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ABSTRACT OF THE DISSERTATION

From Channel Modeling to Signal Processing for Bit Patternd Media Recording

by

Seyhan Karakulak
Doctor of Philosophy in Electrical Engineering
(Communication Theory and Systems)

University of California San Diego, 2010

Professor Paul H. Siegel, Co-Chair
Professor Jack K. Wolf, Co-Chair

Bit-patterned media (BPM) recording is one method propdésedercome the density
limitations imposed by the superparamagnetic effect irtinanus recording media. Channel
modeling, equalization, and detection aspects of BPM diagrare studied in this dissertation.

In BPM recording, each bit is recorded on a single domairatigl” A read channel
model for BPM recording is introduced where the signal dbation from each island is evalu-
ated. Intersymbol interference (ISl) and inter-track ifggence (ITI) are observed in the model
due to the considered head/media geometries. The noisartbas from write/read electronics
is modeled by additive white Gaussian noise (AWGN). In thelebathe main component of the
media noise, which is called “island jitter”, is assumed tiseafrom the location fluctuations
of islands. Island position shift in the down-track and srtmck directions is modeled with
two independent Gaussian random variables. It has beemdthatvthe jitter-induced readback
voltage is non-Gaussian. Therefore, higher order appratim for the jitter-induced readback
voltage is more accurate in terms of capturing the staispicoperties of this noise source.

Schemes that utilize different equalization and detectimthods are compared for
BPM recording channels. A maximume-likelihood (ML) bit semee detector using the Viterbi
algorithm with the modified branch metric is presented fopecsal case of a symmetric channel
response matrix. Joint-track equalization was introduoede literature before in the context of
a single interfering track. A scheme is proposed whichagtijoint-track equalization followed

by a Viterbi detector for BPM recording channels. For cart@&cording densities, simulation

Xiii



results show that the performance of this scheme is comigai@athat of the much more complex
schemes utilizing optimal bit detection or optimal symbetjsence detection. The proposed
scheme also outperforms another scheme of the same cotypigseduced in the literature.

A parametric study of ITI for BPM recording channel is presein A surprising phe-
nomenon is observed in the performance curves of optimaldiéctors: The detector perfor-
mance improved for a certain range of increasing ITI leveischannels both with and without
ISl and in the absence as well as in the presence of trackgresiaion (TMR). For the no-ISI
case, this behavior is explained by means of an exact pidiatfierror analysis for the max-
imum a posteriori (MAP) bit detector, i.e. optimal bit detector. An error ev@malysis of a
punctured ML joint-track detector is used to understandoibeerved effects of ITI on system

performance for channels with ISI.
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Chapter 1

Introduction to Magnetic Recording

1.1 Introduction

With the rapidly evolving digital computer age and spregdaf internet usage all
over the world, the demand for data storage is expected tufisintly increase. Magnetic
storage devices, optical discs, and flash memory-basatistate devices are some of the storage
systems that are widely used to satisfy this growing dembmaddition to having higher storage
capacity, other desired features in a data storage systenoarvolatility, which is being able to
retain the recorded data in the absence of power, and randoess which is being capable of
reaching a desired data/track fast.

The two features, namely non-volatility and random acceage been realized prac-
tically since the fabrication of the IBM 350 Disk Drive in 185Fig. 1.1 shows the picture of
this first commercial magnetic hard disk drive which weigheate tharb00 Ib with capacity of
only 5 MB. With the advances in materials design, head design igobgs, mechanical design,
signal processing, and coding, an incredible reductiohersize and price, and an ever increas-
ing data storage capability have been achieved. Such agddguice and portability enabled the
widespread usage of hard disk drives in many systems thaireedgta storage.

In digital storage, the data is a stream of binary digitssjbihamely0’s and1’s. In
magnetic hard disk drives, the stream of bits is encodedaistoeam of bipolar channel symbols
{—1,+1} that is recorded by magnetizing the continuous thin magrféth in two different
directions corresponding tel and+1’s.

There are two magnetic recording technologies called tadgial recording and per-

pendicular recording which were developed sequentiatlyomgitudinal recording, the medium



Figure 1.1 The IBM 350 Disk Drive (with permission from Hitdc Global Storage
Technologies).

anisotropy is oriented in the thin film plane whereas it igradid perpendicular to the film plane
in perpendicular recording [1]. Due to enabling the usaga ebft underlayer (SUL), higher
recording densities are achieved with perpendicular diegr Advances in the head design such
as the introduction of a magnetoresistive (MR) head sigmifly reduced the sizes of disks.

In continuous media, a bit is recorded on a number of magmgtns which are
magnetized in the same direction. In order to increase tberdeng density, one can shrink
the bit size. This reduces the number of magnetic grains perHowever, there is a lower
limit in terms of the number of grains per bit since a suffitieaamber of grains per bit is
necessary to maintain an acceptable signal-to-noise(BHN&). To reduce the bit size, the grain
diameters can be scaled. On the other hand, as grain sizesdaed, thermal fluctuations can
spontaneously reverse the grain magnetization direction.

Bit patterned media (BPM) where each bit is recorded on agfireet], single domain
“island" may provide an alternative to conventional contins media for higher recording den-

sities. For this new type of media, not only will the media mi@cturing process change, but



also the head design, signal processing, and many othensysatures will be affected.

The main focus of this dissertation is channel modelingaézation, and detection
for BPM recording channels. In the remainder of this chapter review channel modeling,
signal processing, and coding for a typical recording systéth continuos media. Later, in
Chapter 2, we present the fabrication and writing proces8RM, and an overview of signal
processing and coding techniques for a BPM recording system

1.2 Channel Modeling

A model that reflects the channel input/output relationsigge to the physical reality
is one of the crucial components in a data storage systergrdeSince it is only a model and
is designed for efficient detection and coding algorithmhsloes not completely represent the
underlying physics of the data storage system. Nevertheteshosen model can be improved
by incorporating models for errors in the writing/readinggess as well as for noise sources
that arise from the imperfections in the recording media@mfthe read/write electronics.

In a hard disk drive, the stream of bits are recorded on a tlindonsisting of mag-
netic grains. Each bit is recorded by a write head which mi@gsea number of grains in the
same direction. Since the media is continuous, no writimgkyonization is needed for record-
ing. In longitudinal recording, the media anisotropy isibhontal to the film plane whereas
in perpendicular recording, the media anisotropy is pedjpetar to the film plane. When the
orientation of the media changes, an isolated transitispamse occurs in the read head.

The noiseless readback signal in a recording system witlnéncmus media is repre-

sented by a linear model
v(t) = u;g(t —iT) (1.1)

where{u; } represents the stream of coded bits from the alphgbét+1} andg(t), called the
dipulse response, represents an approximation to the ehagaponse of an isolated bit. Hefe,
represents the time required for the read head to move frabibmo the next one. The dipulse

response is

(1) = 5 (h(t) — (s ~ 7)) (12)

whereh(t) represents the channel response to an isolated trandfiorongitudinal recording,



the isolated transition is approximated by a Lorentziars@ushown in Fig. 1.2, defined as

A

L+ (pivs)?

where A denotes the peak amplitude afd'50 represents the width of the pulse at half the

h(t) (1.3)

peak amplitude.
For perpendicular recording, an isolated transition raspacan be approximated by

an error function [2]

2vIn2t
h(t)=A- erf< BITE0 ) (1.4)

wherePW 50 is the width of the derivative of the transition responsegdtt df its peak amplitude

and the error function is defined as

erf(t) = % / " an. (1.5)
T Jo

Amplitude

Figure 1.2 The isolated transition response in longitudieeording represented by a Lorentzian
pulse whered = 1 and PIW50 = 1.



Fig. 1.3 shows the isolated transition response for peipelad recording.
The electronics noise and head noigeé) can be modeled by additive white Gaussian

noise (AWGN). Then the readback signal takes the form of

y(t) = Z u; g(t —iT) 4 n(t). (1.6)

)

The dominant noise in a recording system comes from the metliah is called “media noise”

[3]. The main component of this noise source is “transitia@isa” which occurs due to the
randomness of the grain shapes at the bit transition [3[7[B& readback signal(¢) then can be

modeled as

y(t) = Z w; g(t +t; — iT) + n(t) (1.7)

7
wheret; represents the transition jitter for the input hit and is modeled with a Gaussian

distribution.

Amplitude

Figure 1.3 The isolated transition response in perperalia@cording represented by an error
function whered = 1 and PW50 = 0.5.
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Figure 1.4 A typical data storage system.

In order to increase the recording density, the bit size dsiced, resulting in fewer
grains per bit. Such a reduction in the size of each bit intoed inter-symbol interference (ISI)
due to the smaller size of bit separation along the track. Mthe track pitch is reduced, the
intertrack interference (ITl) becomes an important sowkt@terference when the read head
senses signals from the neighboring tracks. Also the lineadel assumption might become
invalid for higher recording densities [4]. A more realisthannel model should include the
effect of interfering signals along the track and in the sttvack direction as well as the non-
linearities that could arise from higher recording deassiti

In the next section, we review the signal processing andngottichnigques for mag-
netic recording channels that can combat the ISI and ITl,iaedise, and many other imper-

fections arising in a recording system.

1.3 Signal Processing and Coding for Magnetic Recording Cha

nels

Fig. 1.4 shows a typical data storage system that consisia efror correction code
(ECC) encoder/decoder, a modulation code encoder/dectierecording channel, and the
detector. Error correction coding is utilized to elimin#tte errors that occur due to the noise in
the recording channel whereas modulation coding is utilize timing recovery and in order to
enhance the channel performance by encoding the data streaanmore noise resilient stream.

Advanced equalization, detection, and coding techniquabled higher capacity and

more reliable storage. In this section, we review diffegtection techniques including partial-



response maximume-likelihood detection, noise-predictivaximume-likelihood detection, and

error correction coding for magnetic recording channels.

1.3.1 Equalization and Detection

In the early stages of magnetic recording systems with lamending densities, each
transition was separated well enough feek detection to be efficient. In peak detection, the
peaks in the readback signal correspond to the transitidrishware then used to recover the
channel input. However, with increasing recording deasijtithe smaller separation between
transitions introduces ISI. For such a case, peak detebgoomes an unreliable method since
it can not resolve the ISI.

To combat ISI, a new approach was taken. Rather than viewiedSl as a phe-
nomenon to eliminate, a partial-response (PR) channelhnddiows ISl in a controlled man-
ner with maximume-likelihood (ML) sequence detection igdaaluced. This new approach is
called partial-response maximum-likelihood (PRML) détet For ML sequence detection, the
Viterbi algorithm is utilized which works on a trellis rementing the channel input and noise-
less channel output sequences. The discrete channel owtgiah is obtained by sampling the
continuous channel output with a sampling interval comesiing to the bit separation, is fed to
the Viterbi detector which outputs the most likely bit seage The complexity of the Viterbi al-
gorithm is linear in the number of states and in the lengtihefdequence. However, the number
of states in the trellis increases exponentially with timgtl of the channel response. Therefore,
for more manageable complexity, the sampled channel augmat equalized to a PR channel
response with a limited length.

The reduced length of the channel response comes at thefaosise enhancement
and noise coloration. When the Viterbi algorithm, whichggimal for white noise, is utilized for
detection, the performance is degraded to an extent thahdepmn the amount of noise enhance-
ment and noise coloration. To improve the performance of MPRystem, noise-predictive
maximume-likelihood (NPML) detectors were introduced [6]- An NPML system involves a
generalized partial response (GPR) target with arbitraay number coefficients which whitens
the noise before detection. The complexity of detectiomesgased due to the usage of longer
GPR targets compared to the PR targets.

For media noise which is data dependent, a new detectionochéhintroduced that
exploits the pattern dependency in the signal distortiahramse reflected in the noise metrics.
This new technique is called patterned-dependent noesgigtive maximum-likelihood (PDNP-



ML) detection [7]. PDNP-ML detection can be viewed as a galieation of NPML detection.
These new techniques enhanced the detection performancecfording channels with more

complex noise sources such as media noise [8].

1.3.2 Error Correction Codes

In order to correct errors in magnetic recording disk drivgsed-Solomon (RS) codes
with hard decision decoding have been utilized for decadé® error correction capability of
these codes with hard decision decoding is largely deteuniy its minimum distance. How-
ever, with hard decision decoding of RS codes, the ratesaar@afay from the Shannon limit,
namely the channel capacity, which is the highest rate fackvieliable communication is pos-
sible [9].

For decades, no known codes achieved reliable performamatea near the Shannon
limit. With the introduction of turbo codes with iterativeecbders in 1993 [10], the traditional
way of code design with good minimum distances has beenmeftr Later, low-density parity
check (LDPC) codes, which were introduced by Gallager a tong ago [11], have been shown
to perform close to the Shannon limit [12]-[15]. It is expegttthat these advanced codes will
find more use in hard disk drives, a viewpoint supported byehent integration of LDPC codes

with iterative detection into a hard disk read channel in.[16
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Chapter 2

Introduction to Bit Patterned Media
Recording

2.1 Introduction

The recording density in hard disk drives is measured ingeshareal density, i.e. the
number of bits per square inch. To increase the recordingitiles) the areal density needs to be
increased. In conventional magnetic recording systentinaontinuous magnetic layer which
consists of magnetic grains is utilized for recording. Ebitltonsists of a number of magnetic
grains that are magnetized in the same direction, behasginga unit.

