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Abstract Emerging large-scale scientific applications 

involve massive, distributed, shared data collections 

(petabytes), and require robust, high performance for 

read-dominated workloads.  Achieving robust 

performance (low variability) in storage systems is 

difficult.  We propose RobuSTore, a novel storage 

technique, which combines erasure codes and speculative 

access to reduce performance variability and increase 

performance.    RobuSTore uses erasure codes to add 

flexible redundancy then spreads the encoded data across 

a large number of disks.  Speculative access to the 

redundant data from multiple disks enables application 

requests to be satisfied with only early-arriving blocks, 

reducing performance dependence on the behavior of 

individual disks.  

We present the design and an evaluation of RobuSTore 

which shows improved robustness, reducing the standard 

deviation of access latencies by as much as 5-fold vs. 

traditional RAID.  In addition, RobuSTore improves 

access bandwidth by as much as 15-fold. A typical 1 GB 

read from 64 disks has average latency of 2 seconds with 

standard deviation of only 0.5 seconds or 25%.  

RobuSTore secures these benefits at the cost of a 2-3x 

storage capacity overhead and ~1.5x network and disk 

I/O overhead. 

1 Introduction 

Existing and emerging large-scale scientific 

applications and data-intensive applications have required 

dramatically higher-levels of performance from 

distributed storage systems.  These applications are far 

from isolated anomalies; they are emerging in virtually 

every area of science, engineering, and commerce, 

including biology [1], high-energy physics [2], geology 

[3], and astronomy [4].  For example, one effort in the 

OptIPuter project [5] is to construct custom indices across 

10GB 3-D images in a collection of 1,000,000 images 

(10Petabytes of data) and to enable interactive, real-time 

data exploration for collaborative visualization on a 

large-scale tiled display consisting of 55 panels, 100M 

pixels, 300Gbps network bandwidth [6]. 

Typical properties of large-scale scientific applications 

include: (1) massive data collections with objects as large 

as 10 GB each and collections larger than tens of 

petabytes; (2) distributed data sources and owners; (3) 

large read-dominated workloads (100s of megabytes to 

10s of gigabytes per read); (4) thousands of users, and (5) 

a need for robust, high performance.  Throughout, we use 

the term robust to mean low-variability in access latency. 

Performance robustness is rarely studied for storage 

systems; however, it is very important for many large-

scale applications.  For example, interactive applications 

require the access latency to be robust; in parallel 

processes, robust performance can reduce the 

synchronization overhead; robust performance also 

makes it easy to predict resource requirement and to 

schedule resources efficiently.  Robust performance is the 

major goal of RobuSTore.  At the same time, we must 

maintain high access bandwidth and efficient storage 

space utilization. 

Due to the limited single disk bandwidth, efficient 

aggregation of large number of disks is required to meet 

the performance requirements.  Existing parallel storage 

systems, like RAID, PVFS, Lustre, etc, provide good 

performance in homogenous local cluster environment 

via data striping and parallel accessing.  However, the 

usage of local private storage is not realistic for our 

scientific applications due to the gigantic datasets and the 

distributed shared usages.  These applications require the 

aggregation of large number of distributed disks shared 

by multiple universities/laboratories.  Disks in such 

environments have highly heterogeneous and variable 

performance, which prevents conventional parallel 

accesses from achieving high, robust performance since 

the accesses may have to wait for the slow disks. 

In our new storage architecture RobuSTore, we 

propose the idea of combining erasure coding and 

speculative accesses together, which enables high, robust 

performance to distributed storage collections.  

RobuSTore uses erasure codes to add continuous 

redundancy for striping; with such layouts, clients can 

use speculative parallel access and decoding of the fast-

returning blocks to both increase performance, and 

reduce performance dependence on stragglers (lower 

variability).  As a result, RobuSTore can efficiently 

aggregate large number of distributed storage devices to 

deliver robust, high access performance. 

Special support from coding algorithm, metadata 

service, admission controlling, and security schemes are 

required for the high-performance shared accesses.  We 

describe a system framework which realizes the 

RobuSTore idea, enabling systematic exploration of the 

design space. 

We then evaluate the RobuSTore idea via detailed 

simulation, exploring a wide range of possible system 

parameters.  These studies show when and by how much 

the RobuSTore idea reduces performance variability, 

increases absolute performance, and incurs overheads on 
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storage space, disk accesses, and network bandwidth.  

Our simulation results prove the promise of the 

RobuSTore idea.  

RobuSTore is motivated by rapid increasing of network 

bandwidth, disk capacity, and CPU speed, but only slow 

increase on disk bandwidth, which makes it valuable to 

trade those resources for better storage performance.  For 

example, the development of low-cost optical 

transmission and Dense Wavelength Division 

Multiplexing (DWDM) technique enables individual 

fibers to carry 100’s of 10 Gbps “lambdas”, providing 

wide-area networks with private 10Gbps (even 40Gbps) 

connections [7].  Numerous research infrastructures with 

private, high-speed “lambdas” have been deployed 

(OptIPuter [5], National LambdaRail [8], Netherlight [9], 

and the Global Lambda Interchange Facility (GLIF) 

[10]).  The doubling period for CPU speed is 18 months 

according to Moore’s Law, and 12 months for disk 

capacity [21]. 

RobuSTore is part of the OptIPuter Project [1] 

exploring configurable optical networks with 100’s Gbps 

to support large-scale scientific applications.  Network 

issues, such as lambda configuration, protocols, etc. are 

addressed by other parts of the project DVC [22], 

LambdaRouter [23], CEP [24], and GTP [25].  

