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cSchool of Electrical Engineering and Computer Science, Washington State University, Pullman, 
Washington, 99164, USA

Abstract

In the context of an aging population, tools to help elderly to live independently must be 

developed. The goal of this paper is to evaluate the possibility of using unobtrusively collected 

activity-aware smart home behavioral data to automatically detect one of the most common 

consequences of aging: functional health decline. After gathering the longitudinal smart home data 

of 29 older adults for an average of > 2 years, we automatically labeled the data with 

corresponding activity classes and extracted time-series statistics containing 10 behavioral 

features. Using this data, we created regression models to predict absolute and standardized 

functional health scores, as well as classification models to detect reliable absolute change and 

positive and negative fluctuations in everyday functioning. Functional health was assessed every 

six months by means of the Instrumental Activities of Daily Living-Compensation (IADL-C) 

scale. Results show that total IADL-C score and subscores can be predicted by means of activity-

aware smart home data, as well as a reliable change in these scores. Positive and negative 

fluctuations in everyday functioning are harder to detect using in-home behavioral data, yet 

changes in social skills have shown to be predictable. Future work must focus on improving the 

sensitivity of the presented models and performing an in-depth feature selection to improve overall 

accuracy.
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1. Introduction

Increasing life expectancy is causing a general aging of the population. As a result, there is a 

current need to develop systems aimed at early detection of diseases and health issues 

associated with aging. One consequence of abnormal cognitive aging is the loss of 

functional skills [1, 2]. Therefore, there is also a current need to create tools and 

technologies to help the elderly live independently. The current study evaluated the use of 

unobtrusive sensor technology collected in older adults’ homes to automatically assess 

overall functional health. The term “automatic” implies that data is collected unobtrusively 

in real time, with no user input (e.g., no buttons to push, no test questions, etc), and treated 

with specific algorithms to extract useful information from it.

Currently, daily functioning in older adults is primarily assessed through self-report and 

informant-report questionnaires [3]. Self- and informant-report prove advantageous because 

these questionnaires are easily administered and considered reasonably accurate given that 

raters have the opportunity to consider multiple observations of activities performed over 

periods of time in the real-world. The main disadvantage, however, is bias can be introduced 

by the reporter for several reasons including lack of insight or awareness, not being present 

to capture all behavior changes, and the intrinsic tendency to answer questions in a certain 

manner [4, 5, 6]. Furthermore, raters may fail to recall pertinent information. Alternatively, 

performance-based assessments that simulate everyday activities in the laboratory are 

beneficial because they provide objective, quantifiable, and norm-referenced measures of 

functional ability. However, a major drawback to these assessments is that they take the 

person out of their natural environment, modifying their usual behavior as a result and 

missing compensatory strategies that they might be applying in their daily life [7, 8]. 

Arguably, the ideal strategy to accurately and reliably capture functional decline is to 

observe daily behavior of individuals where they spend most of their time: at home.

Technology to unobtrusively and ubiquitously monitor peoples’ in-home behavior is already 

available as smart homes [9]. Smart homes represent a useful infrastructure to continuously 

monitor older adults’ behavior in a completely transparent way, gathering real-life data 

throughout the day and therefore overcoming the main disadvantages of the usual 

assessment methods. The collected data and machine learning-generated activity labels can 
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provide a complete view of older adults’ behavior in a real-world environment, improving 

the efficiency and ecological validity of the resulting functional health assessments [10].

Smart home-based behavioral data have already been found to be useful in assisting the 

elderly in several ways. On one hand, feasibility of systems that use smart home behavioral 

data to aid in independently living has been demonstrated. For example, prompting 

technologies designed for elderly with mild cognitive impairment (MCI) [11] or 

Alzheimer’s disease [12] have been developed and tested cross-sectionally in smart home 

testbeds. On the other hand, longitudinal monitoring of smart home-based behavioral data 

has shown to be useful to monitor older adults’ health state as well as the onset and progress 

of some age-related diseases and disorders. The overall cognitive ability of older adults has 

been predicted by unobtrusively collecting in-home behavioral data [13, 14], and more 

importantly, diseases like MCI [15] and dementia [16] have also been found to correlate with 

smart home-based behavioral data. Assessment of the psychological health of older adults 

has also been in the spotlight of some research, confirming the possibility of detecting 

depression, emotional states [17] or even loneliness [18] of older adults by analyzing their 

behavioral data. Other overall health predictors such as physical activity have also been 

assessed by means of such data [17].

Nonetheless, the potential of unobtrusively collected in-home behavioral data to assess older 

adults’ functional health is yet to be analyzed. In this work, we hypothesize that functional 

difficulties can be detected using unobtrusively collected smart home behavioral data. To 

verify our hypothesis, we aim to create prediction models for functional health as measured 

by the Instrumental Activities of Daily Living-Compensation (IADL-C) scale [19] using a 

longitudinal activity-labeled smart home dataset. We also aim to evaluate performance of the 

prediction models, as well as selection of behavioral features that contribute the most to 

IADL-C data prediction. The signal processing approach followed in this work is based on 

the computation of temporal statistics measuring change in the behavior of the older adults. 

For that purpose, the Clinical Assessment using Activity Behavior (CAAB) algorithm, 

which has already been validated in another work for the automatic assessment of cognitive 

and mobility skills of older adults [20], has been used. Unlike most work in the literature 

that makes use of group data and absolute behavioral patterns, in this work inter-subject 

variability is reduced by computing behavioral characteristics separately for each participant. 

In turn, it also allows to take into account the temporal nature of functional health changes. 

This approach has not been tested for the detection of daily function decline yet. In fact, we 

believe that this is the first work aiming at predicting functional health of older adults as 

measured by the IADL-C scores using unobtrusively collected smart home behavioral data. 

Furthermore, this work introduces standardization techniques based on a Reliable Change 

detection to spot and detect time-periods of significant functional change in the older adults. 

Our study affirms that unobtrusively collected behavioral data can be useful to automatically 

assess the daily functioning skills of older adults as measured by the IADL-C questionnaire, 

as well as to detect reliable changes in functional health.
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2. Methods

2.1. Data collection

In collaboration with the Center for Studies in Adaptive Systems (CASAS) and the 

Neuropsychology and Aging Laboratory at Washington State University (WA, USA), we 

had access to the unobtrusively collected in-home behavioral data of 40 older adults living in 

38 smart homes (2 of which were inhabited by two people), as well as to their biannual 

functional health assessment data. The smart homes used in this study were common 

apartments enhanced with passive infra-red (PIR) presence sensors. The number of sensors 

installed in each apartment differed (mean number of sensors installed were 16.52 with a 

standard deviation of 4.53, ranging from 11 to 26 sensors) depending on the size and shape 

of the house, but were in all cases strategically placed in specific locations of the houses, 

including, on top of kitchen devices (stove, sink and refrigerator), office and living room 

chairs and the bed, as well as installed in the ceiling of different rooms covering the whole 

room area (e.g. living room, bathroom, dining room, kitchen, laundry, office, bedroom, 

corridors, etc.). These sensors tracked the movements and activities of the inhabitants by 

triggering raw sensor-data streams every time a sensor event was detected inside an 

apartment.

Functional health assessments were collected through the IADL-C questionnaire [19] 

developed for the early detection of functional deficits and use of compensatory strategies in 

older adults. The questionnaire assesses IADLs across a number of everyday domains, 

including phone use, traveling, shopping, cooking, medication management, finances, 

communication, organization, and social functioning patterns of the participants. As detailed 

in the IADL-C psychometric paper, a factor analysis grouped the 27-item IADL-C 

questionnaire into four factors representing different functional abilities: (1) money & self 

management, (2) home daily living, (3) travel & event memory, and (4) social skills. The 

four factor analysis derived factors and their respective functional description, Spearman 

correlation test-retest reliability coefficients, and standard deviations are presented in Table 

1. A total “Global Functional Health” score including all four factors is also included.

Smart home sensor data was collected continuously for the duration of the study, which took 

place from 2011 to 2016, with data collection ranging from < 1 month to 60 months (mean 

(M) length of the data collection process among the different apartments was 19.95 months, 

with a standard deviation (SD) of 17.98 months). For the following analyses, data coming 

from homes with multiple persons were removed (N=2), due to difficulties estimating each 

individuals activity level. Subjects who had no functional health assessment data (N=2) or 

who had less than 6 months of behavioral data collected (N=5) were also removed. 

Therefore, the final dataset contained the behavioral and functional health assessment data 

of 29 older adults who were living independently and alone in their own smart home 

residences (M=26 months, SD=17.5 months, range=6–60 months).

2.2. Preprocessing

2.2.1. Day-level behavior feature extraction—The smart home data were a collection 

of raw sensor-data streams, which collected all sensor events that took place in each 
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residence during the study period, along with their specific timestamps, sensor IDs and type 

of event (activation/deactivation). To make the raw sensor-data streams interpretable, we first 

applied the AR activity recognition algorithm specified in [20], which assigned a specific 

activity to each sensor entry. This algorithm applies an adaptive length sliding window to the 

raw sensor data stream to map each one of the sensor events to a value from a pre-defined 

set of activity labels in real-time. The predefined set of activities consists of specific basic 

(such as walking or sitting) and instrumental activities of daily living (ADLs) (e.g., cook, eat 

or personal hygiene activities). This approach takes into account contextual information 

(such as the activity performed in the previous time-window) in addition to the actual sensor 

events that fall within the window when identifying the activity being performed. 

Accumulated sensor events in a window, as well as time of first and last sensor events, 

temporal span of the window and mutual information-based influences of all other sensors 

on the sensor generating the event to be labeled are used as predictors. Three-fold cross 

validation testing of an activity model learned with this AR algorithm has shown an 

accuracy exceeding 98% on 30 testbed smart homes in a previous work.

Once the activity-level information was available, we computed 10 daily behavior features 

for each subject. Python scripts were created for this purpose. The computed day-level 

activity-features are shown in Table 2.

In order to estimate the daily distance that the subjects were traveling inside their homes, we 

first created sensor mapping-files based on the floor plan and sensor layout for each 

residence (see example in Figure 1), where the x-y coordinates of the motion sensor’s 

positions were specified. For 3 of the apartments, we did not have specific information of the 

positioning of the sensors nor of the distribution within the houses: in these cases, the 

positions of the sensors were estimated by considering the apartments to be of a similar 

shape to the rest and checking the activation order of the sensors in the raw sensor data files. 

Once the positioning of the sensors was specified, we estimated the total walking distance 

traveled by the inhabitants. For that purpose, we assumed that the inhabitants walked in a 

straight line from the coverage area of one sensor to the coverage area of another sensor, 

activating them when they come to be under their same position. Then, we computed the 

Euclidean distances between randomly-selected locations within the coverage areas of the 

consecutively activated motion sensors using their x-y coordinates, and we sum all the 

distances between the sensors activated throughout the day to obtain the daily total walking 

distance. Note that this approach does not take into account the existence of walls or other 

obstacles between the sensors, so it just provides an approximation of the real covered 

distance.

