
UC Berkeley
UC Berkeley Previously Published Works

Title
Computational evidence for hierarchically structured reinforcement learning in humans

Permalink
https://escholarship.org/uc/item/04h4d08z

Journal
Proceedings of the National Academy of Sciences of the United States of America, 
117(47)

ISSN
0027-8424

Authors
Eckstein, Maria K
Collins, Anne GE

Publication Date
2020-11-24

DOI
10.1073/pnas.1912330117
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/04h4d08z
https://escholarship.org
http://www.cdlib.org/


CO
LL

O
Q

U
IU

M
PA

PE
R

PS
YC

H
O

LO
G

IC
A

L
A

N
D

CO
G

N
IT

IV
E

SC
IE

N
CE

S
N

EU
RO

SC
IE

N
CE

Computational evidence for hierarchically structured
reinforcement learning in humans
Maria K. Ecksteina and Anne G. E. Collinsa,1

aDepartment of Psychology, University of California, Berkeley, CA 94704

Edited by Danielle S. Bassett, University of Pennsylvania, Philadelphia, PA, and accepted by Editorial Board Member Dale Purves April 15, 2020 (received for
review August 2, 2019)

Humans have the fascinating ability to achieve goals in a complex
and constantly changing world, still surpassing modern machine-
learning algorithms in terms of flexibility and learning speed. It is
generally accepted that a crucial factor for this ability is the use
of abstract, hierarchical representations, which employ structure
in the environment to guide learning and decision making. Never-
theless, how we create and use these hierarchical representations
is poorly understood. This study presents evidence that human
behavior can be characterized as hierarchical reinforcement learn-
ing (RL). We designed an experiment to test specific predictions
of hierarchical RL using a series of subtasks in the realm of
context-based learning and observed several behavioral mark-
ers of hierarchical RL, such as asymmetric switch costs between
changes in higher-level versus lower-level features, faster learn-
ing in higher-valued compared to lower-valued contexts, and
preference for higher-valued compared to lower-valued contexts.
We replicated these results across three independent samples.
We simulated three models—a classic RL, a hierarchical RL, and
a hierarchical Bayesian model—and compared their behavior to
human results. While the flat RL model captured some aspects of
participants’ sensitivity to outcome values, and the hierarchical
Bayesian model captured some markers of transfer, only hierar-
chical RL accounted for all patterns observed in human behavior.
This work shows that hierarchical RL, a biologically inspired and
computationally simple algorithm, can capture human behavior
in complex, hierarchical environments and opens the avenue for
future research in this field.

computational modeling | reinforcement learning | hierarchy |
structure learning | task-sets

Research in the cognitive sciences has long highlighted the
importance of hierarchical representations for intelligent

behavior, in domains including perception (1), learning and deci-
sion making (2, 3), planning and problem solving (4), cognitive
control (5), and creativity (6), among many others (7, 8). The
common thread across all these domains is the insight that hier-
archical representations (i.e., the simultaneous representation
of information at different levels of abstraction) allow humans
to behave adaptively and flexibly in complex, high-dimensional,
and ever-changing environments. Exhaustive nonhierarchical
(“flat”) representations, in contrast, are insufficient to achieve
human-like behaviors.

To illustrate, consider the following situation. Mornings in
your office, your colleagues are working silently, or quietly dis-
cussing work-related topics. After work, they are laughing and
chatting loudly at their favorite bar. In this example, a con-
text change induced a drastic change in behavior, despite the
same interaction partners (i.e., “stimuli”). Hierarchical theo-
ries of cognition capture this behavior by positing that we
learn strategies hierarchically, activating different behavioral
strategies (or “task-sets”) in different contexts. Although hier-
archical representations can incur additional cognitive cost (9),
they provide a range of advantages compared to exhaustive
flat representations: once a task-set has been selected (e.g.,
office), attention can be focused on a subset of environmen-

tal features (e.g., just the interaction partner) (10–13). When
new contexts are encountered (e.g., new workplace, new bar),
entire task-sets can be reused, allowing for generalization (6,
14, 15). Old skills are not catastrophically forgotten (16). In
addition, hierarchical representations deal elegantly with incom-
plete information, for example, when contexts are unobservable
(6, 17). All of these advantages are evident in the current
study.

Although we know that hierarchical representations are essen-
tial for flexible behavior, how humans create these representa-
tions and how they learn to use them is still poorly understood.
Here, we hypothesize that learning and using hierarchical repre-
sentations can be explained under a hierarchical reinforcement
learning (RL) framework, in which simple RL computations
are combined to simultaneously operate at different levels of
abstraction. RL theory (18) formalizes how to adjust behav-
ior based on feedback in order to maximize rewards. Stan-
dard RL algorithms estimate how much reward to expect when
selecting actions in response to stimuli and use these “action-
value” estimates to select actions. Old action-values are updated
in proportion to the “reward-prediction error,” the discrep-
ancy between action-values and received reward, to produce
increasingly accurate estimates. Such “flat” RL algorithms oper-
ate over unstructured, exhaustive representations (SI Appendix,
Fig. 3A), converge to optimal behavior, are computationally
inexpensive, and have led to recent breakthroughs in artificial
intelligence (AI; ref. 18).