The remainder of the paper is organized as follows.  In 

Section 2, we describe the problem and present the 

RobuSTore approach.  We describe the RobuSTore 

design in Section 3, and our simulation-based evaluation 

in Section 4.  Section 5 surveys related work and Section 

6 summarizes results, describing directions for future 

work. 

2 Robust, High Performance Distributed 
Storage 

2.1 The Problem 

Numerous emerging, large-scale scientific applications 

involve massive distributed data collections, and demand 

distributed storage systems that deliver robust, high 

performance for their read-dominated workloads.  The 

distributed nature of the scientific communities using 

these applications implies that their needs will be met by 

distributed collections of disk arrays.  Supporting many 

users, at these high performance levels requires robust 

and efficient aggregation of disk performance. 

For the distributed storage in such systems, disk 

performance varies greatly due to the federated, evolving 

nature of such infrastructures.  Sources of performance 

variation or heterogeneity include: heterogeneous disk 

types (deployed over time at each site), irregular on-disk 

data layout (due to unique disk history and 

local/distributed use interaction), and differences in disk 

load (varied competitive access).  As disk technology has 

improved, read bandwidth has increased, so 

heterogeneous disk collections often include individual 

disks with 20-fold read bandwidth variation [21].  In 

modern storage devices, disk performance is sensitive to 

disk layout [26, 27], as physical contiguity, seek distance, 

and rotational latency can vary read bandwidth by 100-

fold.  Finally, sharing causes access streams to be 

interleaved which can incur additional seeks which can 

also cause as much as 100-fold variance in performance.   

Traditional parallel filesystems use data striping and 

replication to aggregate disk performance.  However, 

they only achieve good performance with nearly 

homogeneous collections of disks and often only when 

layout is tightly controlled [18].  Further, best 

performance is often only achieved for exclusive uses.  

Because parallel filesystems deliver performance with 

careful layout scheduling and control, a key limitation is 

that they do not perform well in the face of uncontrolled 

performance variation; even if replication is used.  For 

example, if access to a single data block or disk is slow, 

an entire large request can be delayed.  Even if data are 

replicated, late arriving disk responses can still delay 

completion of the larger request (see Figure 1).  

 
Figure 1. Aggregating Disks with Data Striping: 8 blocks, 

2 replicas.  Disk performance is varied. 

 

To meet the needs of emerging large-scale scientific 

applications, we need a new set of technologies for 

aggregating the performance of disk collections.  These 

technologies must  

- tolerate high variation in the performance of 

individual disks, 

- achieve robust access latency (low variance) for 

large requests, and  

- deliver high performance.   

In subsequent sections, we describe the RobuSTore 

approach which meets these goals. 

2.2 RobuSTore: Erasure codes and 
Speculative access 

The key idea in RobuSTore is to add redundancy to 

stored data and then exploit it to aggregate statistically the 

disk access bandwidths, producing an earlier and lower-

variance in access latency for large requests.  Erasure 
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codes allow the systematic introduction of redundancy, so 

many combinations of returning blocks can be used to 

assemble the desired data.  This redundancy reduces the 

dependence of the large request on the performance of 

any individual disk request.  Further, we employ 

speculative access, requesting a redundant set of blocks, 

increasing the chances that a set of blocks which makes 

decoding possible (and thereby completion of the large 

request) will be received quickly.  The decoding freedom 

provided by erasure codes is depicted in Figure 2.  

RobuSTore only requires the first set of returned blocks to 

decode the data, and need not wait for later blocks.  

 
Figure 2. RobuSTore Data Access with Similar Storage.  

Reconstruction with first arriving coded blocks.  Disk 

performance is varied. 

 

We use erasure codes to provide a continuum of 

redundancy, enabling a flexible tradeoff of resources 

against robustness and high performance.  In general, we 

encode N source data blocks into M erasure-coded blocks 

for any M>N; and these coded blocks contains near-

uniform redundancy for all the N original blocks.   

During decoding, the structure of erasure codes allows 

reconstruction of original data from almost any N(1+δ) 

coded blocks, where δ is zero or a small number decided 

by the choice of coding algorithms, and (1+δ) is called 

reception overhead.  In our current design and 

experiments, we use LT Codes (modified to guarantee 

decidability [32]) with parameters that enable decoding 

with almost any set of blocks 1.4 times larger than the 

original data.  We will discuss the choice of erasure codes 

in Section 3. 

RobuSTore combines the decoding flexibility of 

erasure codes with speculative accesses.  A read client in 

RobuSTore requests redundant coded blocks in parallel.  

In general, it receives over a range of time as shown in 

Figure 2.   Benefiting from the decoding flexibility, the 

client can then reconstruct the original data using a set of 

early-returning blocks. 

We do not discuss write operations in this paper, as our 

workloads are read-dominated.  Mixed workloads will be 

explored in future RobuSTore studies as in [33-35]. 

2.2.1 Analyzing Benefits of Erasure Codes 

Erasure codes provide greater reordering freedom than 

replication.  For example, if we replicate an N block file 

3 times, only a smaller number of subsets of the resulting 

4N blocks are sufficient to reconstruct the original data.  

