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Abstract

Humans are not only adept in recognizing what class an in-
put instance belongs to (i.e., classification task), but perhaps
more remarkably, they can imagine (i.e., generate) plausible
instances of a desired class with ease, when prompted. Inspired
by this, we propose a framework which allows transforming
Cascade-Correlation Neural Networks (CCNNs) into proba-
bilistic generative models, thereby enabling CCNNs to gen-
erate samples from a category of interest. CCNNs are a well-
known class of deterministic, discriminative NNs, which au-
tonomously construct their topology, and have been successful
in accounting for a variety of psychological phenomena. Our
proposed framework is based on a Markov Chain Monte Carlo
(MCMC) method, called the Metropolis-adjusted Langevin al-
gorithm, which capitalizes on the gradient information of the
target distribution to direct its explorations towards regions
of high probability, thereby achieving good mixing proper-
ties. Through extensive simulations, we demonstrate the effi-
cacy of our proposed framework. Importantly, our framework
bridges computational, algorithmic, and implementational lev-
els of analysis.

Keywords: Deterministic Discriminative Neural Networks;
Probabilistic Generative Models; Markov Chain Monte Carlo

1 Introduction
A green-striped elephant! Probably no one has seen such a
thing—no surprise. But what is a surprise is our ability to
easily imagine one. Humans are not only adept in recogniz-
ing what class an input instance belongs to (i.e., classification
task), but more remarkably, they can imagine (i.e., generate)
plausible instances of a desired class, when prompted. In fact,
humans can generate instances of a desired class, say, ele-
phant, that they have never encountered before, like, a green-
striped elephant.1 In this sense, humans’ generative capacity
goes beyond merely retrieving from memory. In computa-
tional terms, the notion of generating examples from a de-
sired class can be formalized in terms of sampling from some
underlying probability distribution, and has been extensively
studied in machine learning under the rubric of probabilistic
generative models.

Cascade-Correlation Neural Networks (CCNNs) (Fahlman
& Lebiere, 1989) are a well-known class of discriminative
(as opposed to generative) models that have been success-
ful in simulating a variety of phenomena in the developmen-
tal literature, e.g., infant learning of word-stress patterns in
artificial languages (Shultz & Bale, 2006), syllable bound-
aries (Shultz & Bale, 2006), visual concepts (Shultz, 2006),

1In counterfactual terms: Had a human seen a green-striped ele-
phant, s/he would have yet recognized it as an elephant. Geoffrey
Hinton once told a similar story about a pink elephant!

and have also been successful in capturing important devel-
opmental regularities in a variety of tasks, e.g., the balance-
scale task (Shultz, Mareschal, & Schmidt, 1994; Shultz &
Takane, 2007), transitivity (Shultz & Vogel, 2004), conserva-
tion (Shultz, 1998), and seriation (Mareschal & Shultz, 1999).
Also, CCNNs exhibit several similarities with known brain
functions: distributed representation, self-organization of net-
work topology, layered hierarchical topologies, both cas-
caded and direct pathways, an S-shaped activation function,
activation modulation via integration of neural inputs, long-
term potentiation, growth at the newer end of the network via
synaptogenesis or neurogenesis, pruning, and weight freezing
(Westermann, Sirois, Shultz, & Mareschal, 2006). Nonethe-
less, in virtue of being deterministic and discriminative, CC-
NNs have so far lacked the capacity to probabilistically gen-
erate examples from a category of interest.

In this work, we propose a framework which allows
transforming CCNNs into probabilistic generative models,
thereby enabling CCNNs to generate samples from a cat-
egory. Our proposed framework is based on a Markov
Chain Monte Carlo (MCMC) method, called the Metropolis-
Adjusted Langevin (MAL) algorithm, which employs the gra-
dient of the target distribution to guide its explorations to-
wards regions of high probability, thereby significantly reduc-
ing the undesirable random walk often observed at the begin-
ning of an MCMC run (a.k.a. the burn-in period). MCMC
methods are a family of algorithms for sampling from a de-
sired probability distribution, and have been successful in
simulating important aspects of a wide range of cognitive
phenomena, e.g., temporal dynamics of multistable percep-
tion (Gershman, Vul, & Tenenbaum, 2012; Moreno-Bote,
Knill, & Pouget, 2011), developmental changes in cognition
(Bonawitz, Denison, Griffiths, & Gopnik, 2014), category
learning (Sanborn, Griffiths, & Navarro, 2010), causal rea-
soning in children (Bonawitz, Denison, Gopnik, & Griffiths,
2014), and accounting for many cognitive biases (Dasgupta,
Schulz, & Gershman, 2016).