2.2.2. Between-assessments behavior statistics’ computation—Once daily 

activity features for each subject were computed, we used the Clinical Assessment using 

Activity Behavior (CAAB) [20] algorithm to extract the behavioral statistics of each 

between-assessment period. RStudio for R [21] was the selected environment for this 

purpose.

The CAAB algorithm has been introduced in [20]. In brief, each subject’s between-

assessment daily behavior data were taken and five summarizing time-series statistics were 
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computed for each behavioral feature of Table 2 in this period: variance, skewness, kurtosis, 

autocorrelation and change. Because standard assessment was performed every six months, 

these statistics represent the behavior observed in a smart home for a six month period 

ending at the assessment date. For this purpose, a log transformation and a Gaussian 

detrending was first applied to each time-series (behavioral variable) and then the changing 

time-series statistics for each variable were computed by means of a sliding window of 

length 7 days. The average of each time-series statistic for the 6-month period was computed 

and was used for the final predictions. This process can be seen in Figure 2. The resulting 

preprocessed dataset was a collection of 50 (5 time-series statistics of 10 behavioral 

features) biannual summary behavior statistics of length 24.0 ± 13.68(SD) months.

2.2.3. Functional health scores’ set-up—Our object is to create prediction models that 

map smart home-based behavior features to health assessment values. In this study our target 

variables are the IADL-C total and subscore values self-reported by the participant at the end 

of each corresponding 6-month period.

Self-reported questionnaires can be highly subject-dependent for several reasons. In order to 

take into account the inter-subject variability that each subjects’ age, gender, education or 

habits might provoke in the scores, we also considered the use of standardized scores for 

each one of the IADL-C scores for each subject. The standardized scores were computed as 

the percent change in relation to their baseline values. Baseline IADL-C scores were 

collected at the first testing session just prior to the beginning of behavioral monitoring with 

the sensors. The standardized scores were computed as:

IADLscorestd(i) =
IADLscore(i) − IADLscorebaseline

IADLscorebaseline
∗ 100 (1)

Equation 1: Standardized self-reported assessment score at time-point i, computed 

successively for i=0 (baseline), 2, … I (last assessment point).

With the objective of determining if there was an absolute change in participants’ functional 

health assessment scores both compared to their baseline values (RCIbaseline) and to the 

previous assessment point (RCIconsecutive), we computed the Reliable Change Indexes (RCI) 

for our IADL-C scores as defined by Christensen and Mendoza [22]. The RCI verifies that 

the difference between the scores under comparison is greater than a certain level discarding 

changes that might have appeared due to other reasons such as measurement unreliability. In 

order to calculate the RCIs for the total IADL-C score and the four IADL-C factors shown in 

Table 1, we gathered test-retest reliability (rscore) and standard deviations (SDscore) that the 

test has shown in its development cohort [19], as shown in Table 1. The RCIs for each 

subject were thus computed as:

RCIbaseline(i) =
Scorei − Scorebaseline

2SEm
(2)
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Equation 2: Reliable Change Index from baseline to assessment time-point i, computed 

successively for i= 0 (baseline), 1, … I (last assessment point).

RCIconsecutive(i) =
Scorei − Scorei − 1

2SEm
(3)

Equation 3: Reliable Change Index between assessment time-points i and i-1, computed 

successively for i=1, 2, … I (last assessment point).

where SEm or Standard Error of Measurement represents the expected variation of the 

observed test scores due to measurement error and is computed as SEm = SDscore 1 − rscore, 

rscore is the test-retest reliability measuring the consistency of the test-scores over time, 

Scorei is the test score at assessment point i, Scorebaseline is the test score at the first/baseline 

assessment and Scorei−1 is the test score at the previous assessment point.

Therefore, we assigned two new labels to each smart home behavior data instance for the 

total IADL-C score and each of the four factor subscores. These labels indicate whether the 

subject suffered a significant change in his/her global functioning and in specific tasks 

compared with both the baseline assessment and the previous assessment point. This results 

in a total of 10 labels for each data instance.

Finally, to test the potential of activity-labeled smart home-based behavioral data to detect 

improvement or decline in everyday functioning, for each subject’s IADL-C total score and 

subscores we computed the difference between each consecutive assessment point. Then, we 

labeled as positive all the data instances where the subjects self-reported improved everyday 

functioning (≥ 0) on the IADL-C while we labeled as negative the behavioral data instances 

where the subjects self-reported a decline (< 0) in everyday functioning. Thus, five new 

labels for each behavior data instance are derived from this last step.

We will use machine learning algorithms to learn mappings from the feature vectors to each 

of these 15 target classes, as well as to predict self-reported IADL-C scores and their 

standardized versions.

2.3. Functional Health change prediction

The preprocessed dataset resulting from the previous steps was analyzed using Weka [23]. 

For the four different types of scores which have been introduced in 2.2.3, regression and 

classification algorithms were built and evaluated, depending on the nature of the scores’ 

data (numeric or nominal labels).

2.3.1. Regression Analyses—First, we performed a regression analysis between the 

functional health assessment scores and smart home based behavioral data, both for the 

absolute IADL-C scores and the standardized values. For this purpose, several regression 

algorithms were implemented using all the behavioral statistics achieved in the previous step 

and were validated for the prediction of each one of the available IADL-C scores. A 10-fold 
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cross validation (CV) was used for validation purposes, as well as a leave-one-subject-out 

cross-validation (LOSOCV) for the absolute scores’ case. In the case of LOSOCV, we 

repeatedly train the model using data for n-1 subjects and test on data for the held-out 

participant (subject n), repeating the process n times and reporting the average of the 

performance results. We compared the results obtained with the following algorithms: 

Linear Regression, Linear Support Vector Regression (SVr), SVr with a Radial Basis 

Function (RBF) kernel, M5 Rules Regression and k Nearest Neighbours (kNN).

2.3.2. Classification Analyses—We then created detection models for the Reliable 

IADL-C changes using several classification algorithms: AdaBoost, kNN, Linear SVM and 

Multilayer Perceptron (MLP). The algorithms were trained and validated following a 10-fold 

cross validation, as well as with a LOSOCV. This process was repeated both for the whole 

set of behavioral features gathered in the smart homes, and for task-specific behavioral 

features: sleep-related features, overnight features, mobility, mobility and outing patterns 

and cooking and eating habits. Table 3 shows the features considered for each task-specific 

analysis. As a reliable change in prediction scores might be considered to be a rare or 

unusual event, common classification algorithms might be biased towards the majority class. 

However, detection of the reliable change event may be the main goal for many applications. 

To boost detection of these rare events, we tried two approaches that might be more suitable 

for such unbalanced classification problems: (1) a one-class linear SVM algorithm and (2) 

the previous algorithms trained with SMOTE-based [24] oversampled datasets. While the 

former relies on only using minority-class data instances for model training, the latter 

consists of adding synthetically-created minority-class instances, yielding more class-

balanced datasets for training purposes. A rejection rate of 0.1 was used for the one-class 

linear SVM, which was the empirically selected value in a preliminary test on Reliable 

baseline total IADL-C change detection. SMOTE algorithm was used to oversample the 

number of reliable change instances of the original datasets in order to ensure a proportion 

of at least 40–60% between the two classes. Finally, we aimed at creating prediction models 

for the daily functioning improvement and decline between consecutive assessment points. 

For this purpose, we added a fifth classifier to the previous ones, the C4.5 decision tree 

algorithm. We trained and validated the five classification algorithms using the labels 

indicating a positive or negative change in these skills.

2.3.3. Evaluation—For all the aforementioned regression and classification models, 

corresponding pairwise random algorithms were built and evaluated following the same 

process. The random algorithms provided a basis of comparison to ensure that performance 

results are not due to chance. These random algorithms were built using a uniformly 

distributed random data-matrix of the same size as the real behavioral data, while respecting 

each variable’s data range as in the original dataset. The smart home algorithms’ 

performance was compared to their homologous random classifiers’ performance to search 

for statistically significant improvements using smart home based behavioral data. For this 

purpose, a corrected paired t-test was used. In case of SMOTE-based classifiers, a single run 

of the algorithms was available, and therefore, a McNemar’s test was performed to search 

for statistically significant improvements compared to the corresponding pairwise random 

classifiers.
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The selected metrics for the regression analyses were the correlation coefficients (r), Root 

Mean Squared Errors (RMSE) and Mean Absolute Errors (MAE) that compare the actual 

scores’ values and the predicted values using the alternative models. In case of the 

classification problems, we compared the accuracy (Acc.) and weighted F-scores of the 

cross-validated results. This last metric was selected to overcome the biased impression that 

the accuracy can give about a classifier in face of an imbalanced dataset. Therefore, we 

consider that a certain set of features has prediction ability for the posed classification 

problem if a t-test shows enough statistical significance indicating that the actual classifier’s 

accuracy or F-score beats the corresponding pairwise random classifier. In case of reliable 

IADL-C change detection, the cost of missing a true positive might be considered to be 

higher than having a false positive depending on the application. Equally, the detection of a 

decline in functional health between assessments might be more important than the detection 

of an improvement in functional health. Therefore, we also analyze the sensitivity (Sens.) of 

the smart home-based algorithms to evaluate their ability to predict these events of interest.

Figure 3 gives an overview of the whole research procedure followed in this paper.

3. Results

3.1. Regression Analyses

Table 4 shows the results of the regression algorithms developed using all the behavioral 

features for the absolute IADL-C test scores, while Table 5 shows the regression results for 

the standardized IADL-C scores. There is more statistical evidence for the absolute test 

scores to be predictable with activity-labeled smart home data, and overall, correlations 

between the actual test-scores and the predicted values from the algorithms are higher in this 

case than in the case of standardized test scores. When comparing regressors, the SVr 

algorithm with a RBF kernel worked the best for prediction of the absolute IADL-C scores, 

achieving a statistically significant prediction in all five cases. Other algorithms have also 

asserted the possibility of making these predictions, mostly for the total IADL-C scores and 

the F3 and F4 subscores. In the case of the standardized scores, smart home data contributed 

to the prediction of all five IADL-C scores, but the largest effect is seen in the global 

functional health score.

Table 6 shows the LOSOCV regression results for predicting the absolute IADL-C score and 

subscores using all behavioral features. As expected, correlations between the actual and 

predicted IADL-C scores are greatly reduced, suggesting the increased difficulty of creating 

valid general models and the importance of including personal information to adapt the 

models to each subject.

3.2. Classification Analyses

3.2.1. Reliable change detection—Table 7 shows the results of the classification 

algorithms for the reliable IADL-C change detection using all the behavioral features 

gathered in the smart homes. In this case, the kNN and linear SVM algorithms showed to be 

the most useful, as the former demonstrated statistically significant improvement compared 

to random classifiers for reliable change detection of F4 from the baseline, while the latter 
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demonstrated detection power for changes in the total score and F3 subscore from the 

baseline. Overall, we can appreciate a lack of sensitivity for the positive reliable change 

detection, but the AdaBoost classifier did perform superior to a random classifier for the 

detection of a consecutive reliable change in the total IADL-C scores. Results suggest that 

change in IADL-C scores from baseline are easier to detect than changes between 

consecutive assessment points.