By scaling the number of grains per bit, the areal densitybmimcreased. However,
due to the randomness in the grain size and shape, the imarfsdm one bit to another might
introduce a considerable amount of noise, called tramsjttter, to the readback signal. This
is illustrated in Fig. 2.1. Therefore, in order to obtainfEignt signal-to-noise ratio (SNR) for
each recorded bit, the number of magnetic grains per bit cabardecreased beyond a certain
number. Grains with smaller diameters can be utilized togiase the recording densities. How-
ever, grains with small diameters become thermally unsthiglthe superparamagnetic effect,
i.e. the magnetic energy of the gralfi, V' is not large enough compared to the thermal energy
kpT. Here, K, andV, respectively, represent the magnetic anisotropy and #gnatic switch-
ing volume of a grain wheredsz andT’, respectively, represent the Boltzmann constant and the
temperature. If grains with large magnetic anisotropy aiteed to eliminate the superparam-
agnetic effect, the required magnetic field for writing isreased. However, the magnetic field

of the write element is limited. Therefore, to magnetize mwchange the polarity of a grain,

10
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Figure 2.1 lllustration of a transition in continuous film diee Taken from [2] with permission.

the magnetic anisotropy of the grain needs to be reduced bysmaf recording techniques with
energy assistance such as in heat-assisted magneticinecifdAMR) [1].

There are two other methods proposed for higher recordingities that require pat-
terning of the continuous media, i.e. discrete track medih l@it-patterned media (BPM). In
discrete track media, the magnetic film is patterned by meétithography. The tracks are
separated by a nonmagnetic material. Such a techniqgueegdie interference coming from
different tracks, mitigates the effects of track misragitibn arising from improper positioning
of the write/read elements, and increases the tolerancéeimensions of write/read ele-
ments [3]-[5]. On the other hand, since the data is recoraetlacks in continuous media, the
transition noise is still a problem and the superparamagedfiect is inevitable for increasing
recording densities.

In order to combat the superparamagnetic effect, the mediatierned to magnetic
“islands” where each island can store an individual bit ifVBFecording [6]-[7]. Each island
consists of one grain or a few coupled grains. There is nogretic material between islands.
Such a system offers a great potential for recording desslieyond 1 Th/th Due to the
patterned transitions along the track and in the cros&-tdit@ctions, less transition noise is
observed in BPM in contrast to the continuous media.

Many challenges for BPM recording need to be addressed ferniaw recording
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method to be successful. Such challenges include, but mited to, the media fabrication,
the write/read head and servo design, signal processid@)g;cand system integration. It might
take time to overcome these challenges and we might havétle fee a slower pace of increas-
ing recording densities in the near future.

In the remainder of this chapter, we briefly summarize theienfadbrication, the writ-
ing process, servo and timing recovery, written-in errsignal processing and coding for BPM
recording channels. In Section 2.6, we present an overvfahiodissertation, whose focus is

on channel modeling and signal processing aspects of BPdMdieg channels.

2.2 Fabrication Process

To achieve high recording densities with BPM, one challesde fabricate patterned
disks with the properties necessary for successful magnetbrding at a reasonable cost. E-
beam lithography, nanoimprint lithography, and self-adsly are some of the techniques pro-
posed for the fabrication of BPM. The first step in the massi¢abion process of patterned
disks is the creation of a master pattern. With the currettirtelogy, creation of the master
pattern is a time-consuming and expensive process. At tendestep, templates are created
by replicating the master pattern which is followed by thiedstage where the templates are
replicated to create the patterned disks. The second anflitHestage, shown in Fig. 2.2, can
be carried out at a reasonable cost by nanoimprint techpolbgthe rest of this section, we
briefly summarize e-beam lithography, self-assembly, andegl self-assembly techniques and
the process of fabricating a patterned disk from a mastéenpatvith nanoimprint technology.
More information about these technigues and other tecksigot mentioned here can be found
in [8].

The master pattern can be obtained by several techniquésasulithography, self-
assembly, or guided self-assembly. Optical lithography cat meet the higher resolutions
required for the recording densities targeted for BPM. Amotlithography technique called
as e-beam lithography is a candidate to generate a masterrpaiith the areal density up to
1Tb/ir? [10]. Fig. 2.3(a) and Fig. 2.3(b), respectively, show a heignd a phase image of a
specimen patterned by e-beam lithography and with dimansfal um. The height image
is obtained by an atomic force microscope (AFM) whereas tiese image is obtained by a
magnetic force microscope (MFM). In e-beam lithographe, writing process is serial, which
results in a slow and expensive procedure to obtain the mpateern. To achieve recording
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1 master pattern
10,000 nanoimprint

templates 100,000,000
patterned disks

Figure 2.2 Two-generation nanoimprinting process. Takemf9] with permission.

densities more than 1TbAnself-assembly is another proposed technique to creatmaster
pattern. Self-assembly is a natural lithography methodrevtige self-assembled patterns are
found in nature. These self-assembled patterns can beedtitis a template. The disadvantage
of this technique is the missing circular symmetry whichégded for a rotating disk. Fig. 2.4
shows AFM and MFM images of a self-assembled pattern.

In order to overcome the problems observed in the self-asdyamethod, such as long
range ordering and placement jitter, a guided self-assemithod is proposed. This method
combines natural assembly with a lithography process. dmgtlided self-assembly process, a
topographical pattern is created physically in a subswatbe surface chemistry is modified to
accommodate the specified form of pattern [9].

Once a master pattern is created, it is later replicated hpingrint lithography. A
simple process is demonstrated in Fig. 2.5 where a pattatis&ds created through a master
pattern serving as a nanoimprint template. In the procass,afimaster pattern is created by
e-beam lithography. Later, a resist pattern on the mastérpas developed by reactive ion-
etching (RIE) and the master pattern is inverted and praagethe liquid resist layer. By means
of UV light, the liquid resist layer is hardened into a solaplica of the master pattern. Later,
pillars are formed by means of reactive ion etching. In tret $ep, to create the magnetic

islands, magnetic material is deposited on top of pillars.
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(@) AFM image of an e-beam pattern specimen

(b) MFM image of an e-beam pattern specimen

Figure 2.3 AFM and MFM images of e-beam pattern specimen diittension ofl um.

2.3 Writing Process: Servo and Timing Recovery

During the fabrication process of continuous media, serakars are recorded around
each track for the purpose of successful write synchranizatTight write synchronization is
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(&) AFM image of a self-assembled pattern specimen

(b) MFM image of a self-assembled pattern specimen

Figure 2.4 AFM and MFM images of a self-assembled pattercispn with dimension of
1 um.

not required in continuous media since the entire film islalsée for recording. The main
difference between the writing process in continuous madié BPM is the necessity of tight



16

(b)
reactive plasma
developed
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template substrate template substrate
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transparent reactive plasma magnetic material
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8 B e W B Lo minisisisls
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/
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Figure 2.5 Fabrication process of patterned disk througtasten pattern. Taken from [9] with
permission.

writing synchronization in BPM. In BPM, islands are locatgdpecific places which need to be
known by the write head for proper synchronization durirgrgcording process [6].

The location of each island can be determined by a read semkerfrequency and
phase of the write clock can then be updated for successioitdimg. However, a major interfer-
ence in the readback signal coming from the large curremtkeaito the write element degrades
the signal level coming from the read sensor. To overconseetfiéct, other techniques are pro-
posed such as usage of an independent sensor [9]. On thehatigirsuch new technigues can
be prohibitively complex and costly.

One successful method for write synchronization would leeusing of sector syn-
chronization system which does not require simultaneonsiisg and recording. In this system,
with sector headers, successful update in frequency arsbpbaossible. The major drawback
of such a system is that there is no write synchronizatiorirobbetween sectors. For sector
synchronization in BPM, advanced servo patterns for fragueand phase update are studied
in [11]-[14]. The comparison of servo performance of theattgons in the presence of media

noise, signal sampling, and timing jitter is presented #i[1
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Figure 2.6 lllustration of timing window wherd” represents the write width ang, represents
the writing window. Taken from [15] with permission.

2.4 \Written-in Errors

The recording performance of BPM will largely be dominatgddorors that occur
in the writing process [15]. The errors in the writing praeesan arise from imperfect write
synchronization or from imperfections in the fabricatiowgess. In the fabrication process, the
imperfections might be due to the fluctuations in magnetaperties of the media or in island
size, shape, and location.

The location width of the write head where a successful dingris possible for a
specified island is defined as the "writing window" [16]. InlBPecording, the write head needs
to be synchronized by the targeted island. This is illusttam Fig. 2.6. There could be scenarios
where the head might not move to the writing window of the enfrisland, instead being in the
writing window of the previous or the next island. Even whia write head is in the writing
window of the island desired to be magnetized, the write Bélould be larger than the magnetic
switching field of that island for successful magnetizatidierefore, successful recording of
an island is determined by many factors including, but noitéd to, the randomness in the
island size, shape, and location, the switching field distron of the islands, and the write field
distribution of the write head.

In [17], the writing failure is modeled by a simple model whenly substitution errors
are assumed to be present. A substitution error refers togpesite polarity compared to the
desired polarity. In [18], a more general notion for sucfidsecording, called “addressability,”

which refers to successful magnetization of a targeteddsleithout detrimentally affecting the
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neighboring islands is defined. If the write head changemtgnetization of the previous island
due to the write mis-synchronization, then the previouanidlis overwritten. Such a writing
failure introduces a deletion error. Moreover, there cdaddscenarios where an insertion error
can also occur.

2.5 Signal Processing and Coding

From the read channel aspect, several models as well ad pigigassing techniques
for BPM recording are studied in the literature. Due to seraland separation in the down-
track and cross-track directions for high recording désitthe read channel experiences of
inter-symbol interference (ISI) and intertrack interfeze (ITI). Two-dimensional as well as
one-dimensional equalization and detection techniquestaidied to combat the effects of ISI
and ITI. Channel models incorporating the media noiseragifiom the imperfections in the
fabrication process such as the fluctuations in island sideshape are also considered. Another
natural step would be to consider applying error correctiodes for channel models with ISI
and ITI.

As we have discussed above, the performance of BPM recodiiagnels is largely
dominated by written-in errors, i.e. substitution, ingert and deletion errors. In [17], a channel
model combining the write and read process with severatteteschemes is presented. It has
been assumed that only substitution errors occur in theevariocess and the read channel is
modeled as an ISI channel. However, it is crucial to desigitevahannel models with inser-
tion/deletion errors in addition to substitution errorsdvanced signal processing and coding
techniques are required for such channels with writterriars. In the literature, several error
correction codes are designed for channels with insed@etion errors [19]-[24]. Such codes
can be applicable to BPM recording channels.

Information theoretical limits for write/read channelg @nportant from the aspect of
code design that can correct the errors that occur in the anitl read process. Information rates
of the composite channel with different written-in errorgraeters and read channel models are
presented in [17]. Bounds for the capacity and symmetriorinfition rate are presented for a

new channel model incorporating insertion/deletion erif25].
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2.6 Dissertation Overview

Integration of BPM to a functional recording system regaliogercoming many chal-
lenges. In this dissertation, we are interested in the soaessing aspect of this new recording
system from the read channel point of it.

In Chapter 3, we introduce a read channel model with ISI ah@vhich arise from the
readback signal of islands in the down-track and crosdtaections, respectively. We assume
that additive white Gaussian noise (AWGN) occurs due to hetmnics noise. We also consider
media noise whose major component arises from the islaradidocfluctuations. We model the
location fluctuations in the down-track and cross-traclections with independent Gaussian
random variables. Later, we show that media noise is nors§au and pattern dependent.

In Chapter 4, we study equalization and detection techsidaoe the read channel
model with AWGN noise that we introduced in Chapter 3. We carapghe detection perfor-
mance of several schemes with different equalization amectien techniques where only the
bit sequence on the main track is detected in the presencd.diVe propose the use of joint-
track equalization which was previously introduced in tierature in the context of a single
interfering track [26]. Simulation results show that forteén recording densities, the scheme
with joint-track equalization and maximume-likelihood semce detection has performance sim-
ilar to that of an optimal detection scheme and outperfornaheer low-complexity detection
scheme introduced in the literature [27].

In the last chapter of this thesis, we present a parametrity sif IT| for BPM record-
ing channels. Simulation results for optimal bit detectstiow that increasing ITI level does not
necessarily degrade the performance. In contrast, fortaiceange of ITI levels, increasing the
ITI level improves the performance. This interesting phreeoon arises in the absence as well
as in the presence of ISI and track misregistration (TMR).eRgct analysis of bit error rates
in the absence of ISI, we explain this phenomenon. In thesp@sof S|, since the analysis of
bit error rates for optimal bit detection in the presenceTdfi difficult, we explain the effect
of different levels of ITI by analysis of the dominant errareats of another detector called a
punctured maximume-likelihood (ML) joint-track detectdfhe performance of this detector is

virtually identical to the optimal bit detector.
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Chapter 3

A New Read Channel Model for Bit
Patterned Media Recording

3.1 Introduction

For bit patterned media (BPM) recording, several read cblamodels taking into
account such properties of this new recording media as @mg#y are introduced in the litera-
ture [1]-[2]. In this chapter, we introduce a technique tonpaoite the output of BPM recording
channels with read heads whose dimensions are larger thetaad of magnetization. This
technique allows the signal contribution due to the intack interference (ITI) from adjacent
tracks to be evaluated.

Reading is accomplished with a finite track-width magnetisizze (MR) head with
infinitely wide shields. The head potential distributiorolstained using reciprocity calculations
and is modified for the presence of a soft underlayer (SULt)gigie method of multiple images
[3]. The contribution of a magnetized island to the readlmgkal is evaluated as the integral of
the head potential distribution over that island.