This is because each block has 4 copies; one of which is 

required in any subset which enables reconstruction.  In 

contrast, if we encode the N block file into 4N blocks 

using Luby Transform (LT) codes, we can reconstruct 

with many more subsets.  More formally, for replication 

the probability reconstruction with M random blocks for 

an N block file replicated 3 times is: 
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For an LT encoding file, using our encoding settings 

and equivalent expansion, the probability of 

reconstruction with M random blocks for an N block file 

expanded to 4N total blocks is: 
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See the Appendix for the full analysis.  In practice, 

nearly 3N blocks are needed for replication versus about 

1.5N blocks for LT coded (see Figure 3). 

 
Figure 3. Cumulative Probability of Reassembly of N 

Original Blocks from M random Blocks 

 

2.2.2 RobuSTore Research Questions 

The degree of redundancy encoded and aggressiveness 

of speculative access are critical for RobuSTore 

performance.  However, many other important research 

questions are also critical to understanding RobuSTore’s 

potential to improve robustness and performance.    

- With realistic disk variability, what improvements 

in robustness are possible? 

- What coding parameters and access strategies are 

most effective? 

- What performance improvement can be expected?  

With different numbers of disks?  Block sizes? 

- What capacity overhead, additional disk I/O’s, and 

network bandwidth are required for a particular 

performance benefit? 

We explore these questions in following sections. 
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3 RobuSTore Design 

The RobuSTore system framework is flexible, enabling 

broad exploration of the design space.  We describe the 

components of a RobuSTore system then discuss the key 

system architecture, component, and other design issues  

3.1 RobuSTore System Architecture 

RobuSTore storage system architecture includes four 

key components: client, metadata server, and storage 

servers (see Figure 4). 

 
Figure 4. RobuSTore System Architecture 

 

Client Portal perform many distributed filesystem 

functions: accessing metadata, planning layout, encoding 

data, sending requests to storage servers, and 

decoding/assembling the completed response.  The client 

includes an erasure code implementation to implement 

the encoding and decoding.  It also includes a layout 

planner which places data on disk servers to meet 

specified QoS requirement. 

Metadata Server maintains both file information (size, 

organization, and location) and storage server 

information (available space, performance, connectivity, 

current load, etc).   

Storage Servers provide data storage at block level 

(erasure-coded block, presumed to be larger than disk 

blocks).  Servers may be single disks or arrays, and each 

implements local admission and access control.  Servers 

typically have variable performance due to heterogeneity 

in hardware, data layout, or load. 

3.2 Basic RobuSTore Operations 

Basic RobuSTore operation interfaces include: 
open(filename, read/write,QoS_options); 

read(fd,buffer,offset,length); 

write(fd,data,offset,length); 

close(fd); 

Figure 5 depicts the basic read process: open, read and 

close.  The client opens the file, obtaining storage server 

and block location information from the Metadata Server, 

and obtaining any required locks.  It also negotiates 

admission (bandwidth) and access with each storage 

server.  To read, the client requests all coded blocks from 

servers and does LT decoding (in parallel).  When 

enough blocks have been received, the decoding 

completes and the original data is returned.  

Simultaneously, outstanding requests to the storage 

servers are cancelled.  Close notifies the Metadata Server 

releasing read locks, and also releases and bandwidth 

reservations on the storage servers.  

  
Figure 5. The Read Process in RobuSTore 

 

Writes are similar.  On write, the client accesses the 

Metadata Server, creates the file, and based on disk map 

information and application QoS requirements, it plans a 

layout -- an encoding and distribution across storage 

servers.  The client then allocates the needed storage on 

the servers, and encodes and writes the data appropriately 

using specified LT coding parameters.  After the data is 

committed on the servers, the client registers the data 

location and file structures with the Metadata Server.  To 

modify a file, the client will write a new version of the 

file then update the metadata, this method avoids data 

inconsistency.  Since our workloads are read-dominant, 

write performance is not studied in this paper. 

3.3 Key Design Decisions 

The RobuSTore design reflects the major choices in 

architecture and component implementation.  General 

design principles include modularity, performance, 

scalability, and simplicity.  We summarize the major 

design decisions below. 

Coding:  The coding modules (ENC/DEC) are 

logically in the client, critical if the composition of 

variable performance is to encompass network variability.  

If desired, a separate machine/cluster to save client CPU 

or improve coding speed.  Because the clients manage the 

coding (and store information about it in the Metadata 

Server), the storage servers need not be aware of coding. 

While there are many different erasure codes, such as 

Reed-Solomon [28, 29], Raptor [36], Tornado [37], etc. 

RobuSTore uses modified Luby Transform (LT) codes 

[30, 32].  The Luby Transform codes are part of a general 

class of low-density parity check codes [31] and use 

block-XOR operations based on sparse bipartite graphs.  
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LT codes have a number of advantages.  First, they are 

“rateless”, allowing redundancy to be decoupled from 

other system design issues, such as the number of storage 

servers used.  Second, LT codes use irregular bipartite 

graphs and block-XOR operations, enabling fast 

encoding and decoding throughputs [32].  Third, LT 

codes allow decoding to be overlapped with receiving 

data from storage servers, masking decoding time. 

However, as defined, pure LT codes do not guarantee 

the original data can be recovered from a finite number of 

coded blocks.  To fix this, we adapted LT codes by 

generating coding graphs which guarantee decodability 

[32], and built a fast implementation which improved 

decoding bandwidth ten-fold 30MByte/s to 320 MByte/s 

on a Intel 2.4Ghz Xeon CPU.  Our experiments show that 

the memory bandwidth is the bottleneck to coding 

performance.  Our work suggests that multi-processors of 

the future or processors with higher memory bandwidth 

(such as AMD Opteron or AMD Athlon 64) will surpass 

a coding bandwidth of 1GByte/s. 