Broad evidence suggests that the brain implements com-
putations similar to RL: dopamine neurons generate reward-
prediction errors (19, 20), and a widespread network of frontal
cortical regions (21) and basal ganglia (22, 23) represents action-
values. Specific brain circuits thereby form “RL loops” (17,
24), in which learning is implemented through the continu-
ous updating of action-values (11, 25). In this sense, estimating
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action-values via RL is an algorithm of special interest to cog-
nition: there is strong evidence that the brain implements a
simple mechanism to perform the necessary computations. Nev-
ertheless, RL algorithms have important shortcomings: they
suffer from the curse of dimensionality (an exponential drop in
learning speed with increasing problem complexity); they lack
flexibility for behavioral change; and they cannot easily gener-
alize or transfer old knowledge to new situations. Hierarchical
RL (26) mitigates these shortcomings by nesting RL processes
at different levels of temporal (27–29) or state abstraction
(12, 30).

Recent research has provided support for a plausible imple-
mentation of hierarchical RL in the brain: the neural circuit that
implements RL is multiplexed, such that distinct RL loops oper-
ate at different levels of abstraction along the rostrocaudal axis
(10, 24, 31–37). Consistent with this architecture, recent studies
have shown signatures of RL values and reward-prediction errors
at different levels of abstraction in the human brain (29, 38).
However, previous studies did not provide evidence that neural
signatures of hierarchical value support learning and generaliz-
ing hierarchically structured behavior. Thus, it remains unknown
whether hierarchical RL indeed supports hierarchical behavior.
The goal of this study is to fill this gap. We investigate hierar-
chical RL in a paradigm that promotes the creation and reuse of
hierarchical structure. We provide a fully fledged computational
model that accounts for behavior across a variety of relevant situ-
ations: context-dependent learning, context switches, generaliza-
tion to new contexts, partially observable problems, and choices
at different levels of abstraction. This study tests all predictions
of hierarchical RL in a single paradigm. Because hierarchical
RL makes specific behavioral predictions in each situation, we
are able to test the model qualitatively against human behavior
(39). We then compare our hierarchical RL model quantitatively
to the two most relevant competing models, flat RL and hierar-
chical Bayes. The former employs RL but without hierarchical
structure. The latter assumes that high-level decisions are based
on Bayesian inference of task-set reliability, rather than RL using
task-set values (14).

In the following, we first introduce our hierarchical RL model
and experimental paradigm. We then test whether humans show
qualitative behaviors that are predicted by the hierarchical RL
model, as well as the two competing models. We first show evi-
dence for hierarchical representations in humans, as predicted
by both hierarchical RL and hierarchical Bayes, but not flat RL.
We employ multiple independent analyses, including switch-cost
measures and positive and negative transfer. We then provide
evidence for human hierarchical value learning, which is only
consistent with the hierarchical RL model. We next provide
quantitative support for these qualitative results and show that

model comparison supports the hierarchical RL model over flat
RL and hierarchical Bayes. The majority of results replicates
across three independent participant samples.

Results
Computational Models. Our hierarchical RL model is composed
of two hierarchically structured RL processes. The high-level
process manages behavior at the abstract level by acquiring a
“policy over policies”: it learns which task-set to choose in each
context, using “task-set values” (the estimated expected reward
of selecting a task-set in a given context). The low-level pro-
cess acquires these task-sets: it learns which actions to choose
in response to each stimulus by estimating “action-values” (the
estimated expected reward of selecting an action for a given
stimulus, within a specific task-set; Fig. 1A).

At the beginning of the task, task-sets and actions are
picked randomly, but over time, trial-and-error learning leads
to the formation of meaningful task-sets, which represent poli-
cies that are specialized for particular contexts. Trial-and-error
learning also underlies the policy over task-sets that deter-
mines which task-set is selected in each context. Thus, our
hierarchical RL model is based on two nested processes,
which create an interplay between learning stimulus–action
associations (low level) and context-task-set associations (high
level). SI Appendix, Fig. 4 shows a step-by-step visualization
of this model.

Formally, to select an action a in response to stimulus s in
context c, hierarchical RL goes through a two-step process: 1)
it selects a task-set TS based task-set values in the current
context, Q(TS |c), using p(TS |c)= exp(Q(TS|c))∑

TSi
exp(βTS Q(TSi |c))

. The

inverse temperature βTS captures task-set choice stochasticity
(Fig. 1A). The chosen task-set TS provides a set of action-values
Q(a|s,TS), which are used to 2) select an action a , according
to p(a|s,TS)= exp(Q(a|s,TS))∑

ai
exp(βa Q(ai |s,TS))

, where βa captures action

choice stochasticity (Fig. 1A; for trial-by-trial behavior, see SI
Appendix, Fig. 4B). After executing action a on trial t , feed-
back rt reflects the continuous amount of reward received, which
guides learning at both levels of abstraction (i.e., to update the
values of the selected task-set and action):

Qt+1(TS |c)=Qt(TS |c)+αTS (rt −Qt(TS |c))
Qt+1(a|s,TS)=Qt(a|s,TS)+αa (rt −Qt(a|s,TS)).

αTS and αa are learning rates at the levels of task-sets and
actions (Fig. 1A and SI Appendix, Fig. 4C).

The flat RL model uses the same mechanism for value learn-
ing and action selection but lacks hierarchical structure: it treats
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Fig. 1. (A) Schematic of the hierarchical RL model. A high-level RL loop (green) selects a task-set TS in response to the observed context, using TS values.
The chosen task-set provides action-values, based on which the low-level RL loop (blue) selects an action in response to the observed stimulus. Task-set and
action-values are both learned based on action feedback. (B) Human learning curves during the initial learning phase, averaged over blocks. Colors denote
underlying action-values (Left) and task-set values (Right), respectively. Stars show that both affect performance (Learning Curves and Effects of Reward),
consistent with hierarchical RL. ***P < 0.001.
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each combination of context and stimulus as a unique state
(Methods). The hierarchical Bayesian model creates a task-set
structure like hierarchical RL but selects task-sets according to
their inferred reliability, rather than task-set values (Methods).

