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Observer-based Control Design for Linear Systems in the Presence of
Limited Measurement Streams and Intermittent Input Access*

Francesco Ferrante, Frédéric Gouaisbaut, Ricardo G. Sanfelice and Sophie Tarbouriech

Abstract— We consider the problem of stabilizing a lin-
ear time-invariant system in the presence of sporadic output
measurements and intermittent access to the plant input.
The plant is equipped with a zero-order hold device which
stores the value of the input between transmissions. We pro-
pose an observer-based controller composed consisting of a
measurement-triggered observer which experiences jumps in
its state whenever a new measure is available, a state-feedback
control law computed from the estimated state, and a copy
of the zero-order hold device feeding the plant, which jumps
whenever the control input is transmitted to the plant. The
closed-loop system is modeled as a hybrid system that includes
two timers triggering the two different events. The resulting
hybrid system is analyzed as the cascade of hybrid systems
and its asymptotic stability properties are established through
a separation principle. In addition, an efficient design procedure
is presented and illustrated in an example.

I. INTRODUCTION

Motivated by their versatility and low cost, the use of
embedded devices in control systems has become widely
popular in recent years. Unfortunately, digital devices intro-
duce time delays, quantization, sampling, and limited data
rate constraints, which can significantly affect the perfor-
mance and stability of a feedback loop [1], [2]. One of the
major drawbacks induced by digital devices pertains to the
intermittent availability of resources [3], [4], which makes
the (by now classical) periodic sampling paradigm, widely
studied in the literature unrealistic; see, e.g., [5], [6], [7].

The relevance of this issue in real-world applications
has lead researchers to study the problem of synthesis and
analysis of control systems in the presence of aperiodic
sampling from different angles. In [8], an approach based
on time-varying delay systems is proposed and sufficient
conditions for stability based on Krasovskii-Lyapunov func-
tionals were introduced. In [10], [11], an approach based
on the Lyapunov theorem in discrete time is proposed
to handle asynchronous samplings. More recently, hybrid
techniques have been employed to develop protocols that
guarantee closed-loop stability under aperiodic sampling and,
in particular, characterize the maximum allowable sampling
period; see [2], [12], [13] to just list a few. A common
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assumption in the literature of aperiodic sampling is that the
sample and hold operations, of the measured output and of
the control input occur synchronously. A notable exception
is [9], where the authors, by pursuing a time-delay approach,
propose a design for an output feedback controller, guaran-
teeing an H∞ performance, in the presence of aperiodic and
asynchronous sampling and holding operations. However, the
proposed approach therein is to some extent intrinsically
conservative due to the coarseness introduced by modeling
the sampling and holding operations as processes with time
delay.

This paper pertains to the modeling and design of an
observer-based controller to stabilize a linear time-invariant
system (LTI) in the presence of sporadic measurements
and intermittent access to the plant control input. Building
from the hybrid observer in [14], we propose an observer-
based controller whose structure takes into account both the
limitation afflicting the input channel and the output channel,
and does not assume that such events are synchronized. Since
the evolution of the considered observer-based controller
has variables that exhibit both continuous-time behavior and
instantaneous updating (which are not periodic), we provide a
hybrid model of such a system that captures all the dynamics
induced by the occurrence of the sampling and hold events.
By relying on the well-posedness of the hybrid closed-
loop system, as defined in [15], we show that a separation
principle applies for the design of the proposed scheme.
More precisely, inspired by [16], we treat the closed-loop
system as the cascade of hybrid systems and then following
similar arguments as those for upper triangular nonlinear
systems, we establish a global asymptotic stability property
of the closed-loop system by exploiting the properties of the
individual system defining the cascade. Note that the design
of the proposed observer-based controller is not carried out
using an emulation approach, namely, it is not designed by
building from an asymptotically stable loop and analyzing
the effect of sampling and hold as bounded perturbations,
cf. [17].

The paper is organized as follows. Section II presents
the system under consideration, the stabilization problem we
intend to solve, and the hybrid modeling of the proposed
controller as well as of the closed-loop system. Section III is
dedicated to the main results, which provide a solution to the
stabilization problem and design procedures for the proposed
observer-based controller. In Section IV, the effectiveness
of the approach is illustrated in a numerical example. Due
to space limitations, proofs of the results will be published
elsewhere.
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Fig. 1: Continuous-time plant P controlled by the controller
K, which has intermittent access to the input channel and
sporadic available measurements of the output y.

