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Climate records exhibit scaling behavior with large exponents,
resulting in larger fluctuations at longer timescales. It is unclear
whether climate models are capable of simulating these fluctu-
ations, which draws into question their ability to simulate such
variability in the coming decades and centuries. Using the latest
simulations and data syntheses, we find agreement for spectra
derived from observations and models on timescales ranging from
interannual to multimillennial. Our results confirm the existence
of a scaling break between orbital and annual peaks, occurring
around millennial periodicities. That both simple and compre-
hensive ocean–atmosphere models can reproduce these features
suggests that long-range persistence is a consequence of the
oceanic integration of both gradual and abrupt climate forc-
ings. This result implies that Holocene low-frequency variability
is partly a consequence of the climate system’s integrated mem-
ory of orbital forcing. We conclude that climate models appear
to contain the essential physics to correctly simulate the spectral
continuum of global-mean temperature; however, regional dis-
crepancies remain unresolved. A critical element of successfully
simulating suborbital climate variability involves, we hypothesize,
initial conditions of the deep ocean state that are consistent with
observations of the recent past.

climate variability | spectral analysis | scaling laws | model evaluation

A grand challenge for climate science is to accurately simu-
late low-frequency variability (changes occurring on scales

longer than a few years). Of particular interest is the temporal
spectrum of surface temperature, whose peaks indicate domi-
nant oscillations and whose continuum describes energy transfers
between scales (1). This continuum is often characterized by its
scaling exponent β, where the power spectral density (PSD) S
and the frequency f satisfy the power law relationship:

S(f )∝ f −β . [1]

The larger the exponent is, the longer the memory of past events.
A spectral depiction of climate change dates back to ref. 2, which
investigated Holocene climate variability in the North Atlantic
sector using various records and connected the observed spec-
tral pattern to the thermal inertia of the ocean and cryosphere.
Two years later, Mitchell (3) gave an early qualitative overview of
the spectrum of climate variability based on causal mechanisms.
Later, Pelletier (4) estimated the PSD of regional atmospheric
temperature from synoptic to multimillennial and longer scales,
using instrumental and ice-core data, and explained the observed
scaling exponents with a vertical turbulent transport model. In a
landmark paper, Huybers and Curry (5) added many more data
sources, extended the analysis to much longer timescales, and
proposed that “annual, Milankovitch and continuum tempera-
ture variability together represent the response to deterministic

insolation forcing” (ref. 5, p. 329). They identified two distinct
scaling regimes, with a break at centennial scales, but did not
provide an explanation for this break.

Recent studies have looked for similar behavior in tempera-
ture fields simulated by climate models and show that the scaling
exponents that describe the simulated temperature variability
are too small compared with those from instrumental (6, 7) and
paleoclimate obervations (8–10). There are at least four reasons
to reserve caution in this comparison. First, climate proxies are
known to filter climate inputs (11, 12), so simulated tempera-
tures and proxy measurements are not directly comparable (13,
14). Second, the comparisons done to date have included a lim-
ited number of proxies with subcentennial resolution (<20); it is
therefore critical to update this picture with more complete data
syntheses, including annually-resolved observations. Third, the
model evaluations mentioned above have focused on simulations
of the past millennium (850–1850 CE); no systematic comparison
has been carried out with longer transient simulations. Finally,
a lack of global coverage beyond the past millennium restricted
previous studies to focus on regional temperature variability, yet
global temperature is more informative of changes in Earth’s
energy budget. Thus, we focus here on the global signal.

Here we address these challenges and find a variety of cli-
mate models to be consistent with scaling behavior observed
across a range of paleoclimate archives. The robustness of this
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result has important implications for climate predictability. We
also provide an explanation for the transition between scaling
regimes.