Task Design. We designed a task in which participants learned to
select the correct actions for different stimuli (Fig. 2A). The map-
ping between stimuli and actions varied across three contexts,
creating three distinct task-sets (Fig. 2B). Each context appeared
in three blocks of 52 trials, for a total of 9 blocks. Contexts
differed in average rewards, allowing us to test for RL values
at the level of task-sets. After an initial-learning phase of this
task (Fig. 2A), participants completed four test phases (Fig. 2C)
to hone in on specific predictions of hierarchical RL. Detailed
information about the task is provided in Fig. 2, Methods, and SI
Appendix.

Learning Curves and Effects of Reward. As expected, participants’
performance increased within a block, showing adaptation to
context changes (Fig. 1B). We also verified that participants
were sensitive to continuous differences in reward magnitudes
(tape length). RL predicts better performance for larger rewards

because these lead to larger action-values, which make correct
actions more distinguishable from incorrect ones (SI Appendix,
Fig. 4B for details). Participants indeed showed better perfor-
mance for high-reward stimuli (Fig. 1B, Left). This effect was
predicted by both hierarchical and flat RL. Hierarchical RL
additionally predicts better performance for high-valued con-
texts: larger rewards create larger reward-prediction errors at the
task-set level, which allow for better discrimination between cor-
rect and incorrect task-sets and lead to better task-set selection
and performance (see SI Appendix, Fig. 4A for details). As pre-
dicted, participants also showed an effect of task-set values on
performance (Fig. 1B, Right).

To quantify both effects, we conducted a mixed-effects logis-
tic regression model predicting trialwise accuracy from action-
values, task-set values, and their interaction (fixed effects),
specifying participants, trial, and block as random effects. We
approximated action-values as average stimulus–action rewards
and task-set values as average context-task-set rewards, as shown
in Fig. 2B. The model revealed significant effects of both action-
values (β=0.38, P < 0.001) and task-set values (β=0.20,
P < 0.001) on performance (for complete statistics and results
in other samples, see SI Appendix, Table 1). This provides initial

A C

B

Fig. 2. Task design. (A) In the initial-learning phase, participants saw one of four stimuli (aliens) in one of three contexts (seasons) and had to find the
correct action (item) through trial and error. Each context had a different mapping between stimuli and correct actions, and contexts were presented
blockwise. Feedback indicated correctness deterministically, but different context–stimulus–action combinations led to different rewards (with Gaussian
noise). (B) Example mapping between stimuli and actions for each context, defining three task-set TS1 to TS3. Average rewards (task-set values) differed
between contexts. All actions and stimuli had equal average rewards. (C) Additional test phases. The hidden-context phase, presented after initial learning,
was identical except that contexts were unobservable (season hidden by clouds). This allowed us to test whether participants reactivated previously learned
task-sets. In the comparison phase, participants saw either two contexts (“Cont.”) or two stimuli (“Stim.”) on each trial and selected their preferred one. We
used subjective preferences to assess task-set values (contexts) and action-values (stimuli). The novel-context phase was similar to initial learning but had
a new context and no feedback, to test how participants generalized previous knowledge to new situations. The final mixed phase was similar to initial
learning but not blocked, i.e., both stimuli and contexts could change on every trial, to test for asymmetric switch costs. All test phases were separated by
“refresher blocks” similar to initial learning, to alleviate carry-over effects and forgetting.
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evidence that human choices were sensitive to RL values at
two levels of abstraction—actions and task-sets—as predicted by
hierarchical RL.

Hierarchical Representation. We tested participants’ abstractions
in more detail using three independent analyses: switch costs
in the mixed phase of the task, reactivation of task-sets in the
hidden-context phase, and task-set selection errors during initial
learning.
Asymmetric Switch Costs. Asymmetric switch costs can be evi-
dence for hierarchical representations because changes across
trials are more challenging at higher than lower levels of abstrac-
tion (40, 41). For example, switching contexts is more cognitively
costly than switching stimuli within a context. To test for such
asymmetries in our paradigm, we compared trials on which a dif-
ferent stimulus was presented from that on the previous trial
(but the same context) with those on which a different con-
text was presented (but the same stimulus), using the mixed
phase (Fig. 2C). As expected, participants responded signifi-
cantly slower after context switches than after stimulus switches
(t(25)= 3.47, P = 0.002). This was not due to participants’
initial surprise about the interleaved presentation of contexts
in the mixed phase, as the result held throughout the phase
(SI Appendix). Asymmetric switch costs therefore suggest that
participants created hierarchical representations, nesting stimuli
within contexts, as predicted by hierarchical RL and hierarchical
Bayes.
Reactivating Task-Sets. Did representing the task hierarchically
benefit performance (e.g., did it support positive transfer)? In
the hidden-context phase of our task, contexts were not observ-
able, such that participants could either relearn old stimulus–
action mappings from scratch (no transfer) or reactivate previous

task-sets, with the correct mappings already in place (trans-
fer). By enabling reactivation of old task-sets, hierarchy has
been shown previously to enable better performance and faster
learning (6, 14, 34).

