
UC San Diego
Technical Reports

Title
RobuSTore: Robust Performance for Distributed Storage Systems

Permalink
https://escholarship.org/uc/item/04j1k2xf

Authors
Xiz, Huaxia
Chien, Andrew A

Publication Date
2006-03-13

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/04j1k2xf
https://escholarship.org
http://www.cdlib.org/

-1-

RobuSTore: Robust Performance for Distributed Storage Systems
Huaxia Xia and Andrew A. Chien

Computer Science and Center for Networked Systems

University of California, San Diego

Abstract Emerging large-scale scientific applications

involve massive, distributed, shared data collections

(petabytes), and require robust, high performance for

read-dominated workloads. Achieving robust

performance (low variability) in storage systems is

difficult. We propose RobuSTore, a novel storage

technique, which combines erasure codes and speculative

access to reduce performance variability and increase

performance. RobuSTore uses erasure codes to add

flexible redundancy then spreads the encoded data across

a large number of disks. Speculative access to the

redundant data from multiple disks enables application

requests to be satisfied with only early-arriving blocks,

reducing performance dependence on the behavior of

individual disks.

We present the design and an evaluation of RobuSTore

which shows improved robustness, reducing the standard

deviation of access latencies by as much as 5-fold vs.

traditional RAID. In addition, RobuSTore improves

access bandwidth by as much as 15-fold. A typical 1 GB

read from 64 disks has average latency of 2 seconds with

standard deviation of only 0.5 seconds or 25%.

RobuSTore secures these benefits at the cost of a 2-3x

storage capacity overhead and ~1.5x network and disk

I/O overhead.

1 Introduction

Existing and emerging large-scale scientific

applications and data-intensive applications have required

dramatically higher-levels of performance from

distributed storage systems. These applications are far

from isolated anomalies; they are emerging in virtually

every area of science, engineering, and commerce,

including biology [1], high-energy physics [2], geology

[3], and astronomy [4]. For example, one effort in the

OptIPuter project [5] is to construct custom indices across

10GB 3-D images in a collection of 1,000,000 images

(10Petabytes of data) and to enable interactive, real-time

data exploration for collaborative visualization on a

large-scale tiled display consisting of 55 panels, 100M

pixels, 300Gbps network bandwidth [6].

Typical properties of large-scale scientific applications

include: (1) massive data collections with objects as large

as 10 GB each and collections larger than tens of

petabytes; (2) distributed data sources and owners; (3)

large read-dominated workloads (100s of megabytes to

10s of gigabytes per read); (4) thousands of users, and (5)

a need for robust, high performance. Throughout, we use

the term robust to mean low-variability in access latency.

Performance robustness is rarely studied for storage

systems; however, it is very important for many large-

scale applications. For example, interactive applications

require the access latency to be robust; in parallel

processes, robust performance can reduce the

synchronization overhead; robust performance also

makes it easy to predict resource requirement and to

schedule resources efficiently. Robust performance is the

major goal of RobuSTore. At the same time, we must

maintain high access bandwidth and efficient storage

space utilization.

Due to the limited single disk bandwidth, efficient

aggregation of large number of disks is required to meet

the performance requirements. Existing parallel storage

systems, like RAID, PVFS, Lustre, etc, provide good

performance in homogenous local cluster environment

via data striping and parallel accessing. However, the

usage of local private storage is not realistic for our

scientific applications due to the gigantic datasets and the

distributed shared usages. These applications require the

aggregation of large number of distributed disks shared

by multiple universities/laboratories. Disks in such

environments have highly heterogeneous and variable

performance, which prevents conventional parallel

accesses from achieving high, robust performance since

the accesses may have to wait for the slow disks.

In our new storage architecture RobuSTore, we

propose the idea of combining erasure coding and

speculative accesses together, which enables high, robust

performance to distributed storage collections.

RobuSTore uses erasure codes to add continuous

redundancy for striping; with such layouts, clients can

use speculative parallel access and decoding of the fast-

returning blocks to both increase performance, and

reduce performance dependence on stragglers (lower

variability). As a result, RobuSTore can efficiently

aggregate large number of distributed storage devices to

deliver robust, high access performance.

Special support from coding algorithm, metadata

service, admission controlling, and security schemes are

required for the high-performance shared accesses. We

describe a system framework which realizes the

RobuSTore idea, enabling systematic exploration of the

design space.

We then evaluate the RobuSTore idea via detailed

simulation, exploring a wide range of possible system

parameters. These studies show when and by how much

the RobuSTore idea reduces performance variability,

increases absolute performance, and incurs overheads on

-2-

storage space, disk accesses, and network bandwidth.

Our simulation results prove the promise of the

RobuSTore idea.

RobuSTore is motivated by rapid increasing of network

bandwidth, disk capacity, and CPU speed, but only slow

increase on disk bandwidth, which makes it valuable to

trade those resources for better storage performance. For

example, the development of low-cost optical

transmission and Dense Wavelength Division

Multiplexing (DWDM) technique enables individual

fibers to carry 100’s of 10 Gbps “lambdas”, providing

wide-area networks with private 10Gbps (even 40Gbps)

connections [7]. Numerous research infrastructures with

private, high-speed “lambdas” have been deployed

(OptIPuter [5], National LambdaRail [8], Netherlight [9],

and the Global Lambda Interchange Facility (GLIF)

[10]). The doubling period for CPU speed is 18 months

according to Moore’s Law, and 12 months for disk

capacity [21].