Completing the Continuum
We first estimate the spectrum of global-average temperature
variability, leveraging new measurements and data syntheses
(refs. 15 and 18–21 and Table 1) as well as improved spec-
tral methods (ref. 26 and Methods). Notably, the latest Past
Global Changes, 2k Network Working Group (PAGES2k) com-
pilation (18), which gathers observations from coral, glacial
ice core, marine and lake sedimentary, speleothem, tree-ring,
and documentary archives, allows us to fill the aforementioned
spectral gap in the centennial to millennial band. Individual spec-
tra exhibit scaling behavior (lack of obvious scaling breaks; SI
Appendix, Fig. S7 and section 5) for all archive types except
for glacier ice, where high-frequency signals are known to be
damped by a range of processes, including diffusion and com-
paction (12, 27). The median scaling exponents are close to 0.45,
with no clear spatial trend (SI Appendix, Fig. S8). Our analysis
confirms the existence of scaling behavior in the decadal-to-
centennial range, robustly across archive types. Each archive is
affected by different processes and timescales (11, 12), distorting
spectra in various ways. However, none of these processes can
create scaling on their own (14), suggesting that the observed
scaling behavior is a property of the climate and not the proxy
archives. This picture may change when more complete proxy
system models are considered.

Next, we use this dataset to estimate global mean surface tem-
perature with a state-of-the-art paleoclimate state estimation
methodology, the Last Millennium Reanalysis (LMR) (16, 17).
LMR uses an ensemble Kalman filter to optimally combine infor-
mation from transient climate model simulations and annually-
resolved paleoclimate observations (18) (SI Appendix, section 2).
Importantly, this approach uses climate models only to provide
physically plausible covariances within and among climate fields;
all of the temporal variability, and thus the spectral behavior,
originates in the paleoclimate observations. Fig. 1 shows scaling
behavior in the PAGES2k-based LMR estimate, with decadal-
to-centennial scaling exponents around unity, in good agreement
with global instrumental temperature (HadCRUT4, ref. 15).

Progressing toward lower frequencies, we consider the ice-
core–based reconstruction from EPICA Dome C (21), which
nearly doubles the coverage of the Vostok data used by Huybers
and Curry (5) (800 vs. 420 ky), as well as two recent estimates
based on marine sediments: the global average surface temper-
ature reconstruction of ref. 19 (S16 GAST), based primarily on
sea-surface temperature proxies (alkenones, Mg/Ca, and faunal
assemblages) and the latest benthic stack based on foraminiferal
δ18O (ProbStack, ref. 20). All three of these datasets show con-
sistently steep centennial-to-orbital scaling exponents around 2.5

(Fig. 1). As before, the robustness across different paleoclimate
archive, sensor, and observation types is a cogent indication that
they are features of the climate, not proxy-related artifacts. The
EPICA Dome C (EDC) spectrum flattens considerably at scales
shorter than millennial, which can be traced to its local nature (SI
Appendix, Fig. S6) and possible aliasing of the annual cycle (28).

Overall, Fig. 1 highlights a scaling break between the decadal-
to-centennial band (β≈ 1) and the centennial-to-Milankovitch
band (β≈ 2.5). This confirms the existence of the two scaling
regimes pointed out by Huybers and Curry (5), who placed this
transition at centennial scales. In contrast, our analysis shifts this
scaling break to the vicinity of the millennial scale. As shown in SI
Appendix, section 4, the location of the break in frequency space
is quite variable from one record to the next, and only with global
syntheses does it emerge at millennial scales. One possibility is
that the frequency of the scaling break depends on weighting prox-
ies that record more of the global-mean, rather than a local signal
(e.g., figure 7 in ref. 29). Another possibility is that the spectral
break is peculiar to the time of analysis, i.e., not a property of the
stationary statistics of the climate system. In any case, do climate
model simulations even contain a spectral transition?

Simulating the Continuum
We now consider long transient integrations of general circula-
tion models, including the Palaeoclimate Modeling Intercompar-
ison Project Phase 3 (PMIP3) last millennium (PMIP3 past1000)
simulations (25) appended with “historical” Coupled Model
Intercomparison Project Phase 5 (CMIP5) simulations and the
TraCE-21ka suite of experiments (22). We also include simula-
tions from two Earth System Models of Intermediate Complexity
(EMICs) covering the last deglaciation, DGns (23) and SIM2bl
(24) (SI Appendix, section 2). Over the decadal-to-centennial
band, Fig. 2 (Upper) indicates that the PMIP3 simulations share
similar scaling exponents around unity, consistent with observed
spectra (Fig. 1). Specifically, Fig. 2, Upper Inset shows the distri-
bution of the scaling exponents of the PMIP3 simulations against
those obtained from the PAGES2k-based LMR, in which we
find good agreement for the central quantiles and large inter-
model spread. This agreement stands in contrast to previous
work showing differences between spectra in climate models and
data (8–10, 14, 30).