Metadata Service: A simple central metadata server 

minimizes update and synchronization costs at some 

penalty in scalability.  Reliability and scalability can be 

addressed by well-known replication and failover 

techniques [14, 38].  

The metadata server maintains object-level information, 

so the storage servers function as object servers.  The 

benefits of object-based storage systems are well 

recognized [20, 39, 40], and this approach supports our 

future extension RobuSTore to federated storage servers 

in the Grid [41]. 

Admission and Access Control: Because RobuSTore 

aggregate distributed resources which may be shared with 

local or other distributed use, central admission control is 

not possible.  In the RobuSTore framework, each storage 

server implements local admission control (for QoS) and 

access control (for security).  Clients must negotiate 

access on file Open.  There are many good candidates for 

the distributed filesystem security, for example, 

credential-based access control [42] is flexible in the 

environments with a large number of servers and users. 

4 Evaluation  

We use a detailed discrete-event simulation to evaluate 

the RobuSTore idea across the configuration space, 

varying access strategy, the number of storage servers, 

data size, block size, network latency, and degree of 

redundancy.   

4.1 Methodology 

We compare RobuSTore and conventional approaches 

with different strategies for data layout, redundancy, and 

access.   

Data Layout and Redundancy:  Possible data layout 

methods include: (1) split the data into blocks, and 

distribute them to many disks; (2) split the data and 

distribute the blocks with replication; (3) split the data, 

encode the blocks, and distribute these redundant coded 

blocks to many disks.  They are depicted in Figure 6. 

 

 
Figure 6. Data Layouts.  8 original blocks; 2x data 

redundancy in replicated and coded layouts 

 

 
Figure 7. Access Strategies. Disk performance is varied. 

 

Access Strategies:  Possible data access strategies are: 

(1) speculative access, i.e., request all redundant blocks at 

once in the beginning of the access and cancel the 

requests once enough blocks have been received; (2) 

adaptive access, in which the client dynamically requests 

the unreceived bytes to adapt to disks’ performance.  

Examples are shown for replicated layout in Figure 7 

(Request cancellation is not depicted). 

There are many different combinations of layout and 

access methods.  Since adaptive access is not necessary 

for layout without redundancy or layout with erasure 

coded blocks, we evaluate the following four schemes 

including RobuSTore: 

- RAID-0: No data redundancy + speculative access 

- RRAID-S: Replication + speculative access 

- RRAID-A: Replication + adaptive access 

- RobuSTore: Erasure coding + speculative access 

4.1.1 Workload & Performance Metrics 

Workload: Since our focus is on supporting the needs 

of applications with large-read dominated workloads [1-

3].  In these applications, the size of each data object 

ranges from 100s MB to 10s GB, but may be 100s GB or 

larger in the future.  We study access performance for 

single 128MB, 256MB, 512MB, and 1GB reads.  Data 

objects larger than 1GB are presumed to be accessed by 

multiple 1GB reads. 

Performance Metrics:   

  Standard Deviation of Access Latency: A critical 

RobuSTore goal is robust performance, i.e., minimum 

performance variability.  We formalize this for access 

latency by computing the standard deviation over a set of 

one hundred accesses.  Smaller standard deviations 

correspond to higher robustness. 
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 Access Bandwidth: The delivered bandwidth for a 

single read is the request size divided by the access 

latency, including connection, disk, data transfer, and 

decoding time.  We interpret access bandwidth to be a 

measure of delivered performance corresponding to our 

goal of “high performance”. 

Disk IO Size/Data Size: Several of the approaches 

make speculative accesses to the I/O system to improve 

performance, but at a cost of increased network and disk 

usage.  We compute this increased system cost as a ratio 

over the original data size. 

4.1.2 System Models 

The system simulation involves modeling for each of 

the critical system components.  The models need to be 

reasonable for reality approximation and easy for 

simulation. 

Metadata Service, Access Scheduler, and Admission 

Controller:  Each access to these services by the client is 

modeled as a constant latency of five milliseconds, with 

no inline overhead.   Because our benchmarks do not 

include any open/close operations, the overhead for 

access to the Metadata Service and Admission Controller 

is never incurred.  

Network: As bandwidth is presumed plentiful [5], the 

network is modeled as a constant latency of 1 millisecond 

round-trip latency (for the baseline, but varied in some 

other experiments).  Each storage server access in RAID-

0, RRAID-S, or RobuSTore involves one round-trip-time 

(RTT), while RRAID-A involves multiple RTTs. 

Storage Server/Disk:  To model storage server 

performance, we use a single disk model for each.  This 

model employs the DiskSim toolkit [43], a state-of-the-

art discrete event disk simulation.  DiskSim parameters 

define bus, controller, cache, and disk (rotation rate, 

sector-level disk structure), which can be customized to 

model a wide range of commercial disks.  It has been 

used extensively in the study of new file system and 

storage techniques [44-46].   

In our experiments, DiskSim is configured based on 

measurement of a 120GB IBM Deskstar 7K400 disk 

(ATA-100, 7200 rpm).  We use one DiskSim process to 

simulate each storage device.  We model disk 

performance diversity which may arise from different 

disk types, layout, and sharing with the single mechanism 

of block layout.  To generate this diversity, we used the 

DiskSim synthetic workload generator, varying blocking 

factor (average number of sectors per request) and 

probability of sequential accesses (contiguity of 

sequential requests) parameters to model disks with 

different accumulated layouts (due to different file 

system histories, and irregular sharing). The 

configuration and measured average bandwidth for each 

of the 128 disks is shown in Table 1. 