If participants reactivated task-sets, we expect a specific pat-
tern of performance in the hidden-context phase, specifically
on the first few trials after a context switch, before any stimu-
lus is repeated: because every trial provides feedback about the
appropriateness of the chosen task-set, task-set selection should
become more accurate on each trial, and, consequently, accu-
racy should improve. If, on the other hand, participants did not
use task-sets and instead relearned stimulus–response associa-
tions from scratch, as predicted by flat RL, performance can
only increase after a stimulus is repeated. Because no stimuli
are repeated until the fifth trial in our task, the first four trials
provide the perfect testing ground to pitch these two predic-
tions against each other, as illustrated in Fig. 3A: hierarchical
RL simulations show increasing performance, whereas flat RL
simulations show no change (simulation details in Methods and
Modeling Behavioral Patterns Jointly).

Human behavior qualitatively matched the predictions of hier-
archical RL: performance increased steadily over the first four
trials after a context switch (Fig. 3A), evident in the signifi-
cant correlation between item position (1 to 4) and performance
(r =0.19, P = 0.048). This shows that participants recalled pre-
viously learned stimulus–action mappings rather than relearning
them, a signature of task-set transfer.

We next assessed quantitatively which of our three candi-
date models captured this behavior best. We compared the
models using Bayes Factors (BF ), which we estimated using a
method related to Approximate Bayesian Computation (Meth-
ods, SI Appendix, and ref. 42). Our method involved simulating
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synthetic data from each model and estimating the likelihood
of human behavior under the simulated data, as illustrated in
Fig. 3B. Hierarchical RL surpassed both flat RL (BF =5.12) and
also hierarchical Bayes (BF =1.96) in model comparison (SI
Appendix, Table 3). This confirms the qualitative result, showing
that human performance in the hidden-context phase was better
captured by hierarchical than flat models.
Task-Set Perseveration Errors. We showed that hierarchy allowed
for positive transfer, enabling participants to reactivate old task-
sets. However, hierarchy can also lead to negative transfer:
when participants select the wrong task-set, the “correct” action
according to that task-set is likely to be incorrect in the cur-
rent context. We call such errors “task-set selection errors,”
and focus on a specific subtype, “task-set perseveration errors.”
Here, actions are chosen that would have been correct in the
previous context but are incorrect in the current one. Contrary
to flat RL, hierarchical models predict task-set perseveration
(Methods and example in SI Appendix, Fig. 4A), reflected in
high proportions of task-set perseveration errors and low initial
accuracy (Fig. 3 C and D).

We tested this prediction on the first trial after each con-
text switch during initial learning, and found that participants
were more likely to make task-set perseveration errors than to
select correct actions [t(25)= 2.1, P = 0.046], in accordance
with hierarchical model simulations (Fig. 3D). Task-set perse-
veration persisted several trials into the new block, as evident
in a logistic regression predicting task-set perseveration errors
from trial index (β=−6.83%, z =−9.31, P < 0.001), task-set
values (β=−2.43%, z =−1.00, P < 0.001), and action-values
(β=−14.03%, z =−8.45, P < 0.001), controlling for block and
specifying random effects of participants.

In summary, the presence of task-set perseveration errors in
humans is qualitative evidence for hierarchical processing. Quan-
titative model comparison supports this conclusion, showing that
hierarchical models fit human error patterns better than flat RL
(hierarchical vs. flat RL: BF =14.99; hierarchical Bayes vs. flat
RL: BF =10.32; hierarchical RL vs. Bayes: BF =1.40).

RL Values at Different Levels of Abstraction. Our results so far
focused on hierarchical representations in general, showing that
participants created, reactivated, and transferred task-sets. We
now test predictions that are unique to hierarchical RL, assessing
whether participants acquired RL values at the level of task-sets
as well as actions.
Task-Set Values Affect Subjective Preference. A classic approach
to assess RL values in humans is to investigate subjective prefer-
ences (43). To investigate whether participants acquired values
at both levels, we thus used a comparison phase, where partic-
ipants selected their preferred out of two items on each trial.
Items were either two contexts or two stimuli—testing task-set
and action-values, respectively (Fig. 2C).

The hierarchical RL model selected contexts based on the
task-set values acquired during initial learning and showed a
strong preference for high-valued over low-valued contexts (SI
Appendix, Fig. 7A). The flat RL model selected contexts based on
average action-values in this context and showed a much weaker
preference (SI Appendix, Fig. 7A). The hierarchical Bayesian
model did not track values over contexts and was thus not
simulated in this phase. As predicted by hierarchical RL, partic-
ipants preferred high-valued over low-valued contexts [t(25)=
2.56, P = 0.017], indicating RL values at the level of contexts.
Quantitative model comparison (Fig. 4B) strongly favored hier-
archical over flat RL (BF = 1,171.65). For completeness, we also
confirmed participants’ RL values at the level of stimuli, as
predicted by both flat and hierarchical RL and evident in the
preference for high-valued over low-valued stimuli [t(25)= 2.11,
P = 0.045]. In conclusion, participants’ preferences were best
accounted for by the hierarchical RL model.

