soliton is trapped in each potential well, discrete TTS will not be broken (h). Insets illustrate
top-view schematics with an empty circle (cyan) for each lattice trap and a filled circle (magenta) denoting a soliton.
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energy vs. pump-resonance detuning, respectively, for M= 5 and
M= 8, where the horizontal axis is the detuning of the stronger
pump normalized to the resonator half-width at half-maximum
(HWHM) linewidth while the vertical axis is the normalized
intra-cavity energy. Each data point in Fig. 2 indicates one
simulation run till steady states, for non-chaotic microcombs,
prevailed. Here, the step-like multi-stability region on the right of
each curve denotes where discrete TTS breaking occurs, the
lowest branch corresponding to the modulated background [cf.
Fig. 1a, e]. It is seen that in each case, the number of step-like
branches (disregarding the lowest step) equals M, because the two
pumps separated by M FSRs discretize the resonator circumfer-
ence (i.e., each round-trip time) and create preferable residing
lattice sites for the spontaneously formed solitons. Each step
pertains to a constant number of solitons per round-trip time,
starting from 1 (the branch right above the lowest) and ending
with M, the top-most branch. As remarked earlier, depending on
the positioning of the solitons with respect to the background
lattice, a different m-tupling DTC will be realized.

The introduced DTCs are robust with respect to system
parameters and possess temporal long-range order. We have
verified that all of the various TTS breaking states depicted in
Fig. 1 are stable over hundreds of cavity photon lifetimes
(thousands of the driving period, and much longer than the
lifetime of DTCs demonstrated in initial experiments46,47). Two
examples are depicted in Fig. 3a, d; cf. Fig. 1g, c. Figure 3b, e show
snapshots of the pulse trains at the end of the integration time in
Fig. 3a, d, respectively. The horizontal axis in panels (a, b, d, e) is
θ, the azimuthal angle around the circular resonator, which is
related to the fast time τ through θ= 2πτ/TR; see the Methods
Section. The tilted trajectory of the soliton peaks moving upward
in Fig. 3a, d depends on the frequency separation between the
pumps and their detuning from respective resonances, as well as a
slight soliton center frequency shift (recoil) resulting from the
presence of the second pump48. This tilt amounts to a fixed-speed
rotation around the resonator and can be removed with a change
in the angular velocity of the co-moving reference frame.

Before presenting experimental results, we note that periodic
pulse trains correspond to frequency combs in the conjugate
Fourier domain, i.e., an equidistant array of frequency tones
spaced by the repetition rate 1/TR49. The frequency comb spectra
of the DTC states of Fig. 3b, e are plotted in Fig. 3c, f. The
horizontal axis shows frequency normalized to the resonator FSR,
and the spectrum is centered on one of the pumped mode
frequencies labeled 0. The red arrows mark the pumps and the
red dashed lines show hyperbolic secant (sech) soliton envelopes
in Fig. 3c, f. Multiple frequency tones are seen to be generated

between the two pump harmonics in both representative
examples. This subharmonic generation in the frequency domain
accompanies periodic multiplication in the time domain which
was discussed earlier and is a signature of DTCs.

Experiments. For the experimental demonstration of the pho-
tonic DTCs introduced above, we utilized a prism-coupled high-
Q whispering gallery mode (WGM) magnesium fluoride (MgF2)
crystalline resonator of 1.06 mm radius (32.8 GHz FSR), pumped
by two lasers. The setup schematic is illustrated in Fig. 4a; see the
Methods Section for further information on resonator prepara-
tion, pulse train generation, and measurements. The radio fre-
quency (RF) signal was produced by the output-coupled optical
wave demodulated on a fast photodiode to ensure the coherent
nature of the generated pulse train. For the two pumps locked to
two adjacent cavity modes, a narrow RF signal is generated; see
the blue curve in Fig. 4b. We observed that the generation of
subharmonics and solitons riding the modulated background
when the pumps lock to two non-adjacent resonator modes
further reduces the phase noise at 32.8 GHz, narrowing the RF
signal peak as a result of frequency division and the stronger
mutual coupling between the harmonics. One example for 3 FSRs
separating the pumps is plotted by the red curve in Fig. 4b.