In the read channel model, the readback signal is passedgthra low-pass filter,
followed by a sampler with a sampling interval correspogdio the down-track island sepa-
ration. Electronics noise, modeled as additive white Ganssoise (AWGN), is assumed to
corrupt the output of the read head. In the model, it is asdutmat the main component of the
media noise arises from the location fluctuations of islafidsgs noise source is called “island
jitter.” Island position shift in the down-track and crasaek directions is modeled with two

independent Gaussian random variables and a second-oodil for the approximation to the
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Figure 3.1 Schematic of the magnetoresistive head andpattenagnetic medium.

jitter-induced readback voltage is introduced. The nuoadlsi calculated probability density

functions indicate that this noise source is data-depdral@mhnon-Guassian.

3.2 Head/Media Configurations

In the read channel model, the islands are arranged in angpdta array with di-
mensions, in the down-track direction and with dimensienin the cross-track direction. The
islands have a film thickness bf Center to center island distances in the down-track argkero
track directions, respectively, are equalBg and B,,. This is shown schematically in Fig. 3.1.
The recording density is determined by the parametgrand B, . Table 3.1 shows media con-
figurations as an example for recording densities betwe€h/in?> and2 Th/in?. In the table,
the parameteB, which determines the track period is sefonm whereas the parametsr,
is scaled down to obtain higher recording densities. Inmotd@btain higher recording densi-
ties, either one or both of the center to center island distsim the down-track and cross-track

directions can be reduced.

Table 3.1 Media configurations for recording densities leetwt Tb/in?> and2 Tb/in?.

| RecordingDensity| s, | s. | B, | B. |
1 Tb/in? 125nm | 125 nm | 25nm | 25 nm
1.2 Th/in? 11nm | 12.5nm | 21.5nm | 25 nm
1.4 Th/in? 9nm | 12.5nm | 18.4nm | 25 nm
1.75 Tb/in? 7nm | 12.5nm | 14.7nm | 25 nm
2 Th/in? 6nm | 12.5nm | 12.9 nm | 25 nm
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Reading is accomplished with a finite track-width shieldedgnetoresistive (MR)
head with infinitely wide shields. The top view of such a sthéel MR head is shown in Fig. 3.2.
In the figure,IW stands for the head widtlh,stands for the thickness of the MR element, gnd
stands for the gap from shield to the MR element. The read beatdtred over the main track
spans a specified fraction of the outer traakspér track andlower track, respectively) as shown
in Fig. 3.1.

3.3 Head Potential Distribution and Readback Voltage

In the absence of a soft underlayer (SUL), the head potetisaibution ¥ (z, y, z) of

the MR head is obtained by means of reciprocity calculat[8hs

SHIELD SHIELD

VAVAVAVAV A A A4

/777

Figure 3.2 Top view of a shielded MR head.
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B e R+(z—2)] g+i+ua
U(z,y,2) = ({nglog [R— =) + 37
) —t/2
- {(z—z)(m —a >] }
yR z'=—g—t/2
t/2
- {(z - x')}
27 yR
x'=—t/2
Y R+ (z—2) g+i—ua
* { 47TglOg [R—(z—z’) * 21y
o o t/2+g w/2
tan " {(Z ] )] } ) (3.1)
yRR
a'=t/2/ |z/=—W/2
whereR = /(z 24y 4+ (2 —2)2

At a fIylng helghty = 5 nm, the surface plot of the head potential distribution of
an MR head with dimensiond” = 35 nm,¢ = 5 nm, andg = 25 nm is shown in Fig. 3.3.
Note that the head potential distribution decreases witheasing distance in the down-track
and cross-track directions.

In the presence of an SUL, the head potential distributioobigined by means of
reciprocity and multiple images calculations. For a givgokness of SUL/, choose the smallest
positive integerV such that for a given,

|W(z,2(N+ 1) +y,2z) —¥(x,2(N + 1)l —y,2))| <e. (3.2)

The head potential distributiofisy,(z, y, 2), then, is

N
\IISUL(x7y7 Z) = Z (\Il(x7 200 + Y, Z) - \I’(‘Tﬂ 2l — Y, Z)) + \Il(x7y7 Z)' (33)
i=1

The readback signal produced by a head center¢d @} from an island centered at
(x0, 20) is the integral of the head potential distribution over tisktnd

xo+5z/2 ZO+52/2
V(xo, 20) / (x,d,z) — ¥(x,d+ h, z)) dxdz. (3.4)
T0—Sxz/2 20—5Sz/2

Here, d represents the flying height of the MR head from the surfadd®inedia. To obtain
the readback signal in the presence of an SUL, the head @dtéistribution ¥ (z, y, z) in (3.4)
should be replaced wittrsy(z, y, z) defined in (3.3).
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0.7 <

cross—track

down-track

Figure 3.3 Surface plot of the head potential distributiersus down-track and cross-track dis-
tance for a shielded MR head.

For a recording density df Tb/in> with the media configuration shown in Table 3.1,
the normalized readback signals of isolated islands witlsil centered af0,0) and (0, B;)
versus down-track distanaeare shown in Fig 3.4. This figure shows the change in the re&dba
signal the head senses when the center of the head whoseahquogition is(0,0) moves in
the down-track direction. Fig. 3.5 shows the normalizedlibaak signals versus down-track
distancez in the presence of SUL. In the absence of SUL, a negative shdet is observed
whereas in the presence of SUL, such a negative undershalagést. It is also known that SUL
helps the writing process by enhancing the recording fidld [4

When the readback signal from the islands at distances opamble to the island
separation in the down-track direction is not negligibleteisymbol interference (ISl) is ob-
served. Similarly, the readback signal from the islandsdja@ent tracks introduces inter-track
interference (ITI) into the model. For specific media configions, the ITI level increases by
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island centered at (0,0)
_ . _ island centered at (O,BZ)

121

Normalized Voltage

-100 -80 -60 -40 -20 0 20 40 60 80 100
Down-track distance x, nm

Figure 3.4 The normalized readback voltage from islandseced at(0,0) and (0, B,) in the
absence of SUL.

increasing the width of the head and the ISI level increases by increasing they giagm the

MR element to the shield. However, decreasing the islandraéipns in the down-track and
cross-track directions, respectively, increases thettteagd the level of ISI and ITI in the chan-
nel for a specific head configuration. Therefore, both headnaedia configurations determine

the ISI and ITI levels in the channel.

3.4 Discrete-time Channel Model

When the head senses signals frenandn islands in the cross-track and down-track
directions, respectively, the discrete-time readback ehottained by the sampling distance
corresponding to the down-track island separation can peesented by am: x n channel
response matrix. Without loss of generality, we focus omaoka responses matrices where
m = 3 andn = 3. The channel inputs are assumed to be independent idéniitisiributed

(i.i.d.) equiprobable binary sequences; 1}, {uio}, and{u;} recorded on the upper, main,
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and lower tracks, respectively ang_1, u;o, u;1 € {1,—1}. If binary data is recorded on each
track, the triplet of islands represents onesgiossible recorded “symbols” listed in Table 3.2.
That is, each symbol represents three independent bitsdstor the upper, main, and lower
track.

For certain recording densities, the noiseless samplauletéstime readback model

1.2 ‘ ‘
island centered at (0,0)
_ . _ island centered at (O,BZ)
1r i
o 0.8f e
()]
s
o
>
T 06 .
N
©
£
o
4
04r .
0.2 -
0 Bl ] ] ] - :
-60 -40 -20 0 20 40 60

Down-track distance x, nm

Figure 3.5 The normalized readback voltage from islandseced at(0,0) and (0, B,) with
SUL.

Table 3.2 Symbols

uppertrack| — | + | — | — |+ |+ | = | +
maintrack | — | — |+ | — [+ | — | + | +
lowertrack| — | — | = |+ | = |+ |+ | +
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can be represented by3ax 3 channel response matriX

ho,—1 hi,—1 ho—1
H=1 hypo hio hopo (3.5)

where the ISl is limited t@ symbols. Fig. 3.6 shows the discrete noiseless channelimbeee

the noiseless readback sigralt timei is

2 2 2
Vi= D o Pk —1Wick—1 F Do Pk 0Wimk0 T D jo Pl 1 Wik 1

3.5 Noise Modeling

Inthe read channel model, we consider AWGN and media noiserdplay transducer
and the readback circuitry generate the stationary el@icsaoise. We model the samples of
this noise source by independent, zero-mean Gaussianmavatiables{w;} with varianceo?.

In the presence of AWGN, the readback sigpaht times is

Yi = Sopeo -1 k1  Soneo P 0Ui—k0 T Do e Uikl Wi - (3.6)

Fig. 3.7 illustrates the discrete-time readback model WitVGN.

The island size and island location fluctuations are expect®e the source of media
noise in BPM recording channels [5]-[8]. Here, we assumettimdominant component of the
media noise arises from the randomness of the island losatibhis non-stationary component
is referred to as “jitter noise." Let us assume that an istaardbe shifted from its ideal location
both in the down-track and cross-track direction as showhidgn 3.8. We model these shifts

Ui,—1 ——{ [ho,—1 h1,—1 ha, 1] _\

Uj,0) —> [h070 hl,O hg,o] @ Ui

Uj,] —> [h071 hl,l h271] —/

Figure 3.6 The discrete-time noiseless channel model.
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Wi,—1 ——>{ [ho,—1 h1,—1 ha 1] —\IIz

U0 —> [h070 hl,O hg,o] @ Yi

Uj,] —> [h071 hl,l h271] —/

Figure 3.7 The discrete-time channel model with AWGN.

as independent, zero-mean Gaussian random varidblesddz, with variancesr?, ando?,,
respectively.
The jitter-induced readback voltage in a head centeréd, &) from an island whose

nominal position iz, z) is defined as
vj(z, 2) aof v(z + 0z, 2z + 0z) —v(z, 2). (3.7)

Fig. 3.9 shows that the numerically calculated probabignsity functionfy;(v) of the jitter-
induced readback voltage from an island with a nominal jws{p, 0) for the recording density
of 1 Tb/in? andos, = 05, = 2.5 nm. Note that the probability density function is not Gaassi
The computational complexity of calculating an exact desion of the probability
density functionfy;(v) is high. Therefore, we introduce a second-order approxamathere
we express the readback voltage induced in a head centefédoatby an island centered at

] .......

cross-track

R

down-track

Figure 3.8 A shifted island in the down-track and crosskrdaections withdz and dz,
respectively.
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(x + dx, z + 0z) using a Taylor series expansion

v(x + 0z, 2 + 0z) =v(x, 2) + 0z vy (x, 2) + 0z v, (z, 2)+
%[(595)2 Ve (T, 2) + 202 82 Vs (2, 2) + (02)0,2 (2, 2)] + &(, 2)

=v(z, z) + &(x, 2) + e(z, 2). (3.8)
Here,¢(z, z) denotes the second-order approximation to the jitteréedueadback voltage

&(x,2) =0 vp(x, 2) + 02 v (2, 2)+

%[(51‘)2 Ve (T, 2) 4 202 82 vy (2, 2) 4 (02)? v.2 (2, 2)] (3.9)
ande(z, z) represents the modeling error due to approximating théeshieadback voltage with
the first-order and second-order derivative terms. If a&irder approximation were utilized, the
jitter-induced readback voltage would be approximated Gaassian function which contradicts
the non-Gaussian nature of the jitter-induced readbadkgel

Fig. 3.10 shows the numerically calculated probability signfunction f¢(v) of the
second-order approximation to the jitter-induced reallvattage. It is seen that the probability
density function of the second-order approximation andaitteal probability density function
of the jitter-induced readback voltage have the similar-Gaussian form. Note also that the
second-order approximation is computationally less cempince derivatives in (3.9) are com-
puted only once. Fig 3.10 shows us that a higher order appation for the jitter-induced
readback voltage should be utilized to be able to capturetdtestical properties of this noise
source. We also note that this noise source is symbol depeadd it consists of contributions

from adjacent islands in the presence of inter-island fietence.
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100+

90r

801

701

601

)

501

401

301

201

10}

0 j
-0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0
\

Figure 3.10 The probability density function of the secamder approximation to the jitter-
induced readback voltage.

[2] P. W. Nutter, I. T. Ntokas, and B. K. Middleton, “An invégation of the effects of me-
dia characteristics on read channel performance for paitiemedia storage/EEE Trans.



[3]

[4]

[5]

[6]

[7]

[8]

33

Magn., vol. 41, pp. 4327-4334, Nov. 2005.

S. W. Yuan and H. N. Bertram, “Off-track spacing loss oiettted MR heads,JEEE Trans.
Magn., vol. 30, pp. 1267-1273, May 1994. Correction to “Off-traglacing loss of shielded
MR heads”,|EEE Trans. Magn. vol. 32, pp. 3334, Jul. 1996.

S. Khizroey, Y. Liu, K. Mountfield, M. H. Kryder, and D. Lyinov, “Physics of perpendic-
ular magnetic recording: writing procesggurnal of Magnetism and Magnetic Materials,
vol. 246, pp. 335-344, 2002.

M. M. Aziz, C. D. Wright, B. K. Middleton, H. Du, and P. W. Nter, “Signal and noise
characteristics of patterned meditEEE Trans. Magn., vol. 38, pp. 1964-1966, Sept. 2002.

H. J. Richter, A. Y. Dobin, O. Heinonen, K. Z. Gao, R. J. M.dv Veerdonk, R. T. Lynch,
J. Xue, D. Weller, P. Asselin, M. F. Erden, and R. M. BrockiBegtording on bit-patterned
media at densities of 1TbArand beyond,|EEE Trans. Magn., vol. 42, pp. 2255-2260, Oct.
2006.

I. T. Ntokas, P. W. Nutter, C. J. Tjhai, and M. Z. Ahmed, ‘fmoved data recovery from
patterned media with inherent jitter noise using Low-Dgngiarity-Check codes,JEEE
Trans. Magn., vol. 43, pp. 3925-3929, Oct. 2007.