Table 8 shows the results of LOSOCV classification of RCI change detection using all 

behavioral features. Overall, results are slightly decayed, but there is still some statistical 

evidence of improved performance compared to random classifiers. These results suggest 

that the computation of the reliable change in IADL-C scores is a good way to standardize 

the values and that this approach can be used to create models for the general population.

Table 9 shows the results classifying reliable change detection using task-specific features. 

These results suggest that not all of the tasks contribute in the same way for reliable IADL-C 

change detection: Specifically, cooking and eating patterns are useful in this study for the 

detection of the total and F4 subscores. The total score, F3 and F4 subscores have shown to 

be detectable by mobility and outing patterns while sleeping and overnight patterns are 

related to the changes in the total IADL-C scores and F1 and F4 subscores. Interestingly, 

mobility features and the combination of mobility and outing patterns showed to be useful 

for the applications where we are more interested in reliably detecting the change in global 

IADL-C scores, as their contribution to the sensitivity of the classifiers has shown to be 

statistically significant for three of the experiments. Sleep-related features have shown to be 

contributive for changes in F1 subscore from baseline. While kNN and MLP were found to 

be the best algorithms for the prediction models in this case, we can specially notice the 

biased behavior and lack of sensitivity of the linear SVM models. Finally, the results of 

employing activity-specific features in LOSOCV evaluation, shown in Table 10, verify the 

validity of RCI scores to create inter-individual models based on smart home data.

3.2.2. Sensitivity improvement—Table 11 shows the results of reliable IADL-C 

detection using the one-class linear SVM algorithm. Overall, an improvement in terms of 

sensitivity can be appreciated compared to the results obtained with other classification 

algorithms at the expense of accuracy and F-score values. These algorithms show a higher 

number of false alarms, and therefore they might be only useful when detection of the 

reliable change is critical.

Finally, Table 12 shows the results for reliable change detection using all behavioral features 

and SMOTE-based oversampled datasets for training purposes. As shown, sensitivity of the 

models is improved compared to the initial models, at the expense of precision. Nonetheless, 

some of these results maintain a favorable trade-off between sensitivity and overall 

performance of the classifiers, overcoming the barrier of 60% accuracy and even 70% for 

sensitivity, and thus, can be very interesting for automated functional health assessment. The 

kNN algorithm yields improved performance in comparison with random-data based 

algorithms for all IADL-C scores, while AdaBoost, linear SVM and MLP algorithms also 

yield statistically improved performance for total, F2, F3 and F4 subscores.
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3.2.3. Positive/Negative change detection—Table 13 shows the results of the 

classification algorithms for the detection of positive and negative changes in IADL-C total 

score and subscores between consecutive assessment points. In this case, the C4.5 algorithm 

has shown enough statistical significance to accept that we are able to detect the 

improvement and decline of participants’ social skills (F4 subscores) from smart home data, 

while kNN algorithm has shown increased sensitivity for the detection of decline in overall 

daily functioning.

4. Discussion

The problem addressed in this paper is highly challenging: Specifically, our aim was to 

predict older adults’ functional health from unobtrusively collected behavioral data inside 

their own apartments. Despite the difficulty of the task, our results have demonstrated the 

possibility of predicting functional health and changes in everyday functioning from 

activity-labeled smart home data.

Although we could have assumed that subscore F2, reflecting home daily living, would be 

the most correlated score to the behavior data, regression analyses proved this to be false. 

The absolute total IADL-C score, as well as the F1 and F3 subscores, which reflect the 

money/self-management skills and travel/event memory abilities, appeared most related to 

the sensor behavior data. In prior work [19], informants reported that individuals with mild 

cognitive impairment experienced the greatest changes in the money/self-management 

domain followed by the travel/event memory domain. Therefore, early identification of 

functional difficulties in these domains based on sensor data could be of importance for 

early intervention. In addition, all of the IADL-C scores were predicted from unobtrusively 

collected behavior data with statistically significant performance. Furthermore, absolute 

scores were more predictable than the standardized ones, suggesting that IADL-C scores are 

directly comparable between subjects. The importance of adding personalized data points to 

the models was also demonstrated, as correlations obtained with a LOSOCV were shown to 

be much lower than using 10-fold CV, where data points from the same people might be 

used to both train and test the models. This suggests that general models would highly 

benefit from a system that could actively learn individuals’ behavior and functional health 

state, increasing their prediction performance while collecting data by being adapted to each 

user.

In this paper, reliable change in everyday functioning was predicted both compared to 

baseline and between consecutive assessment points. Nonetheless, we cannot forget that we 

are using the same behavioral data points for both cases, and that these data points are 

coming from each between-assessment period. This means that time-series statistics of the 

behavioral features collected in each between-assessment period not only help in predicting 

change in the corresponding period but also change compared with baseline. Reliable 

changes in the total IADL-C scores, both compared to the baseline and compared to 

previous assessment points, have shown to be predictable from smart home data.

Unexpectedly, we also noticed a high predictability of F4 IADL-C subscore, which is related 

to social skills of older adults, from in-home data. Even if social skills of the elderly might 
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be something that can be much better appreciated when they are outside, where they relate to 

other people and they carry-out social activities, we have demonstrated that there are some 

in-home characteristics that might also help in predicting these abilities. The combination of 

in-home mobility and outing patterns have shown to be related to social skills, as well as 

cooking and eating habits. This is indeed logical, as the more an elder is leaving his/her 

home, the more social life they are likely engaging in. This agrees with previous work [17] 

which has also reported an association between increased time spent out of home and better 

social health (in terms of decreased loneliness and better mood). Not only that, but sensors 

might also be detecting more variability in eating patterns of the elderly who have the best 

social skills because they might be going out for meals more frequently. This could also 

explain the correlation found between the overnight patterns and social skills, as going out 

more and having a less routine life might increase the variability in their nighttime behavior. 

A LOSOCV has shown results of similar magnitudes as the 10-fold CV, suggesting the 

possibility of creating inter-individual models based on this approach.

For the functional health improvement and decline detection, results have been more 

moderate. This is understandable, as this problem has an added difficulty for two reasons. 

On one hand, we were considering that a change in IADL-C scores occurred at every 

assessment point compared the previous one, even if this change was not really significant or 

it was simply inestimable. On the other hand, we were aiming at distinguishing positive and 

negative changes in IADL-C scores when the time-series statistics that we are extracting 

from our behavioral data might not necessarily reflect positive or negative change in 

behavior. Even so, we were able to demonstrate that positive and negative changes in social 

skills are predictable using smart home data.

Finally, we observe that the use of specific algorithms for imbalanced datasets can 

significantly help in gaining sensitivity for the reliable change events’ detection. In this 

paper, as in most research focusing on detection of health issues, we face a class imbalance 

problem. A reliable change in functional health is a rare event, but is likely the event of 

interest for most applications. Ideally, we would like to have an algorithm with a high 

sensitivity and high precision or low number of false alarms, but we usually have to seek a 

trade-off between these parameters. We believe that the algorithms that have been built using 

SMOTE-based oversampled datasets have shown interesting results in this sense, being more 

useful than one-class classification algorithms. Reliable changes in total score and F1 and F3 

subscores from baseline can be detected with a sensitivity of up to 75% and overall 

accuracies of 60%, which is not bad for early models and encourages us to keep working 

further in feature selection and in sensitivity boosting. Significance tests have confirmed that 

smart home data can be used to predict all five IADL-C scores.

In terms of classification algorithms, linear SVM has shown the least interesting results. In 

most of the cases, models created using this algorithm are highly biased towards the 

majority class, showing a null sensitivity for reliable change detection and not demonstrating 

any statistical significance using smart home data against the use of random data. At the 

other end is the kNN algorithm, which has pleasantly surprised us in almost all established 

problems, finding in many cases the best results and the biggest amount of significant 
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improvements compared to random classifiers. It is certainly an algorithm to consider for 

future research in problems with similar characteristics.

The work being presented herein is aligned with the current emerging paradigm of the 

Internet of Things (IoT), which aims at building up a globally interconnected continuum of a 

variety of objects in the physical environment [25, 26]. IoT has become one of the research 

priorities in multiple disciplines, including healthcare. The main goal of IoT-enabled 

healthcare is to design and develop ubiquitous Information and Communication-based 

solutions for delivering high-quality patient-centered health services. This way, it is intended 

to propose economically viable alternatives to the traditional healthcare systems in order to 

mitigate the consequences of the continued aging of the population [27]. Our approach 

contributes towards this goal by offering an inexpensive ubiquitous monitoring system for 

the detection of functional-health decline. Taking into account that most people who are part 

of the largest collective in the developed countries suffer from functional health decline at 

some point, this work is of great interest for a huge number of potential end-users.

Besides, the system being proposed in this work could be extensible to a wide variety of 

applications with a little adaptation work, thus expanding its field of use and the list of 

benefited users. For instance, such an ubiquitous monitoring of people’s behavior could be 

used as a follow-up of a therapy or rehabilitation program in the overall population, 

improving its efficiency and success, as it could also be used as an overall health monitor. In 

addition, Emergency Medical Services (EMS) could be improved by automatically detecting 

in-home emergencies [28]. Moreover, persuasive prompts could be given to the inhabitants 

based on their behavior in order to guide cognitively impaired people through daily activities 

[11] or to enhance their emotional [29] and overall wellbeing. Finally, smart hospital 

services [30, 31] could be deployed by offering a more personalized in-home hospitalization. 

Nonetheless, there are still some issues that should be addressed in order to implement such 

a system in real-life. These include lifelogging issues [32], the high volume of generated 

data or security and privacy issues [33].

5. Conclusions

This work has demonstrated the possibility of detecting functional health decline in older 

adults from unobtrusively collected in-home behavioral data. We believe that the results 

shown herein are important, as they suggest the possibility of implementing an IoT-enabled 

system that can benefit our increasingly older society. The models shown in this paper are 

early models, which were mainly aimed at demonstrating the feasibility of such a system 

and providing insight into the behavioral features that might be used for this purpose, more 

than to create very accurate and likely overfitted models. The results shown in this paper 

must be completed and improved with more data and algorithmic solutions that might better 

adapt to the imbalanced detection problems posed herein before their implementation in 

real-world settings. Therefore, future work will focus on improving the sensitivity of the 

models without increasing the false alarm rate, by performing a more in-depth feature 

selection analysis, as well as designing more suitable algorithms for imbalanced datasets and 

verifying the results in a scaled longitudinal dataset.
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Highlights

• A method to automatically asses older adults’ functional health was 

presented.

• IADL-C scale was used to evaluate older adults’ functional health.

• Unobtrusively collected in home behavioral data was used for prediction.

• Change in behavior was analyzed instead of absolute behavior characteristics.