We next investigated a different model prediction in the com-
parison phase: the hierarchical RL model takes two steps to
retrieve action-values but only one to retrieve task-set values.
This suggests stimulus selection should be slower and noisier
than context selection. Flat RL, on the contrary, takes one
step to retrieve action-values but multiple steps to calculate
context-values, suggesting the inverse pattern. Humans showed
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the patterns predicted by hierarchical RL: response times (RTs)
were numerically slower and performance was significantly worse
for contexts than for stimuli [mixed-effects regression, RTs:
β=148.21, t(25)= 1.63, P = 0.12; Accuracy: β=0.28, z =2.0,
P = 0.048; Fig. 4B]. Although the effect on RTs did not reach
significance here, it was strongly significant in the replication
(SI Appendix, Table 1). Quantitative model comparison strongly
favored hierarchical over flat RL in terms of accuracy (BF =
39.64).
Task-Set Values Affect Performance. As explained above, human
initial learning was affected by both action-values and task-
set values (Fig. 1B), in accordance with hierarchical RL. To
compare our models in this regard, we calculated the effects
of task-set values on performance, using a simplified regres-
sion model (SI Appendix). Supporting our qualitative findings,
the hierarchical RL model provided a better fit than value-
less hierarchical Bayes (BF =6.62) and, crucially, than flat RL
(BF =1.49; Fig. 4F).
Task-Set Values Affect Generalization. We showed above that
participants preferred high-valued over low-valued contexts (SI
Appendix, Fig. 7A). We now test whether participants showed
similar task-set preferences in the novel-context phase, that is,
when generalizing old knowledge to a new context. For sim-
ulations, our hierarchical RL model applied its highest-valued
task-set throughout the novel-context phase. The hierarchical
Bayes model applied its most reliable task-set. The flat RL model
chose actions based on average values (Methods).

We labeled each action in the novel-context phase as one of
the following: correct in task-set TS3, TS2, TS1, both TS3 and
TS1, both TS2 and TS1, or not correct in any task-set (NoTS).
Despite the lack of feedback, human participants showed con-
sistent preferences for certain stimulus–action combinations
over others (Fig. 4C; see SI Appendix, Fig. 2 for heat maps
of task-set values). They chose NoTS actions less often than
other actions, controlling for the frequency of each category
[t(25)= 2.24, P = 0.034]. Mappings shared between multiple
task-sets (TS2 and TS1; TS3 and TS1) were more frequent than
mappings that only occurred in one task-set (TS1, TS2, TS3),
controlling for chance level [t(25)= 2.83, P = 0.0091]. This con-
firms that participants reused old task-sets for new contexts,
in accordance with our findings in the hidden-context phase
and prior literature (17). Quantitative model comparison con-
firmed that the number of NoTS choices was captured better
by hierarchical RL than by flat RL (BF =1.78) or hierarchical
Bayes (BF =45.60).

Highlighting the role of task-set values, hierarchical RL pre-
dicted more actions from the highest-valued TS3 than from the
lowest-valued TS1 and a greater difference between the two
than flat RL or hierarchical Bayes (Fig. 4E). Humans showed
the same pattern, selecting more TS3 than TS1 actions [t(25)=
2.58,P =0.016]. Bayes Factors confirmed that this difference
was captured better by hierarchical RL than flat RL (BF =1.59)
or hierarchical Bayes (BF =32.01). Taken together, our hier-
archical RL model captured both the reuse of old task-sets in
new contexts and the preference for high-valued over low-valued
task-sets.

Modeling Behavioral Patterns Jointly. Human behavior followed
predictions of hierarchical RL qualitatively, and Bayes Fac-
tors confirmed quantitatively that this model fit better than the
competing ones. However, we treated each behavioral measure
independently. We next sought to confirm that it was possible to
obtain all behavioral results simultaneously based on a single set
of parameters. To this end, we chose one “best” set of parameters
for each model (Methods) and showed the behavior of this sim-
ulation side-by-side with humans, for each behavioral measure.
As expected, neither flat RL nor hierarchical Bayes replicated
all qualitative patterns in Figs. 3 A and C and 4 A and C. How-

ever, importantly, a single set of parameters could capture all
qualitative patterns in the hierarchical model. Note that because
parameters were not obtained through model fitting, behavior
can deviate quantitatively from human data.

Discussion
The goal of the current study was to assess whether human
flexible behavior could be explained by hierarchical RL (i.e.,
the concurrent use of RL at different levels of abstraction) (3,
44). We proposed a hierarchical RL model that acquires low-
level strategies—or “task-sets”—using RL and that also learns
to choose between these task-sets using RL. We contrasted this
model with a flat RL model, to highlight the unique contribution
of hierarchy, and to a hierarchical Bayesian model, to highlight
the contribution of a hierarchical value representation.

Our hierarchical RL model predicted unique patterns of
behavior in a variety of situations. To assess whether humans
employed hierarchical RL, we designed a context-based learning
task in which multiple subtasks tested these predictions. Indeed,
participants’ behavior followed the predictions in all subtasks.
The first prediction was that participants would create hierar-
chical representations. Several independent results supported
this claim, including asymmetric switch costs, task-set persever-
ation errors, and task-set reactivation. These results could not
be accounted for by the flat RL model but were also compatible
with the hierarchical Bayesian model.

To address the unique predictions of hierarchical RL, we
sought evidence of hierarchical values. Hierarchical RL predicts
value-based 1) context preferences, 2) performance differences
between contexts, and 3) generalization in new contexts. Human
behavior showed the predicted patterns: 1) when asked to pick
their preferred contexts, participants selected higher-valued ones
more often. This suggests that they had formed abstract task-
set values, in addition to low-level action-values. Participants
also performed better when choosing between high-level con-
texts than low-level stimuli, in accordance with the “blessing of
abstraction” (45, 46). 2) Task-set values affected performance,
with better performance of higher-valued task-sets. This shows
that hierarchical representation can explain performance dif-
ferences between contexts. 3) When faced with a new context,
participants reused previous task-sets, preferring higher-valued
over lower-valued ones. This suggests that task-set values guided
generalization of old knowledge to new situations.