Furthermore, work in theoretical neuroscience has shed
light on possible mechanisms according to which MCMC
methods could be realized in generic cortical circuits
(Buesing, Bill, Nessler, & Maass, 2011; Moreno-Bote et al.,
2011; Pecevski, Buesing, & Maass, 2011; Gershman & Beck,
2016). In particular, Moreno-Bote et al. (2011) showed how
an attractor neural network implementing MAL can account
for multistable perception of drifting gratings, and Savin and
Deneve (2014) showed how a network of leaky integrate-and-
fire neurons can implement MAL in a biologically-realistic
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manner.

2 Cascade-Correlation Neural Networks
CCNNs are a special class of deterministic artificial neural
networks, which construct their topology in an autonomous
fashion—an appealing property simulating developmental
phenomena (Westermann et al., 2006) and other cases where
networks need to be constructed. CCNN training starts with
a two-layer network (i.e., the input and the output layer) with
no hidden units, and proceeds by recruiting hidden units one
at a time, as needed. Each new hidden unit is trained to max-
imally correlate with residual error in the network built so
far, and is recruited into a hidden layer of its own, giving rise
to a deep network with as many hidden layers as the num-
ber of recruited hidden units. CCNNs use sum-of-squared
error as an objective function, and typically use symmetric
sigmoidal activation functions with range −0.5 to +0.5 for
hidden and output units.2 Some variants have been proposed:
Sibling-Descendant Cascade-Correlation (SDCC) (Baluja &
Fahlman, 1994) and Knowledge-Based Cascade-Correlation
(KBCC) (Shultz & Rivest, 2001). Although in this work we
focus on standard CCNNs, our proposed framework can han-
dle SDCC and KBCC as well.

3 The Metropolis-Adjusted Langevin
Algorithm

MAL (Roberts & Tweedie, 1996) is a special type of MCMC
method, which employs the gradient of the target distribution
to guide its explorations towards regions of high probability,
thereby reducing the burn-in period. More specifically, MAL
combines the two concepts of Langevin dynamics (a random
walk guided by the gradient of the target distribution), and the
Metropolis-Hastings algorithm (an accept/reject mechanism
for generating a sequence of samples the distribution of which
asymptotically converges to the target distribution).

We denote random variables with small bold-faced letters,
random vectors by capital bold-faced letters, and their corre-
sponding realizations by non-bold-faced letter. The MAL al-
gorithm is outlined in Algorithm 1 wherein π(X) denotes the
target probability distribution, τ is a positive real-valued pa-
rameter specifying the time-step used in the Euler-Maruyama
approximation of the underlying Langevin dynamics, N de-
notes the number of samples generated by the MAL algo-
rithm, q denotes the proposal distribution (a.k.a. transition
kernel), N (µ,Σ) denotes the multivariate normal distribu-
tion with mean vector µ and covariance matrix Σ, and I de-
notes the identity matrix. The sequence of samples generated
by the MAL algorithm, X(0),X(1), . . ., is guaranteed to con-
verge in distribution to π(X) (Robert & Casella, 2013). It is
worth noting that work in theoretical neuroscience has shown
that MAL, outlined in Algorithm 1, can be implemented in a

2Fahlman and Lebiere (1989) also suggest linear, Gaussian, and
asymmetric sigmoidal (with range 0 to +1) activation functions
as alternatives. Our proposed framework can be straightforwardly
adapted to handle all such activation functions.

Algorithm 1 The Metropolis-Adjusted Langevin Algorithm

Input: Target distribution π(X), parameter τ ∈R+, num-
ber of samples N.
Output: Samples X(0), . . . ,X(N−1).