RobuSTore is part of the OptIPuter Project [1]

exploring configurable optical networks with 100’s Gbps

to support large-scale scientific applications. Network

issues, such as lambda configuration, protocols, etc. are

addressed by other parts of the project DVC [22],

LambdaRouter [23], CEP [24], and GTP [25].

The remainder of the paper is organized as follows. In

Section 2, we describe the problem and present the

RobuSTore approach. We describe the RobuSTore

design in Section 3, and our simulation-based evaluation

in Section 4. Section 5 surveys related work and Section

6 summarizes results, describing directions for future

work.

2 Robust, High Performance Distributed
Storage

2.1 The Problem

Numerous emerging, large-scale scientific applications

involve massive distributed data collections, and demand

distributed storage systems that deliver robust, high

performance for their read-dominated workloads. The

distributed nature of the scientific communities using

these applications implies that their needs will be met by

distributed collections of disk arrays. Supporting many

users, at these high performance levels requires robust

and efficient aggregation of disk performance.

For the distributed storage in such systems, disk

performance varies greatly due to the federated, evolving

nature of such infrastructures. Sources of performance

variation or heterogeneity include: heterogeneous disk

types (deployed over time at each site), irregular on-disk

data layout (due to unique disk history and

local/distributed use interaction), and differences in disk

load (varied competitive access). As disk technology has

improved, read bandwidth has increased, so

heterogeneous disk collections often include individual

disks with 20-fold read bandwidth variation [21]. In

modern storage devices, disk performance is sensitive to

disk layout [26, 27], as physical contiguity, seek distance,

and rotational latency can vary read bandwidth by 100-

fold. Finally, sharing causes access streams to be

interleaved which can incur additional seeks which can

also cause as much as 100-fold variance in performance.

Traditional parallel filesystems use data striping and

replication to aggregate disk performance. However,

they only achieve good performance with nearly

homogeneous collections of disks and often only when

layout is tightly controlled [18]. Further, best

performance is often only achieved for exclusive uses.

Because parallel filesystems deliver performance with

careful layout scheduling and control, a key limitation is

that they do not perform well in the face of uncontrolled

performance variation; even if replication is used. For

example, if access to a single data block or disk is slow,

an entire large request can be delayed. Even if data are

replicated, late arriving disk responses can still delay

completion of the larger request (see Figure 1).

Figure 1. Aggregating Disks with Data Striping: 8 blocks,

2 replicas. Disk performance is varied.

To meet the needs of emerging large-scale scientific

applications, we need a new set of technologies for

aggregating the performance of disk collections. These

technologies must

- tolerate high variation in the performance of

individual disks,

- achieve robust access latency (low variance) for

large requests, and

- deliver high performance.

In subsequent sections, we describe the RobuSTore

approach which meets these goals.

2.2 RobuSTore: Erasure codes and
Speculative access

The key idea in RobuSTore is to add redundancy to

stored data and then exploit it to aggregate statistically the

disk access bandwidths, producing an earlier and lower-

variance in access latency for large requests. Erasure

-3-

codes allow the systematic introduction of redundancy, so

many combinations of returning blocks can be used to

assemble the desired data. This redundancy reduces the

dependence of the large request on the performance of

any individual disk request. Further, we employ

speculative access, requesting a redundant set of blocks,

increasing the chances that a set of blocks which makes

decoding possible (and thereby completion of the large

request) will be received quickly. The decoding freedom

provided by erasure codes is depicted in Figure 2.

RobuSTore only requires the first set of returned blocks to

decode the data, and need not wait for later blocks.

Figure 2. RobuSTore Data Access with Similar Storage.

Reconstruction with first arriving coded blocks. Disk

performance is varied.

We use erasure codes to provide a continuum of

redundancy, enabling a flexible tradeoff of resources

against robustness and high performance. In general, we

encode N source data blocks into M erasure-coded blocks

for any M>N; and these coded blocks contains near-

uniform redundancy for all the N original blocks.

During decoding, the structure of erasure codes allows

reconstruction of original data from almost any N(1+δ)

coded blocks, where δ is zero or a small number decided

by the choice of coding algorithms, and (1+δ) is called

reception overhead. In our current design and

experiments, we use LT Codes (modified to guarantee

decidability [32]) with parameters that enable decoding

with almost any set of blocks 1.4 times larger than the

original data. We will discuss the choice of erasure codes

in Section 3.

RobuSTore combines the decoding flexibility of

erasure codes with speculative accesses. A read client in

RobuSTore requests redundant coded blocks in parallel.

In general, it receives over a range of time as shown in

Figure 2. Benefiting from the decoding flexibility, the

client can then reconstruct the original data using a set of

early-returning blocks.

We do not discuss write operations in this paper, as our

workloads are read-dominated. Mixed workloads will be

explored in future RobuSTore studies as in [33-35].

2.2.1 Analyzing Benefits of Erasure Codes

Erasure codes provide greater reordering freedom than

replication. For example, if we replicate an N block file

3 times, only a smaller number of subsets of the resulting

4N blocks are sufficient to reconstruct the original data.

This is because each block has 4 copies; one of which is

required in any subset which enables reconstruction. In

contrast, if we encode the N block file into 4N blocks

using Luby Transform (LT) codes, we can reconstruct

with many more subsets. More formally, for replication

the probability reconstruction with M random blocks for

an N block file replicated 3 times is:

1

4

() (1)
4

N
N i

i

N i

i M
P M

N

M

−

=

 = −

∑

For an LT encoding file, using our encoding settings

and equivalent expansion, the probability of

reconstruction with M random blocks for an N block file

expanded to 4N total blocks is:

5

1

() (1) ()
N

N i M

c

i

N i
P M

i N

−

=

= −

∑

See the Appendix for the full analysis. In practice,

nearly 3N blocks are needed for replication versus about

1.5N blocks for LT coded (see Figure 3).

