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Introduction
The course of multiple sclerosis (MS) was traditionally 
categorized as relapsing or progressive, with relapses 
associated with focal inflammation and progression 
with neurodegeneration. Recent advances in therapeu-
tics have increased control of MS relapses in most 
patients but have also unmasked an underlying insidi-
ous progression, termed progression independent of 
relapses, in many patients previously thought to have 
relapsing–remitting disease.1 Thus, progression can 
now be viewed as a universal feature of MS that is pre-
sent throughout the disease course. Consequently, 

optimal control of MS would require that progression is 
minimized or eliminated in all patients. To achieve this 
goal, sensitive tools for monitoring disability in all peo-
ple with MS (PwMS) are required, even for patients 
whose disease activity appears to be superficially under 
control in terms of relapses.2 Furthermore, detection of 
progression onset or worsening is critical to optimally 
adapt the therapeutic strategy. Additional challenges in 
MS disability assessment include detection of pseudo-
relapses and symptoms that often fluctuate with illness, 
fatigue, or changes in body temperature.3–5 These fluctu-
ations limit the utility of once- or twice-yearly in-clinic 
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Background: Sensor-based monitoring tools fill a critical gap in multiple sclerosis (MS) research and 
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Objective: The aim of this study is to assess performance characteristics of the Floodlight Proof-of-
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were moderate-to-good (ICC(2,1) = 0.61–0.85) across tests. Correlations with domain-specific standard 
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monitoring; a more frequent estimate of function during 
daily life routine is likely to have greater value in track-
ing MS impairment.

Smartphone sensor-based, remotely administered digi-
tal tests represent a promising new avenue to capture 
disability burden with quantitative accuracy.6 Such 
tests typically allow the remote capture of ecologically 
valid measures in a frequent, time- and cost-efficient 
fashion with minimal patient burden. In addition, they 
quantify multiple aspects of nervous system function 
during a given task, in opposition to clinician-adminis-
tered disability tests that only assess the capacity to 
complete a task with a performance summary score.7,8 
Consequently, sensor-based tests can potentially disen-
tangle intra- and inter-individual differences in under-
lying patterns of overall identical levels of MS-related 
functional impairment and thereby augment the resolu-
tion of disability measures compared with traditional 
scores.7 They are also rater-independent, offering more 
objective measures of functional ability.8–10

In recent years, sensor-based tests have been increas-
ingly used to assess functional ability in MS,7–14 as 
well as in Parkinson’s disease15 and Huntington’s dis-
ease.16,17 The Floodlight Proof-of-Concept (PoC) app 
was designed to remotely measure, at home in an 
unsupervised setting, functional ability in cognitive, 
upper extremity, and gait and balance domains using 
a smartphone device without additional hardware.9 
Consequently, assessment with the Floodlight PoC 
app can be performed more frequently than clinician-
administered tests, which potentially allows the cap-
ture of subtle changes in function that occur in 
free-living environments between clinic visits, includ-
ing changes that would not necessarily trigger clinical 
interventions. The study “Monitoring of Multiple 
Sclerosis Participants With the Use of Digital 
Technology (Smartphones and Smartwatches)—A 
Feasibility Study” was the first clinical trial to imple-
ment the Floodlight PoC app.9 Using data from this 
study, we previously demonstrated that PwMS were 
engaged and highly satisfied with this app.9 We 
expand on this prior work by presenting here the criti-
cal evaluation of the app’s test–retest reliability and 
its correlations with standard clinical and magnetic 
resonance imaging (MRI) measures in PwMS.

Methods

Study design and participants
The present study is a 24-week, prospective study 
(clinicaltrials.gov: NCT02952911) aimed to assess the 
feasibility of remotely monitoring PwMS with the 

Floodlight PoC app, which was developed for use in 
this study on a provisioned smartphone and smart-
watch. The full study design and inclusion/exclusion 
criteria have been previously described.9 Both PwMS 
and healthy controls (HC) were 18–55 years of age. 
PwMS (untreated or treated) were diagnosed according 
to the 2010 revised McDonald criteria18 and had an 
Expanded Disability Status Scale (EDSS) score at 
baseline between 0.0 and 5.5, inclusive. All patients 
provided written informed consent. At each scheduled 
clinic visit (baseline, Week 12, Week 24), all partici-
pants underwent a clinical evaluation. In addition, 
PwMS were assessed by MRI at baseline and Week 24.