P. W. Nutter, Y. Shi, B. D. Belle, and J. J. Miles, “Undemstling sources of errors in
bit-patterned media to improve read channel performan&EE Trans. Magn., vol. 44,
pp. 3797-3800, Nov. 2008.



Chapter 4

Equalization and Detection

4.1 Introduction

In this chapter, we study equalization and detection teghes for bit-patterned me-
dia (BPM) recording channels. The proposed BPM recordiranobl in Chapter 3 includes
intersymbol interference (ISI) and inter-track interfece (ITI) due to the high recording densi-
ties. Several detection and equalization methods have firegosed for channels with ITI. The
performance of the read channel in the presence of addititeidaussian noise (AWGN) was
analyzed under maximum-likelihood (ML) symbol sequenceci®n in [1]. The complexity
of an ML detector for the bit sequence written on the mainktiacsubstantial in the presence
of ITI. In [2], a detector that utilizes ML symbol sequencedeaition and outputs the middle bit
of each detected symbol in the ML symbol sequence was intemtiuTo reduce the detection
complexity, in [3], a decision feedback equalizer (DFE) thses the previously detected upper
track data was proposed. In [4], ML symbol sequence deteatith joint-track equalization
was described. A maximura posteriori (MAP) bit detector was derived in [5]. In [6], a one-
dimensional (1-D) equalizer was designed where a pagianse (PR) target was chosen to
match the channel response of the main track. For detec¢hierViterbi algorithm was utilized
on a modified trellis where the number of states correspotal¢de PR target. The modified
trellis was obtained by adding branches to take into accthntT| from immediately adjacent
bits on the outer tracks.

In [7] and [8], a two-dimensional (2-D) generalized partieéponse (GPR) equalizer
that eliminates the ITI followed by a Viterbi detector watra@duced. In [8], the use of iterative

decision feedback detection (IDFD) was proposed. For IDFR-® equalization, multiple

34



35

1-D waveforms were required as inputs rather than a singdewlaveform as in the methods
described above. These multiple 1-D waveforms might bemddzby reading multiple adjacent
tracks or by utilizing multi-head read elements.

In Section 4.2, we first review the read channel model desdrib Chapter 3. In Sec-
tion 4.3, we consider the trellis representation of chammit/output sequences. In Section 4.4,
we study ML symbol sequence detection, ML bit sequence tiete@nd MAP bit detection. In
Section 4.5, we review briefly several previously designddl dnd 2-D equalizers. We adapt a
joint-track equalizer introduced in [4] to BPM recordingacimels. In Section 4.6, we propose
a scheme that utilizes the joint-track equalizer followgdalViterbi detector. We compare the
performance and the complexity of this scheme with scheimegsutilize optimal bit detection
or optimal symbol sequence detection, and the scheme intteakin [6]. The latter scheme con-
sists of 1-D equalization with a PR target followed by thee¥fii algorithm that works on the
modified trellis as described above.

4.2 Review of the Read Channel Model

In this section, we mainly concentrate on a read channel hwitlea 3 x 3 channel
response matrix. The detection and equalization meth@tsised in this chapter are general,
however, and can be applied without loss of generality toBPyl channel model with different
lengths of ISl and ITI.

In the read channel, we assume that the read head centerdti@weain track spans a
specified fraction of the outer trackgoper track andlower track, respectively). This was shown

schematically in Fig. 3.1. The read channel response miatrix

ho—1 hi-1 ha 1
H=1 hoo hio hapo (4.1)

where the first and third row vectors represent the chanmsgloreses of the upper and lower
tracks, respectively, and the middle row vector repreghetshannel response of the main track.
The channel inputs are assumed to be independent, idéntiistributed (i.i.d.), equiprobable
binary sequence§u; 1}, {uio}, and{u; 1}, whereu; 1, u; 0, u;1 € {1,—1}. The noise sam-

ples{w;} are assumed to be independent, zero-mean Gaussian randabiegawith variance
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o2. Then, the readback signal at timei is

2 2 2
Y = Z P, —1wi—g,—1 + Z P oti—0 + Z Py 1ti—g1 + w;
k=0 k=0 k=0
déf V; + w; (4.2)

whereuw; is the noiseless output signal. The read channel model Wag#ted in Fig. 3.7.
As described in the previous section, the triplet of islargsesents one & possible
recorded “symbols" which consist of three independentdideed on the upper, main, and lower

track.

4.3 Trellis Representation of Noiseless Channel Output Segnces

The channel givenin (4.1) has a memor2alymbols. The input and output sequences
of this channel can then be described by a trellis With= 64 states. Each state at tiniés
labeled with the symbols at timie- 2 and: — 1, respectively. From each state at tilpéhere are
8 outgoing branches t®different states at timé+ 1. The branches emanating from the state at
time i are labeled by the input symbol at timand the noiseless output corresponding to this

state transition. This is shown in Fig. 4.1.

state i 1 state
at timei o /v, at imei + 1
’ 3
Ui—2, -1 Ui—1,-1 U1 Ui—1,—1 Uj,—1
Ui—2,0 Ui—1,0 Ui—1,0 Ui,0
Ui—2,1 Ui—1,1 Ui—1,1 U1

Figure 4.1 State and branch labeling for the channel resparadrix H .

4.3.1 Channel Response with Cross-track Symmetry

When the channel response matrix has a cross-track symsusgtiythaty —; = ho 1,
hi,—1 = h1,1, andhy _1 = hy 1, the noiseless channel output sequences can be represegifited
atrellis that ha$? = 36 states. For convenience, we define a channel response rHatviih
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this cross-track symmetry as follows

Hc: r o q t1]. (4.3)
m p n

For this channel, the noiseless channel outpuait times is

v = n(ui—2,—1 + ui—2,1) + p(uz—1,—1 + Uz’—l,l) + m(ui,—1 + um)
+t(ui—2,0) + q(ui—1,0) + r(uip). (4.4)
We label each state at timiavith 4 quantities: the sum of the bits on the upper and lower track
at time¢ — 2, the sum of the bits on the upper and lower track at timel, the bit on the main

track at time; — 2, and the bit on the main track at time- 1. Each branch is labeled in a manner

similar to the case of channel resporgen (4.1). This is shown in Fig. 4.2.

State

State
at time; Wi, —1 attimei + 1
Ui,0 (%
(Ui—o,—1 + Ui—2,1) i1 ’ (wim1,—1 + ui—1,1)
(wim1,—1 + ui—1,1) ' (wi,—1 4+ ui1)
Ui—2,0 Ui—1,0
Ui—1,0 Ui,0

Figure 4.2 State and branch labeling for the channel resparagrix ...

The sum of the bits written on the upper and lower track at tirntekes3 different
values as follows
-2, if Uj—1 = -1 andum =-1
0, if Ui —1 = -1 andum =1

(Wi —1 +u1) = : (4.5)
0, if Uj,—1 = 1 andum =-1

+2, if Uj—1 = 1 andum =1

Therefore, the trellis representing the noiseless chasutput sequences hé$x 3 x 2 x 2) =

62 = 36 different states. If we denote the noiseless channel caitautime: for the input

1) 2)

{ui_1 =1, usy = —1} by v and for the inpu{u; _y = —1, u;; = 1} by v®, we find that

v, = n(wi—2,-1+ui—21) + p(ui—1,—1 + ui—1,1) +m(0)
+ t(ui-2,0) + q(ui-1,0) + 7(uip0) (4.6)
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v, = n(ui—2,—1+ui—21) + p(wi—1,-1 + ui—1,1) + m(0)
+ t(ui—2,0) + q(ui—1,0) + r(ui0)- (4.7)

It is seen from (4.6) and (4.7) thejl) andvl@ are equal. There are two such pairs of inputs for
which the noiseless channel outputs are the same, i.e.,an&penu; o = —1 and one pair
whenu; o = 1. Therefore, in this trellis structure, more than one inpumisol sequence may
generate the same output sequence. When using this teetlig dasis for symbol detection, we
may have to use a restricted input symbol alphabet as sho®adtion 4.4.1. Such a restricted
input symbol alphabet introduces rate loss to the chanr&@riatively, we may use the reduced-

state trellis for detection of the binary data on the maiokranly.

4.3.2 Channel Response with Cross-track Symmetry and Zero&@&ner Entries

If, in addition to the cross-track symmetry, the corneriesthy —1, ho 1, ho,—1, and
ho,1 are equal to zero, we can represent the noiseless chanpat sajuences with4state trel-
lis. For convenience, we define a channel response miirikaving the cross-track symmetry

and the corner entries equal to zero as follows

0 p O
H+ = r oq t1. (48)
0 p O

For this channel, the noiseless channel outpuait timei is

vi = p(ui—1,—1 +ui—1,1) + t(ui—2,0) + q(ui—1,0) + r(uip)-

Here, each state at timiés labeled with the bits written on the main track at titne2 and: — 1.
Each branch has a label of the fouyb wherea equalsju;—1 1 u; o u;—1,1], namely the channel
input bit on the upper track at time- 1, the channel input bit on the main track at timmand the
channel input bit on the lower track at time- 1, andb equalsv;, namely the noiseless channel
output that corresponds to this state transition. This asvshin Fig. 4.3. There ar& branches
emanating from each state formidgparallel branches between each pair of connected states.

If we denote the noiseless channel outputs at iifoethe input{w; 1 1 =1, u;—11 =
—1} by fuf’) and for the inpu{u;_; —1 = —1, uw;—11 = 1} by fu§4), we find that

v, = p(0) + t(ui—2,0) + q(ui-1,0) + r(uso) (4.9)
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V; = p(O) + t(ui_g,o) -+ q(ui_Lo) + r(ui,o). (4.10)

(2

It is seen from (4.9) and (4.10) thaf’) and v§4) are equal. Therefore, two of theparallel
branches between each pair of connected states have theos#pue labels. This trellis is
shown in Fig. 4.4. For convenience, the branch labels arenchtded in the figure. Thid-
state trellis was introduced by Nabavi et al. [6] where twdlaf4 parallel branches between
each connected pair of states that have the same output k@bst combined into one branch,
resulting in3 parallel branches between each pair of connected statdhisltrellis structure,
similar to the case of channel respor$g more than one input symbol sequence may generate
the same output sequence. Hence, the discussion in Se@idros symbol versus bit detection

applies here, too.

State Uj—1,—1 State
at timei o /'Ui at timei + 1
Ui—1,1
Uj—2,0 Ui—1,0 Ui—1,0 Uq,0

Figure 4.3 State and branch labeling for the channel regpomasrix H . .

states states
at time: attimes + 1

Figure 4.4 Trellis diagram for the channel response mafrix
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4.4 Detection

In this section, we study different detection methods iditlg ML symbol sequence
detection, ML bit sequence detection, and MAP bit detectidre ML symbol sequence detector
minimizes the probability that a symbol sequence is in embereas the ML bit sequence detec-
tor minimizes the probability that a bit sequence is in erBwth detectors are based on Viterbi
algorithm. On the other hand, the MAP bit detector is optimarthe sense of minimizing the
probability of a bit error.

4.4.1 ML Symbol Sequence Detection

The ML symbol sequence can be obtained by utilizing the ®itatgorithm that is
matched to the trellis representing the channel input arniseless channel output sequences.
The ML symbol sequence is the sequence that maximiggs. ;,u, u;), i.€.,

Uy, 0, Uy = arg ~max p(ylu_1,u0,uy)
2122021

wherey represents the detector input samples,, u,, u, represent the bit sequences recorded
on the upper, main, and lower tracks, respectively. Wherthla@nel has cross-track symmetry,
since more than one input symbol sequence may generatentfeecgaput sequence, there may
be more than one ML symbol sequence. To resolve such a daetdet one might choose to
utilize a restricted input alphabet. Consider chaniigldefined in (4.3). When the parameters

p =q,m =r,andn = t, we obtain the channeﬁc

r q t
Ho=|r q t|. (4.11)
r q t

For this channel, the symbols with the same numbe#aind — bits are indistinguishable.
Therefore, the restricted input alphabet, shown in Talle Has4 elements which results in a
rate of2/3 bits per island. We define a channiél where the parameteys = q/2, m =r/2,
andn = t/2in (4.3)

r/2 q/2 t/2
H, = r q t . (4.12)

r/2 q/2 t/2
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For channeH,, there aré elements in the restricted input alphabet since the symbelst, +],
+,+, -1} {[-,—, +], [+, —, =]}, and{[—, +, =], [+, —, +]} are indistinguishable. Table 4.2
shows an example of a restricted input alphabet for chaHpatith ratelog,(5)/3 bits per is-
land. For channeH. defined in (4.3), the restricted input alphabet has at ré@ements as

shown in Table 4.3. Therefore, the rate of such a channeln®atlog,(6)/3 bits per island.

Table 4.1 Restricted symbol alphabet f@g.

uppertrack| — | + | + | +
maintrack | — | — | + | +
lowertrack| — | — | — | +

Table 4.2 Restricted symbol alphabet fd.

uppertrack| — | + | + | + | +
maintrack | — | — | + | — | +
lowertrack| — | — | — | + | +

Table 4.3 Restricted symbol alphabet with six elements.

uppertrack| — |+ | — | + | + | +
maintrack | — | — | + | + | — | +
lowertrack| — | — | — | — | + | +

4.4.2 ML Bit Sequence Detection

The ML bit sequence written on the main track is the sequéncthat maximizes

P(Q|HO)1 i.e.,

Uy = argmax p(ylug)
)

= arg Hirix [ZZP(% U_1, Eﬂuo)]

u 1 Uy

= arg max [ZZMQI@O, u_y, w)Pu_y, gl)] (4.13)

u_1 uy
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wherey represents the detector input samples B(d_,, u,) represents the joirgt priori prob-

ability of the bit sequences_, andu,. Since the sequences ; andu, are i.i.d. equiprobable,

uy = arg max [ZZP(MH& U_q, 21)] (4.14)

U_q1 Uy

The complexity involved in the maximization pfy|u,) is proportional to the number
of distinct pairs(u_;, u,). Therefore, it is substantial. As stated in [4], if at a higinsl-to-
noise ratio (SNR), the conditional densities involved in7f5are dominated by one particular

pair (u_,, u;), the following approximation can be made

m;gx [ZZP(Q@O, u_q, 21)]

u_q Uy

A maXy, u y,u Py, U_1, W) (4.15)

The right hand side of (5.8) corresponds to joint ML sequetetection foru_, u,, andu, i.e.
ML symbol sequence detection. Thus, a detection schemedlmasthe Viterbi algorithm, that
outputs the middle bit of each detected symbol in the ML syinsbquence can be viewed as a
high SNR approximation for ML bit sequence detection. Fargtels with a cross-track sym-
metry, the ML symbol sequence detector works on3histate trellis described in the previous

section.