The resulting 100-fold performance (0.52MB/s to 

53MB/s bandwidth) approximates a shared distributed 

storage environment with many sources of variability, as 

discussed in Section 2.1.  Although only single-disk 

nodes are modeled, they represent the variability 

characteristic of higher-performance nodes (like disk 

arrays), with only the difference of absolute performance. 

 

Table 1. Disk Configuration and Performance 
Disks’ 

IDs 

Blocking 

Factor 

Prob of Seq 

Access 

Avg BW 

(MB/sec) 

0-7 8 0 0.52 

8-15 16 0 0.76 

16-23 32 0 1.3 

24-31 64 0 2.5 

32-39 128 0 4.7 

40-47 256 0 8.3 

48-55 512 0 14.3 

56-63 1024 0 21.4 

64-71 8 1 3.6 

72-79 16 1 6.9 

80-87 32 1 9.3 

88-95 64 1 12.7 

96-107 128 1 16.8 

104-111 256 1 29.8 

112-119 512 1 53.0 

120-127 1024 1 53.0 

Average   14.9 

 

 

Erasure Coding:  Coding and decoding performance 

is critical for RobuSTore.  In each simulation, we first run 

the LT Codes algorithms to generate an LT coding graph 

(a bipartite graph connecting original blocks and coded 

blocks); then randomly select coded blocks and feed them 

to LT decoding algorithm to find out the required number 

of blocks for complete decoding. The simulation of 

reading process succeeds once enough blocks are 

received.  We use following LT Codes parameters to 

generate the coding graph: C=1.0 and δ=0.5 (C and δ are 

the parameters for the distribution of node degrees in LT 

coding graph: when C increases, there will be more low-

degree nodes, and δ has opposite impact.  More details 

are available in [30]).  Previous work with LT code 

implementations [32] shows that the reception overhead 

is typically 1.4x (i.e., 1.4 times of number of blocks need 

to be received for a successful decoding), and decoding 

speeds of 200~300MByte/s are possible with typical 

processors, so we use that rate to compute code/decode 

time:  Since the decoding process can be overlapped with 

data reception, extra latency is only incurred for decoding 

the last block.  For example, for blocks of 1 megabyte, 

we add a constant latency of 5 milliseconds. 

4.1.3 System and Experiments Configurations 

All of our experiments involve subsets of a wide-area 

storage system with 128 servers each with a commodity 

network connectivity (>1 Gigabit/s) and a client with a 

high bandwidth connectivity (> 10 Gigabit/s). 
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Figure 8. Experiment System Configuration 

 

In the experiments, we study the four storage schemes 

(RAID-0, RRAID-S, RRAID-A, and RobuSTore) along 

five system parameters: number of disks, data size, block 

size, network latency, and degree of redundancy.  In each 

experiment, we vary only one parameter, and compare to 

a fixed baseline.  The baseline is a typical SAN 

configuration: to access 1GB data from 64 disks, 1ms 

network round-trip time (RTT), 1MB block size and 4x 

data redundancy, except for RAID-0 which always has 1x 

data redundancy.  

For each configuration we run 100 trials and present 

the average and the standard deviation; in each trial, disks 

are randomly selected if the experiment uses less than 

128 disks. 

4.2 Results 

We simulate the four storage scheme over five 

configuration dimensions.  Each of the figures below 

shows the results along one dimension with all other four 

dimensions configured following the baseline above. 

4.2.1 Robustness Improvement 

We first compare the robustness of the four storage 

schemes. 

Robustness vs. Number of Disks 

When we vary the number of disks from 2 to 128, the 

standard deviation of latency changes as depicted in 

Figure 9.  This figure uses log-scale y-axis to distinguish 

the details. 

RAID-0 suffers because it exploits no redundancy, and 

the performance is thus subject to the slowest disk. 

RRAID-S explores the replicated data to hide the slow 

disks; however, it reads the blocks on same disk in fixed 

order, so its performance depends on 1) intra-disk block 

ordering, for example, if a replica of a block is stored as 

the last block on a fast disk, it will be read last from the 

disk and has less contribution on hiding slow disks; and 

2) inter-disk block mapping, i.e., which disk a block is 

stored on,  if the replicas of same block are all on slow 

disks, they cannot hide the slow disks, as depicted in 

Figure 1.  RRAID-S has the highest variability due to the 

combination of these factors. 

RRAID-A mitigates the dependency on intra-disk 

block ordering by accessing blocks selectively, but it is 

still dependent on inter-disk block mapping. 

For small number of disks (<8), the replicated schemes 

RRAID-S and RRAID-A have comparable robustness to 

RobuSTore.  As the data redundancy rate is fixed to 4x 

and few disks are used, the system is essentially 

performing whole-file replication and suffers a low-level 

of inter-disk dependence. 

RobuSTore uses erasure-coded blocks and has greater 

flexibility on use all the stored blocks.  Its performance 

variability is from the overall bandwidth of all the disks 

and is not related to intra-disk ordering or inter-disk 

mapping at all.  RobuSTore has the lowest performance 

variability for systems with more than a few disks (>8).  