Notation: The set N0 is the set of the positive integers including
zero and R≥0 represents the set of the nonnegative real scalars.
The identity matrix is denoted by I, whereas the null matrix is
denoted by 0. For a matrix A ∈ Rn×m, A′ denotes the transpose
of A, ‖A‖ denotes the induced 2-norm and He(A) = A + A′.
For two symmetric matrices, A and B, A > B means that A−B
is positive definite. In partitioned symmetric matrices, the symbol
? stands for symmetric blocks. The matrix diag{A1, . . . , An} is
the block-diagonal matrix having A1, . . . , An as diagonal blocks.
For a vector x ∈ Rn, ‖x‖ denotes the Euclidean norm. Given two
vectors x, y, we denote (x, y) = [x′ y′]′. Given a set X , co{X}
represents the convex hull of X , δB is the closed ball with radius
δ of appropriate dimension in the Euclidean norm. Given a hybrid
system H = (C,F,D,G) with state in R` and a set J ⊂ R`,
H|J = (C ∩J , F,D ∩J , G) is the restriction of H to J . Given
a vector x ∈ Rn and a closed set A, the distance of x from A is
defined as |x|A = infy∈A ‖x− y‖. For any function z : R→ Rn,
we denote z(t+) := lims→t+ z(s).

II. PROBLEM STATEMENT

A. System Description
Consider the following continuous-time linear system:

P :

{
ż = Az +Bu

y =Mz
(1)

where z ∈ Rn, y ∈ Rq and u ∈ Rp are, respectively, the
state, the measured output, and the input of the system, while
A,B and M are constant matrices of appropriate dimensions.
Now, let us suppose that both the input channel and the
output channel of system (1) are accessible in an intermittent
fashion. Specifically, let us assume that the output of system
(1) is gathered only at time instances tk, k ∈ N0, not known
a priori and that the input channel grants its access only at
time instances sk, k ∈ N0, not known a priori. Specifically,
suppose that {tk}+∞0 and {sk}+∞0 are two strictly increasing
unbounded real sequences of times and assume that there
exist four positive real scalars TO1 ≤ TO2 , T

U
1 ≤ TU2 , such

that

TO1 ≤ tk+1 − tk ≤ TO2 ∀k ∈ N0 (2)

TU1 ≤ sk+1 − sk ≤ TU2 ∀k ∈ N0 (3)

The problem studied in this paper consists of designing
an observer-based controller that asymptotically stabilizes
the resulting closed-loop system for any given sequences
satisfying (2) and (3) providing respectively measurements
of the plant output and input access. To solve this problem,
since the information of the output y is available in an impul-
sive fashion and the input channel is available sporadically,
motivated by [14], we design an observer-based controller
with jumps in its state (ẑ, û), given by

K:



˙̂z = Aẑ +Bû
˙̂u = 0

}
t /∈ {tk}+∞0 ∪ {sk}+∞0

ẑ(t+) = ẑ(t)
û(t+) = Kẑ(t)

}
t ∈ {sk}+∞0

ẑ(t+) = ẑ(t) + LM(z(t)− ẑ(t))
û(t+) = û(t)

}
t ∈{tk}+∞0

yK = Kẑ
(4)

where L and K are two matrices of appropriate dimensions
to be designed. The variable ẑ represents the estimated state
of the plant generated by the observer by means of the
measured plant output y, while û stores the last value of
the control input transmitted to the plant. Indeed, whenever
a new sample of the control value is sent to the plant,
the controller accordingly updates its internal variable û
so as to memorize the signal applied to the plant input
u. Furthermore, the plant is equipped with a zero-order
hold device which stores the value of the last received
input between two transmissions, see Fig. 1. Thus, the input
applied to the plant is piecewise constant, and specifically, for
every integer k ≥ 1, u(t) = Kẑ(sk) for t ∈ [sk, sk+1), while
u(t) = u(0) for t ∈ [0, t1), where u(0) denotes the initial
condition of the zero-order hold device. Moreover, notice
that if t ∈ {tk}∞0 ∩ {sk}∞0 then both ẑ and û need to be
updated.