One important distinction between our study and previous
ones is that our comparisons focus on global, rather than
regional, variability since the Last Glacial Maximum. Given a
model’s finite resolution, accurately modeling local and regional
variability is more difficult than modeling global variability (SI
Appendix, section 4). Model biases diminish from local to conti-
nental scales, and local variability at small spatial scales, reflect-
ing short temporal scales, is smoothed. As shown by refs. 29
and 31, this smoothing steepens global spectra relative to local
spectra.

Table 1. The overview information of the instrumental observations, reanalysis, reconstructions
based on proxy records, and model simulations that are used in this paper

Dataset Type Time span Exponent estimation scales, y

Observations/reconstructions
HadCRUT4 (15) Instrumental 1850–2017 AD 1/6–50
PAGES2k/LMR GAST (16, 17) Reanalysis 1–2000 AD 2–1,000
S16 GAST (19) Reconstruction 2 MyBP–950 AD 2,000–100,000
ProbStack (20) Proxy 5 MyBP–1950 AD 10,000–100,000
EDC (21) Reconstruction 800 MyBP–1911 AD 1,500–50,000

Model simulations
TraCE-21ka (22) Deglaciation 22 kyBP–1979 AD 400–2,000, 20–400
DGns (23) Deglaciation 18 kyBP–3 kyBP 400–2000, 20–400
SIM2bl (24) Deglaciation 21 kyBP–1949 AD 400–2,000, 20–400
PMIP3 (25) Last millennium 850–1850 AD, 850–2011 AD 2–500
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Fig. 1. A spectral estimate of the global-average surface temperature variability using instrumental and paleoclimate datasets (scaled degrees Kelvin), as
well as proxy-based reconstructions of surface temperature variability. HadCRUT4: The Met Office Hadley Center gridded dataset of global historical surface
temperature anomalies (15). PAGERS2k/LMR GAST: The Last Millennium Reanalysis framework (16, 17) applied to the PAGES2k dataset (18). The thick red
curve denotes the median power spectral density (PSD), the dark red shaded area denotes the interquartile range, and the light red shaded area denotes
the central 95% range, from 2.5% to 97.5%. S16 GAST: The reconstruction of global average surface temperature (19). ProbStack: A probabilistic Pliocene–
Pleistocene stack of benthic δ18O (20). βs denote the estimated scaling exponents over each appropriate frequency band. Details of their estimation are
presented in Methods and SI Appendix, section 3. The regional dataset EPICA Dome C (EDC) Ice Core 800-ky Deuterium Data and Temperature Estimates
(21) is included as a point of comparison.

Fig. 2, Lower shows a spectral analysis of the TraCE-21ka,
DGns, and SIM2bl transient simulations, which cover the last
10–20 ky (SI Appendix, section 2). All three simulations show a
similar scaling break around timescales of 300–1,000 y. Hence-
forth, we define βCM as the centennial-to-millennial scaling
exponent (estimated over 400–2,000 y) and βDC as the decadal-
to-centennial scaling exponent (estimated over 20–400 y). All
three simulations display βCM ≈ 2.5 and βDC ≈ 1 consistent
with the observed spectra (Fig. 1). These results are robust to
definitions of the scaling ranges (SI Appendix, section 9). How-
ever, these simulated βDC s arise for different reasons than in
the PMIP3 past1000 simulations: (i) None of these deglacial
simulations are subject to volcanic aerosol forcing, the largest
source of low-frequency variance for PMIP3 past1000 simula-
tions (32); (ii) DGns does not include the industrial warming
period (Table 1), yet it shows similar βDC compared with TraCE-
21ka and SIM2bl, as well as modern and paleoclimate obser-
vations, implying that the industrial warming period is not the
only explanation for βDC ≈ 1 (Climate Implications); (iii) the
TraCE-21ka experiment was designed in part to capture climate
variability inferred from Greenland ice-core records and forced,
e.g., through freshwater fluxes, to capture that variability. This
presents the possibility of circular logic to conclusions based on
TraCE-21ka spectra, although the simulation does remarkably
well in reproducing the phase and magnitude of millennial-scale
variability in Southern Hemisphere records, for which it was not
tuned (33).