1: Pick X(0) arbitrarily.
2: for i = 0, . . . ,N−1 do
3: Sample u∼ Uniform[0,1]
4: Sample X∗ ∼ q(X∗|X(i)) = N (X(i)+ τ∇ logπ(X(i)),2τI)

5: if u < min{1, π(X∗)q(X(i)|X∗)
π(X(i))q(X∗|X(i))

} then

6: X(i+1)← X∗
7: else
8: X(i+1)← X(i)

9: end if
10: end for
11: return X(0), . . . ,X(N−1)

neurally-plausible manner (Savin & Deneve, 2014; Moreno-
Bote et al., 2011).3 In the following section, we propose a
target distribution π(X), allowing CCNNs to generate sam-
ples from a category of interest.

4 The Proposed Framework
In what follows, we propose a framework which transforms
CCNNs into probabilistic generative models, thereby en-
abling them to generate samples from a category of inter-
est. The proposed framework is based on the MAL algorithm
given in Sec. 3. Let f (X ;W ∗) denote the input-output map-
ping learned by a CCNN, and W ∗ denote the set of weights for
a CCNN after training.4 Upon termination of training, pre-
sented with input X , a CCNN outputs f (X ;W ∗). Note that,
in case a CCNN possesses multiple output units, f (X ;W ∗)
will be a vector rather than a scalar. To convert a CCNN into
a probabilistic generative model, we use the MAL algorithm
with its target distribution π(X) being set as follows:

π̃(X) , p(X|Y = L j)

=
1
Z

exp(−β||L j− f (X;W ∗)||22), (1)

where || · ||2 denotes the l2-norm, β∈R+ is a damping factor,
Z is the normalizing constant, and L j is a vector whose ele-
ment corresponding to the desired class is +0.5 (i.e., its jth

element) and the rest of its elements are −0.5s. The intuition
behind Eq. (1) can be articulated as follows: For an input in-
stance X = X belonging to the desired class j,5 the output of

3More precisely, it has been shown how the continuous-time
version of MAL, Langevin dynamics, can be implemented in a
neurally-plausible manner. But note that MAL amounts to sampling
from the underlying Langevin dynamics.

4Formally, f (·;W ∗) : ∏
n
i=1 Di → ∏

m
j=1 R j where Di and R j de-

note the set of values that input unit i and output unit j can take on,
respectively.

5In counterfactual terms, this is equivalent to saying: Had input
instance X been presented to the network, it would have classified X
in class j.
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the network f (X ;W ∗) is expected to be close to L j in l2-norm
sense. In this light, Eq. (1) is adjusting the likelihood of input
instance X to be inversely proportional to the base-e exponent
of the said l2 distance.

For a reader familiar with probabilistic graphical models,
the expression in Eq. (1) looks similar to the expression for
the joint probability distribution of Markov random fields and
probabilistic energy-based models, e.g., Restricted Boltzman
Machines and Deep Boltzman Machines. However, there is
a crucial distinction: The normalizing constant Z, the com-
putation of which is intractable in general, renders learning
in those models computationally intractable.6 The appropri-
ate way to interpret Eq. (1) is to see it as a Gibbs distribution
for a non-probabilistic energy-based model whose energy is
defined as the square of the prediction error (LeCun, Chopra,
Hadsell, Ranzato, & Huang, 2006). Section 1.3 of (LeCun et
al., 2006) discusses the topic of Gibbs distribution for non-
probabilistic energy-based models in the context of discrim-
initive learning, computationally modeled by p(Y|X) (i.e., to
predict a class given an input), and raises the same issue that
we highlighted above regarding the intractability of comput-
ing the normalizing constant Z in general. In sharp contrast
to (LeCun et al., 2006), our framework is proposed for the
purpose of generating examples from a desired class, as ev-
idenced by Eq. (1) being defined in terms of p(X|Y). Also
crucially, the intractability of computing Z raises no issue for
our proposed framework due to an intriguing property of the
MAL algorithm according to which the normalizing constant
Z need not be computed at all.7