B. Hybrid Modeling

The fact that the closed-loop system experiences jumps
when a new measurement is available or when the input
channel grants access to the controller suggests that the
dynamics of the closed-loop system can be described via
a hybrid system. We provide a hybrid model that captures
not only the behavior due to a single pair of sequences
{tk}∞0 , {sk}∞0 , but each possible evolution generated by any
sequence satisfying (2) and (3). This is a unique approach
that, while leads to nonunique solutions, allows to established
a strong result for a family of sequences tk and sk. The pro-
posed modeling approach requires to model the time-driven
mechanism governing the availability of measurements or of
access to the plant input. To this end, following [14], and



in a similar fashion as in [12], we add two auxiliary timer
variables τ1 and τ2 to keep track of the duration of flows
and to trigger jumps according to the mechanism in (4).
In particular, this modeling procedure leads to a model that
can be efficiently represented by the framework for hybrid
systems proposed in [15].

To accomplish that, we make τ1 and τ2 decrease as
ordinary time t increases and, whenever τ1 = 0 or τ2 = 0,
reset it to any point in [0, TU2 ] or [0, TO2 ] respectively, so
as to enforce (2) and (3), respectively. Then, after a jump
occurs, the two timers are reset according to the following
jump rule:

[
τ+1
τ+2

]
∈



[
[TU1 , T

U
2 ]

τ2

]
if τ1 = 0, τ2 6= 0[

τ1

[TO1 , T
O
2 ]

]
if τ1 6= 0, τ2 = 0{[

[TU1 , T
U
2 ]

τ2

]
,

[
τ1

[TO1 , T
O
2 ]

]}
if τ1 = τ2 = 0

where τ+1 and τ+2 represent the value, respectively of τ1
and τ2, after a jump occurs. To capture this mechanism, we
define a hybrid system H within the framework in [15]. Let
x̃ = (z, u, τ1, ẑ, û, τ2) be the state vector. Define the flow
map as

F (x) :=


Az +Bu

0
−1

Aẑ +Bû
0
−1


for each x ∈ C = Rn ×Rp × [0, TU2 ]×Rn ×Rp × [0, TO2 ],
where C is the flow set. For each x ∈ D, define the jump
mas as

G(x) :=


G1(x) ifx ∈ D1 \D2

G2(x) ifx ∈ D2 \D1

{G1(x), G2(x)} ifx ∈ D1 ∩D2

where for each x ∈ D = D1 ∪D2,

G1(x) =


z
Kẑ

[TU1 , T
U
2 ]

ẑ
Kẑ
τ2

 , G2(x) =


z
u
τ1

ẑ + LM(z − ẑ)
û

[TO1 , T
O
2 ]

 (5)

D1 = Rn × Rp × {0} × Rn × Rp × [0, TO2 ]

D2 = Rn × Rp × [0, TU2 ]× Rn × Rp × {0}.
(6)

The set D is the jump set. These objects define a hybrid
system H = (C,F,D,G) that represents the dynamics of
the closed-loop system. Notice that this hybrid system is
well-posed; see [15] for more details and consequences of
well-posedness. Concerning the existence of solutions to
system H, by relying on the concept of solution proposed

in [15, Definition 2.6], it is straightforward to check that
for every initial condition φ(0, 0) ∈ C ∪D, every maximal
solution to φ, (that is a solution whose domain is not the
truncation of the domain of any other solution) is complete,
i.e., sup domφ = ∞. Moreover, the following properties
hold:
• For every (t, j) ∈ domφ such that (t, j + 1) ∈ domφ

and φ(t, j) ∈ D2 \D1, one has (t, j + 2) /∈ domφ,
• For every (t, j) ∈ domφ such that (t, j + 1) ∈ domφ

and φ(t, j) ∈ D1 \D2, one has (t, j + 2) /∈ domφ,
• For every (t, j) ∈ domφ such that (t, j + 1) ∈ domφ

and φ(t, j) ∈ D1 ∩ D2, we have either φ(t, j + 1) ∈
D1 \D2 or φ(t, j + 1) ∈ D2 \D1,

that is, at most two jumps can occur consecutively with-
out flowing. Moreover, for every maximal solution φ to
H, due to (2) and (3), every (t, j) ∈ domφ such that
(t, s) ∈ domφ, for some s ∈ {j + 1, j + 2}, implies that{
[t, t+min{TO1 , TU1 }]× {s}

}
⊂ domφ. Essentially, the

domain of the solutions to H manifests an average dwell-
time property, with dwell time τD = min{TO1 , TU1 } and
offset N0 = 2; see, e.g., [15, Example 2.15]. Such a property
imposes a strictly positive uniform lower bound on the length
of every flow interval, preventing from the existence of Zeno
solutions.