Figure 3. Cumulative Probability of Reassembly of N

Original Blocks from M random Blocks

2.2.2 RobuSTore Research Questions

The degree of redundancy encoded and aggressiveness

of speculative access are critical for RobuSTore

performance. However, many other important research

questions are also critical to understanding RobuSTore’s

potential to improve robustness and performance.

- With realistic disk variability, what improvements

in robustness are possible?

- What coding parameters and access strategies are

most effective?

- What performance improvement can be expected?

With different numbers of disks? Block sizes?

- What capacity overhead, additional disk I/O’s, and

network bandwidth are required for a particular

performance benefit?

We explore these questions in following sections.

-4-

3 RobuSTore Design

The RobuSTore system framework is flexible, enabling

broad exploration of the design space. We describe the

components of a RobuSTore system then discuss the key

system architecture, component, and other design issues

3.1 RobuSTore System Architecture

RobuSTore storage system architecture includes four

key components: client, metadata server, and storage

servers (see Figure 4).

Figure 4. RobuSTore System Architecture

Client Portal perform many distributed filesystem

functions: accessing metadata, planning layout, encoding

data, sending requests to storage servers, and

decoding/assembling the completed response. The client

includes an erasure code implementation to implement

the encoding and decoding. It also includes a layout

planner which places data on disk servers to meet

specified QoS requirement.

Metadata Server maintains both file information (size,

organization, and location) and storage server

information (available space, performance, connectivity,

current load, etc).

Storage Servers provide data storage at block level

(erasure-coded block, presumed to be larger than disk

blocks). Servers may be single disks or arrays, and each

implements local admission and access control. Servers

typically have variable performance due to heterogeneity

in hardware, data layout, or load.

3.2 Basic RobuSTore Operations

Basic RobuSTore operation interfaces include:
open(filename, read/write,QoS_options);

read(fd,buffer,offset,length);

write(fd,data,offset,length);

close(fd);

Figure 5 depicts the basic read process: open, read and

close. The client opens the file, obtaining storage server

and block location information from the Metadata Server,

and obtaining any required locks. It also negotiates

admission (bandwidth) and access with each storage

server. To read, the client requests all coded blocks from

servers and does LT decoding (in parallel). When

enough blocks have been received, the decoding

completes and the original data is returned.

Simultaneously, outstanding requests to the storage

servers are cancelled. Close notifies the Metadata Server

releasing read locks, and also releases and bandwidth

reservations on the storage servers.

Figure 5. The Read Process in RobuSTore

Writes are similar. On write, the client accesses the

Metadata Server, creates the file, and based on disk map

information and application QoS requirements, it plans a

layout -- an encoding and distribution across storage

servers. The client then allocates the needed storage on

the servers, and encodes and writes the data appropriately

using specified LT coding parameters. After the data is

committed on the servers, the client registers the data

location and file structures with the Metadata Server. To

modify a file, the client will write a new version of the

file then update the metadata, this method avoids data

inconsistency. Since our workloads are read-dominant,

write performance is not studied in this paper.

3.3 Key Design Decisions

The RobuSTore design reflects the major choices in

architecture and component implementation. General

design principles include modularity, performance,

scalability, and simplicity. We summarize the major

design decisions below.

Coding: The coding modules (ENC/DEC) are

logically in the client, critical if the composition of

variable performance is to encompass network variability.

If desired, a separate machine/cluster to save client CPU

or improve coding speed. Because the clients manage the

coding (and store information about it in the Metadata

Server), the storage servers need not be aware of coding.

While there are many different erasure codes, such as

Reed-Solomon [28, 29], Raptor [36], Tornado [37], etc.

RobuSTore uses modified Luby Transform (LT) codes

[30, 32]. The Luby Transform codes are part of a general

class of low-density parity check codes [31] and use

block-XOR operations based on sparse bipartite graphs.

-5-

LT codes have a number of advantages. First, they are

“rateless”, allowing redundancy to be decoupled from

other system design issues, such as the number of storage

servers used. Second, LT codes use irregular bipartite

graphs and block-XOR operations, enabling fast

encoding and decoding throughputs [32]. Third, LT

codes allow decoding to be overlapped with receiving

data from storage servers, masking decoding time.

However, as defined, pure LT codes do not guarantee

the original data can be recovered from a finite number of

coded blocks. To fix this, we adapted LT codes by

generating coding graphs which guarantee decodability

[32], and built a fast implementation which improved

decoding bandwidth ten-fold 30MByte/s to 320 MByte/s

on a Intel 2.4Ghz Xeon CPU. Our experiments show that

the memory bandwidth is the bottleneck to coding

performance. Our work suggests that multi-processors of

the future or processors with higher memory bandwidth

(such as AMD Opteron or AMD Athlon 64) will surpass

a coding bandwidth of 1GByte/s.

Metadata Service: A simple central metadata server

minimizes update and synchronization costs at some

penalty in scalability. Reliability and scalability can be

addressed by well-known replication and failover

techniques [14, 38].

The metadata server maintains object-level information,

so the storage servers function as object servers. The

benefits of object-based storage systems are well

recognized [20, 39, 40], and this approach supports our

future extension RobuSTore to federated storage servers

in the Grid [41].