In summary, human behavior showed all qualitative patterns
predicted by hierarchical RL. To quantify the differences with
hierarchical Bayes and flat RL, we conducted formal model
comparison using Bayes Factors. Because marginal model like-
lihoods were intractable, we approximated them using simula-
tions, similar to refs. 42, 47, and 48. Bayes Factors instantiate
an implicit Occam’s razor that accounts for differences in model
complexity, such as the larger number of parameters in the
hierarchical models compared to flat RL, differences in the func-
tional form of each model, and differences in parameter spaces
(47, 49). In this way, Bayes Factors implement a more com-
prehensive tradeoff between parsimony and goodness-of-fit than
traditional methods.

In our paradigm, Bayes Factors showed that hierarchical RL
and hierarchical Bayes captured behavioral aspects of hierarchy
better than flat RL (e.g., task-set reactivation, task-set persevera-
tion), whereas flat RL and hierarchical RL captured value-based
aspects better (e.g., value-based generalization, effects of val-
ues on performance). Furthermore, hierarchical RL uniquely
captured the influence of two sets of values on behavior. Over-
all, Bayes Factors favored the hierarchical RL model over flat
RL and hierarchical Bayes. Based on this quantitative con-
firmation, we next asked whether all results could be jointly
observed when simulating the hierarchical RL model with a
single set of parameters, to confirm that different parameters
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were not responsible for different behaviors. We used simula-
tion summary statistics to identify a “best” set of parameters for
each model. Only the hierarchical RL simulation qualitatively
replicated all human behaviors but not flat RL or hierarchical
Bayes. This shows that seemingly different behaviors, includ-
ing trial-and-error learning (initial-learning phase), “inference”
of missing information (hidden-context phase), subjective pref-
erences (comparison phase), and generalization (novel-context
phase), can all be explained in the same overarching hierarchical
RL framework.

Note that we have not explored the full space of possible mod-
els. In particular, it would be possible to construct a hierarchical
Bayesian model that tracks task-set and action-values rather than
their reliability but uses Bayesian inference rather than RL to
perform updates. This model might capture the behavioral pat-
terns we observed here. Indeed, our results show evidence for
humans’ ability to track values at multiple levels of hierarchy in
support of generalizable behavior but do not speak directly to the
exact update process. However, we favor the hierarchical RL for-
mulation of such updates because it is inspired by a rich literature
on brain circuits that makes its implementation plausible, and
because it is algorithmically simple, with the ability to account
for complex cognitive processes.

Many computational models have addressed cognitive hierar-
chy. How are they related to our model? One important class of
hierarchical models is purely Bayesian (7, 50, 51). These models
aim to explain, on a computational level of analysis (52), the fun-
damental purpose of hierarchy for cognitive agents. Our model,
on the other hand, is algorithmic, like many pure-RL models: it
aims to describe dynamically which cognitive steps humans take
when they make decisions in complex environments. Our model
is also inspired by the structure of human neural learning circuits
(24, 32, 35), thereby extending to the implementational level of
analysis.

Some models of hierarchical cognition are method hybrids:
some combine Bayesian inference at the abstract level with RL
at the lower level (6, 10). Other, resource-rational models, com-
bine Bayesian principles of rationality with cognitive constrains
(53). Frank and Badre (10, 31) proposed a hybrid model that
uses Bayesian inference to arbitrate between multiple types of
hierarchy and flat RL. In general, hybrid models assume a role
for Bayesian inference at higher levels of hierarchy, contrary
to our hierarchical RL model. This is an important difference:
hierarchical RL mimics a form of inference (for example, identi-
fying the latent task-set at the beginning of a block; SI Appendix,
Results 2.1) but cannot do it optimally. It is an important direc-
tion for future research to identify whether human behavior is
suboptimal in the same way.

Computational models at different levels of analysis (52) are
not mutually exclusive. Bayesian inference offers a perspective
based on optimality, but it is often intractable and approxima-
tions are computationally expensive. RL, on the other hand,
uses values to approximate expectations instead of calculating
them exactly. Because of its relative computational simplicity,
and because it is biologically well supported, RL has often been
used as an algorithmic and implementational model. Recent
research showed that a neural network implementing hierarchi-
cal RL approximated the results of Bayesian inference (17). In
other words, hierarchical RL might allow for optimal behavior
using simpler computations.

Hierarchical RL was initially proposed in AI (26, 54). A num-
ber of AI algorithms has recently been used to model human
cognition as well (28, 29, 55, 56), showcasing how intertwined
the two fields have become (18, 57, 58). Nevertheless, most hier-
archical RL algorithms in AI focus on hierarchy over the time
scale of choices (“temporal abstraction,” e.g., breaking up long-
term goals into subgoals). Our hierarchical model, in contrast,
focuses on “choice abstraction” (i.e., allowing choice at the level

of task-sets and motor actions), a still rare approach in AI (but
see ref. 59).