Due to Line 4 of Algorithm 1, MAL’s proposal distribu-
tion q requires the computation of ∇ log π̃(X(i)), which essen-
tially involves computing ∇ f (X(i);W ∗) (note that the gradi-
ent is operating on X(i), and W ∗ is treated as a set of fixed
parameters). The multi-layer structure of CCNN ensures that
∇ f (X(i);W ∗) can be efficiently computed using Backprop-
agation. Alternatively, in settings where CCNNs recruit a
small number of input units (hence, the cardinality of X(i) is
small), ∇ f (X(i);W ∗) can be obtained by introducing negligi-
ble perturbation to a component of input signal X(i), dividing
the resulting change in the network’s outputs by the intro-
duced perturbation, and repeating this process for all compo-
nents of input signal X(i). It is worth noting that although the
idea of computing gradients through introducing small pertur-
bations would lead to a computationally inefficient approach
for learning CCNNs, it leads to a computationally efficient
approach for generation, as the number of input units are typ-
ically much fewer than the number of weights in CCNNs (and
artificial neural networks in general). It is crucial to note that
the normalizing constant Z plays no role in the computation
of ∇ log π̃(X(i)).

6More specifically, Z renders the computation of the gradient of
the log-likelihood for those models intractable.

7The MAL algorithm inherits this property from the Metropolis-
Hasting algorithm, which it uses as a subroutine.

5 Simulations
In this section we demonstrate the efficacy of our proposed
framework through simulations. We particularly focus on
learning which can be accomplished by two input and one
output units. This permits visualization of the input-output
space, which lies in R3. Note that our proposed framework
can handle arbitrary number of input and output units; this
restriction is solely for ease of visualization.

5.1 Continuous-XOR Problem
In this section, we show how our proposed framework allows
a CCNN, trained on the continuous-XOR classification task,
to generate examples from a category of interest. The out-
put unit has a symmetric sigmoidal activation function with
range −0.5 and +0.5. The training set consists of 100 sam-
ples in the unit-square [0,1]2, paired with their correspond-
ing labels. More specifically, the training set is comprised
of all the ordered-pairs starting from (0.1,0.1) and going up
to (1,1) with equal steps of size 0.1, paired with their cor-
responding labels (i.e., +0.5 for positive samples and −0.5
for negative samples); see Fig. 1(top-left). After training, a
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Figure 1: A CCNN trained on the continuous-XOR classifica-
tion task. Top-left: Training patterns. All the patterns in the
gray quadrants are negative examples with label −0.5, and
all the patterns in the white quadrants are positive examples
with label +0.5. Red dotted lines depict the boundaries. Top-
right: The input-output mapping, f (x1,x2;W ∗), learned by a
CCNN, along with a colorbar. Bottom: The top-down view
of the curve depicted in top-right, along with a colorbar.

CCNN with 6 hidden layers is obtained whose input-output
mapping, f (x1,x2;W ∗), is shown in Fig. 1(top-right).8

8Due to the inherent randomness in CCNN construction, training
could lead to networks with different structures. However, since in
this work we are solely concerned with generating examples using
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(c) N = 2000, AR = 57.85%

Figure 2: Generating example for the positive category, under various choices for MAL parameter τ and damping factor
β. Contour-plot of the learned mapping, f (x1,x2;W ∗), along with its corresponding colorbar is shown in each sub-figure.
Generated samples are depicted by red dots. N denotes the total number of samples generated by MAL, and AR denotes the
corresponding acceptance rate. (a) τ = 5×10−5 leads to a very slow exploration of the input space. (b) τ = 5×10−3 leads to
an adequate exploration of the input space, however, β = 1 is not penalizing undesirable input regions severely enough. (c) A
desirable performance is achieved by τ = 5×10−3 and β = 10.