The standard deviation of access latency on 64 disks for 

RAID-0, RRAID-S, RRAID-A and RobuSTore are 1.9, 

7.3, 1.9, and 0.5 seconds respectively; and they are 0.63, 

3.8, 1.1, and 0.13 seconds on 128 disks.  RobuSTore 

improves robustness for up to 5x compared to RAID-0, 

and more than 15x compared to RRAID-S.  This lower 

variability of RobuSTore demonstrates the benefits of 

erasure-coding and the resulting order-freedom. 

 
Figure 9. Robustness vs. Number of Disks. 

 
Figure 10. Impact of Block Granularity. 

 

Robustness vs. Block Granularity 

Block granularity affects the behavior of RobuSTore 

and has no impact on other schemes.  In RAID-0, 

RRAID-S and RRAID-A, data blocks are replicated in 

plain-text, so an access can use fractions of data blocks 

and ignore block boundaries. However, in RobuSTore, 

decoded blocks are not replicated and only whole blocks 

can be applied to block-XOR operations for decoding.  

We vary block size from 0.5MB to 64MB, and present 

the results in Figure 10. 
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The STDEV of access latency in RobuSTore increases 

as block size grows.  This is because larger block size 

decreases the rate of reading the blocks, so if any block is 

delayed, the client will potentially wait longer time for 

the next arriving block, i.e., the access latency is more 

sensitive to block delay. 

Robustness vs. Network Latency 

Because distributed storage networks may have a 

variety of latencies, we vary network latency between 

client and storage servers from 1ms (machine room or 

Metro) to 100ms (intercontinental).  Our results in Figure 

11 show that network latency has neglectable impact on 

performance robustness.  In RAID-0, RRAID-S, and 

RobuSTore, their accesses only involve one-time read 

request, so the impact of varying network latency is at 

most one RTT on total access latency.  RRAID-A uses 

adaptive access strategy and involves multi-RTT on total 

access latency.  Considering that the total access latency 

is 2~30 seconds, the variability from network is much 

less than that from disks in our model. 

 
Figure 11. Robustness vs. Network Latency. 

 
Figure 12. Robustness vs. Data Redundancy. 

 
Figure 13. Robustness vs. Data Size. 

 

 

 

Robustness vs. Redundancy 

Intuitively, we can increase data redundancy to hide 

slow disks.  We vary storage overhead from 1x to 10x 

(900% overhead) to quantify its performance impact (see 

Figure 12).  Because RAID-0 scheme does not include 

replication, its performance is represented by the 1x point 

on the RRAID-S curve. 

In RRAID-S and RRAID-A, the variability comes from 

disk speed, intra-disk block ordering (in RRAID-S), and 

inter-disk block mapping.  When they use higher data 

redundancy, their robustness will potentially suffer less 

from disk speed variability and inter-disk block mapping, 

while more from intra-disk block ordering.  RAID-0 only 

suffers variability from the slowest disk.  Due to the 

combination of these factors, RRAID-S and RRAID-A 

have worse robustness than RAID-0 when redundancy is 

small, and gradually get better as redundancy increases. 

In RobuSTore, as long as the fast disks have enough 

data blocks, they can hide the slow disks effectively.  

RobuSTore achieves the best performance robustness, 

and needs only 2-3x data redundancy to obtain most of 

this benefit. When using more than 4x storage space, the 

standard deviation of latency is only ~ 0.5 seconds or 

about 25% of the average access latency. 

Robustness vs. Data Size 

A driving OptIPuter application interactively accesses 

high-resolution 3-D brain images; the images range in 

size from 100s MB to 10s GB, but may be 100sGB or 

larger in the future.  Images larger than 1GB are 

presumed to be accessed by multiple 1GB reads; smaller 

images have relatively higher access overhead from 

scheduling, decoding, etc.  Figure 13 shows the results 

for 128MB, 256MB, 512MB, and 1GB reads. 

The standard deviations change as expected: less time 

is required to access smaller data, so the deviation of time 

also decreases in consequence. 

RobuSTore exceeds all the other schemes. 

4.2.2 Bandwidth Improvement 

While robust performance is the major goal of 

RobuSTore, we must also maintain high access 

bandwidth for the requirement of accessing large datasets. 

In most of our experiments, RobuSTore delivers 

significantly better performance than other schemes.  We 

present the results on three dimensions of number of 

disks, block size, and storage overhead.  Other two 

dimensions, network latency and data size, are either no 

significant impact or too simple, as we analyzed above. 

Bandwidth vs. Number of Disks 

We vary the number of disks and present the bandwidth 

results in Figure 14.  RAID-0 exhibits the worst 

bandwidth, RRAID-S is second worst, and best 

bandwidth is given by RRAID-A and RobuSTore.  This 

bandwidth gap grows as the number of disks is increased. 

RobuSTore is slightly worse than RRAID-A for small 

numbers of disks (<8) due to the reception overhead of 
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1.4x; but it performs the best for large numbers of disks.  

RobuSTore achieves 15x the bandwidth of RAID-0 for 

16-128 disks.  The access bandwidth to 1GB on 64 disks 

is as follows: 31 MBps for RAID-0, 117 MBps for 

RRAID-S, 228 MBps for RRAID-A, and 459 MBps for 

RobuSTore. 

 
Figure 14. Bandwidth vs. Number of Disks. 

 
Figure 15. Bandwidth vs. Data Redundancy. 

 
Figure 16. Bandwidth vs. Data Size. 