A Tale of Two Regimes
What physical mechanisms underlie the scaling break? Nilsen
et al. (34) suggest that Holocene temperature reconstructions
are consistent with a single scaling regime and that the scaling
break likely originates from the large-amplitude Dansgaard–
Oeschger (D-O) events of the past glacial period. As long as
the analyzed records contain such abrupt events, they argue
that one should expect a scaling break in the frequency domain.
This is supported by our analysis of 253 Holocene records (SI
Appendix, Fig. S12), showing a single scaling regime throughout
the interval.

To further test this idea, we investigate the spectral density of
the output of the TraCE-21ka full simulation before and after 8
kyBP (SI Appendix, Fig. S13 and section 7). This choice avoids
the 8.2-ky event, thus delineating a period of rapid transition
before this point (the deglaciation) and a stable climate after-
ward. The result indicates that the time series before 8 kyBP
shows a PSD similar to that of the full series, while the time series
after 8 kyBP lacks a scaling break. This suggests that the scaling
break originates in the early part of the time series. A scalo-
gram of the TraCE-21ka full simulation (SI Appendix, Fig. S14)
reveals two underlying factors for the scaling break: (i) abrupt,
large-amplitude events as suggested above and (ii) the gradual
transition from glacial to interglacial states. The first factor is
identified by the energetic area in the scalogram around 12.5
kyBP between periods of 500 y and 2,000 y, coincident with the
simulated Bölling–Alleröd/Younger Dryas couplet. This mecha-
nism is reproducible using simple models (SI Appendix, section
7). Such impulses create bumps in the PSD (SI Appendix, Figs.
S15 and S17, Right), which cascade down to smaller scales, dis-
appearing at periods near 300 y, where the scaling break occurs.
The second factor is visible around periods of 5 ky, between 7
kyBP and 20 kyBP, and reflects orbitally driven changes in the
Earth system (SI Appendix, section 8). They mirror the pattern
seen in the CO2 time series obtained from the EPICA Dome
C ice core (SI Appendix, Fig. S22) as well as the best estimates
of the ice-volume equivalent sea-level function (SI Appendix,
Fig. S23).

To further disentangle the influence of the various forc-
ings, we leverage the TraCE-21ka single-forcing experiments
(22). Fig. 3 confirms that orbital forcing (ORB) acts as the
second factor, driving the slow transition from glacial to inter-
glacial states; this is sufficient to generate a scaling break
at millennial scales (orange curve). Forcing from greenhouse
gases (GHG) and transient ice sheets (ICE) acts to amplify
this transition. On the other hand, transient Northern Hemi-
sphere meltwater fluxes (MWF) act as the first factor: They
generate a bump in the PSD that shifts the scaling break to
periods near 300 y. Because these signals do not propagate
instantly around the globe, the break would be expressed in
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Fig. 2. The power spectral density (PSD) of transient model simulations.
(Upper) β is estimated over 2–500 y. Inset compares distributions of the
scaling exponents (estimated over 2–500 y) of GAST in PAGES2k-based
LMR vs. the PMIP3 simulations. (Lower) βCM is the centennial-to-millennial–
scale exponent estimated over 400–2,000 y, while βDC is the decadal-to-
centennial–scale exponent estimated over 20–400 y. Inset compares the β

values of the model simulations (red, green, and blue circles) and those of
the observations (gray circles). The gray curves are identical to those in Fig.
1. Note that curves labeled “CESM” and “GISS” are the ensemble average
of the PSDs of 10 and 3 members for each model, respectively.

different records at different scales, ranging from centennial to
millennial.

Climate Implications
By incorporating a wide range of proxy data, models, and data
assimilation approaches to climate variability, we find two scaling
regimes linking orbital to annual scales, as Huybers and Curry (5)
found from regional records. These regimes are robust across
multiple observation types. Increasing the density of records in
the centennial band by two orders of magnitude, we find that
the regime transition for global-average temperature variability
occurs at millennial scales.