Two representative spectra corresponding to SSB and DTC
formation are plotted in Fig. 4c, f, respectively for M= 4 and
M= 3 FSRs separating the driving lasers. The pumps are marked
by red arrows and the red dashed curves show hyperbolic secant
envelopes. The stronger pump was kept nearly at 1545 nm in
both cases. The matching numerical modeling spectra are
depicted to the right of the experimental data, in Fig. 4d, g;
excellent agreement between experiment and theory is observed.
The corresponding time-domain pulse trains per round-trip time
are shown on the far right, in panels (e, h) of Fig. 4, with
snapshots of the pulse trains revolving around the resonator
circumference as insets. From the insets, it is obvious that
Fig. 4c–e represent a period-quadrupling DTC while Fig. 4f–h
demonstrate a period-tripling DTC.

In our experiment, we have observed multi-stability similar to
what is depicted in Fig. 2, where middle branches between the
lowermost and uppermost soliton steps correspond to different
DTC realizations; see also Supplementary Figs. 3c and 4 (blue
curves). These multi-stable states consisted of (1) four-wave
mixing (FWM) of the two pumps creating harmonics separated
by their beatnote (as in Supplementary Fig. 1b), and (2)
subharmonic generation between the pumps, which correspond
to DTC formation (as in Fig. 4c, f, with RF beatnote plotted in red
in Fig. 4b). Note that different subharmonic arrays translate into

baygrene b
moc dezila

mro
N

Fig. 2 DTC regions of existence. Comb energy versus detuning curves for a 5-FSR and b 8-FSR separation between the two pumps, when laser powers are
kept fixed. Each data point corresponds to one numerical integration of the governing equations from a random initial waveform till a steady state (for non-
chaotic states) prevailed. Spontaneous soliton formation occurs in step-like regions to the right of the curves. Dispersion parameter matching the
experimental resonator (D2= 2π × 6.8 kHz) was used. The horizontal axis shows the normalized detuning of the stronger pump (−σ1/κ), for fixed detuning
difference between the lasers (σ2= σ1+ D2M2/4); see Methods. In a normalized pump powers were (1.4, 0.9), and in b they were (1.5, 0.99).
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Fig. 3 Temporal long range order of the generated DTCs. Representative numerical integration results demonstrating temporal long-range order in two of
the states in Fig. 1. Left panels a–c correspond to Fig. 1g, and right panels d–f to Fig. 1c. a, d Temporal evolution of pulse trains over 100 normalized times
(200 cavity photon lifetimes and thousands of the driving period). Pulses are initialized through hard excitation, the horizontal axis is the angle around the
resonator, and the vertical axis is the evolution time. Dark red lines denote soliton trajectories. b, e Snapshots of the pulse trains at the end of the
integration time in a, d. c, f Frequency spectra (logarithmic scale) of the DTC states plotted in b, e. Each spectrum is centered on one of the pumped modes
labeled 0, and the horizontal axis shows frequency normalized to the resonator FSR. Vertical red arrows mark the pumps and red dashed curves show
hyperbolic secant envelopes. Insets are zoomed-in spectra around the center, showing the beatnote of the pumps (blue) and the separation of adjacent
subharmonics (red). Generation of multiple subharmonics between the pumps is manifest. Numerical parameters match those of Fig. 2, with −σ1/κ= 4.
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Fig. 4 Experimental observation of all-optical DTCs. a Experimental setup; WGMR: whispering gallery mode resonator, OSA: optical spectrum analyser,
RFSA: radio frequency spectrum analyser, BS: beam splitter, PD: photodetector. b RF signal ensuring stable pulse train generation. For the two pumps
locked to two adjacent cavity modes, a narrow RF signal is generated (blue, 32.8 GHz carrier frequency). When locking to non-adjacent modes, the
generation of frequency harmonics between the pumps (subharmonics) and hence solitons trapped in the background lattice further narrows the RF signal
peak. An example is the red curve (32.8 GHz carrier frequency), corresponding to the experimental spectrum plotted in f in which M= 3. c, f Spectra
corresponding, respectively, to period-quadrupling (M= 4) and period-tripling (M= 3) DTCs. Pumps are marked by red arrows, and red dashed curves
show soliton envelopes. The stronger pump was at 1545 nm in c and 1544.8 nm in f. d, g Numerical modeling spectra matching c and f. e, h Time-domain
pulse trains per round-trip time (numerical), with snapshots of pulses revolving around the resonator circumference as insets.
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various pulse numbers per round-trip time. After finding the
appropriate parameter regime for subharmonic generation in our
experiments, we always observed one of the states (1) or (2) in
every subsequent run. In particular, in every realization of
subharmonics between the two pumps, we observed the same
envelope and a narrow RF beatnote, hinting at the stable nature of
the realized DTC states.