• Inter-subject standardization was done using the Reliable Change Index.
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Figure 1. 
Floor plan and sensor layout of one of the residences of the study
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Figure 2. 
Between-asessment summary statistics’ computation (AP: Assessment Point, BAP: 

Between-Assessment Period)
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Figure 3. 
Flow-chart of the whole method.
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Table 1

IADL-C Scores’ description, test-retest reliability and standard deviations

Score Description rscore SDscore

IADL-C Total Global Functional Health 0.91 1.64

IADL-C Factor 1 Money and self-management 0.91 1.64

IADL-C Factor 2 Home daily living 0.76 1.21

IADL-C Factor 3 Travel and event memory 0.70 1.25

IADL-C Factor 4 Social skills 0.70 1.03
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Table 2

Day-level activity features included in the study

Type Day-level features

Duration of specific activities (6 features) Time spent per day in cooking, eating, relaxing, carrying out personal hygiene activities, being out 
of home and nighttime toileting activities

Sleep-related (2 features) The daily sleep duration and frequency

Mobility-related (2 features) The total number of activated sensors and the total distance covered walking inside the apartment 
per day
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Table 3

Task-specific grouping of the daily features

Group Day-level features

Sleep-related The daily sleep duration and frequency

Overnight patterns Sleep-related features + time spent per day in nighttime toileting activities

Mobility-related The total number of activated sensors and the total distance covered walking inside the apartment per day

Mobility & outings Mobility-related + time spent per day in being out of home

Cooking & eating Time spent per day in cooking and eating

J Biomed Inform. Author manuscript; available in PMC 2019 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Aramendi et al. Page 24

Ta
b

le
 4

R
eg

re
ss

io
n 

re
su

lts
 f

or
 th

e 
ab

so
lu

te
 I

A
D

L
-C

 te
st

 s
co

re
s 

us
in

g 
al

l b
eh

av
io

ra
l f

ea
tu

re
s 

an
d 

10
-f

ol
d 

C
V

.

L
in

ea
r 

R
eg

re
ss

io
n

L
in

ea
r 

SV
r

R
B

F
 S

V
r

M
5 

R
ul

es
kN

N

r
R

M
SE

M
A

E
r

R
M

SE
M

A
E

r
R

M
SE

M
A

E
r

R
M

SE
M

A
E

r
R

M
SE

M
A

E

IA
D

L
-C

0.
21

21
.5

8*
15

.9
9*

0.
17

*
22

.8
6*

15
.8

1*
0.

22
*

20
.9

1
13

.5
8

0.
29

*
20

.2
4*

14
.7

8*
0.

01
32

.5
7

21
.0

1

IA
D

L
-C

 F
1

0.
14

15
.1

4
11

.6
5

0.
13

15
.1

7*
11

.5
6*

0.
29

*
12

.9
0*

9.
20

*
0.

27
12

.9
3*

10
.1

5*
0.

02
17

.6
1

12
.7

7

IA
D

L
-C

 F
2

0.
06

6.
59

4.
93

0.
06

6.
28

*
4.

31
*

0.
12

*
5.

60
*

3.
15

*
0.

10
5.

76
4.

16
0.

03
10

.3
2

5.
90

IA
D

L
-C

 F
3

0.
22

4.
42

*
3.

32
*

0.
19

*
4.

63
*

3.
22

0.
26

*
4.

26
*

2.
55

*
0.

23
4.

27
3.

17
0.

02
7.

58
4.

75

IA
D

L
-C

 F
4

0.
00

1.
69

*
1.

03
*

0.
18

*
1.

62
0.

79
0.

19
*

1.
57

0.
65

*
0.

00
1.

69
*

1.
03

*
0.

04
1.

59
*

0.
66

*

* St
at

is
tic

al
ly

 s
ig

ni
fi

ca
nt

 im
pr

ov
em

en
t (

p<
0.

05
) 

in
 c

om
pa

ri
so

n 
to

 th
e 

co
rr

es
po

nd
in

g 
pa

ir
w

is
e 

ra
nd

om
 a

lg
or

ith
m

.

J Biomed Inform. Author manuscript; available in PMC 2019 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Aramendi et al. Page 25

Ta
b

le
 5

R
eg

re
ss

io
n 

re
su

lts
 f

or
 th

e 
st

an
da

rd
iz

ed
 I

A
D

L
-C

 te
st

 s
co

re
s 

us
in

g 
al

l b
eh

av
io

ra
l f

ea
tu

re
s 

an
d 

10
-f

ol
d 

C
V

.

L
in

ea
r 

R
eg

re
ss

io
n

L
in

ea
r 

SV
r

R
B

F
 S

V
r

M
5 

R
ul

es
kN

N

r
R

M
SE

M
A

E
r

R
M

SE
M

A
E

r
R

M
SE

M
A

E
r

R
M

SE
M

A
E

r
R

M
SE

M
A

E

IA
D

L
-C

0.
12

36
.5

2
28

.5
0

0.
10

33
.8

9*
26

.6
4*

0.
11

25
.9

2*
17

.9
7*

0.
07

33
.9

6
23

.8
0

0.
14

43
.1

4
33

.1
0

IA
D

L
-C

 F
1

0.
21

46
.2

5
36

.5
7

0.
22

45
.1

9
36

.4
0

0.
21

31
.6

0
23

.9
9*

0.
11

35
.7

8
27

.5
2

0.
04

43
.6

7
34

.2
4

IA
D

L
-C

 F
2

0.
03

42
.4

9
33

.0
0

0.
06

34
.2

6
25

.9
6

0.
03

28
.8

0
18

.5
6*

0.
02

41
.3

7
26

.8
3

0.
12

48
.5

2
34

.5
8

IA
D

L
-C

 F
3

0.
02

80
.2

0
59

.6
3

0.
11

65
.3

3
45

.1
5

0.
01

53
.9

6
31

.7
6*

0.
22

*
67

.5
6

44
.0

7
0.

07
11

0.
24

66
.7

9

IA
D

L
-C

 F
4

0.
00

58
.3

2*
35

.6
2*

0.
00

58
.4

4
30

.1
9

0.
02

54
.7

1
23

.3
5*

0.
01

58
.2

1
35

.2
3

0.
19

*
59

.3
0

25
.9

6

* St
at

is
tic

al
ly

 s
ig

ni
fi

ca
nt

 im
pr

ov
em

en
t (

p<
0.

05
) 

in
 c

om
pa

ri
so

n 
to

 th
e 

co
rr

es
po

nd
in

g 
pa

ir
w

is
e 

ra
nd

om
 a

lg
or

ith
m

.

J Biomed Inform. Author manuscript; available in PMC 2019 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Aramendi et al. Page 26

Ta
b

le
 6

R
eg

re
ss

io
n 

re
su

lts
 f

or
 th

e 
ab

so
lu

te
 I

A
D

L
-C

 te
st

 s
co

re
s 

us
in

g 
al

l b
eh

av
io

ra
l f

ea
tu

re
s 

fo
r 

L
O

SO
C

V
.

L
in

ea
r 

R
eg

re
ss

io
n

L
in

ea
r 

SV
r

R
B

F
 S

V
r

M
5 

R
ul

es
kN

N

r
R

M
SE

M
A

E
r

R
M

SE
M

A
E

r
R

M
SE

M
A

E
r

R
M

SE
M

A
E

r
R

M
SE

M
A

E

IA
D

L
-C

0.
03

17
.5

2
15

.2
0

0.
01

17
.1

5*
14

.8
7*

0.
02

14
.1

5
12

.7
5

0.
02

16
.5

2*
14

.5
8

0.
05

27
.5

1
22

.4
1

IA
D

L
-C

 F
1

0.
02

11
.3

7
10

.0
5

0.
01

13
.1

9
11

.6
3

0.
12

9.
44

8.
65

0.
06

*
11

.6
1

10
.2

0
0.

00
15

.2
4

12
.9

5

IA
D

L
-C

 F
2

0.
08

5.
03

4.
50

0.
13

4.
68

*
4.

07
*

0.
03

3.
34

*
2.

94
*

0.
06

4.
24

3.
81

0.
00

8.
50

6.
51

IA
D

L
-C

 F
3

0.
07

6.
14

*
4.

82
*

0.
03

3.
16

*
2.

77
*

0.
01

2.
78

*
2.

33
*

0.
02

3.
14

*
2.

82
0.

07
6.

14
4.

82

IA
D

L
-C

 F
4

0.
03

1.
06

*
0.

91
*

0.
09

0.
93

0.
71

0.
11

0.
82

0.
58

0.
03

1.
06

*
0.

91
*

0.
00

0.
88

*
0.

59
*

* St
at

is
tic

al
ly

 s
ig

ni
fi

ca
nt

 im
pr

ov
em

en
t (

p<
0.

05
) 

in
 c

om
pa

ri
so

n 
to

 th
e 

co
rr

es
po

nd
in

g 
pa

ir
w

is
e 

ra
nd

om
 a

lg
or

ith
m

.

J Biomed Inform. Author manuscript; available in PMC 2019 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Aramendi et al. Page 27

Ta
b

le
 7

R
el

ia
bl

e 
IA

D
L

-C
 c

ha
ng

e 
de

te
ct

io
n 

re
su

lts
 w

ith
 a

 1
0-

fo
ld

 C
V

 u
si

ng
 a

ll 
be

ha
vi

or
al

 f
ea

tu
re

s.

A
da

B
oo

st
kN

N
L

in
ea

rS
V

M
M

L
P

V
ar

s
A

cc
.

F
sc

or
e

Se
ns

.
A

cc
.

F
sc

or
e

Se
ns

.
A

cc
.

F
sc

or
e

Se
ns

.
A

cc
.

F
sc

or
e

Se
ns

.

R
C

I b
as

el
in

e 
– 

to
ta

l
68

.4
6

0.
65

0.
23

64
.6

1
0.

67
0.

31
73

.5
9*

0.
62

*
0.

05
59

.5
9

0.
63

0.
25

R
C

I b
as

el
in

e 
– 

F1
57

.8
3

0.
53

0.
16

62
.1

1
0.

65
0.

38
65

.7
7

0.
56

0.
07

63
.2

7
0.

60
0.

33

R
C

I b
as

el
in

e 
– 

F2
91

.9
1

0.
90

0.
00

86
.3

8
0.

88
0.

00
94

.2
3

0.
91

0.
00

86
.4

4
0.

88
0.

05

R
C

I b
as

el
in

e 
– 

F3
81

.3
1

0.
77

0.
12

67
.1

6
0.

68
0.

07
84

.2
9

0.
77

*
0.

00
75

.4
4

0.
73

0.
16

R
C

I b
as

el
in

e 
– 

F4
93

.8
2

0.
92

0.
00

94
.3

1
0.

93
*

0.
00

95
.0

6
0.

93
0.

00
92

.8
2

0.
91

0.
00

R
C

I c
on

se
cu

tiv
e 

– 
to

ta
l

66
.9

4
0.

64
0.

25
*

63
.3

2
0.

60
0.

20
71

.0
8

0.
61

0.
07

62
.4

9
0.

63
0.

26

R
C

I c
on

se
cu

tiv
e 

– 
F1

65
.2

7
0.

58
0.

11
71

.3
3

0.
67

0.
28

69
.8

7
0.

58
0.

02
64

.9
2

0.
60

0.
24

R
C

I c
on

se
cu

tiv
e 

– 
F2

87
.1

3
0.