To conclude, classic RL has been a powerful model for simple
decision making in animals and humans, but it cannot explain
hallmarks of intelligence like flexible behavioral change, con-
tinual learning, generalization, and inference of missing infor-
mation. Recent advances in AI have proposed hierarchical RL
as a solution to a number of such shortcomings, and we found
that human behavior showed many signs of hierarchical RL,
which were captured better by our hierarchical RL model than
competing ones.

There is no debate that achieving goals and receiving pun-
ishment are some of the most fundamental motivators that
shape our learning and decision making. Nevertheless, almost
all decisions humans face pose more complex problems than
what can be achieved by flat RL. Structured hierarchical rep-
resentations have long been proposed as a solution to this
problem, and our hierarchical RL model uses only simple
RL computations, known to be implemented in our brains,
to solve complex problems that have traditionally been tack-
led with intractable Bayesian inference. This research aims to
model complex behaviors using neurally plausible algorithms
and provides a step toward modeling human-level, everyday-life
intelligence.

Methods
Participants. We tested three independent groups of participants, with
approval from University of California, Berkeley’s institutional review board.
All were university students, gave written informed consent and received
course credit for participation.

The pilot sample had 51 participants (26 women; mean age ± SD:
22.1± 1.5 y), 3 of whom were excluded due to past or present psycho-
logical or neurological disorders. Due to a technical error, data were not
recorded in the comparison phase for this sample. The second and main
sample had 31 participants (22 women; mean age ± SD: 20.9± 2.1 y), 4
of whom were excluded due to disorders, and 1 of whom was excluded
because average performance in the initial-learning phase was below 35%
(chance is 33%). We added the mixed testing phase for this sample. The
third sample had 32 participants (15 women; mean age ± SD: =20.8±
5.0 y), 2 of whom were excluded due to disorders. Five participants did
not complete the experiment and were excluded when data were missing.
The task was minimally adapted for electroencephalography. All statistical
tests were conducted in all samples (SI Appendix, Table 1 and Fig. 1), and SI
Appendix discusses sample differences in detail.

Task Design. Participants first received instructions and underwent the
initial-learning phase of the task. The purpose of initial learning was for
participants to acquire distinct task-sets (i.e., specific stimulus–action map-
pings for each context). We also used the initial-learning phase to test for
the effects of action-values and task-set values on performance and to assess
errors types predicted by hierarchical RL.

In the beginning, participants were instructed to “feed aliens to help
them grow as much as possible.” A tutorial with instructed trials followed,
and then participants practiced a simplified task without contexts: on each
trial, participants saw one of four stimuli and selected one of three actions
by pressing J, K, or L on the keyboard (Fig. 2A). Feedback was given in
form of a measuring tape whose length indicated the amount of reward.
Correct actions produced consistent long (mean: 5.0) and incorrect actions
short tapes (mean: 1.0; Fig. 2). When no action was selected, participants
were reminded to respond faster next time, and the trial was counted as
missed. Participants received 10 training trials per stimulus (40 total), with
a maximum response time of 3,000 ms. Order was pseudorandomized such
that each stimulus appeared once in four trials, and the same stimulus never
appeared twice in a row.

The initial-learning phase had the same structure as training, but stim-
uli were presented in one of three contexts, each with a unique mapping
between stimuli and actions (Fig. 2B). The context remained the same for a
block of 52 trials. At the end of a block, a context change was explicitly sig-
naled, before the next block began with a new context. Participants went
through 9 blocks (3 per context) for a total of 468 trials. Participants needed
to respond within 1.5 s and then received reward. Rewards varied between
2 to 10 for correct actions (Fig. 2B); rewards for incorrect actions remained 1.
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We chose these numbers to maximize differences between contexts, while
controlling for differences between stimuli and actions. The hidden-context
phase was identical to initial learning, and participants knew they would
encounter the same contexts as before, but, this time, they were “hidden”
(Fig. 2C). There were 9 blocks with 10 trials per stimulus per block (360 total).
Context switches were signaled. The purpose of the comparison phase was
to assess participants’ subjective preferences for contexts and stimuli, as
estimates of their task-set and action-values. Participants were shown two
contexts (context condition), or two stimuli in the same context (stimulus
condition), and selected their preferred one (Fig. 2C). Participants saw each
of 3 pairs of contexts 5 times and each of 18 pairs of stimuli 3 times, for a
total of 15 + 198 = 213 trials. Participants had 3 s to respond.

The purpose of the novel-context phase was to probe generalization,
specifically the reuse of old task-sets in a new context. This phase was iden-
tical to the initial-learning phase, except that it introduced a new context in
extinction (i.e., without feedback) (Fig. 2C). Participants received 3 trials per
stimulus (12 total). The purpose of the final mixed phase was to probe switch
costs, assessing whether switching contexts was more costly than switching
stimuli, indicating hierarchical representation. The mixed phase was iden-
tical to the initial-learning phase, except that contexts as well as stimuli
could change on every trial. Participants received 3 blocks of 84 trials (252
total), each with 7 repetitions per stimulus–context combination. To allevi-
ate carry-over effects and forgetting between test phases, we interleaved
them with refresher blocks, shorter 120-trial versions of the initial-learning
phase. More details on task design are provided in SI Appendix.

Computational Models. We will address in turn how each model behaves in
each phase. During initial learning, the flat RL model implemented classic
model-free (“delta-rule”) RL (18): it treated every combination of a context
and a stimulus as a unique state and learned one RL value for each state and
action, as visualized in SI Appendix, Fig. 3A. Using the notations introduced
in Results, values were updated based on Qt+1(a|s, c) = Qt(a|s, c) +α (r−
Qt(a|s, c)), and actions were selected based on p(a|s, c) = exp(Q(a|s,c))∑

ai
exp(β Q(ai|s,c)) .