 

Bandwidth vs. Data Redundancy 

Figure 15 shows that increasing data redundancy 

increases the bandwidth of RobuSTore rapidly, reaching 

a peak at 6x storage (and over 15x performance).  Best 

performance is achieved when we fully utilize the fastest 

disks, which requires enough blocks on the fastest disks 

to keep them busy for the entire access.  

The bandwidth of RRAID-S and RRAID-A both 

benefit less than RobuSTore as data redundancy is 

increased.  This is because their structured redundancy 

(replication) cannot adapt to reading more blocks from 

the faster disks as flexibly as in RobuSTore. 

Bandwidth vs. Data Size 

Figure 16 shows that all four schemes have lower 

average bandwidth when accessing smaller data.  

RobuSTore and RRAID-A are affected the most.  For 

RRAID-A, the adaptive scheduling becomes more costly 

for smaller data.  For RobuSTore, it is due to two 

reasons: (1) connection and coding time become more 

costly for smaller data; (2) we fix the block size for 

erasure coding and thus smaller data has fewer blocks, 

which increases the LT reception overhead (The detailed 

relationship between number of blocks and reception 

overhead is beyond the scope of this paper; it is studied in 

[32]). 

4.2.3 Access Overhead 

The benefits of aggressive access to redundant copies 

can yield performance benefits, but it also increases 

network and disk I/O costs.  The number of bytes read 

from the disks divided by the request size captures the 

additional network bandwidth and storage access costs. 

Overhead vs. Number of Disks 

Figure 17 depicts the overhead for all the four schemes.  

Because RAID-0 has no speculative accesses, it incurs no 

additional costs, and achieves a ratio of 1.  RRAID-A is 

just a little bit more than 1, as it only generates additional 

accesses when they are clearly needed.  RRAID-S 

generates a large number of speculative requests, 

reaching overhead ratios as high as 3x.  RobuSTore has 

cost about 1.4 due to the requirement of extra blocks for 

decoding.  Although RobuSTore also uses speculative 

access, its use of erasure codes avoids fetching duplicated 

blocks, showing perfect parallelism. 

Overhead vs. Data Redundancy 

As data replication is increased, only RRAID-S 

increases its accesses in proportion.  As a result, RRAID-

S has increasing overhead as data redundancy increases 

when compared to the other schemes, as in Figure 18. 

 
Figure 17. Overhead vs. Number of Disks. 

 
Figure 18. Overhead vs. Data Redundancy. 
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4.2.4 Evaluation Summary 

We compared RobuSTore to RRAID-S, RRAID-A, and 

RAID-0 across a wide range of system configurations.  

These simulation results show that RobuSTore reduces 

performance variability significantly.  For a 1GB read 

using 64 disks, RobuSTore receives standard deviation of 

access latency of only 0.5 second, less than 25% of the 

access latency, nearly 5x improvement compared to a 

baseline RAID-0 scheme.  This is in the face of a 

challenging disk performance heterogeneity spread of 

100-fold.  At the same time, RobuSTore provides best 

performance of over 400MB/s bandwidth, nearly 15x that 

achieved by RAID-0.  RobuSTore incurs only moderate 

I/O costs of  about 1.4x and storage overheads of 2-3x. 

5 Related Work 

While there has been a wealth of work on distributed 

storage and performance aggregation of multiple disks, 

we know of no work which focuses on producing storage 

systems which produce robust, high performance – even 

in the presence of significant disk and network 

heterogeneity as demonstrated in our OptIPuter case 

study.  We briefly survey related work in the distributed 

and parallel filesystems.  Other filesystem researchers 

have used Erasure Codes to provide highly reliable or 

available data storage.  The erasure codes were in fact 

developed to provide reliable data communication – not 

storage -- a closely related concept.  We discuss each of 

these in turn. 

Distributed file systems typically assume slow wide-

area networks, so caching and prefetching are the primary 

focus, and single server performance is sufficient.  

Generally, little effort is spent on aggregating the 

performance of multiple servers.  LAN or campus 

oriented systems include NFS [11], Sprite [13], LOCUS 

[47], etc. and depend on file caching (and small files with 

significant access locality) to achieve acceptable 

performance.  While network performance is assumed to 

be moderately good, single server performance is 

generally acceptable.  A notable exception is Zebra [48].  

Wide-area filesystems such as AFS and Coda [12], xFS 

[49], and Pangaea [50] spend much more effort on 

enabling partitioned network or disconnected execution 

(lazy update), and assume slow networks.  None of these 

systems addresses the aggregation of multiple storage 

devices for high performance; IO bandwidth achieved by 

one client is usually bounded by the speed of single 

storage server. 

Parallel file systems [16-20, 48] aggregate multiple 

disks, addressing the performance and capacity limitation 

of single disks or servers.  Techniques such as managing 

disk layout, scheduling, parallel access, intelligent and 

coordinated caching, prefetching, write-back techniques, 

and even collective I/O can deliver good performance.  

Traditional parallel file systems assume uniform arrays of 

storage devices in a system-area network (SAN) or local-

area network (LAN) environment. Uniform storage 

devices provide homogeneous access and relative stable 

performance; the network environment implies low and 

uniform communication latency to the storage; 

centralized control and scheduling is also feasible in such 

environment to provide better performance.   Recently, 

object-based systems such as Lustre [20] and Panasas 

[40] use object-based techniques to tolerate 

heterogeneous object server capabilities.  This approach 

provides a static mechanism for managing performance 

heterogeneity.  However, neither of these systems 

tolerates dynamic performance heterogeneity in a fashion 

comparable to RobuSTore. 