At scales shorter than millennial, we find good agreement
between modeled and observationally derived scaling exponents.
Yet the spectra are qualitatively different: The same CMIP5
models have been shown to oversimulate interannual variance
and undersimulate decadal variance (7, 10, 35). This results in
steeper scaling at high frequencies and flatter scaling at decadal
and longer timescales, in the past 1,000 simulations.

At scales up to 104 y, we find that models of varying com-
plexity closely reproduce the observed scaling laws over the past
deglaciation, including the scaling break around 103 y. In the
TraCE-21k simulations, this transition is primarily driven by
orbital forcing and modulated by freshwater fluxes. This raises
the question of what level of complexity is required for mod-
els to correctly reproduce the observed continuum. All models
considered here lack interactive ice sheets, and most lack an
interactive carbon cycle. Such models therefore require informa-

tion about these systems to be supplied via boundary conditions
to reproduce observed climate trajectories (and therefore, spec-
tra). In reality, of course, insolation is the only true forcing on
these timescales; ice sheet topography, greenhouse gas levels,
and freshwater fluxes all are Earth system responses to this forc-
ing. The response of the climate system to insolation forcing is
state dependent, which introduces a stochastic (unpredictable)
component to the response. A surprising finding is that even sim-
plified models like ECBilt-CLIO (used in SIM2bl) can produce a
realistic global-average temperature continuum at submillennial
scales when supplied with information about gradual climate
forcings over the past deglaciation (Fig. 2, Lower).

In contrast, most of the decadal-to-centennial variability in
PMIP3 past1000 simulations originates from volcanic forcing
(32). This dominance is partly the result of such simulations
being overly sensitive to stratospheric aerosol loading (36), due
to incomplete representations of stratospheric aerosol chemistry
(37). However, our analysis suggests that a decadal-to-centennial
climate continuum could be inherited from boundary conditions
that far predate the last millennium. This is supported by the lin-
ear analysis of ref. 38, which expressed temperature at time t
as a convolution between the transient forcing and the impulse
response function to that forcing at all past instants. Comparing
simulated and observed temperature, one evaluates not only the
model (which approximates the impulse response), but also the
forcing. It is a distinct possibility that such evaluations improperly
place the blame on the models, while it should lie in the forcing.

Put another way, a plausible explanation for our results is that,
on a global scale, the past millennium still contains echoes of
the deglaciation. The systems’ adjustment to smoothly varying
insolation generates substantial decadal-to-centennial variabil-
ity at the surface, despite the forcings containing little energy at
these scales (SI Appendix, Figs. S21–S23). Thus, our results affirm
and extend Huybers and Curry’s (5) conclusion that continuum
temperature variability is an integral part of the response to inso-
lation forcing; decadal-to-centennial variability in global-average
temperature is partly a consequence of changes in Earth’s orbital
parameters. This is also consistent with the theoretical results of
ref. 39.

We surmise that the lack of low-frequency variability in PMIP3
past1000 simulations before 1850 AD is related to these simula-
tions being initialized from a quasi-steady state in equilibrium
with boundary conditions characteristic of 850 AD. Were the

Fig. 3. Effect of forcings on scaling behavior in the TraCE-21ka simulations.
The full simulation is forced by transient Northern Hemisphere meltwater
fluxes (MWF), orbital forcing (ORB), changing continental ice sheets (ICE),
and transient greenhouse gas forcing (GHG). Conventions are identical to
those in Fig. 2.
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same PMIP3 models to be initialized from an ocean state that
bore the imprint of the last deglaciation, we predict that they
would exhibit more vigorous internal variability at decadal-to-
centennial scales and that the fraction of surface temperature
variance imputable to volcanic forcing would be relatively lower.
This “echoes” hypothesis may be tested in dedicated experiments
with a hierarchy of climate models.