Admission and Access Control: Because RobuSTore

aggregate distributed resources which may be shared with

local or other distributed use, central admission control is

not possible. In the RobuSTore framework, each storage

server implements local admission control (for QoS) and

access control (for security). Clients must negotiate

access on file Open. There are many good candidates for

the distributed filesystem security, for example,

credential-based access control [42] is flexible in the

environments with a large number of servers and users.

4 Evaluation

We use a detailed discrete-event simulation to evaluate

the RobuSTore idea across the configuration space,

varying access strategy, the number of storage servers,

data size, block size, network latency, and degree of

redundancy.

4.1 Methodology

We compare RobuSTore and conventional approaches

with different strategies for data layout, redundancy, and

access.

Data Layout and Redundancy: Possible data layout

methods include: (1) split the data into blocks, and

distribute them to many disks; (2) split the data and

distribute the blocks with replication; (3) split the data,

encode the blocks, and distribute these redundant coded

blocks to many disks. They are depicted in Figure 6.

Figure 6. Data Layouts. 8 original blocks; 2x data

redundancy in replicated and coded layouts

Figure 7. Access Strategies. Disk performance is varied.

Access Strategies: Possible data access strategies are:

(1) speculative access, i.e., request all redundant blocks at

once in the beginning of the access and cancel the

requests once enough blocks have been received; (2)

adaptive access, in which the client dynamically requests

the unreceived bytes to adapt to disks’ performance.

Examples are shown for replicated layout in Figure 7

(Request cancellation is not depicted).

There are many different combinations of layout and

access methods. Since adaptive access is not necessary

for layout without redundancy or layout with erasure

coded blocks, we evaluate the following four schemes

including RobuSTore:

- RAID-0: No data redundancy + speculative access

- RRAID-S: Replication + speculative access

- RRAID-A: Replication + adaptive access

- RobuSTore: Erasure coding + speculative access

4.1.1 Workload & Performance Metrics

Workload: Since our focus is on supporting the needs

of applications with large-read dominated workloads [1-

3]. In these applications, the size of each data object

ranges from 100s MB to 10s GB, but may be 100s GB or

larger in the future. We study access performance for

single 128MB, 256MB, 512MB, and 1GB reads. Data

objects larger than 1GB are presumed to be accessed by

multiple 1GB reads.

Performance Metrics:

 Standard Deviation of Access Latency: A critical

RobuSTore goal is robust performance, i.e., minimum

performance variability. We formalize this for access

latency by computing the standard deviation over a set of

one hundred accesses. Smaller standard deviations

correspond to higher robustness.

-6-

 Access Bandwidth: The delivered bandwidth for a

single read is the request size divided by the access

latency, including connection, disk, data transfer, and

decoding time. We interpret access bandwidth to be a

measure of delivered performance corresponding to our

goal of “high performance”.

Disk IO Size/Data Size: Several of the approaches

make speculative accesses to the I/O system to improve

performance, but at a cost of increased network and disk

usage. We compute this increased system cost as a ratio

over the original data size.

4.1.2 System Models

The system simulation involves modeling for each of

the critical system components. The models need to be

reasonable for reality approximation and easy for

simulation.

Metadata Service, Access Scheduler, and Admission

Controller: Each access to these services by the client is

modeled as a constant latency of five milliseconds, with

no inline overhead. Because our benchmarks do not

include any open/close operations, the overhead for

access to the Metadata Service and Admission Controller

is never incurred.

Network: As bandwidth is presumed plentiful [5], the

network is modeled as a constant latency of 1 millisecond

round-trip latency (for the baseline, but varied in some

other experiments). Each storage server access in RAID-

0, RRAID-S, or RobuSTore involves one round-trip-time

(RTT), while RRAID-A involves multiple RTTs.

Storage Server/Disk: To model storage server

performance, we use a single disk model for each. This

model employs the DiskSim toolkit [43], a state-of-the-

art discrete event disk simulation. DiskSim parameters

define bus, controller, cache, and disk (rotation rate,

sector-level disk structure), which can be customized to

model a wide range of commercial disks. It has been

used extensively in the study of new file system and

storage techniques [44-46].

In our experiments, DiskSim is configured based on

measurement of a 120GB IBM Deskstar 7K400 disk

(ATA-100, 7200 rpm). We use one DiskSim process to

simulate each storage device. We model disk

performance diversity which may arise from different

disk types, layout, and sharing with the single mechanism

of block layout. To generate this diversity, we used the

DiskSim synthetic workload generator, varying blocking

factor (average number of sectors per request) and

probability of sequential accesses (contiguity of

sequential requests) parameters to model disks with

different accumulated layouts (due to different file

system histories, and irregular sharing). The

configuration and measured average bandwidth for each

of the 128 disks is shown in Table 1.

The resulting 100-fold performance (0.52MB/s to

53MB/s bandwidth) approximates a shared distributed

storage environment with many sources of variability, as

discussed in Section 2.1. Although only single-disk

nodes are modeled, they represent the variability

characteristic of higher-performance nodes (like disk

arrays), with only the difference of absolute performance.