Participants were provided with a preconfigured 
smartphone (Samsung Galaxy S7) and smartwatch 
(Motorola 360 Sport) with the Floodlight PoC app 
installed;9 for this report, only the smartphone data 
are reported. The smartphone prompted all partici-
pants to perform daily or weekly remote, sensor-based 
tests, referred to as active tests (Table 1). In addition, 
for passive monitoring, sensor data were passively 
recorded to examine ambulation and overall mobility 
in daily life (Table 1). Participants were encouraged 
to continuously carry the device to gather data for 
passive monitoring.

Floodlight PoC app
The Floodlight PoC app was designed to assess 
functional abilities across three key domains 
affected by MS: cognition, upper extremity func-
tion, and gait and balance.9 Cognition was assessed 
using the electronic Symbol Digit Modalities Test 
(e-SDMT). As with the oral Symbol Digit Modalities 
Test (SDMT), it assessed impairment of key neuro-
logic functions underlying cognitive information 
processing speed. The aim was to correctly match a 
maximum number of symbols to their paired digits 
within 90 seconds.

The Pinching Test and Draw a Shape Test assessed 
upper extremity function. The Pinching Test evalu-
ated fine pinching or grasping dexterity and 
instructed participants to successfully pinch as many 
circular tomato shapes appearing on the smartphone 
screen at different positions as possible within 30 
seconds. The Draw a Shape Test, which required 
participants to draw six prewritten shapes of increas-
ing complexity (two diagonal lines, a square, circle, 
a figure-of-8, and a spiral), assessed fine finger or 
manual dexterity

Finally, the Static Balance Test (SBT), U-Turn Test 
(UTT), Walk Test, and Passive Monitoring examined 
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gait and balance. The SBT was designed to study  
balance by asking the participants to stand, unsup-
ported, as still as possible for 30 seconds. The UTT 
instructed participants to perform five successive 
U-turns separated by at least 4 meters within 1 minute 
at a comfortable pace to evaluate difficulties or unu-
sual patterns in turning while walking and dynamic 
balance. The Walk Test aimed to assess gait while 
walking as fast as possible but also safely for 2 minutes 
on an even ground without performing U-turns. 
Finally, Passive Monitoring examined both aspects of 
gait—turning while walking and regular, straight 
walking—throughout the day. While performing the 
gait assessments, participants carried the smartphone 
in a running belt or in their trouser pocket and were 
permitted to use an assistive device and/or orthotic as 
needed.

For each active test and passive monitoring, one to 
two test features that are illustrative of the test and 
probe different neurologic concepts were extracted 
from the raw sensor data (Table 1).

Signal processing
As the smartphone-based tests were performed with-
out supervision by a physician or study coordinator, 
quality control steps were applied to identify and 
exclude individual assessments that were performed 
incorrectly. This ensures the measurements are both 
reliable and accurate. To exclude such incorrectly 
performed assessments, quality control flags were 
defined for each test (Table S1). In addition, only suf-
ficiently adherent participants, that is, those who 
contributed at least six individual assessments in the 
course of the study, were included in the analysis of 
that particular test. Applying these two quality con-
trol steps resulted in the final dataset consisting of 
valid assessments.

Next, all valid assessments contributed by a partici-
pant were aggregated to study test–retest reliability 
and Spearman’s rank correlations in a cross-sec-
tional analysis. As the tests were performed once 
daily at most, the test–retest analysis was based on 
the median test performance on the active tests and 
passive monitoring during 12 two-week windows. 
Two-week windows were chosen to reduce variabil-
ity that is independent of general disease status and 
might be attributed to good or bad days or to differ-
ences between weekdays and weekends. For the 
cross-sectional correlation analysis, the median test 
performance across the entire study duration as well 
as the mean of the three in-clinic assessments (mean 
of two assessments for MRI) were computed.

Statistical analysis
Test–retest reliability was evaluated with intraclass 
correlation coefficients (ICC[2,1]) separately in PwMS 
and HC, which considered all consecutive 2-week win-
dows. Generally, at least three valid individual assess-
ments were required for each 2-week period. An 
exception was made for the e-SDMT to accommodate 
its weekly testing schedule; only one valid e-SDMT 
assessment for each 2-week window was considered 
sufficient. Test–retest reliability was considered as 
poor (ICC < 0.5), moderate (ICC = 0.5–0.75), good 
(ICC = 0.75–0.9), or excellent (ICC > 0.9).19