The flat RL model acquired 36 action-values, based on 3 parameters (α, β,
and f), whereas the hierarchical RL model acquired 9 task-set values and 36
action-values (45 total), with 6 free parameters (αa, αTS, βa, βTS, fa, and fTS;
equations in Results). SI Appendix Fig. 3 visualizes the difference between
both models, and SI Appendix, Fig. 4 explains hierarchical RL behavior trial-
by-trial. The forgetting parameters f ∈ [fa, fTS] captured value decay in both
models: Qt+1 = (1− f) Qt + f Qinit .

The hierarchical Bayes model also learned task-sets but acquired their
action-values based on correct–incorrect rather than continuous feedback:
Qt+1(a|s, TS) = Qt(a|s, TS) +α (correct−Qt(a|s, TS)). The main difference to
hierarchical RL was the selection of task-sets: the Bayesian model chose
task-sets based on estimated reliability rather than task-set values, using
Bayes theorem to obtain task-set reliabilities: pt+1(TS|c) = p(r|s,TS,a) pt (TS|c)

p(r|s,a) ,
with p(r|s, TS, a) = Q(a|s, TS). Another difference was that hierarchical RL
updated Q(TS|c) only for the chosen task-set, whereas hierarchical Bayes
kept p(TS|c) up-to-date at all times for all task-sets (6, 14).

Q values for both models were initialized at the expected reward of
chance performance, Qinit = 1.67. The subsequent testing phases started
from the Q values obtained at the end of initial learning.

In the hidden-context phase, contexts were not shown, such that mod-
els could not directly reuse acquired values that depended on contexts [flat
RL: Q(a|c, s); hierarchical RL: Q(TS|c); Bayes: p(TS|c)]. All models instead ini-
tialized these values at Qinit after each context switch and then relearned
them using the same update equations as before. For flat RL, this resulted
in learning an entire new policy Q(a|c, s). For hierarchical models, only high-

level information [Q(TS|c) for RL, p(TS|c) for Bayes] had to be relearned but

not action-values Q(a|s, TS). This ability to transfer learned values is one of
the main advantages of hierarchy.

For the comparison phase, we only simulated RL models because the
Bayesian model does not provide values at the level of contexts. To select
between two stimuli, RL models first computed the “state value” (18) of
each, based on action-values: V(c, s) = maxa Q(a|c, s) (flat RL) and V(c, s) =
maxa Q(a|s, TS) p(TS|c), where p(TS|c) = softmax(Q(TS|c)) (hierarchical RL).
Models then selected one stimulus based on a softmax over the two state
values. To select between contexts, the hierarchical model repeated the
same computation for task-set values: V(c) = maxTS Q(TS|c). The flat model,
lacking task-set values, used averages over action-values to estimate context
preferences on-the-fly: V(c) = means V(c, s).

In the novel-context phase, models were faced with a context for
which they had not learned values. Flat RL used averages over previous
action-values to choose Q(a|cnew , s) = meanc Q(a|c, s). Hierarchical RL [Bayes]
applied the previously highest-valued [most reliable] task-set: Q(TS|cnew ) =
maxc Q(TS|c) [p(TS|cnew ) = maxc p(TS|c)].

Model Comparison. The Bayes Factor BF quantifies the support for one
model M1 over another model M2 by assessing the ratio between
their marginal likelihoods, BF =

p(data|M1)
p(data|M2) . BF> 1 provides evidence for

M1. Marginal model likelihoods represent the probability of the data
under the model, marginalizing over model parameters θ: p(data|M) =∫

p(data|M, θ) p(θ) dθ.
For each model, we simulated datasets by drawing model parameters θ

uniformly at random. Due to uniform sampling, p(θ) is equal for all θ, such
that the empirical distribution over simulations approximates the marginal
likelihood. To obtain Bayes Factors, we computed the same summary statis-
tics sm as for humans for each individual simulation (e.g., performance slope
in hidden-context phase). We estimated model densities ŝm based on a large
number of simulations. We obtained marginal model likelihoods as the
probability of the human summary statistic sh under the model, p(sh |̂sm).

Bayes Factors are given by BF =
p(sh |̂sm1)
p(sh |̂sm2) .

We drew parameters uniformly at random in a range allowing as broad
coverage of possible behavior as possible: 0<αa,αTS, fa, fTS < 1 and 1<
βa, βTS < 20. Each synthetic dataset consisted of 26 agents simulated on the
exact same inputs received by the 26 participants, such that the noise in the
synthetic statistics was identical to the one in the human dataset. We simu-
lated 50,000 datasets for each model to ensure convergence of the density
estimates.

We presented one example datasets for each model in the bar graphs of
Figs. 3 A and C and 4A. These datasets were obtained by first selecting all
of the 50,000 model simulations that fell within a certain range of human
behavior for all summary statistics (50 to 150% for flat and hierarchical RL;
10 to 190% for hierarchical Bayes). We then simulated one new dataset per
model based on the median parameter values of the selected models. SI
Appendix provide a detailed discussion of our model comparison method
and selection of the example datasets.

Data Availability. All data for this study have been made available for only
researchers through the National Institute of Mental Health Data Archive
(60). Analysis and modeling code is available on GitHub (https://github.com/
MariaEckstein/TaskSets).
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