Discussion
A periodically forced dissipative many-body system qualifying as
a DTC meets certain criteria. First, it possesses discrete TTS,
evident from the time-dependence of its equation of motion.
However, steady states (i.e., steady-state solutions of the equation
of motion) evolving with a cycle that is an integer multiple of the
period dictated by the drive can emerge spontaneously in the
system. Second, the symmetry-broken steady states emerge
without relying on fine tuning and are stable over a range of
parameters. Third, the many-body system is in the thermo-
dynamic limit and the symmetry-broken states can be accurately
described by a mean-field approach. Subharmonic generation in
the dichromatically pumped Kerr microcavity system introduced
in this work qualifies as a dissipative DTC because it meets all of
the said criteria. The two pumps define a discrete TTS in the
system, manifest in the equations of motion (detailed in Meth-
ods), which is broken by the realization of certain periodic steady
states of the system. These states, accompanied by subharmonic
generation, demonstrate SSB at integer response to drive peri-
odicity ratios. The subharmonics in symmetry-broken states
emerge robustly, both in numerical modeling and experiments,
with various (e.g., 2-, 3-, and 4-FSR) frequency separations of the
pumps and possess temporal long-range order; see also Supple-
mentary Information, Section V. Finally, the DTCs are in the
thermodynamic limit of infinitely many photons and are well
captured by a mean-field model (the modified LLE, see Methods).

Besides the DTC states introduced thus far, it is possible to
create a nearly perfect m-tupling DTC with a missing, dislocated,
or extra soliton spoiling crystalline symmetry. Such defective

DTCs mirror spatial crystal defects such as vacancies, disloca-
tions, and interstitials in condense matter physics34. Panels (a, d)
in Fig. 5 depict two examples. In Fig. 5a, one soliton is missing
from a period-doubling DTC while in Fig. 5d a soliton is dis-
located by one lattice site (cf. Fig. 1b). The location of the missing
or misplaced soliton (with respect to the perfect DTC) in each
case is indicated by a red arrow in the top-view ring schematic
appearing in the top left corner. The bottom panels (b, e) and (c,
f) in Fig. 5 plot, respectively, snapshots of the optical pulse train
per round-trip time (again, the red arrows hinting at the position
of the missing or dislocated soliton) and their corresponding
power spectra. In Fig. 5d, e, a dotted arrow connects the current
position of the dislocated soliton to its placement in the perfect
crystal. The sech-shaped envelop of the frequency spectra in
Fig. 5c is the same as that shown in Fig. 3f and is not redrawn
here. If an extra soliton is spontaneously formed in any of the
unoccupied lattice sites in Fig. 1b, a DTC with interstitial defect
will be formed. It is worth noting that each of these pulse trains
has a unique frequency (Fourier) spectrum and can be identified
unambiguously in the frequency domain. Moreover, the appear-
ance of DTCs carrying defects is more conspicuous and con-
sequential in big TCs (for 1≪m <M) and Fig. 5 is intended to
clearly illustrate the phenomenon. Finally, we should point out
that the analogy drawn here between defects in DTCs and those
in solid state spatial crystals is, strictly speaking, not exact because
in the latter the spontaneous breaking of continuous, rather than
discrete, TTS occurs.