To examine the agreement of the test features from 
the Floodlight PoC app with standard clinical and 
MRI measures in PwMS, the test features were cor-
related against domain-specific clinical measures 
(oral SDMT, Nine-Hole Peg Test [9HPT], Berg 
Balance Scale [BBS], Timed 25-Foot Walk [T25FW]), 
EDSS, 29-item Multiple Sclerosis Impact Scale 
(MSIS-29) items or subscales, T2 FLAIR (fluid-
attenuated inversion recovery lesion volume, and nor-
malized brain volume using Spearman’s rank 
correlation. In addition, test features from UTT and 
Walk Test were correlated against corresponding fea-
tures obtained from Passive Monitoring. The strength 
of correlation was considered as good-to-excellent 
(|r|> 0.75), moderate-to-good (|r|= 0.5–0.75), fair 
(|r|= 0.2–0.49), or not correlated (|r|< 0.25), where 
|r|represents the absolute value.20

Partial correlation analyses were performed for the 
upper extremity function tests and gait assessments to 
investigate the contribution of each test and test fea-
ture in predicting 9HPT times and T25FW times, 
respectively. All test features from the Pinching Test 
and the Draw a Shape Test as well as 9HPT time were 
included in the upper extremity function model. Each 
of these features was correlated against each other 
while controlling for the remaining features in the 
model. The partial correlation for the gait assessments 
was run in a similar fashion but included all test fea-
tures from the UTT, Walk Test, and Passive Monitoring 
in addition to T25FW time instead.

All correlations were adjusted for age and sex with a 
robust linear model. Statistical significance was set at 
p < 0.05 without correction for multiple 
comparisons.

Results
Full baseline demographics and disease characteristics 
have been previously described9 and are summarized in 
Table 2. In total, 76 PwMS were enrolled between 
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November 2016 and May 2018. Most PwMS had mild 
disease (mean baseline EDSS: 2.4; EDSS range: 0.0–
5.5) and were diagnosed with relapsing–remitting MS. 
Valid data were available in 68–73  PwMS. PwMS and 
in 18–24 HC across the 10 tests considered (Figure S1), 
using test-specific quality control criteria. Similarly, 
81.5–99.9% of assessments in PwMS and 76.0–99.9% 
of assessments in HC were considered valid (Figure 
S2). During the 24-week study, only eight participants 
exhibited a change in EDSS ⩾ 1, which is defined as 
clinically meaningful,21 an insufficient number to ena-
ble further analysis of changes in EDSS (Figure S3).

Test–retest reliability
Test–retest reliability was assessed in PwMS and HC 
with valid assessments in all consecutive 2-week win-
dows (range: 32–46 PwMS and 8–11 HC). In PwMS, 
ICCs(2,1) were moderate or good (Table 3), suggest-
ing that reliable data can be captured with the 
Floodlight PoC app. In HC, where the group sizes 
were lower, ICCs(2,1) were mostly poor to good.

Correlation with clinical and MRI measures
The age- and sex-adjusted Spearman’s rank correla-
tion analysis in PwMS is summarized in Table 3 and 
Figure 1. All statistically significant correlations were 
in the expected direction. Thus, increasing levels of 
MS-related disability were associated with worse per-
formance on the Floodlight PoC app.

Overall, strongest correlations of test features were 
observed with the respective domain-specific standard 
clinical disability measures. These correlations were 
good-to-excellent in the cognitive domain (r = 0.82) 
and fair or moderate-to-good in the upper extremity 
function domain (│r│= 0.40–0.64) and gait and bal-
ance domain (r = −0.25 to –0.52, all p < 0.05). Only 
the SBT did not correlate with its domain-specific 
standard clinical measure, the BBS (r = −0.20, p > 
0.05). Most test features also correlated with EDSS (all 
p < 0.05 except for Draw a Shape Test overall mean 
trace celerity and Passive Monitoring step power) and 
their respective MSIS-29 subscale or items (all p < 0.05 
except for Draw a Shape Test overall mean trace celer-
ity, Passive Monitoring turn speed, and Passive 
Monitoring step power). Normalized brain volume cor-
related significantly with test features across all domains 
with the strongest association found with e-SDMT (r = 
0.54, p < 0.001). Similar results were obtained with 
unadjusted measures (Table S3).

Table 2.  Baseline demographics and disease characteristics.