Fig. 2 shows the efficacy of our proposed framework in
enabling CCNNs to generate samples from a category of in-
terest, under various choices for MAL parameter τ (see Al-
gorithm 1) and damping factor β (see Eq. (1)); generated
samples are depicted by red dots. For the results shown in
Fig. 2, the category of interest is the category of positive ex-
amples, i.e., the category of input patterns which, upon being
presented to the (learned) network, would be classified as pos-
itive by the network. Because τ controls the amount of jump
between consecutive proposals made by MAL, the follow-
ing behavior is expected: For small τ (Fig. 2(a)) consecutive
proposals are very close to one another, leading to a slow ex-
ploration of the input domain. As τ increases, bigger jumps
are made by MAL (Fig. 2(b)).9 Parameter β controls how
severely deviations from the desired class label (here, +0.5)
are penalized. The larger the parameter β, the more severely
such deviations are penalized and the less likely MAL moves
toward such regions of input space. Acceptance Rate (AR),
defined as the number of accepted moves divided by the total
number of suggested moves, is also presented for the results
shown in Fig. 2. Fig. 2(c) shows that for τ = 5× 10−3 and
β = 10, our proposed framework demonstrates desirable per-
formance: virtually all of the generated samples fall within
the desired input regions (i.e., the regions associated with hot
colors, signaling the closeness of network’s output to +0.5 in
those regions; see Fig. 1(bottom)) and the desired regions are
adequately explored (i.e., all hot-colored input regions being
visited and almost evenly explored).

Fig. 2 depicts all the first N = 2000 samples generated

CCNNs rather than how well CCNNs could learn a given discrim-
initive task, we arbitrarily pick a learned network. Note that our
proposed framework can handle CCNNs with arbitrary structures;
in that light, the choice of network is without loss of generality.

9Yet, too large a β is not good either, leading to a sparse and
coarse-grained exploration of the input space. Some measures have
been proposed in computational statistics for properly choosing τ;
cf. (Roberts & Rosenthal, 1998).

by MAL, without excluding the so-called burn-in period. In
that light, the result shown in Fig. 2(c) nicely demonstrates
how MAL—by directing its suggestions toward the direction
of gradient and therefore moving toward regions with high
likelihood—could alleviate the need for discarding a (poten-
tially large) number of samples generated at the beginning
of an MCMC which are assumed to be unrepresentative of
equilibrium state, a.k.a. the burn-in period. Fig. 3 shows
the performance of our framework in enabling the learned
CCNN to generate from the category of negative examples,
with τ = 5×10−3 and β = 10.
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Figure 3: Generating example for the negative category, with
τ = 5×10−3,β = 10. Generated samples are shown by blue
dots. Total number of samples generated is N = 2000, with
AR = 65.13%.

5.2 Two-Spirals Problem
Next, we show how our proposed framework allows a CCNN,
trained on the famously difficult two-spirals classification
task (Fig. 4), to generate examples from a category of inter-
est. The output unit has a symmetric sigmoidal activation
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function with range −0.5 and +0.5. The training set con-
sists of 194 samples (97 samples per spiral), in the square
[−6.5,6.5]2, paired with their corresponding labels (+0.5 and
−0.5 for positive and negative samples, respectively). The
training patterns are shown in Fig. 4(top-left); cf. (Chalup &
Wiklendt, 2007) for details. After training, a CCNN with
14 hidden layers is obtained whose input-output mapping,
f (x1,x2;W ∗), is depicted in Fig. 4(top-right).
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Figure 4: A CCNN trained on the two-spirals classification
task. Top-left: Training patterns. Positive patterns (associ-
ated with label +0.5) are shown by hollow circles, and neg-
ative patterns (associated with label −0.5) by black circles.
Positive spiral is depicted by a dashed line, and negative spi-
ral by a dotted line. Top-right: The input-output mapping,
f (x1,x2;W ∗), learned by a CCNN, along with a colorbar.
Bottom: The top-down view of the curve depicted in top-
right, along with a colorbar.

Fig. 5(top) and Fig. 5(bottom) show the efficacy of our pro-
posed framework in enabling CCNNs to generate samples
from the positive and negative categories, respectively. Al-
though similar patterns of behavior observed in Sec. 5.1 due
to increasing/decreasing β and τ are observed here as well,
due to the lack of space such results are omitted. The results
in Fig. 5 depict all the first N = 15000 samples generated
by MAL, without excluding the burn-in period. In that light,
these results again demonstrate the efficacy of MAL in alle-
viating the need for discarding a (potentially large) number
samples generated at the beginning of an MCMC run.