The DTC platform introduced here is closely related to
microresonator-based Kerr frequency combs (Kerr microcombs)44.
While many aspects of soliton microcomb formation have been
explored over the past decade, our pumping scheme combines
dichromatic driving and soliton self-injection locking, thereby
effectuating turnkey soliton formation in the presence of clear
discrete TTS. Driving a high-Q Kerr resonator with a CW laser
pump can break continuous TTS symmetry by generating a soliton
pulse train50. Cherenkov dispersive wave (DW) emission in the
presence of higher-order dispersion (HOD) or avoided mode
crossing (AMC) will modulate the background51–53, and trap pulse

Fig. 5 Examples of DTCs carrying defects. A vacancy in which one soliton is missing from a period-doubling DTC a, and dislocation in which one soliton is
misplaced by one lattice site d; cf. Fig. 1b. The location of the missing or misplaced soliton (with respect to the perfect DTC) in each case is indicate by a
red arrow in the top-view ring schematic (insets). b, e Snapshots of the optical pulse train per round-trip time, matching the top panels a and d,
respectively, with red arrows hinting at the position of the missing or dislocated soliton. c, f Power spectra corresponding to b and e. Dotted arrows in d and
e connect the current position of the dislocated soliton to its placement in the perfect crystal. Numerical parameters are the same as those in Fig. 3d–f.
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peaks in so-called soliton crystals48,54. However, as detailed in
the Supplementary Information, resonator HOD and AMC do not
establish any discrete TTS and, accordingly, monochromatically-
pump resonators cannot host DTCs.

As described earlier, when, instead of one, two CW pumps (or
another temporally structured pump wave) drive the resonator,
solitons will be trapped in the potential introduced through the
background modulation48,55–57. In our dichromatically pumped
microresonator, the cavity is engineered to ensure HOD and mode
anti-crossings do not interfere with soliton formation in the
proximity of the pumps. Additionally, both driving lasers coher-
ently lock to two resonator modes and a spontaneously formed
soliton microcomb48,58. The physics of the hyperparametric pro-
cess resulting in stable subharmonic generation in this platform
guarantees the division of the pumps’ beatnote to equal sub-
harmonics (integer response to drive periodicity ratio) and hence
elegantly allows for confirming DTC behavior through standard
frequency-domain measurements without resorting to complex
temporal techniques28,59; single-shot pulse measurement methods
can facilitate further investigations into the rigidity of photonic
DTCs. Independent of the resonator geometry, these phenomena
are expected to occur also in integrated ring and fiber-ferrule
Fabry-Pérot resonators57. We speculate that DTCs can similarly
be observed even in other resonator or mode-locked laser types
such as fiber cavities60,61 or harmonically mode-locked lasers; in
the latter case, certain frequency pinning mechanisms for ensuring
robust pulse dropout are necessary. It is worth emphasizing that
dual-microcomb spectroscopy setups, in contrast to our experi-
ments, rely on two very close pump frequencies (typically different
by less than 1% of an FSR) each creating its own microcomb; see
ref. 44 and refs. [36–40] therein. Furthermore, addition of a second
pump (or sideband) frequency to improve thermal stabilization
does not lock the second frequency to the microcomb and merely
adds extra power inside the cavity62.

In light of recent advancements in integrated nonlinear and
quantum photonics44,63,64, the variety of emerging material
platforms53, and the flexibility offered by advanced dispersion
engineering, revolutionary progress in the study of TCs is possible
using the platform introduced in this work. Exploiting the ple-
thora of experimental techniques and commercial equipment
available to photonics for the investigation of the various aspects
of TCs will prove crucial. For instance, utilizing delicate laser
tuning65 and synchronous pumping techniques57 empowers the
deterministic creation of target DTC states and exploring their
interaction66 in small experimental setups. Furthermore, building
upon mode-locked laser pumping of fiber resonators60, syn-
chronous pumping can be used to drive solitons in larger
microresonators. Generation of microcomb solitons with few-
GHz range repetition rates is possible, and at these rates, efficient
(i.e., with small half-wave voltage Vπ) ultrafast electro-optic
modulation combined with pulse shaping will furnish excellent
flexibility for the controlled realization of various DTC phases
and transitions between them56,57. Most excitingly, with progress
in the monolithic integration of lasers and optical modulators,
small-footprint, room-temperature, all-optical DTC may soon
become a reality.