84
0.

01
80

.7
9

0.
81

0.
00

90
.1

3
0.

85
0.

00
81

.1
7

0.
83

0.
11

R
C

I c
on

se
cu

tiv
e 

– 
F3

83
.0

8
0.

78
0.

00
68

.2
8

0.
69

0.
03

85
.9

6
0.

80
0.

00
74

.0
3

0.
70

0.
01

R
C

I c
on

se
cu

tiv
e 

– 
F4

94
.2

3
0.

91
0.

00
93

.5
6

0.
91

0.
00

94
.2

3
0.

91
0.

00
90

.1
7

0.
91

0.
08

* St
at

is
tic

al
ly

 s
ig

ni
fi

ca
nt

 im
pr

ov
em

en
t (

p<
0.

05
) 

in
 c

om
pa

ri
so

n 
to

 th
e 

co
rr

es
po

nd
in

g 
pa

ir
w

is
e 

ra
nd

om
 a

lg
or

ith
m

.

J Biomed Inform. Author manuscript; available in PMC 2019 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Aramendi et al. Page 28

Ta
b

le
 8

R
el

ia
bl

e 
IA

D
L

-C
 c

ha
ng

e 
de

te
ct

io
n 

re
su

lts
 w

ith
 a

 L
O

SO
C

V
 u

si
ng

 a
ll 

be
ha

vi
or

al
 f

ea
tu

re
s.

A
da

B
oo

st
kN

N
L

in
ea

rS
V

M
M

L
P

A
cc

.
F

sc
or

e
Se

ns
.

A
cc

.
F

sc
or

e
Se

ns
.

A
cc

.
F

sc
or

e
Se

ns
.

A
cc

.
F

sc
or

e
Se

ns
..

R
C

I b
as

el
in

e 
– 

to
ta

l
67

.7
7

0.
65

0.
22

67
.7

7
0.

67
0.

31
68

.6
0*

0.
61

0.
03

57
.8

5*
0.

59
0.

28

R
C

I b
as

el
in

e 
– 

F1
61

.1
6

0.
60

0.
35

67
.7

7
0.

67
0.

40
64

.4
6

0.
55

0.
05

62
.8

1
0.

63
0.

45

R
C

I b
as

el
in

e 
– 

F2
90

.0
8

0.
89

0.
00

87
.6

0.
88

0.
00

94
.2

1
0.

91
0.

00
85

.1
2

0.
87

0.
00

R
C

I b
as

el
in

e 
– 

F3
79

.2
4

0.
77

0.
16

67
.7

7
0.

69
0.

11
84

.3
0*

0.
77

0.
00

72
.7

2
0.

73
0.

16

R
C

I b
as

el
in

e 
– 

F4
94

.2
2

0.
92

0.
00

95
.0

4
0.

93
0.

00
95

.0
4

0.
93

0.
00

94
.2

1*
0.

92
0.

00

R
C

I c
on

se
cu

tiv
e 

– 
to

ta
l

66
.1

2
0.

62
0.

15
63

.6
3

0.
61

0.
21

67
.7

7*
0.

60
0.

06
63

.6
3

0.
61

0.
21

R
C

I c
on

se
cu

tiv
e 

– 
F1

63
.6

4
0.

59
0.

11
69

.4
2

0.
67

0.
29

64
.4

6
0.

56
0.

00
64

.4
6

0.
63

0.
29

R
C

I c
on

se
cu

tiv
e 

– 
F2

88
.4

3
0.

85
0.

00
83

.4
7

0.
82

0.
00

90
.0

8
0.

85
0.

00
80

.1
7

0.
80

0.
00

R
C

I c
on

se
cu

tiv
e 

– 
F3

85
.1

2
0.

79
0.

00
69

.4
2

0.
71

0.
06

85
.9

5*
0.

79
0.

00
76

.0
4

0.
75

0.
06

R
C

I c
on

se
cu

tiv
e 

– 
F4

94
.2

2
0.

91
0.

00
94

.2
1

0.
91

0.
00

94
.2

1
0.

91
0.

00
89

.2
6*

0.
89

0.
00

* St
at

is
tic

al
ly

 s
ig

ni
fi

ca
nt

 im
pr

ov
em

en
t (

p<
0.

05
) 

in
 c

om
pa

ri
so

n 
to

 th
e 

co
rr

es
po

nd
in

g 
pa

ir
w

is
e 

ra
nd

om
 a

lg
or

ith
m

.

J Biomed Inform. Author manuscript; available in PMC 2019 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Aramendi et al. Page 29

Ta
b

le
 9

R
es

ul
ts

 f
or

 1
0-

fo
ld

 C
V

 c
la

ss
if

ic
at

io
n 

of
 R

el
ia

bl
e 

IA
D

L
-C

 c
ha

ng
e 

de
te

ct
io

n 
us

in
g 

ac
tiv

ity
-s

pe
ci

fi
c 

fe
at

ur
es

.

A
da

B
oo

st
kN

N
L

in
ea

rS
V

M
M

L
P

V
ar

s
A

cc
.

F
sc

or
e

Se
ns

.
A

cc
.

F
sc

or
e

Se
ns

.
A

cc
.

F
sc

or
e

Se
ns

.
A

cc
.

F
sc

or
e

Se
ns

.

O
nl

y 
co

ok
 a

nd
 e

at

R
C

I b
as

el
in

e 
– 

to
ta

l
70

.2
8

0.
62

0.
05

49
.1

5
0.

50
0.

40
73

.5
9

0.
62

0.
00

65
.0

3
0.

61
0.

14

R
C

I b
as

el
in

e 
– 

F1
60

.7
3

0.
54

0.
10

63
.3

8
0.

59
0.

24
66

.9
2

0.
54

0.
00

62
.4

7
0.

59
0.

28

R
C

I b
as

el
in

e 
– 

F2
92

.4
8

0.
91

0.
04

89
.5

8
0.

89
0.

00
94

.2
3

0.
91

0.
00

91
.8

3
0.

90
0.

00

R
C

I b
as

el
in

e 
– 

F3
84

.2
1

0.
77

0.
00

55
.2

0
0.

60
0.

42
84

.2
9

0.
77

0.
00

78
.5

0
0.

74
0.

00

R
C

I b
as

el
in

e 
– 

F4
95

.0
6

0.
93

0.
00

94
.4

9*
0.

92
*

0.
00

95
.0

6
0.

93
0.

00
95

.0
6

0.
93

0.
00

R
C

I c
on

se
cu

tiv
e 

– 
to

ta
l

71
.5

3
0.

65
0.

18
49

.2
8

0.
51

0.
45

71
.9

2
0.

60
0.

00
71

.6
7*

0.
68

*
0.

30

R
C

I c
on

se
cu

tiv
e 

– 
F1

69
.4

5
0.

62
0.

09
64

.1
4

0.
60

0.
18

71
.0

9
0.

59
0.

00
63

.8
3

0.
60

0.
18

R
C

I c
on

se
cu

tiv
e 

– 
F2

88
.4

8
0.

85
0.

00
85

.3
1

0.
84

0.
09

90
.1

3
0.

85
0.

00
87

.3
8

0.
84

0.
02

R
C

I c
on

se
cu

tiv
e 

– 
F3

84
.8

8
0.

79
0.

00
58

.2
8

0.
64

0.
52

85
.9

6
0.

80
0.

00
81

.4
1

0.
77

0.
01

R
C

I c
on

se
cu

tiv
e 

– 
F4

93
.9

0
0.

91
0.

00
91

.6
0

0.
90

0.
00

94
.2

3
0.

91
0.

00
93

.9
8*

0.
91

*
0.

00

O
nl

y 
m

ob
ili

ty

R
C

I b
as

el
in

e 
– 

to
ta

l
70

.6
4

0.
62

0.
03

64
.7

4
0.

66
0.

60
*

73
.5

9
0.

62
0.

00
67

.6
6

0.
66

0.
34

R
C

I b
as

el
in

e 
– 

F1
56

.9
2

0.
53

0.
16

48
.2

4
0.

48
0.

41
66

.9
2

0.
54

0.
00

56
.8

7
0.

54
0.

25

R
C

I b
as

el
in

e 
– 

F2
93

.5
7

0.
92

0.
11

73
.3

7
0.

79
0.

01
94

.2
3

0.
91

0.
00

91
.0

8
0.

90
0.

10

R
C

I b
as

el
in

e 
– 

F3
79

.9
2

0.
76

0.
07

82
.3

3
0.

82
0.

38
84

.2
2

0.
77

0.
00

81
.6

8*
0.

80
 *

0.
30

R
C

I b
as

el
in

e 
– 

F4
94

.8
1

0.
93

0.
00

90
.9

2
0.

90
0.

00
95

.0
6

0.
93

0.
00

91
.3

5
0.

91
0.

00

R
C

I c
on

se
cu

tiv
e 

– 
to

ta
l

66
.8

1
0.

60
0.

09
56

.0
8

0.
57

0.
60

*
71

.7
6

0.
60

0.
00

65
.1

1
0.

63
0.

31

R
C

I c
on

se
cu

tiv
e 

– 
F1

65
.4

7
0.

58
0.

08
47

.5
6

0.
49

0.
39

70
.9

4
0.

59
0.

00
62

.1
6

0.
60

0.
27

R
C

I c
on

se
cu

tiv
e 

– 
F2

87
.3

2
0.

84
0.

00
70

.5
8

0.
75

0.
32

90
.1

3
0.

85
0.

00
81

.8
7

0.
81

0.
03

R
C

I c
on

se
cu

tiv
e 

– 
F3

83
.0

0
0.

78
0.

02
81

.5
0

0.
80

0.
24

85
.9

6
0.

80
0.

00
79

.8
5

0.
78

0.
12

R
C

I c
on

se
cu

tiv
e 

– 
F4

93
.7

4
0.

91
0.

00
90

.2
6

0.
89

0.
00

94
.2

3
0.

91
0.

00
91

.1
6

0.
90

0.
00

O
nl

y 
m

ob
ili

ty
 a

nd
 o

ut
in

gs

J Biomed Inform. Author manuscript; available in PMC 2019 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Aramendi et al. Page 30

A
da

B
oo

st
kN

N
L

in
ea

rS
V

M
M

L
P

V
ar

s
A

cc
.

F
sc

or
e

Se
ns

.
A

cc
.

F
sc

or
e

Se
ns

.
A

cc
.

F
sc

or
e

Se
ns

.
A

cc
.

F
sc

or
e

Se
ns

.

R
C

I b
as

el
in

e 
– 

to
ta

l
71

.9
0

0.
64

0.
09

71
.0

6
0.

72
0.

59
*

73
.5

9
0.

62
0.

00
70

.8
2

0.
69

0.
37

R
C

I b
as

el
in

e 
– 

F1
63

.1
8

0.
59

0.
22

66
.0

1
0.

66
0.

51
66

.1
7

0.
54

0.
02

60
.6

8
0.

58
0.

31

R
C

I b
as

el
in

e 
– 

F2
93

.9
0

0.
91

0.
00

93
.1

4
0.