Viterbi Algorithm with a Modified Branch Metric

When the channel response matrix is equalfto as defined in (4.8), the ML bit
sequence can be obtained using the Viterbi algorithm witlodified branch metric on a 4-state
trellis with 4 parallel branches between each connected pair of statbewas ¢ Fig. 4.4.

Each branch is labeled by the channel input bit on the uppektat timei — 1, the
channel input bit on the main track at timehe channel input bit on the lower track at tirme1,
and the noiseless channel output This is shown in Fig. 4.3. We represent each state atiime

with s; where

ef
si < (ui_.0, Ui—1,0)- (4.16)

Let NV denote the length of the input bit sequenge We assume that the initial and
final statessy andsy are known. There is a one-to-one correspondence betweersstpences
s = {so, s1, ..., sy} and input bit sequenceg, = {ugo, ..., un—1,0} Written on the main
track. Therefore, the ML bit sequence detector finds the sequencé that maximizes(y|s),
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i.e.,
3 = arg max p(y|s)
N
= arg max H p(yilsi, sit1)- (4.17)
T
Define
def
A(siy siv1) =  —Inp(yilsi, siy1). (4.18)

Maximizing p(y|s) is the same as minimizing In p(y|s) and the latter can be expressed as

N-1
—np(yls) = D Asi siv1)- (4.19)
=0

The detector can be implemented using the Viterbi algorithith a modified branch metric

equal toA(s;, s;+1). We can expresa(s;, s;+1) as follows

A(siy sip1) = — Inp(yilsi, sit1) (4.20)
- H[ DD P wica 1, wiralsi i) (4.21)
Ui—1,—1 Uj—1,1
—1In {p(yi\si, Sit1, Uim1,—1 = —1, uj—11 = —1)

- P(uj—1,-1 = =1, uj—11 = —1)+

+ p(Wilsi, sig1, ui—1,-1 = —1, uj—11 =1)
cP(ui—1,-1 = —1, uj—11 = 1)

+ p(yilsis sit1, wim1,—1 =1, ui—11 = —1)
cP(ui—1,—1 =1, ui—11 = —1)

+p(yilsi, sip1, ui—1,-1 =1, ui—1,1 = 1)

“Pui—1,1 =1, w11 = 1)|. (4.22)

The detection algorithm based upon (4.22) can be thought tdrims of the Viterbi
algorithm operating on d-state trellis where a single branch replaces4tmarallel branches
between connected states. The branch metric for this shrglech is given by (4.22). This
detector is an ML detector for the bit sequence written omtidzle track.

Another detector which operates ondastate trellis which hag parallel branches
between connected states was described in [6]. As stat&], itihfit detector first finds the best
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branch out of the parallel branches between connected stite two detectors are not the same
in that there are situations where for a given noisy outpgtisace they will choose different
input sequences. Since our detector is an ML detector,lavisl that the detector described in
[6] is not truly an ML detector.

4.4.3 MAP Bit Detection

The MAP bit detector outputs the estimatedddit on the main track at time
U;0 = arg re?—li}il} P(uio = Tly) (4.23)
given the channel output sequengce~or MAP bit detection, tha posteriori probability (APP)
for each bit at timei, P(u;o = 7|ly) 7 € {—1,+1}, can be calculated by a modification to
the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm which augpthe APP for each symbol at
time 7 [9]. This modification was derived in [5].
The modified BCJR algorithm outputs

P(uig=—1ly)= > Plu; = ¢ly) (4.24)
peU;
and
Pluig=1ly) = > Plu; = ¢ly). (4.25)
U

Here,u; denotes the symbol at timieU; ! andU;™ denote the set of symbofsat timei where
u;,0 equals—1 and1, respectively.

The BCJR algorithm operates on the trellis representingiiamnel input and noise-
less channel output sequences. It recursively computeemivard state metrics and the back-
ward state metrics, which are combined with the branch o®etd produce the APP of each
symbol P(u; = ¢|y). The APP of the symbal; = ¢, i.e. the conditional probability of the

symbolu,; = ¢ given the channel outpyt can be written as

P(u; = ¢’Q) =P(u; = ¢, Q)/P(ﬂ) (4.26)
1 M—-1M-1

- Plu, = ¢, si1 =k, si=j, ). 4.27

P(g) = = (gz ¢7 Si—1 S J Q) ( )

Here,s; represents the state at timand M represents the number of states in the trellis.
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The forward state metric and the backward state metric fie gtat time: and the
branch metric from statke at timei — 1 to state;j at time: with the input symbol, respectively,
are defined as

Bi(G) =Py si = ), (4.29)
and
W (k,§) =P(u; = ¢, s; = j, yilsic1 = k) (4.30)
whereg:ﬁ' denotes the sequende;, v;+1, -,y }. In terms of the forward state metrics, the

backward state metrics, and the branch metrics, the APRcbfganbol can be expressed as

M-1M-1
1

Plu; = 9ly) =5y D 2 cima (k) (k,3)8:(). (4.31)
2/ k=0 j=0

The forward state metrics and the backward state metricolatsgned by means of forward

recursion and backward recursion with the initial condisio(0) = 1, ap(j) = 0for j # 0

and terminal conditiong$x_1(0) =1, Snx_1(j) = 0for j # 0.

Forward recursion

Q; j =r(s; :j’ gl )
() =P( o) (4.32)
1) <
=N P(sici =k, si =3,y wi) (4.33)
k=0
(2) M . .
=Y P(si=j, gilsioa =k, yi ) P(sica =k, v ) (4.34)
k=0
(3) |
= Plsi=js wilsioa = k)P(sici =k, yi") (4.35)
k=0
M
:ZP(Si = J, yilsi-1 = k)ai—1(k) (4.36)
k=0
)
=Y ai(k) Y Py = ¢, si=j, yilsioi = k) (4.37)
k=0 peD
M
=> aii(k) YLk, 5) (4.38)

B
Il
o

ped
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Backward recursion

Bi(5) =P( s =) (4.39)
(1) <=
= Z P(siy1 =7, gﬁ‘ll|si =7) (4.40)
4'=0
M
=Y Plsis1 =7, yirrs Yy 51 = J) (4.41)
/=0
(#) <
= Z Py Yito Ysi =4, siv1 = 7' vir) P(sis1 = §', wiralsi = 5) (4.42)
Jj'=0
(3)
= Z P( +2 ‘Si-i-l = )P(Sz-i-l =] yz-l—l‘sz = ]) (443)
J'=0
(@) <&
= Bin() D Plu; = o, sis1 =4, yiralsi = j) (4.44)
7'=0 peP
M
=Y " B3N DG (4.45)
§'=0 ped

The equalities in1), (1'), (4), and(4’) follow from the principle of total probability whereas
equalities(2) and(2') follow from Bayes’ Rule. Since the conditional probabiliybeing in a
state at time and the outpuy; given the state at timé— 1 and the channel outpuf,%—l only
depends on the state at time- 1 due to the Markov property, the equalities () and (3')

follow.

4.5 Equalization

In this section, we review several previously designed kzpra for BPM recording
channels. We later adapt the use of a joint-track equalimégduced in [4] in the context
of single-head/single-track detection for perpendicutording channels, to BPM recording

channels.

4.5.1 Related Equalization Techniques

In [10], 1-D minimum mean-square error (MMSE) finite impulse response (FIR)
equalizers were discussed for BPM recording channels. 8kbthagram of this 1-D equal-
ization, where the ITI was treated as noise, is shown in Elg. #he channel response can be
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equalized to a desired target,D), using an FIR filter,f (D). Definee; = z; — d; to be the
difference between the equalized channel sampbnd the desired target samplgat timesi.
The 1-D equalizer with FIRf(D) minimizes the mean-square error (MSE):?}. If a target
g(D) has not been specified, the FIR filtefD) and the targey(D) are found simultaneously
[11]. A 1-D MMSE FIR equalizer was also used in [6] where thR Fdrget was chosen to match

the ISI of the main track.

. Channel
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Figure 4.5 1-D MMSE equalizer design with FIR D) and with a 1-D target(D) for BPM
recording channels.

Two-dimensional (2-D) equalization techniques have besed to shape 2-D channels
such as those used to model holographic storage systemsiséled a 2-D GPR equalizer was
proposed for BPM recording channels in [7] and [8]. Since #tudy is constrained to single
track detection with single 1-D waveform obtained by a stmglad head, we only briefly review
this 2-D equalization method that requires multiple 1-D gfavms as inputs.

In [7] and [8], the inputs to the 2-D equalizer were multipkdlwaveforms which
were obtained by reading multiple adjacent tracks. A mooigstraint on the target response
of the main track was imposed as well as an additional cdnstifaat forces the ITI to zero.
This method offered performance improvement compared dolth equalization techniques

described above. In [8], a simplified 2-D equalization tegha produced the same results as in

[7].

4.5.2 Joint-track Equalization

In this study, we adapt the joint-track equalization teghriintroduced in [4] to BPM
recording channels. The joint-track equalization techaigonsists of a 1-D equalizer shown
in Fig. 4.6(a). This 1-D equalizer not only equalizes themtaack to a 1-D target but also
equalizes all three tracks to a 2-D target as shown in Figb}.6n contrast, the previously
designed 1-D equalizers described in [10] and [6] only dgedahe main track to a 1-D target.
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Figure 4.6 (a) Block diagram for joint-track equalizer dmsi (b) Equivalent block diagram
wherew/, represents the colored noise sample after equalization.

In the joint-track equalization process, we design an MM&kadéizer with FIRf (D) =
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Zf;:_z wDF using an adaptation of the method in [11] but with & 3 target respons€’

go,-1 91,-1 92,-1
G=1| 900 910 90 |- (4.46)

Let )
g-1(D) = gr 1 D", (4.47)
k=0
2
90(D) = groD", (4.48)
k=0
and
2
g1(D)=>_ geaD* (4.49)
k=0

whereg_1(D), go(D), andg; (D) represent the targets for the upper, main, and lower track,
respectively.

In [12], for a perpendicular magnetic recording channehwito interfering tracks, a
joint-track equalizer with a monic constraint for the traokbe detected was used. In contrast
to the derivation in [12], by representing the 2-D data saeqaeand the 2-D target polynomial
coefficients by vectors, the 2-D target design problem caodowerted into a 1-D form. This
method was used previously in [13], [7], and [8]. The joirstek equalizer can be obtained by
setting the number of read headslt@nd modifying the constraint matrix to incorporate the

constraints on the targét in the equalization design of [7] and [8].

4.6 Simulation Results

In this section, we compare the performance and the contplekiseveral different
schemes for recording densitiesloTb/in?, 1.2 Tb/in?, 1.4 Th/in?, 1.7 Th/in?, 1.75 Tb/in?, and
2 Thb/in?. We utilize a medium employing an SUL [1] with the media confagions shown in
Table 4.4. For a recording density dfTb/in?, the extent of ISI is limited t® symbols. For
higher recording densities, the extent of ISI becomiesymbols due to the decreasing island

separation in the down-track direction.
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4.6.1 Recording Density ofl Th/in?

For a recording density df Tb/in?, we utilize two different channel responsés and
H,. ChannelH; corresponds to the case with no SUL [6] whereas chafhelepresents the
case with an SUL [1]

—-0.023 0.264 —-0.023
Hy =1 -0.087 1 —0.087 (4.50)
—0.023 0.264 —0.023

0.0347 0.2297 0.0347
Hy = |0.1277 1 01277 | . (4.51)
0.0347 0.2297 0.0347

The negative entries in (4.50) are due to the absence of no SUL

For channeld?; and H,, we compare five different schemes. The first scheme utilizes
an optimal bit detector, i.e., a MAP bit detector. This schamses a reduced-state trellis with
36 states an® outgoing branches per state as described Section 4.2. Thadecheme was
introduced by Nabavi et al. [6]. Their scheme consists offa MMSE FIR equalizer with a
PR target that closely matches the channel response of timetraek. They represented their
detector with a modified trellis that hasstates with3 parallel branches between each pair of
connected states. Note that for the modified trellis, ordyTH from immediately adjacent bits is
taken into account. The Viterbi algorithm with the squakad:lidean metric is utilized to detect
the symbol sequence. Since the detection of only the maik saquence is considered, the
detected bits belonging to the outer tracks, obtained ftwrstrvivor branch among the parallel
branches, are discarded. For chanrélsand Hs, PR target§—0., 1, —0.1] and[0.1, 1, 0.1]

are chosen, respectively.