Although still in their infancy, TCs are inspiring future tech-
nology, and ideas for their applications are crystallizing. Novel
paradigms for overcoming coherence limitations in quantum
systems involve transitioning to the driven out-of-equilibrium
regime. Indeed, among the most anticipated properties of DTCs
are their robustness and temporal long-range order which enable
maintaining coherence much longer than is currently possible in
equilibrium systems. From the perspective of Kerr microcomb
technology, the dichromatic self-injection locking pumping
scheme utilized here can be used for microwave photonic

frequency division and multiplexing58,67; the repetition rate is
locked to the beatnote of the two pumps, resulting in character-
istically different behavior compared to standard mono-
chromatically driven combs. Furthermore, two-point locking of
the pumps (for instance by pinning lasers externally to frequency
references such as two atomic transitions) enables stabilizing even
a narrow-band microcomb and can obviate the exacting
requirement of octave-spanning spectral coverage which has so
far been a holy grail of microcomb research. As such, precision
microcomb-based metrology and timekeeping can be extended to
uncharted frequency windows and new platforms in which
material dispersion currently limits comb bandwidth and con-
sequently f− 2f self-referencing48. Finally, recent studies56,68

have shown several technical advantages for seeding microcomb
formation with a modulated pump. Yet, available modulator
bandwidths do not allow generating sidebands multiple cavity
FSRs away from the pump in a microresonator, especially in
smaller diameters with hundreds of GHz to THz-level FSRs.
Therefore, microcomb stabilization by two independent lasers
constitutes a decisive step which brings the benefits of parametric
seeding to small resonators, and further enhances the possibility
of miniaturization, and reduced size, weight, and power con-
sumption for future applications. In this work we have focused on
a few FSRs separating the two pumps but suspect that the mar-
riage of dichromatic pumping with self-injection locking of both
pumps to Kerr cavity modes of the same modal family involves
very rich physics, warranting dedicated investigations, e.g., into
the role of the beatnote of the pumps.

We have demonstrated a versatile photonic platform utilizing
two pump lasers concurrently self-injection-locked to different
modes of a Kerr cavity, which exhibits spontaneous breaking of
discrete TTS and dissipative DTC formation. Our two-pronged
theoretical and experimental study shows that in a high-Q reso-
nator driven at two frequencies, strongly interacting photons can
spontaneously generate one or multiple temporal solitons, which
crystallize in the rotating optical lattice formed by the beating
between the pumps through robust subharmonic generation and
can give rise to DTCs with various sizes (response-to-drive period
ratios). Both theory and experiment verify that the generated
DTCs possess temporal long-range order. Operating in room
temperature, this platform lends itself to simplified investigations
of unexplored time crystalline properties such as phase transitions
and mutual interactions, and along with a subsequent dissipative
DTC example reported recently in a BEC of atoms in a cavity69, it
hints at the diversity of systems hosting dissipative TCs. Our
results also show that integrated optics provides a robust and
flexible platform for mimicking physical condensed matter phe-
nomena associated with TCs. Paired with monolithic micro-
fabrication and well-developed techniques of quantum integrated
photonics, this demonstration empowers fieldable chip-scale
DTCs, thereby paving the path for extricating the time crystal-
line phase of matter from complex laboratory setups and
employing them in real-world applications, e.g., in quantum
computation and timekeeping.

Methods
Equations and numerical modeling. Soliton formation, resulting in SSB and DTC
generation described in this work, can be accurately modeled using a variant of the
NLSE, including detuning, damping, and driving, which is often referred to as the
Lugiato–Lefever equation (LLE)70. Here we use an LLE variant modified for two-
pump driving48. In the laboratory reference frame, this equation takes the form