93
0.

30
94

.2
3

0.
91

0.
00

90
.6

7
0.

90
0.

11

R
C

I b
as

el
in

e 
– 

F3
82

.0
8

0.
76

0.
00

78
.3

5
0.

78
0.

36
84

.2
9

0.
77

0.
00

74
.1

9
0.

73
0.

12

R
C

I b
as

el
in

e 
– 

F4
94

.7
4

0.
93

0.
00

94
.2

3
0.

92
0.

00
95

.0
6

0.
93

0.
00

92
.9

2*
0.

92
 *

0.
00

R
C

I c
on

se
cu

tiv
e 

– 
to

ta
l

70
.6

9
0.

64
0.

19
59

.6
3

0.
60

0.
35

71
.9

2
0.

60
0.

00
65

.4
2

0.
64

0.
32

R
C

I c
on

se
cu

tiv
e 

– 
F1

66
.8

1
0.

60
0.

12
64

.4
7

0.
64

0.
38

70
.6

8
0.

59
0.

00
67

.2
2

0.
65

0.
34

R
C

I c
on

se
cu

tiv
e 

– 
F2

88
.7

2
0.

85
0.

00
86

.4
9

0.
84

0.
11

90
.1

3
0.

85
0.

00
83

.9
4

0.
82

0.
03

R
C

I c
on

se
cu

tiv
e 

– 
F3

85
.8

0
0.

79
0.

00
76

.2
9

0.
76

0.
19

85
.9

6
0.

80
0.

00
79

.5
1

0.
77

0.
08

R
C

I c
on

se
cu

tiv
e 

– 
F4

94
.1

5
0.

91
0.

00
91

.6
7

0.
90

0.
00

94
.2

3
0.

91
0.

00
92

.4
2

0.
91

0.
01

O
nl

y 
sl

ee
p

R
C

I b
as

el
in

e 
– 

to
ta

l
68

.9
6

0.
62

0.
08

68
.4

9*
0.

65
0.

19
73

.5
9

0.
62

0.
00

64
.7

4
0.

60
0.

11

R
C

I b
as

el
in

e 
– 

F1
59

.6
3

0.
55

0.
19

 *
66

.1
2

0.
64

0.
35

66
.9

2
0.

54
0.

00
58

.9
0.

57
0.

30

R
C

I b
as

el
in

e 
– 

F2
92

.5
8

0.
91

0.
00

91
.5

1
0.

90
0.

02
94

.2
3

0.
91

0.
00

91
.6

8
0.

90
0.

02

R
C

I b
as

el
in

e 
– 

F3
81

.8
9

0.
78

0.
11

82
.9

8
0.

80
0.

22
84

.2
9

0.
77

0.
00

78
.4

5
0.

74
0.

03

R
C

I b
as

el
in

e 
– 

F4
94

.3
2

0.
92

0.
00

94
.8

1
0.

93
0.

00
95

.0
6

0.
93

0.
00

94
.3

2
0.

92
0.

00

R
C

I c
on

se
cu

tiv
e 

– 
to

ta
l

64
.4

6
0.

58
0.

06
71

.1
9*

0.
66

*
0.

24
71

.9
2

0.
60

0.
00

64
.7

5
0.

61
0.

20

R
C

I c
on

se
cu

tiv
e 

– 
F1

68
.5

1
0.

62
0.

13
66

.7
4

0.
62

0.
16

71
.0

9
0.

59
0.

00
64

.1
3

0.
59

0.
16

R
C

I c
on

se
cu

tiv
e 

– 
F2

88
.2

2
0.

84
0.

00
86

.0
0

0.
83

0.
00

90
.1

3
0.

85
0.

00
88

.2
1

0.
84

0.
00

R
C

I c
on

se
cu

tiv
e 

– 
F3

83
.5

7
0.

79
0.

04
82

.5
6

0.
79

0.
12

85
.9

6
0.

80
0.

00
81

.9
4

0.
77

0.
00

R
C

I c
on

se
cu

tiv
e 

– 
F4

92
.7

4
0.

91
0.

00
93

.3
3*

0.
91

*
0.

00
94

.2
3

0.
91

0.
00

91
.4

9
0.

90
0.

00

O
nl

y 
ov

er
ni

gh
t p

at
te

rn
s

R
C

I b
as

el
in

e 
– 

to
ta

l
70

.6
0

0.
66

0.
19

64
.2

9
0.

63
0.

27
73

.5
9

0.
62

0.
00

63
.4

6
0.

61
0.

21

R
C

I b
as

el
in

e 
– 

F1
57

.2
4

0.
52

0.
13

57
.2

2
0.

56
0.

28
66

.8
4

0.
54

0.
00

59
.0

1
0.

57
0.

28

R
C

I b
as

el
in

e 
– 

F2
92

.2
4

0.
90

0.
00

87
.0

5
0.

88
0.

00
94

.2
3

0.
91

0.
00

89
.1

9
0.

89
0.

09

R
C

I b
as

el
in

e 
– 

F3
81

.0
6

0.
77

0.
11

78
.1

2
0.

77
0.

27
84

.2
9

0.
77

0.
00

77
.9

2
0.

76
0.

20

J Biomed Inform. Author manuscript; available in PMC 2019 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Aramendi et al. Page 31

A
da

B
oo

st
kN

N
L

in
ea

rS
V

M
M

L
P

V
ar

s
A

cc
.

F
sc

or
e

Se
ns

.
A

cc
.

F
sc

or
e

Se
ns

.
A

cc
.

F
sc

or
e

Se
ns

.
A

cc
.

F
sc

or
e

Se
ns

.

R
C

I b
as

el
in

e 
– 

F4
94

.7
4

0.
93

0.
00

94
.3

1
0.

92
0.

00
95

.0
6

0.
93

0.
00

93
.4

9
0.

92
0.

00

R
C

I c
on

se
cu

tiv
e 

– 
to

ta
l

65
.5

8
0.

60
0.

14
69

.6
9

0.
68

0.
36

71
.4

2
0.

60
0.

00
66

.5
8

0.
65

0.
30

R
C

I c
on

se
cu

tiv
e 

– 
F1

69
.4

2
0.

65
0.

25
65

.0
1

0.
63

0.
27

71
.0

1
0.

59
0.

00
62

.3
2

0.
60

0.
24

R
C

I c
on

se
cu

tiv
e 

– 
F2

87
.7

2
0.

84
0.

00
79

.9
6

0.
80

0.
00

90
.1

3
0.

85
0.

00
82

.5
2

0.
81

0.
00

R
C

I c
on

se
cu

tiv
e 

– 
F3

83
.5

9
0.

79
0.

03
81

.1
5

0.
80

0.
24

85
.9

6
0.

80
0.

00
79

.1
2

0.
76

0.
04

R
C

I c
on

se
cu

tiv
e 

– 
F4

93
.6

5
0.

91
0.

00
93

.5
6*

0.
91

*
0.

00
94

.2
3

0.
91

0.
00

91
.7

4
0.

90
0.

00

* St
at

is
tic

al
ly

 s
ig

ni
fi

ca
nt

 im
pr

ov
em

en
t (

p<
0.

05
) 

in
 c

om
pa

ri
so

n 
to

 th
e 

co
rr

es
po

nd
in

g 
pa

ir
w

is
e 

ra
nd

om
 a

lg
or

ith
m

.

J Biomed Inform. Author manuscript; available in PMC 2019 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Aramendi et al. Page 32

Ta
b

le
 1

0

R
es

ul
ts

 f
or

 L
O

SO
C

V
 o

f 
R

el
ia

bl
e 

IA
D

L
-C

 c
ha

ng
e 

de
te

ct
io

n 
us

in
g 

ac
tiv

ity
-s

pe
ci

fi
c 

fe
at

ur
es

.

A
da

B
oo

st
kN

N
L

in
ea

rS
V

M
M

L
P

V
ar

s
A

cc
.

F
-s

c.
Se

ns
.

A
cc

.
F

-s
c.

Se
ns

.
A

cc
.

F
-s

c.
Se

ns
.

A
cc

.
F

-s
c.

Se
ns

.

O
nl

y 
co

ok
 a

nd
 e

at

R
C

I b
as

el
in

e 
– 

to
ta

l
70

.2
5

0.
63

0.
06

47
.1

1
0.

50
0.

34
73

.5
5

0.
62

0.
00

61
.9

8
0.

59
0.

09

R
C

I b
as

el
in

e 
– 

F1
57

.8
5

0.
51

0.
05

62
.8

1
0.

60
0.

23
66

.9
4

0.
54

0.
00

64
.4

6
0.

61
0.

25

R
C

I b
as

el
in

e 
– 

F2
90

.9
1

0.
90

0.
00

89
.2

6
0.

89
0.

00
94

.2
1

0.
91

0.
00

90
.9

1
0.

90
0.

00

R
C

I b
as

el
in

e 
– 

F3
84

.2
9

0.
77

0.
00

56
.2

0
0.

62
0.

42
84

.3
0

0.
77

0.
00

76
.8

6
0.

73
0.

00

R
C

I b
as

el
in

e 
– 

F4
95

.0
4

0.
93

0.
00

94
.2

1
0.

92
0.

00
95

.0
4

0.
93

0.
00

95
.0

4*
0.

93
0.

00

R
C

I c
on

se
cu

tiv
e 

– 
to

ta
l

69
.4

2
0.

61
0.

06
49

.5
9

0.
52

0.
44

71
.9

0
0.

60
0.

00
70

.2
5*

0.
67

0.
26

R
C

I c
on

se
cu

tiv
e 

– 
F1

71
.0

7
0.

64
0.

11
63

.6
4

0.
60

0.
17

71
.0

7
0.

59
0.

00
65

.2
9

0.
62

0.
17

R
C

I c
on

se
cu

tiv
e 

– 
F2

85
.9

5
0.

83
0.

00
85

.1
2

0.
84

0.
08

90
.0

8
0.

85
0.

00
85

.1
2

0.
83

0.
00

R
C

I c
on

se
cu

tiv
e 

– 
F3

85
.1

2
0.

79
0.

00
58

.6
8

0.
65

0.
53

85
.9

5
0.

79
0.

00
82

.6
4

0.
78

0.
00

R
C

I c
on

se
cu

tiv
e 

– 
F4

94
.2

1
0.

91
0.

00
91

.7
4

0.
90

0.
00

94
.2

1
0.

91
0.

00
94

.2
1*

0.
91

0.
00

O
nl

y 
m

ob
ili

ty

R
C

I b
as

el
in

e 
– 

to
ta

l
73

.5
5

0.
62

0.
00

71
.0

7
0.

71
0.

41
73

.5
5

0.
62

0.
00

70
.2

5
0.

70
0.

38

R
C

I b
as

el
in

e 
– 

F1
58

.6
8

0.
54

0.
13

59
.5

0
0.

60
0.

33
66

.9
4*

0.
54

0.
00

66
.9

4
0.

66
0.

40

R
C

I b
as

el
in

e 
– 

F2
94

.2
1

0.
91

0.
00

90
.9

0
0.

90
0.