Interestingly, our proposed framework also allows CCNNs
to generate samples subject to some forms of constraints. For
example, Fig. 6 demonstrates how our proposed framework
enables a CCNN, trained on the continuous-XOR classifi-
cation task (see Sec. 5.1), to generate examples from the
positive category, under the following constraint: Generated
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Figure 5: Generating example for the positive and negative
categories, with β = 20 and τ = 0.7. Contour-plot of the
learned mapping, f (x1,x2;W ∗), along with its correspond-
ing colorbar is shown in each sub-figure. N denotes the to-
tal number of samples generated by MAL, and AR denotes
the corresponding acceptance rate. Top: Generated example
for the positive category, with N = 15000 and AR = 40.69%;
generated samples are depicted by red dots. Bottom: Gener-
ated example for the negative category, with N = 15000 and
AR = 40.28%; generated samples are depicted by blue dots.

samples must lie on the curve x2 = 0.25sin(8πx1)+ 0.5. To
generate samples from the positive category while satisfying
this constraint, MAL adopts our proposed target distribution
given in Eq. (1), and treats x1 as an independent and x2 as a
dependent variable.

6 General Discussion
Although we discussed our proposed framework in the con-
text of CCNNs, it can be straightforwardly extended to han-
dle some other kinds of artificial neural networks, e.g. Multi-
layer Perceptron and Deep Convolutional Neural Networks.
Furthermore, our proposed framework, together with recent
work in theoretical neuroscience showing possible neurally-
plausible implementations of MAL (Savin & Deneve, 2014;
Moreno-Bote et al., 2011), suggests an intriguing modular
hypothesis according to which generation could result from
two separate modules interacting with each other (in our case,
a CCNN and a neural network implementing MAL). This
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Figure 6: Generating examples for the positive category, un-
der constraint x2 = 0.25sin(8πx1)+ 0.5 (dash-dotted curve),
with N = 5000 and AR= 39.82%. Contour-plot of the learned
mapping, f (x1,x2;W ∗), along with its corresponding colorbar
is depicted. Generated samples are shown by red dots, which
appear mainly as solid red curves due to high density.

hypothesis yields the following prediction: There should be
some brain impairments which lead to a marked decline in
a subject’s performance in generative tasks (i.e., tasks in-
volving imagery, or imaginative tasks in general) but leave
the subject’s learning abilities (nearly) intact. Studies on
learning and imaginative abilities of hippocampal amnesic
patients already provide some supporting evidence for this
idea (Hassabis, Kumaran, Vann, & Maguire, 2007; Spiers,
Maguire, & Burgess, 2001; Brooks & Baddeley, 1976).

According to Line 4 of Algorithm 1, to generate the ith

sample, MAL requires access to a fine-tuned, Gaussian noise
with mean X(i) + τ∇ logπ(X(i)) for its proposal distribution
q. Recently Savin and Deneve (2014) showed how a network
of leaky integrate-and-fire neurons can implement MAL in a
neurally-plausible manner. However, as Gershman and Beck
(2016) point out, Savin and Deneve leave unanswered what
the source of that fine-tuned Gaussian noise could be. Our
proposed framework may provide an explanation, not for the
source of Gaussian noise, but for its fine-tuned mean value.
According to our modular account, the main component of
the mean value, which is ∇ logπ(X(i)), may come from an-
other module (in our case, a CCNN) which has learned some
input-output mapping f (X ;W ∗), based on which the target
distribution π(X(i)) is defined (see Eq. (1)).

The idea of sample generation under constraints could be
an interesting line of future work. Humans clearly have
the capacity to engage in imaginative tasks under a vari-
ety of constraints, e.g., when given incomplete sentences or
fragments of a picture people can generate possible comple-
tions (Sanborn & Chater, 2016). Also, our proposed frame-
work can be used to let a CCNN generate samples from
a category of interest at any stage during CCNN construc-
tion. In that light, our proposed framework, along with a
neurally-plausible implementation of MAL, gives rise to a
self-organized generative model: a generative model pos-
sessing the self-constructive property of CCNNs. Such self-

organized generative models could provide a wealth of devel-
opmental hypotheses as to how the imaginative capacities of
children change over development, and models with quanti-
tative predictions to compare against. We see our work as a
step towards such models. Last but not least, our framework
strongly suggests that, contrary to conventional wisdom, the
boundary between discriminative and generative models is
blurry—perhaps they are just two sides of the same coin!
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