Variable N = 76

Age (years), mean (SD) 39.5 (7.9)

Female, n (%) 53 (69.7)

Diagnosis, n (%)  

 � Primary progressive multiple 
sclerosis

3 (3.9)

 � Secondary progressive multiple 
sclerosis

4 (5.3)

 � Relapsing–remitting multiple 
sclerosis

69 (90.8)

Expanded Disability Status Scale  

  Mean (SD) 2.4 (1.4)

  Median 2.0

  IQR 1.5–3.5

  Range 0.0–5.5

Oral Symbol Digit Modalities Test 
score

 

  Mean (SD) 53.8 (11.8)

  Median 55.0

  IQR 46.0–63.0

  Range 26.0–77.0

Nine-Hole Peg Test time (s)  

  Mean (SD) 22.2 (4.0)

  Median 21.4

  IQR 19.7–23.7

  Range 16.4–39.6

Berg Balance Scale total score  

  Mean (SD) 52.5 (5.7)

  Median 56.0

  IQR 51.0–56.0

  Range 31.0–56.0

Timed 25-Foot Walk time (s)  

  Mean (SD) 6.0 (2.1)

  Median 5.3

  IQR 4.6–6.8

  Range 3.5–12.1

T2 FLAIR lesion volume (mL)  

  Mean (SD) 6.3 (7.5)

  Median 3.0

  IQR 1.0–9.3

  Range 0.1–31.2

Normalized brain volume (mL)  

  Mean (SD) 1474.5 (75.6)

  Median 1477.2

  IQR 1439.6–1525.6
  Range 1137.3–1628.1

SD: standard deviation; IQR: interquartile range; FLAIR: 
fluid-attenuated inversion recovery.
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Next, we assessed correlations between active gait 
tests and passive monitoring. UTT turn speed 
showed moderate-to-good correlation with Passive 
Monitoring turn speed (r = 0.43, p < 0.001). 
Stronger, good-to-excellent positive correlations 
were observed between Walk Test step power and 

Passive Monitoring step power (r = 0.76, p < 
0.001; Figure 2).

The partial correlation analysis revealed that both the 
Pinching Test (double touch asynchrony: partial r = 0.37, 
p < 0.001) and Draw a Shape Test (overall mean trace 
accuracy: partial r = −0.40, p < 0.001; overall mean trace 
celerity: partial r = −0.30, p < 0.01) contain independent 
information in predicting 9HPT time (Figure S4). Similarly, 
the UTT carries unique information in predicting T25FW 
time when correcting for the other gait features (partial  
r = −0.31, p < 0.01; Figure S5).

Comparing the performance of the e-SDMT and oral 
SDMT in PwMS and HC showed that both HC and 
PwMS had fewer correct responses on the e-SDMT 
compared with the oral SDMT (Figure S6).

Discussion
Here, we provide the first evidence that the Floodlight 
PoC app can reliably capture clinically relevant data 
measures of functional impairment in PwMS. By lever-
aging smartphone-based consumer technology for clini-
cal research, the Floodlight PoC app assesses key 
neurological domains affected by MS and provides a 
more objective and detailed picture of the disease than is 
possible with standard “point of care” clinical assess-
ments. Results from this study indicate that test features 
derived from the Floodlight PoC app hold potential for 
use in clinical research and practice.

Test–retest reliability was consistent with ICCs 
reported for standard clinical measures in PwMS.22 As 

Figure 1.  Age- and sex-adjusted Spearman’s rank correlations between active tests and passive monitoring  
(vertical axis) and their respective domain-specific standard clinical measures (horizontal axis).
e-SDMT: electronic Symbol Digit Modalities Test; SDMT: Symbol Digit Modalities Test; 9HPT: Nine-Hole Peg Test;  
SBT: Static Balance Test; UTT: U-Turn Test; T25FW: Timed 25-Foot Walk.

Figure 2.  Age- and sex-adjusted Spearman’s rank correlations 
between passive monitoring and active gait features.
UTT: U-Turn Test; NS: not significant.
***p < 0.001.
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anticipated, statistically significant correlations were 
observed between test features from the Floodlight 
PoC app and related standard clinical and MRI meas-
ures. Correlations of similar strength between compa-
rable smartphone sensor-based remote monitoring 
tests and clinician-administered tests have been 
reported in the cognitive,11,12 upper extremity func-
tion,13 and gait domains,10 despite differences in test 
design and features. The active tests and passive moni-
toring also showed mostly fair correlations with EDSS 
and respective MSIS-29 subscales and items, indicat-
ing that measurements obtained with the Floodlight 
PoC app agree both with the overall level of MS-related 
disability and participant’s perception of the impact of 
their disease. T2 FLAIR lesion volume did not show 
any strong correlation with either active tests or pas-
sive monitoring. This is not surprising given the clin-
ico-radiological paradox,23 which describes the 
mismatch between the white matter lesion volume and 
the clinical outcomes in MS, and the subsequent poor 
cross-sectional correlation between T2-weighted 
imaging and MS disability measures in a relatively 
mild MS population.24 Normalized brain volume cor-
related with test features from all assessed domains. 
This is in line with previously reported correlations 
between normalized brain volume and measures of 
MS-related disability.25