00
94

.2
1

0.
91

0.
00

93
.3

9
0.

91
0.

00

R
C

I b
as

el
in

e 
– 

F3
84

.2
9*

0.
77

0.
00

79
.3

4
0.

77
0.

16
84

.3
0

0.
77

0.
00

75
.2

1
0.

73
0.

05

R
C

I b
as

el
in

e 
– 

F4
95

.0
4

0.
93

0.
00

93
.3

9
0.

92
0.

00
95

.0
4

0.
93

0.
00

95
.0

4*
0.

93
0.

00

R
C

I c
on

se
cu

tiv
e 

– 
to

ta
l

66
.9

4
0.

59
0.

03
64

.4
6

0.
64

0.
29

71
.4

9
0.

60
0.

00
72

.7
3*

0.
71

0.
38

R
C

I c
on

se
cu

tiv
e 

– 
F1

67
.7

7
0.

63
0.

14
66

.1
2

0.
65

0.
31

71
.0

7
0.

59
0.

00
61

.9
8

0.
57

0.
09

R
C

I c
on

se
cu

tiv
e 

– 
F2

90
.0

8
0.

85
0.

00
85

.1
2

0.
83

0.
00

90
.0

8
0.

85
0.

00
87

.6
0

0.
85

0.
08

R
C

I c
on

se
cu

tiv
e 

– 
F3

85
.9

5
0.

79
0.

00
80

.1
7

0.
76

0.
00

85
.9

5
0.

79
0.

00
78

.5
1

0.
77

0.
06

R
C

I c
on

se
cu

tiv
e 

– 
F4

94
.2

1
0.

91
0.

00
91

.7
4

0.
90

0.
00

94
.2

1
0.

91
0.

00
93

.3
9

0.
91

0.
00

O
nl

y 
m

ob
ili

ty
 a

nd
 o

ut
in

gs

J Biomed Inform. Author manuscript; available in PMC 2019 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Aramendi et al. Page 33

A
da

B
oo

st
kN

N
L

in
ea

rS
V

M
M

L
P

V
ar

s
A

cc
.

F
-s

c.
Se

ns
.

A
cc

.
F

-s
c.

Se
ns

.
A

cc
.

F
-s

c.
Se

ns
.

A
cc

.
F

-s
c.

Se
ns

.

R
C

I b
as

el
in

e 
– 

to
ta

l
70

.2
4

0.
64

0.
09

69
.4

2
0.

70
0.

47
73

.5
5

0.
62

0.
00

66
.9

4
0.

66
0.

31

R
C

I b
as

el
in

e 
– 

F1
57

.0
2

0.
55

0.
23

64
.4

6
0.

65
0.

48
66

.1
2

0.
53

0.
00

65
.2

8*
0.

64
0.

40

R
C

I b
as

el
in

e 
– 

F2
94

.2
1

0.
91

0.
00

94
.2

1*
0.

93
0.

14
94

.2
1

0.
91

0.
00

89
.2

6
0.

89
0.

00

R
C

I b
as

el
in

e 
– 

F3
84

.3
0

0.
77

0.
00

77
.6

9
0.

77
0.

26
84

.3
0

0.
77

0.
00

73
.5

5
0.

72
0.

05

R
C

I b
as

el
in

e 
– 

F4
94

.2
1

0.
92

0.
00

93
.3

9
0.

92
0.

00
95

.0
4

0.
93

0.
00

0.
92

91
.7

3
0.

00

R
C

I c
on

se
cu

tiv
e 

– 
to

ta
l

71
.0

7
0.

68
0.

26
*

59
.5

0.
60

0.
29

71
.9

0
0.

60
0.

00
68

.5
9

0.
67

0.
29

R
C

I c
on

se
cu

tiv
e 

– 
F1

66
.9

4
0.

62
0.

14
62

.8
0.

63
0.

34
71

.0
8

0.
59

0.
00

68
.5

9*
0.

67
0.

31

R
C

I c
on

se
cu

tiv
e 

– 
F2

90
.0

8
0.

85
0.

00
89

.2
5*

0.
86

0.
08

90
.0

8
0.

85
0.

00
85

.1
2

0.
83

0.
00

R
C

I c
on

se
cu

tiv
e 

– 
F3

85
.9

5
0.

79
0.

00
77

.6
9

0.
76

0.
06

85
.9

5
0.

79
0.

00
80

.9
9

0.
79

0.
12

R
C

I c
on

se
cu

tiv
e 

– 
F4

94
.2

1
0.

91
0.

00
90

.9
1

0.
90

0.
00

94
.2

1
0.

91
0.

00
90

.9
1

0.
90

0.
00

O
nl

y 
sl

ee
p

R
C

I b
as

el
in

e 
– 

to
ta

l
67

.7
6

0.
59

0.
00

66
.1

2*
0.

61
0.

09
73

.5
5

0.
62

0.
00

63
.6

3
0.

59
0.

06

R
C

I b
as

el
in

e 
– 

F1
57

.8
5

0.
53

*
0.

13
*

61
.9

8
0.

59
0.

25
66

.9
4

0.
54

0.
00

51
.2

4
0.

51
0.

23

R
C

I b
as

el
in

e 
– 

F2
91

.7
3

0.
90

0.
00

94
.2

1*
0.

93
0.

14
94

.2
1

0.
91

0.
00

91
.7

4
0.

90
0.

00

R
C

I b
as

el
in

e 
– 

F3
80

.1
7

0.
77

0.
11

80
.9

9
0.

75
0.

00
84

.3
0

0.
77

0.
00

79
.3

4
0.

74
0.

00

R
C

I b
as

el
in

e 
– 

F4
94

.2
1

0.
92

0.
00

95
.0

4
0.

93
0.

00
95

.0
4

0.
93

0.
00

95
.0

4
0.

93
0.

00

R
C

I c
on

se
cu

tiv
e 

– 
to

ta
l

66
.1

2
0.

57
0.

00
70

.2
5*

0.
64

0.
12

71
.9

0
0.

60
0.

00
66

.1
2

0.
62

0.
15

R
C

I c
on

se
cu

tiv
e 

– 
F1

67
.7

7
0.

63
0.

14
67

.7
7

0.
62

0.
11

71
.0

7
0.

59
0.

00
66

.9
4

0.
63

0.
17

R
C

I c
on

se
cu

tiv
e 

– 
F2

89
.2

6
0.

85
0.

00
88

.4
3*

0.
86

0.
08

90
.0

8
0.

85
0.

00
90

.0
8*

0.
85

0.
00

R
C

I c
on

se
cu

tiv
e 

– 
F3

84
.3

0.
79

0.
00

83
.4

7
0.

78
0.

00
85

.9
5

0.
79

0.
00

85
.1

2
0.

79
0.

00

R
C

I c
on

se
cu

tiv
e 

– 
F4

94
.2

1
0.

91
0.

00
93

.3
9

0.
91

0.
00

94
.2

1
0.

91
0.

00
92

.5
6

0.
92

0.
14

O
nl

y 
ov

er
ni

gh
t p

at
te

rn
s

R
C

I b
as

el
in

e 
– 

to
ta

l
68

.6
0

0.
65

*
0.

19
61

.9
8

0.
60

0.
16

73
.5

5
0.

62
0.

00
61

.9
8

0.
57

0.
03

R
C

I b
as

el
in

e 
– 

F1
61

.9
8

0.
58

0.
20

55
.3

7
0.

53
0.

18
66

.9
4

0.
54

0.
00

47
.9

3
0.

47
0.

15

R
C

I b
as

el
in

e 
– 

F2
90

.9
1

0.
90

0.
00

88
.4

3
0.

88
0.

00
94

.2
1

0.
91

0.
00

89
.2

6
0.

89
0.

00

J Biomed Inform. Author manuscript; available in PMC 2019 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Aramendi et al. Page 34

A
da

B
oo

st
kN

N
L

in
ea

rS
V

M
M

L
P

V
ar

s
A

cc
.

F
-s

c.
Se

ns
.

A
cc

.
F

-s
c.

Se
ns

.
A

cc
.

F
-s

c.
Se

ns
.

A
cc

.
F

-s
c.

Se
ns

.

R
C

I b
as

el
in

e 
– 

F3
80

.9
9

0.
78

0.
16

76
.0

3
0.

74
0.

11
84

.3
0

0.
77

0.
00

80
.1

7
0.

78
0.

16

R
C

I b
as

el
in

e 
– 

F4
95

.0
4

0.
93

0.
00

94
.2

1
0.

90
0.

00
95

.0
4

0.
93

0.
00

92
.5

6
0.

91
0.

00

R
C

I c
on

se
cu

tiv
e 

– 
to

ta
l

66
.1

2
0.

62
*

0.
15

*
61

.1
6

0.
59

0.
15

71
.0

7
0.

60
0.

00
61

.1
6

0.
60

0.
21

R
C

I c
on

se
cu

tiv
e 

– 
F1

71
.9

0*
0.

68
*

0.
26

*
64

.4
6

0.
62

0.
20

71
.0

7
0.

60
0.

00
64

.4
6

0.
62

0.
20

R
C

I c
on

se
cu

tiv
e 

– 
F2

88
.4

3
0.

85
0.

00
80

.1
7

0.
80

0.
00

90
.0

8
0.

85
0.

00
85

.1
2

0.
83

0.
00

R
C

I c
on

se
cu

tiv
e 

– 
F3

82
.6

4
0.

79
0.

06
79

.3
4

0.
78

0.
12

85
.9

5
0.

79
0.

00
81

.8
2

0.
77

0.
00

R
C

I c
on

se
cu

tiv
e 

– 
F4

93
.3

9
0.

91
0.

00
93

.3
9

0.
91

0.
00

94
.2

1
0.

91
0.

00
90

.9
1

0.
89

0.
00

* St
at

is
tic

al
ly

 s
ig

ni
fi

ca
nt

 im
pr

ov
em

en
t (

p<
0.

05
) 

in
 c

om
pa

ri
so

n 
to

 th
e 

co
rr

es
po

nd
in

g 
pa

ir
w

is
e 

ra
nd

om
 a

lg
or

ith
m

.

J Biomed Inform. Author manuscript; available in PMC 2019 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Aramendi et al. Page 35

Ta
b

le
 1

1

R
es

ul
ts

 f
or

 1
0-

fo
ld

 C
V

 c
la

ss
if

ic
at

io
n 

of
 th

e 
R

el
ia

bl
e 

IA
D

L
-C

 c
ha

ng
e 

de
te

ct
io

n 
us

in
g 

a 
on

e-
cl

as
s 

L
in

ea
r 

SV
M

 a
lg

or
ith

m
.

A
cc

.
F

sc
or

e
Se

ns
.

A
cc

.
F

sc
or

e
Se

ns
.

A
cc

.
F

sc
or

e
Se

ns
.

A
ll 

fe
at

ur
es

O
nl

y 
co

ok
 a

nd
 e

at
O

nl
y 

m
ob

ili
ty

R
C

I b
as

el
in

e 
– 

to
ta

l
34

.7
1

0.
54

0.
84

33
.0

6
0.

52
0.