Table 4.4 Media configurations

| Recordingdensityf s, | s. | B. | B, |
1 Tb/in? 125nm | 125 nm | 25nm | 25 nm
1.2 Th/in? 11nm | 12.5nm | 21.5 nm | 25 nm
1.4 Th/in? 9nm | 12.5nm | 18.4 nm | 25 nm
1.75 Tb/in? 7nm | 12.5nm | 14.7nm | 25 nm
2 Th/in? 6nm | 12.5nm | 12.9 nm | 25 nm
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Simulation results for these two schemes are shown in Figadd in Fig. 4.8. The
numerical results for the second scheme were taken fronof@HannelH;. The SNR is defined
as follows V2

SNR = 10l0g,, (J—@) (4.52)
whereV,, is the peak value of the readback signal of an isolated iskaad? is the variance of
the noise. Herel, = 1.

It can be seen from Fig. 4.7 and Fig. 4.8 that at a target bir eate of 10~4, for
channelsH; and H,, the scheme that utilizes optimal bit detection providdagaf1.5 dB and
0.6 dB as compared to the scheme that utilizes 1-D equalizatitmtive specified PR targets,
respectively. For channeld; andH», simulation results not shown here indicate that the scheme
that utilizes an ML symbol sequence detector and outputsittidle bit of each detected symbol

gives similar bit error rates compared to the scheme utgiziptimal bit detection.

—+— MAP bit (36-state)

—&— 1D equalization (4-state, target [-0.1 1 -0.1])

——bH— Optimized 1D equalization (4-state)

—*— Proposed scheme (4-state, SEM)

—<— Proposed scheme (4-state, MBM)
T T

T 1 1
8 10 12 14 16 18 20
SNR

Figure 4.7 Simulation results for chanrié} (no SUL,1 Tb/in?).

We propose another scheme that utilizes joint-track epgiadn technique described
in Section 4.5.2. For certain head and media configurattbes;ontribution of the corner entries
to the readback signal is close to zero. Therefore, ourt&és@es x 3 matrix G defined in (4.46)

with the corner entriegy _1, go,1, g2,—1, andgo 1 set equal to zero and the middle eniy, set
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—+— MAP bit (36-state) : :
—=&— 1D equalization (4-state, target [0.1 1 0.1]) '3
——P— Optimized 1D equalization (4-state)
—*— Proposed scheme (4-state, SEM)
—<&— Proposed scheme (4-state, MBM)

I 1 I I I
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I L Il 1
8 9 10 11 12 13 14 15 16 17 18
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10

Figure 4.8 Simulation results for chanriéh (SUL, 1 Tb/in?).

equal tol. The detector trellis has states withd parallel branches between each connected pair
of states as shown in Section 4.4.2. We use the Viterbi dlgorivith the squared-Euclidean
metric to detect the symbol sequence. The detector therutsutbe middle bit of each de-
tected symbol in this sequence. Since the equalizer cdierglectronics noise, this detector
is no longer ML. We also utilize the Viterbi algorithm withehmodified branch metric defined
by (4.22). This detector also does not output the ML bit sagaealue to the noise coloration.
Note that the difference between the proposed scheme witBghared-Euclidean metric and
the scheme described in [6] is the equalization methodgedil However, both schemes have
the same detection method.

We also consider the scheme in [6] with optimized 1-D eqeafiarget coefficients.
For this, different target choices are utilized. Simulatresults show that the scheme in [6] has
the best performance when 1-D equalizer and target coefficare obtained simultaneously in
the MSE minimization process.

In all equalized systems, the FIR filters are limitedl fotaps. Simulation results in-
dicate that the proposed scheme with the squared-Euclithesnic or with the modified branch
metric give virtually the same results. For the performanuwes, we utilize the acronyms SEM

and MBM for the squared-Euclidean metric and the modifieshdinanetric, respectively. Note
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that computation of the modified branch metric is more cooapéid than computation of the

squared-Euclidean metric. Simulation results in Fig. 4d &ig. 4.8 show that the proposed

scheme with joint-track equalization and the scheme witimoped 1-D equalizer/target coeffi-

cients essentially have the same performance as the schiiziegioptimal bit detection.

4.6.2 Higher Recording Densities

For recording densities df.2 Th/in?, 1.4 Tb/in?, 1.75 Tb/in?, and2 Tb/in?, we have

the following channel responses, respectively,

and

0

Hs = 10.003

0.0035
0.01
0.0035

0.0136
0.0426
0.0136

0.0257
0.0886
0.0257

Hg =

0.0572
0.2232
0.0572

0.0835
0.3393
0.0835

0.1211
0.5080
0.1211

0.1402
0.5937
0.1402

0.2295
1
0.2295

0.2294

0.2294

0.2293

0.2293

0.2292
1
0.2292

0.0572
0.2232
0.0572

0.0835
0.3393
0.0835

0.1211
0.5080
0.1211

0.1402
0.5937
0.1402

0.003 | , (4.53)

0.0035
0.01 |,
0.0035

(4.54)

0.0136
0.0426 | ,
0.0136

(4.55)

0.0257
0.0886
0.0257

(4.56)

These channels have memory4o$ymbols, so the schemes that utilize optimal bit detection o

ML symbol sequence detection require only a reduced-staligstwith 6* = 362 states. The

computational complexity for optimal bit detection is vérgh. Therefore, we utilize only the

ML symbol sequence detector that outputs the middle bit dfi gietected symbol. Note that this

scheme can be viewed as a high SNR approximation for ML bilesece detection as discussed

in Section 4.4.2.
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In all equalized systems, the target length is limited.té-or channelH3, we choose
a PR targef0.2, 1, 0.2] that closely matches the channel response of the main thaaban-
nels Hy, Hs, and Hg, in addition to the ITI from immediately adjacent bits on thaer tracks,
the ITI from other bits is also significant. The performanceves not shown here indicate that
the scheme using 1-D equalization with a PR target has patorpence for channel&l,, Hs,
and Hg.

Simulation results for channél; are shown in Fig. 4.9. Itis seen that the scheme that
utilizes ML symbol sequence detection offdr8 dB gain compared to the scheme that utilizes
1-D equalization with the PR targé.2, 1, 0.2]. Simulation results also show that the pro-
posed scheme with joint-track equalization and the scheitieoptimized 1-D equalizer/target
coefficients have the same performance as the schemengtildi symbol sequence detection.

—t— ML symbol sequence (362—state)
—6— 1D equalization (4-state, target [0.2 1 0.2])
—+H— Optimized 1D equalization (4-state) :
——— Proposed scheme (4-state, SEM)
—<— Proposed scheme (4-state, MBM)

10°

6 8 10 12 14 16 18 20
SNR

Figure 4.9 Simulation results for chanrigk (SUL, 1.2 Th/in?).

Simulation results are shown in Fig. 4.10, Fig. 4.11, and4itR for channelély, Hs,
and Hg, respectively. For channeld, and H5, the scheme that utilizes ML symbol sequence
detection offerd).5 dB and5 dB gain as compared to the proposed scheme with joint-track
equalization at a target bit error rate tf—*. For channels; and Hg, the proposed scheme
with joint-track equalization performs poorly as compat@the scheme that utilizes ML symbol

sequence detection. This is due to severe noise coloraktlin.suggests choosing targets, such
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as a longer target, which introduce less noise coloratioa noise whitening process before
detection.

10" T

1072 - E

BER
P
[S)

T
L

0.5dB
107k E

—+— ML symbol sequence (362—state) -
——H— Optimized 1D equalization (4-state) 2
—*— Proposed scheme (4-state, SEM)
$— Proposed scheme (4-state, MBM)

I I T

5

10

8 10 12 14 16 18 20
SNR

Figure 4.10 Simulation results for chanrdé} (SUL, 1.4 Th/in?).

Simulation results show that for the channels consideregelihe proposed scheme
with joint-track equalization does not provide any gain pamed to the scheme with optimized
1-D equalizer/target coefficients. We observe that the rblanconsidered above have similar
levels of ITI. Therefore, we study channels which have higkeels of ITI compared to the

channels above. For this, consider chandélsand Hg

0.0037 0.1232 0.3813 0.1232 0.0037
H7 =10.0079 0.3133 1 0.3133 0.0079 (4.57)
0.0037 0.1232 0.3813 0.1232 0.0037

0.0038 0.1322 0.4118 0.1322 0.0038
Hs = 10.0079 0.3135 1 0.3135 0.0079 | - (4.58)
0.0038 0.1322 0.4118 0.1322 0.0038
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—+— ML symbol sequence (362—state)
—P— Optimized 1D equalization (4-state)
—%¥— Proposed scheme (4-state, SEM)
—<— Proposed scheme (4-state, MBM)

12 14 16 18 20 22 24 26 28
SNR

Figure 4.11 Simulation results for chandé} (SUL, 1.75 Tb/in?).
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—+— ML symbol sequence (362—state)
—Pp— Optimized 1D equalization (4-state)
—%¥— Proposed scheme (4-state, SEM)
—<— Proposed scheme (4-state, MBM)

12 14 16 18 20 22 24 26 28
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Figure 4.12 Simulation results for chané} (SUL, 2 Tb/in?).

56



57

ChannelsH; and Hg are obtained for the media configurations where= 9 nm, s, = 11 nm,
B, = 19 nm, andB, = 22 nm corresponding ta.7 Th/in>. The MR head with the same pa-
rameters considered above is utilized for chariiglvhereas only the width of the MR element
is raised tod1 nm from40 nm to obtain channelig.

For channelH;, BER curves in Fig. 4.13 show that there is performance rdiffee
which is0.6 dB at a target BER0 > between the proposed scheme with joint-track equalization
and the scheme with optimized 1-D equalizer/target coefiisi However, for channédllg,
the proposed scheme with joint-track equalization outweré the scheme with optimized 1-
D equalizer/target coefficients withs dB at a target BER0O~* as shown in Fig. 4.14 . Note also
that the scheme that outputs the middle bit sequence in thewtbol sequence outperforms
the proposed scheme with joint-track equalization withsel®o3.7 dB difference at a target
BER 10~° and BER10~* for channels; and Hy, respectively. This is an expected result since

equalization introduces noise coloration which is not talk¢o account in the detection process.

10 T T T T T

—+— ML symbol sequence (362—state)
—F— Optimized 1D equalization (4-state)
—*— Proposed scheme (4-state, SEM)
Proposed scheme (4-state, MBM)

107

10

BER

10

10° :
14 16 18 20 22 24 26 28 30

Figure 4.13 Simulation results for chandé} (SUL, 1.7 Tb/in?).

Note that 2-D equalization techniques that eliminate theal§ described in [7] and
[8] would offer performance improvement compared to theegobs as described above. Nev-
ertheless, as inputs, multiple 1-D waveforms rather thangles1-D waveform are required for
2-D equalization.
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—+— ML symbol sequence (362—state)
—F— Optimized 1D equalization (4-state)
—*— Proposed scheme (4-state, SEM)
Proposed scheme (4-state, MBM)

14 16 18 20 22 24 26 28 30 32 34
SNR

Figure 4.14 Simulation results for chandé} (SUL, 1.7 Th/in?).

4.6.3 Computational Complexity

Here, we compare the detection complexity of the schemesigied above. The
branch metric computations for the modified BCJR algoritmexraore complex than the branch
metric computations for the Viterbi algorithm. Therefotlege computational complexity of the
scheme that utilizes the modified BCJR algorithm for optilitadietection is substantially higher
than the scheme that utilizes the Viterbi algorithm if bathemes work on the same trellis. For
the recording density of Th/in?, the scheme that utilizes optimal bit detection and thersehe
that utilizes ML symbol sequence detection that outputsfdzlle bit in each detected symbol
work on the sam@6-state trellis. Hence, the latter scheme has less compuoghttomplexity.

The schemes that utilize a fixed PR target or optimized 1-Cakzpr/target coeffi-
cients and the proposed scheme with joint-track equadizaiind the squared-Euclidean metric
work on a4-state trellis. It is seen that these schemes have the saat@tonber of branches
between all connected pairs of states when the branchegéet@ach connected pair of states
that have the same noiseless channel outputs are mergdtesik schemes, one comparison is
made to select one branch that has the largest branch metoicgaparallel branches between
each pair of connected states. The branch metric of thetedlecanch is added to the metric of
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the state from which the selected branch stems. Then, arhermaths starting at different states,
the path with the largest accumulated metric is selecteéviery state. Note that the proposed
scheme with joint-track equalization and the squarediBeah metric and the schemes that uti-
lize a fixed PR target or optimized 1-D equalizer/target ficiehts require the same number of
arithmetic operations. Therefore these schemes have it g@mputational complexity.

The scheme that utilizes ML symbol sequence detection titputs the middle bit in
each detected symbol works on th@state trellis or on th&62-state trellis depending on the
recording density. This scheme requires a substantiaiiggrinumber of arithmetic operations
compared to the schemes that utilizd-atate trellis, namely the proposed scheme with joint-
track equalization and the schemes that utilize a fixed Rfetar optimized 1-D equalizer/target
coefficients. Thus, the scheme that utilizes ML symbol seqe@letection that outputs the mid-
dle bit in each detected symbol has higher computationapé®xity compared to the proposed
scheme with joint-track equalization and the schemes tileteua fixed PR target or optimized
1-D equalizer/target coefficients.

The proposed scheme with joint-track equalization and tbeified branch metric also
works on a4-state trellis. Note that the proposed scheme with joetkrequalization and the
modified branch metric has a smaller number of branches ketak pairs of connected states
than the proposed scheme with joint-track equalizationthedquared-Euclidean metric and the
schemes that utilize a fixed PR target or optimized 1-D egestarget coefficients. However,
the proposed scheme with joint-track equalization and tbdified branch metric requires more
arithmetic operations for the total number of branch metailculations. Overall, it has higher
computational complexity compared to the proposed scheittejoint-track equalization and
the squared-Euclidean metric and the schemes that utilizeed PR target or with optimized

1-D equalizer/target coefficients.