That the ocean state should integrate forcings over a long
period is not a novel idea (39–41); the surprising implication is
that this property could directly bear on the amplitude of cli-
mate variability at scales far shorter than orbital and therefore on
the perceived reliability of model-based predictions on societally
relevant horizons. Were the echoes hypothesis to be confirmed
by subsequent studies, it would bear favorably on the prospects
for prediction, at least for the global mean. This suggests two
pathways to sensibly evaluate model behavior. The first one is to
use comprehensive Earth system models (including dynamic ice
sheets) to simulate the climate continuum with sole knowledge of
orbital forcing. This would require integrating such models over
a full glacial cycle (ideally, multiple ones), which is presently in
reach of only the largest available supercomputers (42). The sec-
ond way would be to initialize shorter simulations (e.g., past1000)
from a state informed by paleo-observations of the deep ocean
state and diagnose their temperature continuum as done here.
Advances in paleoclimate state estimation (43) may soon make
this possible.

Scaling behavior is nearly universal, appearing in contexts as
diverse as fluid dynamics (44), hydrochemistry (26), metabolism
(45, 46), economic growth (47), and city size (48). The existence
of scaling behavior in climate time series is therefore unsurpris-
ing, although there is currently no consensus on its cause (1, 38,
41). For this reason, it is not obvious whether the climate models
investigated here reproduce this behavior for the right reasons.
Indeed, the notable consistency between scaling behavior in such
a wide range of models and that in observations suggests that it is
a relatively crude constraint. A stricter metric would be to aim for
consistency at local or regional scales, which are of greatest inter-
est for adaptation and planning and where discrepancies between
models and observations remain (7, 13). Enhanced data avail-
ability may also enable the evaluation of higher-order spectral
moments, which could help reveal other differences. Based on
present evidence, however, we conclude that it would be prema-
ture to dismiss the capabilities of Earth system models to predict
global trends on societally relevant timescales (10–100 y). We
suggest that the key to simulating the climate continuum over
such scales lies in properly initializing the low-frequency coupled
state of the climate system, especially the ocean; how to do so
remains an open problem.

Methods
Spectral Estimation. Because paleoclimate data are often unevenly sampled
in the time domain, a common strategy for their analysis is to first per-
form interpolation so that traditional spectral analysis methods, such as
the periodogram (49) or multitaper method (MTM) (50), can be applied.
However, interpolation can bias spectral estimation as well. To sidestep
interpolation, the Lomb–Scargle Fourier transform (51, 52) is often used, yet
it is known to overestimate the amplitudes at the high-frequency end (53).
Moreover, Fourier transform-based methods assume stationary processes,
an oft-violated assumption in geophysical time series. The resulting edge
effects are typically mitigated by detrending (54), an imperfect fix because
of the intrinsic difficulty of identifying the trend without compromising the
signal.

We address these challenges via the weighted wavelet Z-transform
(WWZ) (55), which suppresses the energy leakage caused by the data gaps.
It is wavelet based and therefore does not rely on interpolation or detrend-
ing. In particular, we use its variant (26), in which basis rotations mitigate
the numerical instability that occurs in pathological cases with the original
algorithm.

The WWZ method has one adjustable parameter, a decay constant that
balances the time resolution and frequency resolution of the wavelet
analysis. The smaller this constant is, the sharper the peaks. We choose
the value 0.001 to obtain smooth spectra that lend themselves to bet-
ter scaling exponent estimation, while still capturing the main period-
icities. For the purpose of showing the scalogram, we use the larger
value (8π2)−1, justified elsewhere (55, 56). The method is implemented via
the Pyleoclim Python package (57). Details are provided in SI Appendix,
section 3.

Estimation of Scaling Exponents. Taking the log on both sides of Eq. 1
yields log S∝ (−β) log f . Therefore, β is estimated via linear regression
in log space. To mitigate biases arising from nonuniform spacing in log
coordinates (more points are located in the high-frequency side than in
the low-frequency side), we apply Huybers and Curry’s (5) frequency bin-
ning procedure. When estimating the scaling exponents of the HadCRUT4
dataset, the annual cycle is removed to avoid biasing the estimate. We also
estimate the scaling exponents over frequency ranges where the power law
is well followed, which leads to different frequency intervals for different
series. Conclusions do not depend sensitively on these definitions, as similar
results are obtained with overlapping intervals.
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