Now, for the purpose of stabilization, consider the follow-
ing change of coordinates:

(z, u, τ1, ε, ũ, τ2) = (z, u, τ1, z − ẑ, u− û, τ2) = xe

which leads to the following model of the closed-loop system
H: {

ẋe = Fe(x̃e) xe ∈ Ce
x+e ∈ Ge(xe) xe ∈ De

(7a)

where Ce = C,De = D1e ∪D2e, D1e = D1, D2e = D2 and

Fe(xe) =


Az +Bu

0
−1

Aε+Bũ
0
−1

 , G1e(xe) =


z

K(z − ε)
[TU1 , T

U
2 ]

ε
0
τ2



G2e(xe) =


z
u
τ1

(I − LM)ε
ũ

[TO1 , T
O
2 ]



Ge(xe) =


G1e(xe) if xe ∈ D1e \D2e

G2e(xe) if xe ∈ D2e \D1e

{G1e(xe), G2e(xe)} if xe ∈ D1e ∩D2e.

Remark 1: A notable property enforced by timer τ1 is
that for every maximal solution to (7), there exists (T, J) ∈
domφ satisfying T + J ≤ TU2 , such that φ(T, J) ∈ D2e,
which implies that ũ(T, J+1) = 0. Then, since the set Rn×
Rp×[0, TU2 ]×Rn×{0}×[0, TO2 ] is strongly forward invariant
for (7) (see [15, Definition 6.25.] for a formal definition of



strong forward invariance for hybrid systems), it follows that
for every initial condition φ(0, 0) ∈ Ce∪De, ũ converges to
zero in finite hybrid time. Moreover, notice that to make the
hybrid system (7) an accurate description of the real time-
triggered phenomenon, which governs the update process, τ1
and τ2 have to belong to the intervals [0, TU2 ] and [0, TO2 ]
respectively, which is a property that is guaranteed by the
definition of Ce and De.

In this paper, we consider the following notions for a
general hybrid system H with state in R`.

Definition 1: ([15, Definition 7.1.]) Let A ⊂ R` be
compact. The set A is
• stable for H if for every ε > 0 there exists δ > 0 such

that every solution to H with |φ(0, 0)|A ≤ δ satisfies
|φ(t, j)|A ≤ ε for all (t, j) ∈ domφ;

• locally attractive for H if there exists µ > 0 such that
every maximal solution φ to H with |φ(0, 0)|A ≤ µ is
complete and satisfies limt+j→+∞ |φ(t, j)|A = 0;

• locally asymptotically stable (LAS) for H, if it is both
stable and locally attractive for H;

• globally asymptotically stable (GAS) for H, if it is both
stable and locally attractive for H for every µ > 0.

Then, by introducing the set

A = {0} × {0} × [0, TU2 ]× {0} × {0} × [0, TO2 ] (8)

for which, for every xe ∈ Ce ∪ De ∪ Ge(De), |xe|A =
‖(z, u, ε, ũ)‖, the problem we solve is as follows:

Problem 1: Given the matrices A, B, and M of ap-
propriate dimensions and four positive scalars TU1 ≤ TU2 ,
TO1 ≤ TO2 , design matrices L ∈ Rn×q and K ∈ Rp×n such
that the set A in (8) is globally asymptotically stable for the
hybrid system (7).

To cope with this problem, we treat (7) as the cascade
of two hybrid systems (modulo the coupling effect, yet
vanishing in finite time, as shown in Remark 1, induced by
ũ on the ε dynamics). Namely, this cascade is composed by
the ε dynamics along with its timer τ2, which enters into the
(z, u, τ1) dynamics.

III. MAIN RESULTS

A. A Solution via a Separation Principle

In this section, we provide a solution to Problem 1 that
relies on the properties inherited from the components of the
closed-loop system, namely, the observer and the controller
subsystems.