Not surprisingly, the e-SDMT most closely resembles 
its domain-specific standard clinical measure. The 
Spearman rho of 0.82 is comparable to the previously 
reported correlation between other smartphone-based 
versions of the SDMT and the pen-and-paper version 
of the SDMT (r = 0.71–0.85).11,12 In our study, we 
noted that the e-SDMT scores tended to be lower than 
the oral SDMT scores in PwMS and HC. This is likely 
due to the longer time required to select the correct 
response on a smartphone display compared with say-
ing the correct response out loud. Another possible 
reason is that the e-SDMT displays only one symbol at 
a time. The oral SDMT, on the contrary, provides par-
ticipants the entire symbol sequence printed on a sheet 
of paper,26 thus allowing them to work ahead and use 
their working memory to a greater extent. This differ-
ence also makes the oral SDMT more dependent on 
eye tracking than the e-SDMT.

Given the different concepts assessed by the 
Floodlight PoC app versus clinical measures, 1:1 cor-
relations were not necessarily expected. For example, 
mean trace celerity did not correlate with EDSS or the 
arm-related MSIS-29 items. This is likely because 
these clinical measures do not capture the time com-
ponent as overall mean trace accuracy correlated sig-
nificantly with both clinical measures.

The partial correlation analysis presented here revealed 
that test features from both the Pinching Test and the 
Draw a Shape Test independently correlate with 9HPT 
time. This supports the concept that specific sensor-
based test features can capture performance outcome 
information currently not recorded with commonly 
used in-clinic assessments. This exemplifies the poten-
tial of sensor data to characterize functional impairment 
beyond a single summary score that is typically recorded 
for in-clinic performance outcome measures. Future 
work should explore the use of this technology in 
broader clinical applications and focus on establishing 
the clinical relevance for the additional information it 
can provide. It is possible that richer information can be 
extracted by incorporating additional test features. 
Initial results on a more comprehensive multidimen-
sional feature space have been previously reported for 
the Draw a Shape Test27 and Walk Test.28,29

In addition to the active tests, the Floodlight PoC app 
also assesses gait in a free-living situation, or in daily 
life, through passive monitoring. It has been suggested 
that signs of gait alteration may be more pronounced 
during daily life than in conventional in-clinic metrics,30 
thereby highlighting the importance of capturing out-of-
clinic performance through passive monitoring. As such, 
passive monitoring may improve the translation of clini-
cal findings to meaningful care as it informs on the 
patients’ true abilities during daily life activities.9 A 
recent study demonstrated the feasibility of passively 
monitoring gait in PwMS using three biosensors attached 
to the wrist, ankle, and sternum.8 Moreover, our study 
revealed significant correlations between gait features 
from Passive Monitoring and T25FW, highlighting the 
feasibility of capturing more ecological measures of eve-
ryday functional ability through Passive Monitoring 
using a single smartphone device.

Several limitations to this study exist. Most enrolled 
PwMS had mild disease with limited MS-related disabil-
ity; the mean EDSS at baseline was 2.4. The current 
analysis assessed the performance characteristics of the 
Floodlight PoC app in PwMS with EDSS scores in the 
range of 0.0–5.5. However, previously it has been shown 
that wearable sensors might not accurately capture step 
detection at slow walking speeds, particularly at EDSS 
score 6.5. This feature should be considered when 
assessing any wearable monitoring technology.31 In 
addition, the analyses presented here were cross-sec-
tional. Due to the relative short duration of the study (24 
weeks), a longitudinal analysis on change in functional 
ability, disease progression, and relapses was not possi-
ble. Future studies will lend greater clarity into the use in 
a broader patient population, including people with more 
advanced disease, and the test performance over time. 
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Furthermore, test–retest reliability analysis was con-
ducted in 2-week windows, in which no disease progres-
sion was assumed, as each assessment was done at most 
once per day. Same-day test–retest reliability analysis 
will be addressed in future work using data from subse-
quent studies. Further work will also be needed on the 
development of domain-specific and overall MS out-
come measures based on digital health technology.32