4.7 Conclusion

We considered a joint-track equalization procedure andpewed several different de-
tection and equalization methods for bit patterned medRMBrecording channels. For the
special case of a symmetric channel response matrix, weregba maximum-likelihood (ML)
bit sequence detector using the Viterbi algorithm with tradified branch metric. We proposed
a scheme that utilizes the joint-track equalization tegheaifollowed by the Viterbi detector.

The proposed scheme with3ax 3 target choice where the corner entries set equal to zero and
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the middle entry set equal tb outperforms the scheme of the same complexity that utilizes
one-dimensional (1-D) equalization with a fixed partigdpense (PR) target [6]. Furthermore,
the performance of the proposed scheme with joint-traclakeation and the scheme with opti-
mized 1-D equalizer/target coefficients is comparabledbafithe much more complex schemes
utilizing optimal bit detection or optimal symbol sequerdatection for recording densities of
1 Th/in? and1.2 Th/in?>. However, the proposed scheme with joint-track equabragierforms
significantly better compared to the scheme with optimizdal dqualizer/target coefficients in
the presence of high level of inter-track interference YIWith increasing recording densities,
the performance gap between the scheme that utilizes dpgyn#ol sequence detection and
the schemes with equalization increases due to the noiseation after equalization. There-
fore, a noise whitening process or targets that introduse wise coloration before detection

are required.
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Chapter 5

A Parametric Study of Inter-Track
Interference in Bit Patterned Media
Recording

5.1 Introduction

Decreasing island separation in the cross-track direttiémcrease the recording den-
sity introduces higher levels of inter-track interfererf€8) to the bit patterned media (BPM)
recording channels. In this chapter, we present a parasdtrdy of ITI for BPM recording
channels. We choose a parametric form of a channel respoas& fior a range of relevant
head and media configurations discussed in Chapter 3. Weeitisiv the read channel model
in Section 5.2. In Section 5.3, for channels both with andhauit intersymbol interference (ISI),
we show bit error rate (BER) curves obtained by performairoelation of an optimal bit detec-
tor as a function of ITI level at specific values of signalrtmise ratio (SNR). The performance
results indicate that a higher level of ITI does not necdlgsdegrade the BER in a certain range
of ITI. In fact, for a pair of channels with the same ISI lewek demonstrate that the channel
with the higher level of ITI can perform better than the chelnmith the lower level of ITI over
a large range of SNR values. Such a phenomenon is also odsarthe presence of read head
offset or track misregistration (TMR).

In Section 5.5, we provide insight into this somewhat sgipg phenomenon. We
first examine in Section 5.5.1 the BER for optimal bit detattas a function of ITI level in the
absence of ISI. We determine the exact analytical expnegsiothe BER as a function of ITI,

62



63

and we use this to explain the observed characteristiceedithulated BER curve.

In Section 5.5.2, we consider channels with ISI. Noting that performance of the
optimal bit detector is virtually identical to that of a joitrack maximum-likelihood (ML) se-
guence detector with respect to the main track sequenceyplgerror event analysis techniques
to the latter in order to understand the observed effect$lain system performance.

5.2 Review of the Read Channel Model

In this study, we consider a read channel model with a squeag af islands. We rep-
resent the noiseless sampled discrete-time readback mpd8lx 3 channel response matriX

with a cross-track symmetry [1]

H=|a 1 a/. (5.1)
ab b ab

In the channel response mattix, the first, the second, and the third row vectors represent th
response to the islands in the upper, main, and lower traekpectively. The parameter
denotes the ISl level and the paramétetenotes the ITI level in the channel. This parametric
form of the channel response matfik was found to be reasonable for a range of relevant head
and media configurations. Of course, another parametricehmoijht be more appropriate for
significantly different head geometries and patterneshd@stzonfigurations.

A schematic of the sampled read channel model is shown in&Fg. The channel
inputs recorded on the upper, main, and lower tracks at tiahexi;, denoted by{u; 1}, {uio},
and {u; 1 }, respectively, are mutually independent and, on each ,(rihekrecorded bits are
assumed to be independent, equiprobable binary valuedteatphabe{1,—1}. There are
different equiprobable symbols which represent the bitended on the upper, main, and lower
tracks at time index. Electronics noise is assumed to corrupt the output of tad head. We
model the noise term§w; } as samples of independent, zero-mean Gaussian randorhlearia

with variances2. Then, the readback signgl at time index is

Y = abu; _1 +bu;_1,_1 + abu;_2 1
+ au;o + ui—1,0 + au;—20

+ abu; 1 + bui—11 + abu;—2 1 + w;. (5.2)
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The SNR is defined as
1

5.2.1 Detection Techniques

In general, a BPM recording channel represented By-a3 channel response ma-
trix has memory equal t®@ symbols, so the noiseless channel input-output relatipnsim be
represented by a trellis usirtj = 64 states, each with 8 outgoing branches. However, the par-
ticular matrix H in (5.1) has cross-track symmetry, which allows us to dbsedtie channel with
a smaller trellis having onlg? = 36 states as shown in Section 4.3.2. This simplified trellis
representation can offer reduced detection complexity.

We will make reference to three algorithms used to deteaalerecorded on the main
track: a maximuna posteriori (MAP) bit detector, a maximum-likelihood (ML) bit sequence
detector, and a punctured ML symbol sequence detector thiptts the middle bit of each
detected symbol in the ML symbol sequence [2]. Although weelmresented these algorithms
in Section 4.4 in detail, for completeness, we review thene he

The MAP bit detector is optimal, and it provides the MAP estienof each bit on
the main track. The detection algorithm is based upon thd-Babke-Jelinek-Raviv (BCJR)
algorithm, details of which can be found in [3]. For this sejt the BCJR algorithm is easily
adapted to produce joint-track or symbol MAP estimatesdbapen thea posteriori probability
(APP) for each recorded symbol value. A straightforwardesion of the results in [4], where
only a single interfering track was considered, shows thatAPP for a value of the bit on the
main track is obtained simply by summing the APPs of the symglmaring the specified middle
bit value.

More precisely, ifu; o represents a recorded bit on the main track at time iricend
y represents the detector input samples, the optimal bittgteutputs

Pluio = —1ly| = Z Plui -1, ui0,ui1y] (5.4)
Ut

Plujo = 1ly] = Zp[ui,—laui,Oaui,l@] (5.5)
u}

whereUZ.‘1 andU! are the sets of symbols at time indexhereu; o equals -1 and 1, respectively.

As described in [5], the ML bit sequence for the main trackhis $equencg,, that
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maximizesp(y|ug), i.€.,

fi = arg max p(y|up)

= arg Inyzgx [ZZP(Q, uU_q, ﬂl|@0):|

U_q1 Uy

= arg m;gx {ZZP(Q%’ u_y, Uy)

u_q Uy

'P(H—h 21)} (5.6)

wherey represents the detector input samples &td_,, u,;) represents the joira priori
probability of the bit sequencaes_; andu,. Since the bit sequences ; andu, are mutually
independent and contain independent, equiprobable biuadues,

ity = arg max >3 plylug, uoy, )] (5.7)

U_q1 Uy

The complexity involved in the maximization fy|u,) is proportional to the num-
ber of distinct pairdu_,, u;). As stated in [5], for a high SNR, if the conditional dengtie
involved in (5.7) are dominated by one particular pair ;, u;), one can make the following

approximation

max [ZZp(gmm U1, Uy)

u_q Uy

~ max  p(ylug, u_q, uy). (5.8)
Uy, U_q, Uy

The right hand side of (5.8) corresponds to joint ML sequetetection foru_ 4, u,, andy,, i.e.,

ML symbol sequence detection. Thus, a detection schemedlmasthe Viterbi algorithm, that
computes the ML symbol sequence and outputs the middle leixcii detected symbol can be
viewed as a high SNR approximation for ML bit sequence dietectWe refer to this detector
as a punctured ML symbol sequence detector since it onlyutaithe detected sequence on the
main track while discarding the detected sequences on tiee tacks.

Both the MAP bit detector and the punctured ML symbol detecam be implemented
by algorithms working on th86-state trellis [6], [7]. We have found in our simulation sesl
that these two detectors give virtually the same BER perdmice on channels with moderate to
high SNR.
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5.3 BER Performance Simulation Results

In this section, we present simulated BER curves obtaineth®MAP bit detector as
a function of the ITI leveb € (0, 1]. Results corresponding to channels with SNR6 dB and
ISl levelsa = 0,0.125, and0.2 are shown in Fig. 5.1. For the highest ISI levek= 0.2, we also
show results corresponding to a higher SNR level of 18 dB.

Somewhat contrary to intuition, we see that in all four scesa for ITI parameter
valuesb roughly in the interval0.5, 0.65], increasing the level of ITI leads to improved BER
performance.

We also examined the simulated BER for MAP bit detection everde range of SNR
for two channelsd; and H, with the same ISl leved = 0.2 and with the ITI leveld = 0.55
andb = 0.6

0.11 0.55 0.11
Hy= |02 1 0.2 (5.9)
0.11 0.55 0.11

-1

10 i 7 . 1

10724 . ¥

-3

Bit error rate

-4

/ —+— SNR=16dB, a=0
10 "F : —*— SNR=16dB, a=0.125
/ —&— SNR=16dB, a=0.2
<&— SNR=18dB, a=0.2

10 ‘\T; Il Il Il Il Il Il Il
o1 02 03 04 05 06 07 08 09 1

ITl level b

Figure 5.1 Bit error rates as a function of ITI level for MAR Hetection.
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0.12 0.6 0.12
Hy=102 1 02]. (5.10)
0.12 0.6 0.12

The results are shown in Fig. 5.2. Although chanfglhas a higher level of ITl, it performs
significantly better than channél; over the entire range of SNR considered. Note thatlatrd
target BER, there is 6 dB performance difference between these channels. We iaisitased
the BER performance of the punctured ML symbol sequencectetéor these two channels.
The results were indistinguishable from those producedbyMAP bit detector. We will make
use of this fact in Section 5.5.2 when we use analytical nu=tho try to explain the observed
performance.

We remark that channel&; and H, have high levels of ITI, as might arise when
the read head is significantly wider than the track pitch.sTHitiuation could be applicable to
early generations of BPM recording technology [1]. The ukeide read heads also has been
proposed for improved timing and position error detectiothie context of BPM recording [8].

In the presence of read head offset, the contributions afids in the upper and lower

tracks to the readback signal are no longer equal. The paiamdel of the channel response

Bit error rate

10} : .

Channel H, (a=0.2, b=0.55) Y -
Channel H, (a=0.2, b=0.6)
6 Il Il Il Il Il Il Il Il Il

12 14 16 18 20 22 24 26 28 30 32
SNR

10

Figure 5.2 Simulated bit error rates for channBlsand H, for MAP bit detection.
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matrix takes the form

ac C ac
H* = a 1 a . (5.11)
ad d ad

For such a channel, the noiseless channel input-outputoredaip can be represented by
state trellis as shown in Section 4.3.
We define TMR arising from the read head offset as

Read head offset
TMR = 1 . 5.12
Track pitch X 100% ( )

To determine the parametetsandd in (5.11) as a function of TMR, we consider specific ge-
ometries for the read head and island configuration. Thé deaaity is1 Th/in?, with a regular
array of square islands having side dimensi@rb nm and center-to-center spacing25sf nm.
The magnetoresistive (MR) read sensor has thickhiess. For a given level of ontrack ITl and

a specified TMR value, we determine the corresponding read hwidth and offtrack position.
The resulting contributions of islands in the upper and lotsacks to the readback signal are
then computed, yielding the ITI parameteandd [1]. Fig. 5.3 shows the simulated BER curves
for MAP bit detection as a function of ITI levélfor channels with 0% and15% TMR, ISI lev-
elsa = 0 anda = 0.2, and SNR equal t@0 dB. These results show that the non-monotonic
relationship between the BER and ITI level that was obsewhdn the head is ontrack also

arises in the presence of TMR.

5.4 Error event characterization

In this Section, we introduce a modification to the standardresvent analysis de-
veloped for ML bit sequence detection for conventional I&kmnels that can be applied to the
error event analysis of the punctured ML symbol sequencecttat We refer, in particular, to
the analysis of partial-response maximum-likelihood (RBNhannel performance in [9] and
[10].

Denote an input error sequence on the main track by

o (D) = uo(D) — uj(D), (5.13)
and the input error sequences on the outer tracks by

cuy (D) =u-1(D) —u’ (D) (5.14)
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Figure 5.3 Bit error rates as a function of ITI level for MAR blietection in the presence of
TMR.

and
eu (D) = u1 (D) — u} (D) (5.15)

whereD denotes the delay operator. Heré, (D), ug (D), andu) (D) represent the estimates
of the sequences written on the upper, main, and lower traokduced by the ML symbol
sequence detector. Note that the punctured detector pFsdart error only when there is an
error inuy(D), regardless of the correctness«df, (D) andu) (D). The input symbol error
sequence

u_, (D)

eu(D) = | ey (D) (5.16)

Eus (D)
is a sequence of input symbol differendesj, k] wherei, j, k € {0,2, -2} andT denotes
matrix transpose.

The corresponding output symbol error sequence is
ev(D) =h_1(D)ey_, (D) + ho(D)ey, (D) + h1(D)ey, (D) (5.17)

whereh_1 (D), ho(D), andh; (D) represent the channel responses of the upper, main, and lowe

tracks.
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An error event\ extends from time:; to £k wheree, , ., = 0forall 0 < k < v,
cuky 7 0, andk, is the smallest value of > ki wheree, j,—, # 0 ande, i, = €y k-1 =
. = Euke—v+1 = 0. Here,v represents the memory in the channel. The squared-Euclidea
distance of the error eventis

ko
PN =D ey (5.18)
k=k1

5.4.1 Error State Diagram

In this section, we discuss the error state diagram for thetpwed ML symbol se-
guence detector. The error state diagram represents tbeempr sequences and their corre-
sponding output symbol error sequences. Denote the alpbfbiee input error symbols bjs.
The initial state in the error state diagram is denoted byripet error symbols,, ;> ande,, 1
from the alphabeB. Each edge is labeled with an input error symiygl and the corresponding
squared Euclidean distaneg; .