∂A
∂t

¼ �κ� iσ1 � igjAj2 � D1
∂

∂θ
� i

D2

2
∂2

∂θ2

� �
Aþ F ðθ; tÞ; ð1Þ

in which κ is the resonance HWHM, σ1 ¼ 2πf P1 � ωj0
represents the detuning of

the first pump from its neighboring resonance ωj0
, g is the FWM gain, D1/2π= 1/TR

is the resonator FSR near the first pump, and D2 ¼ ωj0þ1
þ ωj0�1

� 2ωj0
denotes the
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group velocity dispersion coefficient. Cavity resonant modes are labeled with integer
eigenmode numbers j, and D1 and D2 (expressed in rad/s) are the first two coef-
ficients in the Taylor series expansion of resonant mode frequencies ωj in eigen-
mode number at the first pumped resonance ωj0

, i.e., ωj ¼ ωj0
þ D1ðj� j0Þþ

D2ðj� j0Þ2=2; in the frequency range of interest, higher-order terms were negligibly
small for the resonator utilized in our experiments. The variable t is the evolution
time (sometimes referred to as the slow time), and θ is the azimuthal angle around
the resonator, related to the fast time τ via θ= 2πτ/TR (modulo 2π). The intra-cavity
field A(θ, t) is normalized such that ∫2πdθ ∣A(θ, t)∣2/2π equals the total number of
photons in the cavity at each time t. FWM gain is found from g ¼ n2c_ω

2
j0
=ðn20Vj0

Þ,
where n0 and n2 are the linear and nonlinear indices of refraction, c is the vacuum
speed of light, ℏ is the reduced Planck constant, and Vj0

is the effective nonlinear
mode volume of the first pumped mode53. The drive term F ðθ; tÞ is given by

F ðθ; tÞ ¼ ffiffiffiffiffiffi
κc1

p F 1 þ
ffiffiffiffiffiffi
κc2

p F 2e
i 2π f P2�f P1

� �
t�Mθ

	 

; ð2Þ

where M, as in the main text, is the number of FSRs separating the pump fre-
quencies (i.e., f P2 � f P1 ¼ M=TR), κc1;2 are the coupling coefficients to the two

pumps, and jF 1;2j2 represent the rate of photons pumped by the lasers48. The
beating between the two pumps appears in the exponent of the second driving term,
where Mθ ¼ 2πðM=TRÞτ ¼ 2πðf P2 � f P1 Þτ.

Inspection of the drive term, Eq. (2), shows that Eq. (1) is periodic and invariant

under transformations t ! t þ 1= f P2 � f P1

� �
or θ→ θ+ 2π/M [equivalently

τ ! τ þ 1= f P2 � f P1

� �
]. This periodicity defines the discrete TTS of the systems,

which can be spontaneously broken by soliton formation in the resonator, as
described in the main text.

Equation (1) can be simplified by transitioning to a reference frame rotating
with angular velocity D1 (i.e., θ→ θ−D1t, one round per TR), rendering

∂A
∂t

¼ �κ� iσ1 � igjAj2 � i
D2

2
∂2

∂θ2

� �
Aþ ffiffiffiffiffiffi

κc1
p F 1

þ ffiffiffiffiffiffi
κc2

p F 2 exp i σ2 � σ1 þ D2M
2=2

� �
t � iMθ

� �
;

ð3Þ

in which σ2 is the pump-resonance detuning of the second pump. For numerical
integration, a non-dimensional form of Eq. (3) was found by normalizing time to
twice the cavity photon lifetime (t/κ), detunings and dispersion coefficient to the
HWHM (−σ1,2/κ and −D2/κ), and intra-cavity waveform and pump powers to the
sideband generation threshold Ath ¼

ffiffiffiffiffiffiffi
κ=g

p
in a monochromatically pumped

cavity (A/Ath and
ffiffiffiffiffiffiffiffi
κc1;2

p F 1;2=Ath). We emphasize that the t-dependence on the

right-hand side of Eq. (1) can be removed readily by a proper change of variables
(e.g., θ ! θ � 2πðf P2 � f P1 Þt=M), yet the resulting equation will carry a ∂A/∂θ
term, further differentiating it from a damped, driven NLSE.

It is noteworthy that Eq. (1) can be derived from an equivalent set of nonlinear
coupled-wave equations, each following the temporal evolution of one frequency
comb harmonic, as detailed in ref. 48. Numerical modeling was performed using
both the split-step Fourier transform [Eq. (3)] and adaptive-step Runge–Kutta
integration (couple-wave equations), with excellent agreement. To properly match
experimental conditions, hard excitation with high-energy initial fields was utilized.
In soft excitation of a cold cavity, the effect of vacuum fluctuations was
incorporated through the addition of independent noise terms.