Conclusion
Using a consumer smartphone device, self-adminis-
tered at-home active tests and passive monitoring 
assessed the functional ability across three key 
domains affected by MS: cognition, upper extremity 
function, and gait and balance. This study demon-
strated that the Floodlight PoC app provides reliable 
measures that align with standard clinical and MRI 
measures used to quantify MS functional impairment 
and overall disability. Test–retest reliability was 
moderate-to-good, and significant correlations in the 
expected direction were observed between the test 
features from the Floodlight PoC app and standard 
clinical and MRI measures. While active tests were 
conducted daily or weekly, passive monitoring per-
mitted the continuous assessment of gait during daily 
life activities. The higher temporal resolution and 
multidimensional feature space of functional data 
collected by this platform hold the potential to cap-
ture subtle, potentially disease-related information 
which are not readily discriminated by clinician-
administered assessments. It also has the potential to 
improve and standardize assessment of MS disease 
over time, provide PwMS and health care profession-
als in both specialty and primary care environments a 
better understanding of disease progression, change 
the way MS is monitored in clinical trials and daily 
practice, and ultimately improve patient care. The 
current iteration of the app, Floodlight™ MS, is 
available for public use in selected countries, and a 
rolling release schedule is now in process to provide 
access in the near future to the wider MS community 
across the world.

Acknowledgements
We would like to thank all patients, their families, and 
the investigators who participated in this trial. We 
would also like to thank the following colleagues at F. 
Hoffmann-La Roche Ltd for their contributions and 
support to the study: Jan Beckmann, Frank Dondelinger, 
Sandro Fritz, Nicholas Pierce Heinemeier, Sven Holm, 
Timothy Kilchenmann, Lito Kriara, Bernd Laub, 
Grégoire Pointeau, Caroline Polakowska, Cedric 
Simillion, Jens Schjodt-Eriksen, Jörg Sprengel, Ralf 
Stubner, Krzysztof Trybus, and Mattia Zanon. Writing 
and editorial assistance for this manuscript was 

provided by Samuel Bestall, PhD, and Marina Dragovic 
from Articulate Science, United Kingdom, and funded 
by F. Hoffmann-La Roche Ltd.

Declaration of Conflicting Interests
X.M. has received speaking honoraria and travel 
expenses for participation in scientific meetings, has 
been a steering committee member of clinical trials, 
or participated in advisory boards of clinical trials in 
the past years with Actelion, Alexion, Bayer, Biogen, 
Celgene, EMD Serono, Genzyme, Immunic, Medday, 
Merck, Mylan, Nervgen, Novartis, Roche, Sanofi 
Genzyme, Teva Pharmaceutical, TG Therapeutics, 
Excemed, MSIF, and NMSS. L.M. and P.M. have 
nothing to disclose. J.G. over the past year has 
received grant/contract research support from the 
National MS Society, Biogen, and Octave Biosciences. 
She serves on a steering committee for a trial sup-
ported by Novartis. She has received honoraria for a 
non-promotional, educational activity for Sanofi 
Genzyme. She has received speaker fees from Alexion 
and BMS and served on an advisory board for 
Genentech. L.J. is an employee of Genentech, Inc., 
and a shareholder of F. Hoffmann-La Roche Ltd. 
M.B., J.S., and C.G. are employees and shareholders 
of F. Hoffmann-La Roche Ltd. M.G. and C.B. are 
contractors for F. Hoffmann-La Roche Ltd. A.S. was 
a consultant to F. Hoffmann-La Roche Ltd via 
Inovigate during the completion of the work related to 
this manuscript. A.S. is now an employee of Inovigate 
(Basel, Switzerland). F.L. is an employee of F. 
Hoffmann-La Roche Ltd. J.v.B. and S.B. were 
employees of F. Hoffmann-La Roche Ltd during the 
completion of the work related to this manuscript. 
Both are now employees of Biogen (Cambridge, 
MA), which was not in any way associated with this 
study. M.L. is a consultant to F. Hoffmann-La Roche 
Ltd via Inovigate. S.L.H. serves on the scientific advi-
sory boards for Alector, Annexon, Bionure, and 
Molecular Stethoscope; is on the Board of Directors 
for Neurona Therapeutics; and has received travel 
reimbursement and writing assistance from F. 
Hoffmann-La Roche Ltd and Novartis for CD20-
related meetings and presentations.

Funding
The authors disclosed receipt of the following finan-
cial support for the research, authorship, and/or publi-
cation of this article: F. Hoffmann-La Roche Ltd, 
Basel, Switzerland, provided financial support for the 
study and publication of this manuscript.