For an alphabett = {—1,+1} of input bits for each track, the alphabet for the track
input errors isC = {—2,0,+2} resulting in an alphabet with the siz€|®> = 3* = 27 for
the input error symbols. In the presence of symmetry in thenohl response, the expression
for the output symbol error consists of the sum of input exrffor the outer tracks. Therefore,
by invoking the alphabeD = {—4,-2,-0,2,4} corresponding to the sum of input errors
for the outer tracks, the size of the alphabet for the inprdresymbolsB can be reduced to
|D| x |A] = 5 x 3 = 15. With such a reduction in the size of the alphabet for the tirgoror
symbols, the number of states in the error state diagram eaeduced fron272 to 152.

We will use the notatiorx to represent each element from the reduced alph&bet
Note that some of the elements of the alphabétr the reduced error state diagram may consist
of a set of input error symbols from the input error symbohalpet for the original error state
diagram. Denote the input errors on the upper, main, andrloaeks byc;, co, andes, respec-
tively. Then, each element of the alphaieis represented by wherea = ¢o + 3(c1 + ¢3)/2.
For example5 denotes the set of input error symbfs2, 2] and[2, 2,0]”. The pairs of input
symbols that generate the input error symbols are given in Table 5.1.

The probability of each elementin the alphabef3 is shown in Table 5.1. For exam-
ple, the element has the probability 08/8 since it can only occur if, out of th&possible input
symbols, one of th8 symbols shown in the first column of Table 5.1 is recordedI€TaIR lists

the probabilities for all set of differences
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Table 5.1 The set of input error symbals

recorded symbol detected symbol input error symbol
[+7+7_]T [_7_7_]T [27270]T
[+7+>+]T [_7_7+]T [+7_7_]T [27270]T [07272]T
[_7+7+]T [_7_7_]T [07272]T

Table 5.2 Probabilities for the sets of input symbol differes

a  Pa)
1,-1 3/8
2,-2 1/2
3,-3 3/4
4, -4 1/8
5, -5 3/8
6,6 1/4
8, -8 1/8

Denote the number of bit errors in the bit sequence recordgtemain track for the

error event\ by wy,, ()
Wag (N Z |€UOJ€| (5.19)
k=k1

and the number of occurrences @fin the error eveni by w, (). Let D* denote the set of
all possible error event distancésand letA, denote the set of all error events with Euclidean
distanced. Define N, as the average multiplicity of bit errors resulting fromagrevents with
the Euclidean distancé

Ng= ) wu(A HP ywe), (5.20)

Then, the probability of a bit erraP, can be bounded from above by means of the union bound
[11]
P <) NyQ(d/20). (5.21)

deD*
At moderate-to-high SNR, we have the approximation

P. = Ng,,,Q(dmin/20) (5.22)

wheredmin represents the minimum Euclidean distance. An error evéhttihe minimum Eu-
clidean distancénin is called a dominant error event.
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5.5 Performance Analysis

In this section, we use analytical methods to provide irtsigto the performance
curve characteristics described in the previous sectianfikst address the channel with no 1S,
where an exact performance analysis for the MAP bit detexdorbe carried out. We then turn
to the more difficult case of channels with ISI, where an eennt analysis of the punctured
ML symbol sequence detector is used to shed light on the atediIBER results for the two
channelsd; and Hs.

5.5.1 No-ISI case
Consider a channel with no ISI where the channel output & tidex: is
Yi = bu; —1 + ui0 + bu; 1 + w;. (5.23)

Under the assumption that the recorded bits are indepeaddrgquiprobable binary values, the

decision rule at time indekthat minimizes the probability of a bit error is

U0 =—1 if p(yi|uio = —1) > p(yiluip = 1)

U0 = +1 otherwise

where; o represents the estimated channel input recorded on thetraalnat time index.
Here,p(y;|ui o = —1) represents the conditional probability density functiopdf) of the chan-
nel outputy; given that channel input; o = —1. Similarly, p(y;|u; o = 1) represents the cpdf
of the channel outpug; given that channel input; o = 1. The cpdf'sp(y;|u;0 = —1) and
p(yiluio = 1), respectively, take the form

pyiluio = =1 = > plyi wi 1, wialuig = —1)

Uj,—1 Wil

— Z Zp(yi\ui,o =1, w1, ui)

Uj,—1 Usg, 1

. P(ui,_l, ’LLZ'71) (5.24)

piluio = +1) = > " p(yi, wi—1, uigluio = +1)

Uj,—1 Usg, 1

= Z Zp(yi|ui,o =+1, uj 1, uin)

Ui, —1 Wil

. P(ui7_1, ui71) (525)
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where P(u; —1, u;1) represents the joira priori probability of the bitsu; —; andu; ;. As
seen from (5.24) and (5.25), these cpdf’'s depend on the ehaputs of the three tracks. The
probability of a bit errorP, is

Pe = P(ujp = —1)P(i;,0 = +1fu; 0 = —1)

+ P(uio = +1)P(ii0 = —1luio = +1).
When the ITI parameter satisfies (0, 0.5], the decision rule is

ﬁip:—l if y; <0

U0 = +1 otherwise

The probability of a bit errolP. then takes the simple form

rela(2) o(2) oY) e

whereQ(t) W [ e ~7*/2 4. Note thatQ(t) is a decreasing function of At moderate-to-
high SNR, the dominant term in (5.26)3€) (%52) which results from the distan@- 4b. This
corresponds to the distance between the nearest pair @lessschannel outputs corresponding
to main track inputs;; o = —1 andu,; o = 1, respectively, as illustrated in Fig. 5.4. Since the
minimum distance is a decreasing functiorbpthe performance degrades with increading

When the ITI parameter satisfiéss (0.5, 1], the decision rule is

Ui =—1 if —co<y; <—eor0<y; <e

U0 = +1 otherwise

wheree represents the positive valuegffor which the two cpdf’s are equal. The cpdf’s for this
region are illustrated in Fig. 5.5. At moderate-to-high SMR: b. If the parametee is chosen
to beb, the probability of a bit errol, is given by

) )
fo(52)-0(2)-o(52)
o 22) a(%22)

Q<2_2b>]. (5.27)
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When the ITI parameteb € (0.5,2/3), the dominant term in (5.27) i$Q (=3£%) which
results from the minimum distance2 + 4b. Note that since the minimum distance in this region
increases with increasirig the performance improves with increasing minimum distanhen
the ITI parameter satisfigse (2/3, 1], the dominant term in (5.27) $Q (2;22). This results
from the minimum distanc@ — 2b which is again a decreasing function tof Therefore, the

performance degrades in this region with decreasing mimrdistance.

5.5.2 ISl case

For the ISI case, the analysis of the MAP bit detector is mdffecat. Therefore,
recalling that the performance of the punctured ML symbajusace detector was found to
be effectively the same as that of the optimal bit detectar,use the error event analysis for
punctured ML symbol sequence detector discussed in Sea#on

By means of a depth first search, the input symbol error eweitts small output
distances can be listed. In Table 5.3, we list all input syinéomr events with output squared-
Euclidean distances up 1 on channelH; defined in (5.9) and, in Table 5.4, we list all input

symbol error events with output squared-Euclidean digsmup to0.4 on channelH, defined
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Figure 5.5 Conditional probability density functions wtee ITI parameteb € (0.5, 1].

in (5.10). For convenience, only the error events which begth a negative input symbol
difference are listed. Note that for chanré}, the channel corresponding to ITI level= 0.6,

the squared-Euclidean distance of the dominant error ésdntimes that of channel;, with

ITI level b = 0.55, whereas the average multiplicities of bit errors resglfimom the dominant
error events for the two channels are the same. Therefoneo@érate-to-high SNR, we would
expect & dB performance advantage for chanfi#l compared to the channél;, despite the
larger ITI level of channeH,. This6 dB performance advantage was indeed demonstrated in
the simulated BER curves in Fig. 5.2.

Table 5.3: Error events for chann8l, up to squared distancel5

Error Event,\ d2(\) Ny
00-400 0.0432 1/8
00-4400 0.0544 1/32
00-44-400 0.0688 3/83
00-40400 0.0832 1/32



Table 5.3 — continued from previous page

Error Event,\ d’2(\) Ny
00-44-4400 0.0832 4/8%
00-40-400 0.0896 1/32
00-404-400 0.0944 3/8°
00-440-400 0.0944 3/8°
00-44-44-400 0.0976 5/8°
00-40-4400 0.1008 3/83
00-440400 0.1008 3/83
00-440-4400 0.1056 4/8*
00-44-40400 0.1088 4/8%
00-404-4400 0.1088 4/8%
00-4404-400 0.1120 4/8%
00-44-44-4400 0.1120 6/8°
00-40-44-400 0.1152 4/8%
00-44-40-400 0.1152 4/8%
00-4-400 0.1184 2/82
00-440-44-400 0.1200 5/8°
00-44-404-400 0.1200 5/8°
00-44-440-400 01232 5/8
00-404-44-400 0.1232 5/8°
00-4040-400 0.1232 3/8°
00-4-4400 0.1264 3/8°
00-44400 0.1264 3/8°
00-44-44-44-400 01264 7/8
00-4404-4400 0.1264 5/8°
00-44-40-4400 0.1264 5/8°
00-40-40400 0.1296 3/8°
00-40-44-4400 0.1296 5/8°
00-44-440400 0.1296 5/8°
00-4040400 0.1296 3/8°
00-404-40400 0.1344 4/8%
00-44-440-4400 0.1344 6/8°
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Table 5.3 — continued from previous page

Error Event,\ d’2(\) Ny
00-444-400 0.1344 4/8"
00-440-44-4400 0.1344  6/8°
00-440-40400 0.1344  4/8*
00-4040-4400 0.1344  4/8*
00-44-404-4400 0.1344  6/8°
00-40-40-400 0.1360 3/8°
00-404-44-4400 0.1376  6/8°
00-44-44-40400 0.1376  6/8°
00-4-44-400 0.1408 4/8*
00-40-404-400 0.1408 4/8*
00-40-44-400 0.1408 4/8%
00-404-40-400 0.1408 4/8*
00-4404-44-400 0.1408  6/8°
00-44040-400 0.1408 4/8%
00-40404-400 0.1408 4/8*
00-44-40-44-400 01408 6/8°
00-44-4-400 0.1408 4/8%
00-44-44-44-4400 01408 8/8
00-44-4404-400 0.1408  6/8°
00-440-40-400 0.1408 4/8%
00-40-44-44-400 01440 6/8°
00-44-44-40-400 01440 6/8°
00-440-404-400 0.1456  5/8°
00-440-440-400 0.1456  5/8°
00-404-404-400 0.1456  5/8°
00-44040400 0.1472  4/8%
00-40-40-4400 0.1472  4/8*
00-40-440400 0.1472  4/8%
00-440-44-44-400 01488 7/87
00-44-440-44-400 0148 7/8
00-444-4400 0.1488 5/8°

e



Table 5.3 — continued from previous page

Error Event,\ d’2(\) Ny
00-44-44-404-400 01488 7/87
00-404-440-400 0.1488 5/8
00-4040-44-400 0.1488 5/8
00-44-4-4400 0.1488 5/8
00-44-404-44-400 01488 7/87
00-44-4040-400 0.1488 5/8
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Table 5.4: Error events for channdl, up to squared distan€e6
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Error Event,\ d?(\)
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Table 5.4 — continued from previous page

Error Event,\ d’2(\) Ny
00-440-40-400 0.5632 4/8*
00-40404-400 0.5632 4/8%
00-44-44-44-4400 05632 8/8
00-4404-44-400 0.5632  6/8°
00-44040-400 0.5632 4/8%
00-40-44-44-400 05760 6/8°
00-44-44-40-400 0.5760 6/8°
00-404-404-400 0.5824 5/85
00-440-404-400 0.5824 5/8°
00-440-440-400 0.5824 5/8°
00-40-40-4400 0.5888 4/8%
00-40-440400 0.5888 4/8%
00-44040400 0.5888 4/8%
00-404-440-400 0.5952 5/85
00-4040-44-400 0.5952 5/8°
00-44-4-4400 0.5952 5/8°
00-44-404-44-400 05952 7/8°
00-44-4040-400 0.5952 5/8°
00-44-440-44-400 05952 7/8
00-440-44-44-400 0592 7/8
00-440-4400 0.5952 4/8%
00-44-44-404-400 0592 7/8

5.6 Conclusions

In this chapter, we studied the effect of varying levels ¢éirtrack interference (ITI)
on the performance of optimal bit detectors for bit pattdrmeedia (BPM) recording channels.
For this, we considered a simplified family of BPM channel misdlescribed by a single param-
eter for intersymbol interference (ISI) and a single paraméor ITl. We presented simulated

bit-error-rate (BER) curves for a maximuanposteriori (MAP) bit detector on representative
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channels in this family, as a function of the ITI parametasr €hannels both with and without
ISI, we observed that, in a range of values of the ITI paraméte detector performance im-
proved as the level of ITI was increased. In the presenceacktmisregistration (TMR), we
observed a similar phenomenon. For the no-ISI case, thisviomhwas explained by means of
an exact probability of error analysis for the MAP bit detect~or channels with ISI, we used
an error event analysis of a punctured maximume-likelihold)(joint-track detector to shed
light on the improvement in performance that can accomparnp@aeased level of ITI within a

certain range of ITI parameter values.
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