Table 1. Disk Configuration and Performance
Disks’

IDs

Blocking

Factor

Prob of Seq

Access

Avg BW

(MB/sec)

0-7 8 0 0.52

8-15 16 0 0.76

16-23 32 0 1.3

24-31 64 0 2.5

32-39 128 0 4.7

40-47 256 0 8.3

48-55 512 0 14.3

56-63 1024 0 21.4

64-71 8 1 3.6

72-79 16 1 6.9

80-87 32 1 9.3

88-95 64 1 12.7

96-107 128 1 16.8

104-111 256 1 29.8

112-119 512 1 53.0

120-127 1024 1 53.0

Average 14.9

Erasure Coding: Coding and decoding performance

is critical for RobuSTore. In each simulation, we first run

the LT Codes algorithms to generate an LT coding graph

(a bipartite graph connecting original blocks and coded

blocks); then randomly select coded blocks and feed them

to LT decoding algorithm to find out the required number

of blocks for complete decoding. The simulation of

reading process succeeds once enough blocks are

received. We use following LT Codes parameters to

generate the coding graph: C=1.0 and δ=0.5 (C and δ are

the parameters for the distribution of node degrees in LT

coding graph: when C increases, there will be more low-

degree nodes, and δ has opposite impact. More details

are available in [30]). Previous work with LT code

implementations [32] shows that the reception overhead

is typically 1.4x (i.e., 1.4 times of number of blocks need

to be received for a successful decoding), and decoding

speeds of 200~300MByte/s are possible with typical

processors, so we use that rate to compute code/decode

time: Since the decoding process can be overlapped with

data reception, extra latency is only incurred for decoding

the last block. For example, for blocks of 1 megabyte,

we add a constant latency of 5 milliseconds.

4.1.3 System and Experiments Configurations

All of our experiments involve subsets of a wide-area

storage system with 128 servers each with a commodity

network connectivity (>1 Gigabit/s) and a client with a

high bandwidth connectivity (> 10 Gigabit/s).

-7-

Figure 8. Experiment System Configuration

In the experiments, we study the four storage schemes

(RAID-0, RRAID-S, RRAID-A, and RobuSTore) along

five system parameters: number of disks, data size, block

size, network latency, and degree of redundancy. In each

experiment, we vary only one parameter, and compare to

a fixed baseline. The baseline is a typical SAN

configuration: to access 1GB data from 64 disks, 1ms

network round-trip time (RTT), 1MB block size and 4x

data redundancy, except for RAID-0 which always has 1x

data redundancy.

For each configuration we run 100 trials and present

the average and the standard deviation; in each trial, disks

are randomly selected if the experiment uses less than

128 disks.

4.2 Results

We simulate the four storage scheme over five

configuration dimensions. Each of the figures below

shows the results along one dimension with all other four

dimensions configured following the baseline above.

4.2.1 Robustness Improvement

We first compare the robustness of the four storage

schemes.

Robustness vs. Number of Disks

When we vary the number of disks from 2 to 128, the

standard deviation of latency changes as depicted in

Figure 9. This figure uses log-scale y-axis to distinguish

the details.

RAID-0 suffers because it exploits no redundancy, and

the performance is thus subject to the slowest disk.

RRAID-S explores the replicated data to hide the slow

disks; however, it reads the blocks on same disk in fixed

order, so its performance depends on 1) intra-disk block

ordering, for example, if a replica of a block is stored as

the last block on a fast disk, it will be read last from the

disk and has less contribution on hiding slow disks; and

2) inter-disk block mapping, i.e., which disk a block is

stored on, if the replicas of same block are all on slow

disks, they cannot hide the slow disks, as depicted in

Figure 1. RRAID-S has the highest variability due to the

combination of these factors.

RRAID-A mitigates the dependency on intra-disk

block ordering by accessing blocks selectively, but it is

still dependent on inter-disk block mapping.

For small number of disks (<8), the replicated schemes

RRAID-S and RRAID-A have comparable robustness to

RobuSTore. As the data redundancy rate is fixed to 4x

and few disks are used, the system is essentially

performing whole-file replication and suffers a low-level

of inter-disk dependence.

RobuSTore uses erasure-coded blocks and has greater

flexibility on use all the stored blocks. Its performance

variability is from the overall bandwidth of all the disks

and is not related to intra-disk ordering or inter-disk

mapping at all. RobuSTore has the lowest performance

variability for systems with more than a few disks (>8).

The standard deviation of access latency on 64 disks for

RAID-0, RRAID-S, RRAID-A and RobuSTore are 1.9,

7.3, 1.9, and 0.5 seconds respectively; and they are 0.63,

3.8, 1.1, and 0.13 seconds on 128 disks. RobuSTore

improves robustness for up to 5x compared to RAID-0,

and more than 15x compared to RRAID-S. This lower

variability of RobuSTore demonstrates the benefits of

erasure-coding and the resulting order-freedom.

Figure 9. Robustness vs. Number of Disks.

Figure 10. Impact of Block Granularity.

Robustness vs. Block Granularity

Block granularity affects the behavior of RobuSTore

and has no impact on other schemes. In RAID-0,

RRAID-S and RRAID-A, data blocks are replicated in

plain-text, so an access can use fractions of data blocks

and ignore block boundaries. However, in RobuSTore,

decoded blocks are not replicated and only whole blocks

can be applied to block-XOR operations for decoding.

We vary block size from 0.5MB to 64MB, and present

the results in Figure 10.

-8-

The STDEV of access latency in RobuSTore increases

as block size grows. This is because larger block size

decreases the rate of reading the blocks, so if any block is

delayed, the client will potentially wait longer time for

the next arriving block, i.e., the access latency is more

sensitive to block delay.