Data availability
Qualified researchers may request access to individual 
patient-level data through the clinical study data 

https://journals.sagepub.com/home/msj


X Montalban, J Graves et al.

journals.sagepub.com/home/msj	 663

request platform (https://vivli.org). Further details on 
Roche’s criteria for eligible studies are available at 
https://vivli.org/members/ourmembers. For further 
details on Roche’s Global Policy on the Sharing of 
Clinical Information and how to request access to 
related clinical study documents, see https://www.
roche.com/research_and_development/who_we_are_
how_we_work/clinical_trials/our_commitment_to_
data_sharing.htm.

ORCID iD
Shibeshih Belachew  https://orcid.org/0000-0003- 
3976-1950

Supplemental material
Supplemental material for this article is available 
online.

References
	 1.	 Kappos L, Wolinsky JS, Giovannoni G, et al. 

Contribution of relapse-independent progression vs 
relapse-associated worsening to overall confirmed 
disability accumulation in typical relapsing multiple 
sclerosis in a pooled analysis of 2 randomized clinical 
trials. JAMA Neurol 2020; 77: 1132–1140.

	 2.	 Hobart J, Bowen A, Pepper G, et al. International consensus 
on quality standards for brain health-focused care in 
multiple sclerosis. Mult Scler 2019; 25: 1809–1818.

	 3.	 Rae-Grant A, Bennett A, Sanders AE, et al. Quality 
improvement in neurology: Multiple sclerosis quality 
measures: Executive summary. Neurology 2015; 85: 
1904–1908.

	 4.	 Steelman AJ. Infection as an environmental trigger 
of multiple sclerosis disease exacerbation. Front 
Immunol 2015; 6: 520–520.

	 5.	 Mills EA, Mirza A and Mao-Draayer Y. Emerging 
approaches for validating and managing multiple 
sclerosis relapse. Front Neurol 2017; 8: 116–116.

	 6.	 Graves JS and Montalban X. Biosensors to monitor 
MS activity. Mult Scler 2020; 26: 605–608.

	 7.	 Boukhvalova AK, Fan O, Weideman AM, et al. 
Smartphone level test measures disability in several 
neurological domains for patients with multiple 
sclerosis. Front Neurol 2019; 10: 358–358.

	 8.	 Chitnis T, Glanz BI, Gonzalez C, et al. Quantifying 
neurologic disease using biosensor measurements 
in-clinic and in free-living settings in multiple 
sclerosis. NPJ Digit Med 2019; 2: 123–123.

	 9.	 Midaglia L, Mulero P, Montalban X, et al. Adherence 
and satisfaction of smartphone- and smartwatch-
based remote active testing and passive monitoring 
in people with multiple sclerosis: Nonrandomized 

interventional feasibility study. J Med Internet Res 
2019; 21: e14863.

	10.	 Block VJ, Lizée A, Crabtree-Hartman E, et al. 
Continuous daily assessment of multiple sclerosis 
disability using remote step count monitoring. J 
Neurol 2017; 264: 316–326.

	11.	 Pham L, Harris T, Varosanec M, et al. Smartphone-
based symbol-digit modalities test reliably captures 
brain damage in multiple sclerosis. NPJ Digit Med 
2021; 4: 36.

	12.	 van Oirschot P, Heerings M, Wendrich K, et al. 
Symbol Digit Modalities Test variant in a smartphone 
app for persons with multiple sclerosis: Validation 
study. JMIR Mhealth Uhealth 2020; 8: e18160.

	13.	 Akhbardeh A, Arjona JK, Krysko KM, et al. Novel MS 
vital sign: Multi-sensor captures upper and lower limb 
dysfunction. Ann Clin Transl Neurol 2020; 7: 288–295.

	14.	 Angelini L, Hodgkinson W, Smith C, et al. Wearable 
sensors can reliably quantify gait alterations 
associated with disability in people with progressive 
multiple sclerosis in a clinical setting. J Neurol 2020; 
267: 2897–2909.

	15.	 Lipsmeier F, Taylor KI, Kilchenmann T, et al. 
Evaluation of smartphone-based testing to generate 
exploratory outcome measures in a phase 1 
Parkinson’s disease clinical trial. Mov Disord 2018; 
33: 1287–1297.

	16.	 Tortelli R, Simillion C, Lipsmeier F, et al. The 
digital-HD study: Smartphone-based remote testing to 
assess cognitive and motor symptoms in Huntington’s 
Disease (1816). Neurology 2020; 94(Suppl. 15): 1816.