Assumption 1 (Observer subsystem): The hybrid system
ε̇ = Aε
τ̇2 = −1

}
(ε, τ2) ∈ Co

ε+ = (I − LM)ε
τ+2 ∈ [TO1 , T

O
2 ]

}
(ε, τ2) ∈ Do

(9a)

where
Co = Rn × [0, TO2 ], Do = Rn × {0} (9b)

has the set Ao = {(ε, τ2) ∈ Rn+1 : ε = 0, τ2 ∈ [0, TO2 ]}
GAS. 4

Assumption 2 (Controller subsystem): The hybrid system



ż = Az +Bu
u̇ = 0
τ̇1 = −1

 (z, u, τ1) ∈ CK

z+ = z
u+ = Kz
τ+1 ∈ [TU1 , T

U
2 ]

 (z, u, τ1) ∈ DK

(10a)

where

CK = Rn × Rp × [0, TU2 ], DK = Rn × Rp × {0} (10b)

has the set AK = {0} × {0} × [0, TU2 ] GAS. 4
A sufficient condition guaranteeing that Assumption 1

holds is given in [14, Corollary 1], while a sufficient con-
dition for Assumption 2 and Assumption 3 to hold is given
in Proposition 1; see Section III-C for constructive design
procedures for L and K, and also [15, Example 3.21]

The following result establishes asymptotic stability of
the set A for the closed-loop system (7) under the two
aforementioned assumptions.

Theorem 1: Let Assumption 1 and Assumption 2 hold.
Then, the set A defined in (8) is LAS for system (7).
Furthermore, its basin of attraction contains every initial
condition such that the resulting solutions are bounded. �

The above result establishes LAS for the set A and
suggests that if every solution to the closed-loop system is
bounded, then the asymptotic stability holds globally (since,
in that case, the basin of attraction would include Ce ∪De).
Given a solution to the closed-loop system, boundedness of
τ1, τ2 and ũ is guaranteed by construction of the controller,
while Assumption 1 guarantees boundedness of ε. On the
other hand, boundedness of the z and u components requires
further conditions to hold, in particular, due to ε entering the
dynamics of z and u as an additive disturbance through the
jumps of u; see (7). The following assumption imposes a
boundedness property on z and u under vanishing distur-
bances. Such an assumption is also needed in cascades of
continuous-time systems; see, e.g., [19, Theorem 10.3.1 and
Corollary 10.3.3].

Assumption 3 (Boundedness for vanishing inputs): The
solutions to

ż = Az +Bu
u̇ = 0
τ̇1 = −1

 (z, u, τ1) ∈ CK

z+ = z
u+ = Kz −Ku0
τ+1 ∈ [TU1 , T

U
2 ]

 (z, u, τ1) ∈ DK

(11)

are bounded for every u0 s.t. limt+j→∞ u0(t, j) = 0. 4
A checkable sufficient condition for Assumption 3 is in the
next section; see Proposition 1. Next, we provide a solution
to Problem 1.

Theorem 2: Given four positive scalars TO1 ≤ TO2 and
TU1 ≤ TU2 , if there exist a matrix L ∈ Rq×n such that
Assumption 1 holds and a matrix K ∈ Rp×n such that
Assumption 2 and Assumption 3 hold, then the set A defined
in (8) is GAS for the hybrid system (7). �



B. Sufficient Conditions

Now, we provide sufficient conditions guaranteeing that
that stated assumptions hold.

The observer gain L can be already designed to satisfy
Assumption 1 via [14, Corollary 1]. To design the controller
K ensuring that Assumption 2 and Assumption 3 are verified,
the following constructing method is provided. It uses ideas
from [15, Example 3.21].

Proposition 1: If there exist a symmetric positive definite
matrix P ∈ R(n+p)×(n+p), and a matrix K ∈ Rp×n such that

G′eF
′vPeFvG− P < 0 ∀v ∈ [TU1 , T

U
2 ], (12)

where
F =

[
A B
0 0

]
,G =

[
I 0
K 0

]
(13)

then Assumption 2 and Assumption 3 are verified. �

C. Design Procedure

Direct computation of the gain K via Proposition 1 is not
straightforward. In particular, from a numerical standpoint,
(12) has two issues: it is not-convex in P and K, and it
needs to be verified for infinitely many values of v. The
relevance of the second issue is evident at a first sight, while
the lack of convexity is a severe constraint, since nonconvex
problems often lead to NP-hard problems; see, for example,
[20]. Thus, to make the problem numerically tractable, some
manipulations are needed. To this end, the following results
allow to derive a convex design procedure for the proposed
controller.

Proposition 2: If there exist a matrix K ∈ Rp×n, and a
symmetric positive definite matrix P1 ∈ Rn×n, such that for
each v ∈ [TU1 , T

U
2 ],(

eAv +

∫ v

0

eAsdsBK

)′
P1

(
eAv +

∫ v

0

eAsdsBK

)
−P1<0

(14)
then, there exists a symmetric positive matrix P ∈
Rn+p×n+p, such that the pair (K,P) satisfies (12). �
Now, we proceed to provide a convex condition in the
decision variables K and P1 that is equivalent to (14).