Robustness vs. Network Latency

Because distributed storage networks may have a

variety of latencies, we vary network latency between

client and storage servers from 1ms (machine room or

Metro) to 100ms (intercontinental). Our results in Figure

11 show that network latency has neglectable impact on

performance robustness. In RAID-0, RRAID-S, and

RobuSTore, their accesses only involve one-time read

request, so the impact of varying network latency is at

most one RTT on total access latency. RRAID-A uses

adaptive access strategy and involves multi-RTT on total

access latency. Considering that the total access latency

is 2~30 seconds, the variability from network is much

less than that from disks in our model.

Figure 11. Robustness vs. Network Latency.

Figure 12. Robustness vs. Data Redundancy.

Figure 13. Robustness vs. Data Size.

Robustness vs. Redundancy

Intuitively, we can increase data redundancy to hide

slow disks. We vary storage overhead from 1x to 10x

(900% overhead) to quantify its performance impact (see

Figure 12). Because RAID-0 scheme does not include

replication, its performance is represented by the 1x point

on the RRAID-S curve.

In RRAID-S and RRAID-A, the variability comes from

disk speed, intra-disk block ordering (in RRAID-S), and

inter-disk block mapping. When they use higher data

redundancy, their robustness will potentially suffer less

from disk speed variability and inter-disk block mapping,

while more from intra-disk block ordering. RAID-0 only

suffers variability from the slowest disk. Due to the

combination of these factors, RRAID-S and RRAID-A

have worse robustness than RAID-0 when redundancy is

small, and gradually get better as redundancy increases.

In RobuSTore, as long as the fast disks have enough

data blocks, they can hide the slow disks effectively.

RobuSTore achieves the best performance robustness,

and needs only 2-3x data redundancy to obtain most of

this benefit. When using more than 4x storage space, the

standard deviation of latency is only ~ 0.5 seconds or

about 25% of the average access latency.

Robustness vs. Data Size

A driving OptIPuter application interactively accesses

high-resolution 3-D brain images; the images range in

size from 100s MB to 10s GB, but may be 100sGB or

larger in the future. Images larger than 1GB are

presumed to be accessed by multiple 1GB reads; smaller

images have relatively higher access overhead from

scheduling, decoding, etc. Figure 13 shows the results

for 128MB, 256MB, 512MB, and 1GB reads.

The standard deviations change as expected: less time

is required to access smaller data, so the deviation of time

also decreases in consequence.

RobuSTore exceeds all the other schemes.

4.2.2 Bandwidth Improvement

While robust performance is the major goal of

RobuSTore, we must also maintain high access

bandwidth for the requirement of accessing large datasets.

In most of our experiments, RobuSTore delivers

significantly better performance than other schemes. We

present the results on three dimensions of number of

disks, block size, and storage overhead. Other two

dimensions, network latency and data size, are either no

significant impact or too simple, as we analyzed above.

Bandwidth vs. Number of Disks

We vary the number of disks and present the bandwidth

results in Figure 14. RAID-0 exhibits the worst

bandwidth, RRAID-S is second worst, and best

bandwidth is given by RRAID-A and RobuSTore. This

bandwidth gap grows as the number of disks is increased.

RobuSTore is slightly worse than RRAID-A for small

numbers of disks (<8) due to the reception overhead of

-9-

1.4x; but it performs the best for large numbers of disks.

RobuSTore achieves 15x the bandwidth of RAID-0 for

16-128 disks. The access bandwidth to 1GB on 64 disks

is as follows: 31 MBps for RAID-0, 117 MBps for

RRAID-S, 228 MBps for RRAID-A, and 459 MBps for

RobuSTore.

Figure 14. Bandwidth vs. Number of Disks.

Figure 15. Bandwidth vs. Data Redundancy.

Figure 16. Bandwidth vs. Data Size.

Bandwidth vs. Data Redundancy

Figure 15 shows that increasing data redundancy

increases the bandwidth of RobuSTore rapidly, reaching

a peak at 6x storage (and over 15x performance). Best

performance is achieved when we fully utilize the fastest

disks, which requires enough blocks on the fastest disks

to keep them busy for the entire access.

The bandwidth of RRAID-S and RRAID-A both

benefit less than RobuSTore as data redundancy is

increased. This is because their structured redundancy

(replication) cannot adapt to reading more blocks from

the faster disks as flexibly as in RobuSTore.

Bandwidth vs. Data Size

Figure 16 shows that all four schemes have lower

average bandwidth when accessing smaller data.

RobuSTore and RRAID-A are affected the most. For

RRAID-A, the adaptive scheduling becomes more costly

for smaller data. For RobuSTore, it is due to two

reasons: (1) connection and coding time become more

costly for smaller data; (2) we fix the block size for

erasure coding and thus smaller data has fewer blocks,

which increases the LT reception overhead (The detailed

relationship between number of blocks and reception

overhead is beyond the scope of this paper; it is studied in

[32]).

4.2.3 Access Overhead

The benefits of aggressive access to redundant copies

can yield performance benefits, but it also increases

network and disk I/O costs. The number of bytes read

from the disks divided by the request size captures the

additional network bandwidth and storage access costs.

Overhead vs. Number of Disks

Figure 17 depicts the overhead for all the four schemes.

Because RAID-0 has no speculative accesses, it incurs no

additional costs, and achieves a ratio of 1. RRAID-A is

just a little bit more than 1, as it only generates additional

accesses when they are clearly needed. RRAID-S

generates a large number of speculative requests,

reaching overhead ratios as high as 3x. RobuSTore has

cost about 1.4 due to the requirement of extra blocks for

decoding. Although RobuSTore also uses speculative

access, its use of erasure codes avoids fetching duplicated

blocks, showing perfect parallelism.