	17.	 McLaren B, Andrews SC, Glikmann-Johnston 
Y, et al. Feasibility and initial validation of 
“HD-Mobile,” a smartphone application for remote 
self-administration of performance-based cognitive 
measures in Huntington’s disease. J Neurol 2021; 
268: 590–601.

	18.	 Polman CH, Reingold SC, Banwell B, et al. 
Diagnostic criteria for multiple sclerosis: 2010 
revisions to the McDonald criteria. Ann Neurol 2011; 
69: 292–302.

	19.	 Koo TK and Li MY. A guideline of selecting and 
reporting intraclass correlation coefficients for 
reliability research. J Chiropr Med 2016; 15: 155–163.

	20.	 Portney LG and Watkins MP. Foundations of clinical 
practice research: Applications to practice. London: 
Pearson, 2009.

	21.	 Kragt JJ, Nielsen JM, van der Linden FA, et al. How 
similar are commonly combined criteria for EDSS 
progression in multiple sclerosis. Mult Scler 2006; 12: 
782–786.

	22.	 Goldman MD, LaRocca NG, Rudick RA, et al. 
Evaluation of multiple sclerosis disability outcome 

https://journals.sagepub.com/home/msj
https://vivli.org
https://vivli.org/members/ourmembers
https://www.roche.com/research_and_development/who_we_are_how_we_work/clinical_trials/our_commitment_to_data_sharing.htm
https://www.roche.com/research_and_development/who_we_are_how_we_work/clinical_trials/our_commitment_to_data_sharing.htm
https://www.roche.com/research_and_development/who_we_are_how_we_work/clinical_trials/our_commitment_to_data_sharing.htm
https://www.roche.com/research_and_development/who_we_are_how_we_work/clinical_trials/our_commitment_to_data_sharing.htm
https://orcid.org/0000-0003-3976-1950
https://orcid.org/0000-0003-3976-1950


Multiple Sclerosis Journal 28(4)

664	 journals.sagepub.com/home/msj

measures using pooled clinical trial data. Neurology 
2019; 93: e1921–e1931.

	23.	 Chard D and Trip SA. Resolving the clinico-
radiological paradox in multiple sclerosis. F1000Res 
2017; 6: 1828.

	24.	 Miller DH, Grossman RI, Reingold SC, et al. The role 
of magnetic resonance techniques in understanding 
and managing multiple sclerosis. Brain 1998; 
121(Pt1): 3–24.

	25.	 Radue EW, Barkhof F, Kappos L, et al. Correlation 
between brain volume loss and clinical and MRI 
outcomes in multiple sclerosis. Neurology 2015; 84: 
784–793.

	26.	 Smith A. Symbol Digit Modalities Test: Manual. 
Los Angeles, CA: Western Psychological Services, 
1982.

	27.	 Creagh AP, Simillion C, Scotland A, et al. 
Smartphone-based remote assessment of upper 
extremity function for multiple sclerosis using 
the Draw a Shape Test. Physiol Meas 2020; 41: 
054002.

	28.	 Creagh AP, Simillion C, Bourke A, et al. 
Smartphone- and smartwatch-based remote 
characterisation of ambulation in multiple sclerosis 
during the two-minute walk test. IEEE J Biomed 
Health Inform 2020; 25: 838–849.

	29.	 Bourke AK, Scotland A, Lipsmeier F, et al. Gait 
Characteristics harvested during a smartphone-based 
self-administered 2-minute walk test in people 
with multiple sclerosis: Test–retest reliability and 
minimum detectable change. Sensors 2020; 20: 5906.

	30.	 Broen MP, Marsman VA, Kuijf ML, et al. Unraveling 
the relationship between motor symptoms, affective 
states and contextual factors in Parkinson’s disease: A 
feasibility study of the experience sampling method. 
PLoS ONE 2016; 11: e0151195.

	31.	 Storm FA, Nair KPS, Clarke AJ, et al. Free-living 
and laboratory gait characteristics in patients with 
multiple sclerosis. PLoS ONE 2018; 13: e0196463.

	32.	 Taylor KI, Staunton H, Lipsmeier F, et al. Outcome 
measures based on digital health technology sensor 
data: Data- and patient-centric approaches. NPJ Digit 
Med 2020; 3: 97.

Visit SAGE journals online 
journals.sagepub.com/
home/msj

 SAGE journals

https://journals.sagepub.com/home/msj
https://journals.sagepub.com/home/msj
https://journals.sagepub.com/home/msj