Resonator preparation. The resonator was fabricated out of a magnesium fluoride
(MgF2) cylindrical preform by mechanical polishing. The preform rim was shaped into
an oblate spheroid optimized for evanescent field coupling with a free space beam.
Resonator radius was ~1.06mm, while the radius of the vertical curvature was 0.2mm.
The resonator had an FSR of 32.8 GHz and loaded resonance bandwidth of
~2κ= 2π× 200 kHz. Resonance loaded bandwidth was tuned by adjusting the air gap
between the coupling prisms and the resonator surface. The optical power emitted by
the laser never exceeded 5mW. Roughly 3mW of power entered the resonator because
of imperfect laser beam spatial structure and other non-idealities, indicating an insertion
loss smaller than 3 dB. Resonator group velocity dispersion at the pumping frequency
was β2≃− 4.9 ps2/km, corresponding to D2= 2π × 6.8 kHz. Formally, the normalized
dispersion parameter D2/κ impacts comb generation efficiency, so through modifying
the coupling, we tuned the overall conversion efficiency.

Pulse train generation. The resonator was pumped by two distributed feedback
(DFB) lasers. To couple laser light in and out of the resonator, we utilized evanescent
prism couplers made of BK7 glass. The coupling efficiency is better than 60%. The
resonator generates microcombs corresponding to optical soliton trains (with hyper-
bolic secant spectral envelopes) if pumped with mW level optical power at around
1545 nm. The criteria for soliton pulse train generation constituted simultaneous
observation of a stable sech-shaped frequency comb spectral envelope (on an OSA) as
well as a low-noise radio frequency (RF) signal (on a fast photodiode)67. Microcomb
repetition rate defines the frequency of the microwave signal. This measurement was
performed using an RFSA, as shown in Fig. 4a. High spectral purity of the RF signal
indicates the high degree of coherence of the frequency comb.

When two lasers pump resonator modes, as shown in Fig. 4a, generally
harmonics at both laser frequencies, plus some sidebands are generated. When
laser power exceeds a certain threshold and the frequency detuning is properly
selected for both lasers, subharmonic generation and a mode-locked frequency
comb emerges48,55. In both numerical modeling and experiments, the power of one
laser was set above the threshold while the other had a power slightly below it. A
coherent pulse train in this case was identified by an RF signal with smaller phase
noise compared to the beat note of the two optical pumps directly demodulated on
a photodiode; see Fig. 4b.

Soliton self-injection locking. To generate a stable pulse train, one has to lock each
laser to its neighboring resonator mode at an optimal frequency offset. We achieved
this using the self-injection locking technique58, in which no isolator is placed
between each pump and the resonator, so the laser locks to a resonator mode when a
small amount of light coupled to the mode scatters back toward the laser (resonant
Rayleigh scattering). Through tuning the locking point by regulating the optical phase
delay between the laser chip and the resonator, the frequency of one of the lasers was
shifted to a spectral position where a microcomb was observed. DTC generation was
then straightforward by selecting proper pump powers. To this end, we started from
higher power levels, too high to sustain a microcomb. Laser currents were then
reduced till stable subharmonic generation was observed. At this stage, the power of
one pump was above that required for initiating the hyperparametric process with a
single laser while that of the other was below this threshold, and importantly neither
pump could generate a soliton microcomb alone. One notable advantage of self-
injection locking is simplified optical soliton generation in the cavity through soft
excitation. In contrast, soliton microcomb generation without injection locking often
relies on hard excitation or switching50,65. It should be stressed that the absence of
strong anti-crossing–induced frequency pinning in the microcomb spectra confirms
the negligible effect of AMCs in our experiments; see Supplementary Information,
Sections IV and V.

Data availability
The data that support the plots within this paper and other findings of this study are
available from the corresponding author upon reasonable request.

Code availability
The codes used for this study are available from the corresponding author upon
reasonable request.
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