Overhead vs. Data Redundancy

As data replication is increased, only RRAID-S

increases its accesses in proportion. As a result, RRAID-

S has increasing overhead as data redundancy increases

when compared to the other schemes, as in Figure 18.

Figure 17. Overhead vs. Number of Disks.

Figure 18. Overhead vs. Data Redundancy.

-10-

4.2.4 Evaluation Summary

We compared RobuSTore to RRAID-S, RRAID-A, and

RAID-0 across a wide range of system configurations.

These simulation results show that RobuSTore reduces

performance variability significantly. For a 1GB read

using 64 disks, RobuSTore receives standard deviation of

access latency of only 0.5 second, less than 25% of the

access latency, nearly 5x improvement compared to a

baseline RAID-0 scheme. This is in the face of a

challenging disk performance heterogeneity spread of

100-fold. At the same time, RobuSTore provides best

performance of over 400MB/s bandwidth, nearly 15x that

achieved by RAID-0. RobuSTore incurs only moderate

I/O costs of about 1.4x and storage overheads of 2-3x.

5 Related Work

While there has been a wealth of work on distributed

storage and performance aggregation of multiple disks,

we know of no work which focuses on producing storage

systems which produce robust, high performance – even

in the presence of significant disk and network

heterogeneity as demonstrated in our OptIPuter case

study. We briefly survey related work in the distributed

and parallel filesystems. Other filesystem researchers

have used Erasure Codes to provide highly reliable or

available data storage. The erasure codes were in fact

developed to provide reliable data communication – not

storage -- a closely related concept. We discuss each of

these in turn.

Distributed file systems typically assume slow wide-

area networks, so caching and prefetching are the primary

focus, and single server performance is sufficient.

Generally, little effort is spent on aggregating the

performance of multiple servers. LAN or campus

oriented systems include NFS [11], Sprite [13], LOCUS

[47], etc. and depend on file caching (and small files with

significant access locality) to achieve acceptable

performance. While network performance is assumed to

be moderately good, single server performance is

generally acceptable. A notable exception is Zebra [48].

Wide-area filesystems such as AFS and Coda [12], xFS

[49], and Pangaea [50] spend much more effort on

enabling partitioned network or disconnected execution

(lazy update), and assume slow networks. None of these

systems addresses the aggregation of multiple storage

devices for high performance; IO bandwidth achieved by

one client is usually bounded by the speed of single

storage server.

Parallel file systems [16-20, 48] aggregate multiple

disks, addressing the performance and capacity limitation

of single disks or servers. Techniques such as managing

disk layout, scheduling, parallel access, intelligent and

coordinated caching, prefetching, write-back techniques,

and even collective I/O can deliver good performance.

Traditional parallel file systems assume uniform arrays of

storage devices in a system-area network (SAN) or local-

area network (LAN) environment. Uniform storage

devices provide homogeneous access and relative stable

performance; the network environment implies low and

uniform communication latency to the storage;

centralized control and scheduling is also feasible in such

environment to provide better performance. Recently,

object-based systems such as Lustre [20] and Panasas

[40] use object-based techniques to tolerate

heterogeneous object server capabilities. This approach

provides a static mechanism for managing performance

heterogeneity. However, neither of these systems

tolerates dynamic performance heterogeneity in a fashion

comparable to RobuSTore.

Similar to RobuSTore, some peer-to-peer file sharing

systems (Kazaa [51], BitTorrent [52]) improve access

performance by speculatively fetching from massively

replicated data copies. However, the massive replication

is unstructured and expensive in terms of storage

overhead. Further these systems focus on the shared

internet where access networks limit per-node bandwidth

to 1-10 megabits/s.

There are many possible choices for erasure codes

besides of LT Codes, such as Raptor Codes [36], LEC

[53], and Online Codes [54]. Plank et al. [55] explored

the practical considerations of LDPC codes in storage

systems, including coding redundancy, number of blocks,

coding graph, etc. Uyeda et al. [32] improved

implementation of LT Codes and achieved 300MBps

decoding bandwidth.

Erasure codes are mainly used to improve reliability

and availability in previous storage systems.

Weatherspoon et al. [56] analyzed the impact of erasure

coding and replication on availability, concluding that

erasure-coded systems can provide higher availability

with lower bandwidth and less storage. Numerous

storage systems have exploited erasure codes for data

reliability and availability (Oceanstore [33], Frangipani

[57], Total Recall [58], PASIS [34], Koh-i-Noor [59], and

[35], etc.). While some of these systems increase

performance opportunistically by exploiting data

redundancy, for none of them is this a focus.

Collins and Plank’s work [60] studied the usage of

Reed-Solomon Codes and LDPC Codes to improve

bandwidth of wide-area storage systems. However, they

only focused on access bandwidth, with no study on

performance robustness. Furthermore, they assume slow

shared networks, bandwidths < 10MByte/s, and small

number of blocks (N≤100), and they concludes that

Reed-Solomon Codes perform better than or equal to

LDPC codes. In contrast, we focus on performance

robustness as well as bandwidth; we design RobuSTore

for high bandwidth wide-area networks (>10Gbps), and

explore a much wider array of design choices in data

coding parameters, redundancy, layout and access.

-11-

Speculative access is used in previous works to hide

I/O latency in UNIX file system [61], but it is not used in

distributed storage or used with erasure codes.