81
57

.0
3*

0.
63

*
0.

84
*

R
C

I b
as

el
in

e 
– 

F1
31

.4
1

0.
56

0.
83

33
.0

6
0.

55
0.

80
37

.1
9

0.
61

0.
90

R
C

I b
as

el
in

e 
– 

F2
36

.3
6

0.
14

0.
43

40
.5

0
0.

19
0.

57
66

.1
2

0.
08

0.
14

R
C

I b
as

el
in

e 
– 

F3
36

.3
6

0.
41

0.
74

31
.4

1
0.

39
0.

74
50

.4
1*

0.
48

*
0.

79
*

R
C

I b
as

el
in

e 
– 

F4
80

.9
9

0.
40

0.
67

70
.2

5
0.

32
0.

67
82

.6
5

0.
42

0.
67

R
C

I c
on

se
cu

tiv
e 

– 
to

ta
l

28
.9

3
0.

51
0.

79
31

.4
1

0.
50

0.
77

36
.3

6
0.

57
0.

88

R
C

I c
on

se
cu

tiv
e 

– 
F1

27
.2

7
0.

54
0.

86
28

.9
3

0.
50

0.
77

28
.9

3
0.

56
0.

89

R
C

I c
on

se
cu

tiv
e 

– 
F2

31
.4

1
0.

22
0.

50
26

.4
5

0.
24

0.
59

27
.8

7
0.

30
0.

75

R
C

I c
on

se
cu

tiv
e 

– 
F3

28
.9

3
0.

35
0.

71
39

.6
7

0.
36

0.
65

41
.3

2
0.

47
0.

88

R
C

I c
on

se
cu

tiv
e 

– 
F4

77
.6

9
0.

35
0.

57
58

.6
8

0.
25

0.
57

79
.3

4
0.

36
0.

57

O
nl

y 
m

ob
ili

ty
 a

nd
 o

ut
in

gs
O

nl
y 

sl
ee

p
O

nl
y 

ov
er

ni
gh

t p
at

te
rn

s

R
C

I b
as

el
in

e 
– 

to
ta

l
40

.5
0

0.
58

0.
88

32
.2

3
0.

56
0.

91
33

.0
6

0.
55

0.
88

R
C

I b
as

el
in

e 
– 

F1
32

.2
3

0.
55

0.
80

31
.4

1
0.

57
0.

85
33

.0
6

0.
57

0.
85

R
C

I b
as

el
in

e 
– 

F2
80

.1
7*

0.
10

*
0.

14
*

76
.8

6
0.

27
0.

43
26

.4
5

0.
13

0.
43

R
C

I b
as

el
in

e 
– 

F3
52

.9
0*

0.
47

*
0.

74
*

19
.8

4
0.

40
0.

84
23

.9
7

0.
35

0.
68

R
C

I b
as

el
in

e 
– 

F4
68

.6
0

0.
31

0.
67

83
.4

7
0.

43
0.

67
83

.4
7

0.
43

0.
67

R
C

I c
on

se
cu

tiv
e 

– 
to

ta
l

33
.8

8
0.

53
0.

79
31

.4
1

0.
55

0.
85

28
.9

3
0.

50
0.

77

R
C

I c
on

se
cu

tiv
e 

– 
F1

33
.8

8
0.

57
0.

89
28

.9
3

0.
54

0.
86

26
.4

5
0.

52
0.

83

R
C

I c
on

se
cu

tiv
e 

– 
F2

31
.4

1
0.

25
0.

58
26

.4
5

0.
27

0.
68

28
.1

0
0.

24
0.

58

R
C

I c
on

se
cu

tiv
e 

– 
F3

37
.0

0
0.

45
0.

88
18

.1
8

0.
37

0.
82

21
.4

9
0.

36
0.

77

R
C

I c
on

se
cu

tiv
e 

– 
F4

66
.1

2
0.

28
0.

57
74

.0
0

0.
33

0.
57

73
.5

5
0.

32
0.

57

* St
at

is
tic

al
ly

 s
ig

ni
fi

ca
nt

 im
pr

ov
em

en
t (

p<
0.

05
) 

in
 c

om
pa

ri
so

n 
to

 th
e 

co
rr

es
po

nd
in

g 
pa

ir
w

is
e 

ra
nd

om
 a

lg
or

ith
m

.

J Biomed Inform. Author manuscript; available in PMC 2019 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Aramendi et al. Page 36

Ta
b

le
 1

2

R
es

ul
ts

 f
or

 th
e 

R
el

ia
bl

e 
IA

D
L

-C
 C

ha
ng

e 
de

te
ct

io
n 

fo
r 

th
e 

SM
O

T
E

-b
as

ed
 o

ve
rs

am
pl

ed
 a

lg
or

ith
m

s 
us

in
g 

al
l b

eh
av

io
ra

l f
ea

tu
re

s

A
da

B
oo

st
kN

N
L

in
ea

rS
V

M
M

L
P

A
cc

.
F

sc
or

e
Se

ns
.

A
cc

.
F

sc
or

e
Se

ns
.

A
cc

.
F

sc
or

e
Se

ns
.

A
cc

.
F

sc
or

e
Se

ns
.

R
C

I b
as

el
in

e 
– 

to
ta

l
52

.0
7

0.
55

0.
63

61
.0

0*
0.

63
*

0.
66

*
52

.8
9

0.
55

0.
66

64
.4

6*
0.

65
*

0.
34

*

R
C

I b
as

el
in

e 
– 

F1
45

.4
5

0.
46

0.
60

61
.1

6*
0.

62
*

0.
75

*
47

.1
1

0.
47

0.
75

55
.3

7
0.

56
0.

70

R
C

I b
as

el
in

e 
– 

F2
92

.5
6

0.
92

0.
14

80
.9

9*
0.

84
*

0.
00

89
.2

6
0.

90
0.

14
86

.7
7

0.
88

0.
14

R
C

I b
as

el
in

e 
– 

F3
65

.2
9*

0.
69

*
0.

32
*

58
.6

8*
0.

64
*

0.
58

*
54

.5
4

0.
61

0.
47

55
.3

7*
0.

60
*

0.
05

*

R
C

I b
as

el
in

e 
– 

F4
83

.0
0

0.
88

0.
67

94
.2

2*
0.

92
*

0.
00

95
.0

4*
0.

93
*

0.
00

80
.1

7
0.

85
0.

67

R
C

I c
on

se
cu

tiv
e 

– 
to

ta
l

54
.5

5
0.

55
0.

88
56

.0
0*

0.
58

*
0.

50
*

54
.5

4
0.

56
0.

38
52

.0
7

0.
54

0.
35

R
C

I c
on

se
cu

tiv
e 

– 
F1

53
.7

1
0.

55
0.

34
58

.6
8*

0.
61

*
0.

57
*

48
.7

6
0.

51
0.

40
57

.0
2

0.
57

0.
29

R
C

I c
on

se
cu

tiv
e 

– 
F2

77
.6

9
0.

81
0.

33
67

.7
7*

0.
74

*
0.

25
*

86
.7

7
0.

84
0.

00
85

.9
5*

0.
84

*
0.

08
*

R
C

I c
on

se
cu

tiv
e 

– 
F3

53
.7

2
0.

61
0.

35
54

.0
0*

0.
61

*
0.

24
*

62
.0

0
0.

66
0.

12
54

.5
5

0.
61

0.
29

R
C

I c
on

se
cu

tiv
e 

– 
F4

82
.6

4
0.

87
0.

57
94

.2
1*

0.
91

*
0.

00
94

.2
1*

0.
91

*
0.

00
81

.8
2

0.
86

0.
86

* St
at

is
tic

al
ly

 s
ig

ni
fi

ca
nt

 im
pr

ov
em

en
t (

p<
0.

05
) 

in
 c

om
pa

ri
so

n 
to

 th
e 

co
rr

es
po

nd
in

g 
pa

ir
w

is
e 

ra
nd

om
 a

lg
or

ith
m

.

J Biomed Inform. Author manuscript; available in PMC 2019 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Aramendi et al. Page 37

Ta
b

le
 1

3

Po
si

tiv
e/

ne
ga

tiv
e 

IA
D

L
-C

 c
ha

ng
e 

de
te

ct
io

n 
re

su
lts

.

A
da

B
oo

st
kN

N
L

in
ea

rS
V

M
M

L
P

C
4.

5

A
cc

.
F

sc
or

e
Se

ns
.

A
cc

.
F

sc
or

e
Se

ns
.

A
cc

.
F

sc
or

e
Se

ns
.

A
cc

.
F

sc
or

e
Se

ns
.

A
cc

.
F

sc
or

e
Se

ns
.

IA
D

L
-C

58
.7

0
0.

55
0.

27
54

.0
1

0.
54

0.
60

*
60

.9
0

0.
51

0.
05

56
.9

2
0.

57
0.

52
59

.0
3

0.
56

0.
33

IA
D

L
-C

 F
1

60
.7

3
0.

59
0.

38
57

.3
3

0.
57

0.
42

56
.2

0
0.

48
0.

07
55

.8
0

0.
55

0.
47

53
.4

4
0.

50
0.

19

IA
D

L
-C

 F
2

65
.3

3
0.

62
0.

17
57

.5
8

0.
59

0.
48

71
.0

3
0.

62
0.

04
60

.5
7

0.
59

0.
27

64
.5

7
0.

61
0.

22

IA
D

L
-C

 F
3

68
.4

7
0.

63
0.

12
63

.9
0

0.
62

0.
26

71
.7

4
0.

62
0.

01
65

.9
5

0.
64

0.
28

62
.9

4
0.

59
0.

10

IA
D

L
-C

 F
4

85
.5

2
0.

82
0.

10
84

.8
9

0.
84

0.
29

88
.0

7
0.

83
0.

00
80

.5
4

0.
81

0.
24

87
.9

2*
0.

84
*

0.
11

* St
at

is
tic

al
ly

 s
ig

ni
fi

ca
nt

 im
pr

ov
em

en
t (

p<
0.

05
) 

in
 c

om
pa

ri
so

n 
to

 th
e 

co
rr

es
po

nd
in

g 
pa

ir
w

is
e 

ra
nd

om
 a

lg
or

ith
m

.

J Biomed Inform. Author manuscript; available in PMC 2019 May 01.


	Abstract
	Graphical Abstract
	1. Introduction
	2. Methods
	2.1. Data collection
	2.2. Preprocessing
	2.2.1. Day-level behavior feature extraction
	2.2.2. Between-assessments behavior statistics’ computation
	2.2.3. Functional health scores’ set-up

	2.3. Functional Health change prediction
	2.3.1. Regression Analyses
	2.3.2. Classification Analyses
	2.3.3. Evaluation


	3. Results
	3.1. Regression Analyses
	3.2. Classification Analyses
	3.2.1. Reliable change detection
	3.2.2. Sensitivity improvement
	3.2.3. Positive/Negative change detection


	4. Discussion
	5. Conclusions
	References
	Figure 1
	Figure 2
	Figure 3
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7
	Table 8
	Table 9
	Table 10
	Table 11
	Table 12
	Table 13