Similar to RobuSTore, some peer-to-peer file sharing 

systems (Kazaa [51], BitTorrent [52]) improve access 

performance by speculatively fetching from massively 

replicated data copies. However, the massive replication 

is unstructured and expensive in terms of storage 

overhead.  Further these systems focus on the shared 

internet where access networks limit per-node bandwidth 

to 1-10 megabits/s.  

There are many possible choices for erasure codes 

besides of LT Codes, such as Raptor Codes [36], LEC 

[53], and Online Codes [54].  Plank et al. [55] explored 

the practical considerations of LDPC codes in storage 

systems, including coding redundancy, number of blocks, 

coding graph, etc.  Uyeda et al. [32] improved 

implementation of LT Codes and achieved 300MBps 

decoding bandwidth. 

Erasure codes are mainly used to improve reliability 

and availability in previous storage systems.  

Weatherspoon et al. [56] analyzed the impact of erasure 

coding and replication on availability, concluding that 

erasure-coded systems can provide higher availability 

with lower bandwidth and less storage.  Numerous 

storage systems have exploited erasure codes for data 

reliability and availability (Oceanstore [33], Frangipani 

[57], Total Recall [58], PASIS [34], Koh-i-Noor [59], and 

[35], etc.).  While some of these systems increase 

performance opportunistically by exploiting data 

redundancy, for none of them is this a focus.   

Collins and Plank’s work [60] studied the usage of 

Reed-Solomon Codes and LDPC Codes to improve 

bandwidth of wide-area storage systems.  However, they 

only focused on access bandwidth, with no study on 

performance robustness.  Furthermore, they assume slow 

shared networks, bandwidths < 10MByte/s, and small 

number of blocks (N≤100), and they concludes that 

Reed-Solomon Codes perform better than or equal to 

LDPC codes.  In contrast, we focus on performance 

robustness as well as bandwidth; we design RobuSTore 

for high bandwidth wide-area networks (>10Gbps), and 

explore a much wider array of design choices in data 

coding parameters, redundancy, layout and access. 
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Speculative access is used in previous works to hide 

I/O latency in UNIX file system [61], but it is not used in 

distributed storage or used with erasure codes. 

6 Summary and Future Work 

We have proposed RobuSTore, a system with erasure 

coding for flexible redundancy which exploits the 

statistical properties of speculative accesses to both 

improve performance robustness and absolute 

performance.  This idea is a general one, and can enable 

fundamentally better behaved storage systems – with low 

standard deviations in access times.  To realize the idea, 

we present a system framework which explains the major 

architecture and function required to make it workable. 

Using discrete-event simulation, we compare the 

performance of RobuSTore with three traditional 

schemes which introduce redundancy and speculative 

access.  Extensive simulations which vary number of 

disks, block size, network latency, and redundancy 

overhead in a distributed heterogeneous storage network 

show that RobuSTore provides superior performance 

robustness, for a 1GB read using 64 disks achieving a 

standard deviation of access latency of only 0.5 second, 

less than 25% of the access latency, and a 5-fold 

improvement.  Absolute performance is also improved, 

achieving average 400MB/s nearly 15x that achieved by a 

RAID-0 system.  Both improvements were achieved on 

disk heterogeneity of 100x in performance.  RobuSTore’s 

improvements are achieved at moderate cost; in this case 

~1.4x increase in I/O operations and storage capacity 

increases of less than 3x. 

We have only taken initial steps in evaluating 

RobuSTore.  Natural extensions include:  1) evaluation 

with a richer set of workloads, varying access sizes and 

including writes, 2) empirical studies with a RobuSTore 

prototype, 3) experiments with real applications and real 

testbeds, 4) study of different algorithms for encoding, 

and 5) evaluation for multi-user workloads and shared 

storage servers.   
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Appendix: Analysis 

General problem description: Assume we have N 

original blocks, and we transfer them into 4N output 

blocks using either replication or erasure coding.  Now 

randomly permute the 4N blocks.  What is the probability 

that we can reassemble the original blocks using the first 

M output blocks?  

A1. Plain-text Replication 

The problem is equivalent to the following: 

Given: 4N balls with N different colors (four balls per 

color); randomly pick M balls from them 

Want: probability of at least one ball per color. 

Assume the number of M-ball sets to have at least one 

ball per color is FM(N).  Then we have: 

FM(N) = (All sets) – (sets with less than N colors)  
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We will prove the following using induction: 
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First, since there are only 4 balls per color, we have 

FM(N) = 0, if N<M/4, 

which satisfies (A.1). 

Now we assume (A.1) is satisfied for any number less 

than N, then: 
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So (A.1) also fits for N. 

Therefore, the probability of picking M balls to include 

at least one ball per color is: 
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A2. Erasure-Coded Case 

With parameter of C=1.1 and δ=0.5, the average 

output-node degree in the LT coding graph is about 5.  To 

simplify the analysis, we assume that all output nodes 

have degree 5 and their neighbors are independently 

randomly selected from the N original blocks.  The 

number of blocks to reconstruct the original N blocks is 

about the number of blocks whose neighbors include all 

the N blocks.  So the probability that M coded blocks are 

sufficient is the probability that 5M neighbors can cover 

all the N original blocks.  Using similar induction as in 

above section, we can prove that: 

5

1

( ) ( 1) ( )
N

N i M

c

i

N i
P M

i N

−

=

 
= −  

 
∑  

 