Proposition 3: The matrices P1 and K satisfy condition
(14), if and only if there exist a symmetric positive definite
matrix W ∈ Rn×n, a matrix S ∈ Rn×n, and a matrix Y ∈
Rp×n such that, KS = Y , S′P1S = W , and for each v ∈
[TU1 , T

U
2 ][
W + S + S′ −eAvS −

∫ v
0
eAsdsBY

? −W

]
< 0. (15)

�
Proposition 3 provides an equivalent condition to (14), which
is convex in the decision variables W and S. Nevertheless,
it still has to be verified for infinitely many values of v.
This situation often occurs in the literature of sample data
systems and impulsive systems, see for example [21] and

the reference therein. Obviously, to effectively design the
controller gain K, one needs to avoid finding a solution
to (15) for infinitely many values of v. A general pro-
cedure to overcome this issue consists of embedding the
terms eAv and

∫ v
0
eAsds, with v ∈ [TU1 , T

U
2 ], in a convex

set, (other approaches could be used to cope with this
issue; see, e.g., [22]). Namely, one needs to find matrices
R1, R2, . . . , Rµ, Q1, Q2, . . . , Qχ ∈ Rn×n, such that eAv ∈
co{R1, R2, . . . , Rν} and

∫ v
0
eAsds ∈ co{Q1, Q2, . . . , Qχ}

for each v ∈ [TU1 , T
U
2 ]. Then, by exploiting the convexity

of condition (15), one can obtain a finite set of inequalities.
Specifically, we want to pursue a similar approach as in [14],
where a sufficient convex condition to design the observer
gain L is given. To this end, let us consider the following
result.

Proposition 4: Let

X1 =

[
R1 Q1

U1 L1

]
, X2 =

[
R2 Q2

U2 L2

]
, . . . , Xν =

[
Rν Qν
Uν Lν

]
(16)

be matrices such that for each v ∈ [TU1 , T
U
2 ],

exp

([
A B
0 0

]
v

)
∈ co {X1, X2, . . . , Xν} . (17)

If there exist a symmetric positive definite matrix W ∈
Rn×n, a matrix S ∈ Rn×n and a matrix Y ∈ Rp×n such
that for every i = 1, . . . , ν[

W + S + S′ S′ −RiS −QiY
? −W

]
< 0, (18)

then K = Y S−1 ensures Assumption 2 and Assumption 3.
�
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Fig. 2: Evolution of (z, ẑ) projected onto ordinary time, z (blue)
and ẑ (dashed black).
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Fig. 3: Evolution of (u, τ1, τ2) projected onto ordinary time.

IV. NUMERICAL EXAMPLE

Consider the linearized model for the unstable batch
reactor in [24], which is described by the following data:

A =

[ 1.38 −0.208 6.71 −5.68
−0.581 −4.29 0 0.675
1.07 4.27 −6.65 5.89
0.048 4.27 1.34 −2.1

]
, B =

[
0 0

5.68 0
1.14 −3.15
1.14 0

]
M =

[
1 0 1 −1
0 1 0 0

] (19)

and assume TO1 = TU1 = 0.1 and TO2 = TU2 = 0.9. The
procedure proposed in [14, Corollary 1] yields

L =

[
0.8625 −0.0994
−0.0000 1.0000
0.1340 0.2916
−0.0036 0.1922

]
while, via Proposition 4 applied building from the
polytopic embedding technique proposed in [14], gives
K =

[
0.1074 0.3680 −0.0414 −0.0702
0.8996 0.5143 0.0594 0.1486

]
.

Fig. 2 depicts the projection onto ordinary time t of the
states z and ẑ, while Fig. 3 reports the evolution of the
control variable u, and of the two timers τ1 and τ2 projected
onto ordinary time. Simulations show the effectiveness of
the proposed approach, by stressing that the stabilization is
achieved despite the lack of synchronism between the output
sampling and input updating, as Fig. 3 suggests.

V. CONCLUSION

This paper proposed a methodology to model and design,
through a convex setup, an observer-based controller in the
presence of sporadically available measurement and temporal
constrained input access. One of the main contributions
provided by this paper consists in showing that a separation
principle can be applied to design the observer and the
controller. With the proposed observer-based controller, a nu-
merical design procedure based on convex optimization was
proposed. Future directions of research include allowing for
more complex topologies as well as extensions to nonlinear
plants.
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