6 Summary and Future Work

We have proposed RobuSTore, a system with erasure

coding for flexible redundancy which exploits the

statistical properties of speculative accesses to both

improve performance robustness and absolute

performance. This idea is a general one, and can enable

fundamentally better behaved storage systems – with low

standard deviations in access times. To realize the idea,

we present a system framework which explains the major

architecture and function required to make it workable.

Using discrete-event simulation, we compare the

performance of RobuSTore with three traditional

schemes which introduce redundancy and speculative

access. Extensive simulations which vary number of

disks, block size, network latency, and redundancy

overhead in a distributed heterogeneous storage network

show that RobuSTore provides superior performance

robustness, for a 1GB read using 64 disks achieving a

standard deviation of access latency of only 0.5 second,

less than 25% of the access latency, and a 5-fold

improvement. Absolute performance is also improved,

achieving average 400MB/s nearly 15x that achieved by a

RAID-0 system. Both improvements were achieved on

disk heterogeneity of 100x in performance. RobuSTore’s

improvements are achieved at moderate cost; in this case

~1.4x increase in I/O operations and storage capacity

increases of less than 3x.

We have only taken initial steps in evaluating

RobuSTore. Natural extensions include: 1) evaluation

with a richer set of workloads, varying access sizes and

including writes, 2) empirical studies with a RobuSTore

prototype, 3) experiments with real applications and real

testbeds, 4) study of different algorithms for encoding,

and 5) evaluation for multi-user workloads and shared

storage servers.

Acknowledgements

Supported in part by the National Science Foundation -

- Cooperative Agreement ANI-0225642(OptIPuter),

CCR-0331645(VGrADS), ACI-0305390, and Research

Infrastructure Grant EIA-0303622. Support from the

UCSD Center for Networked Systems, BigBangwidth,

and Fujitsu is also gratefully acknowledged.

The authors thank Justin Burke and Frank Uyeda for

their comments on the system design and evaluation.

References

[1] "Biomedical Informatics Research Network (BIRN),"

http://www.nbirn.net.

[2] "GriPhyN," http://www.griphyn.org.

[3] "The EarthScope Project," http://www.earthscope.org.

[4] "AstroGrid," http://www.astrogrid.org.

[5] L. L. Smarr, A. A. Chien, T. DeFanti, J. Leigh, and P.

M. Papadopoulos, "The OptIPuter," Communications

of the ACM, vol. 46, pp. 58-67, 2003.

[6] A. Johnson, J. Leigh, L. Renambot, A. Rao, R. Singh,

B. Jeong, N. Krishnaprasad, V. Vishwanath, C. V., N.

Schwarz, A. Spale, C. Zhang, and G. Goldman,

"LambdaVision and SAGE - Harnessing 100

Megapixels," CSCW Workshop on Human Factors in

Advanced Collaborative Environments, Chicago IL,

2004.

[7] "iGrid2005," http://www.igrid2005.org, San Diego,

CA, Sep 26-30, 2005.

[8] "National LambdaRail," http://www.nlr.net.

[9] "NetherLight," http://www.netherlight.net.

[10] "The Global Lambda Interchange Facility (GLIF),"

http://www.glif.is.

[11] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh,

and B. Lyon, "Design and Implementation of the Sun

Network File System," USENIX Summer Technical

Conference, Portland, Oregon, 1985.

[12] M. Satyanarayanan, "Scalable, Secure, and Highly

Available Distributed File Access," IEEE Computer,

vol. 23, 1990.

[13] J. K. Ousterhout, A. R. Cerenson, F. Douglis, M. N.

Nelson, and B. B. Welch, "The Sprite Network

Operating System," Computer Magazine of the

Computer Group News of the IEEE Computer Group

Society, 1988.

[14] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L.

Shrira, and M. Williams, "Replication in the Harp File

System," 13th ACM Symposium on Operating

Systems Principles, Pacific Grove, CA, 1991.

[15] D. A. Patterson, G. A. Gibson, and R. H. Katz, "A

Case for Redundant Arrays of Inexpensive Disks

(RAID)," International Conference on Management of

Data (SIGMOD), 1988.

[16] P. F. Corbett and D. G. Feitelson, "The Vesta

parallel file system," ACM Transactions on Computer

Systems, vol. 14, pp. 225--264, 1996.

[17] N. Nieuwejaar and D. Kotz, "The Galley Parallel

File System," Parallel Computing, vol. 23, pp. 447-

476, 1997.

[18] P. H. Carns, W. B. L. III, R. B. Ross, and R. Thakur,

"PVFS: A Parallel File System For Linux Clusters,"

4th Annual Linux Showcase and Conference, Atlanta,

GA, 2000.

[19] F. Schmuck and R. Haskin, "GPFS: A Shared-Disk

File System for Large Computing Clusters," FAST

2002, 2002.

[20] C. F. System, "Lustre: A Scalable, High-

Performance File System," Lustre File System v1.0

Architecture White Paper from clusterfs.org, 2002.

[21] E. Grochowski and R. D. Halem, "Technological

impact of magnetic hard disk drives on storage

systems," IBM Systems Journal, vol. 42, pp. 338-346,

2003.

-12-

[22] N. Taesombut and A. Chien, "Distributed Virtual

Computer (DVC): Simplifying the Development of

High Performance Grid Applications," the Workshop

on Grids and Advanced Networks (GAN'04),

Chicago, Illinois, 2004.

[23] D. J. Bishop, C. R. Giles, and G. P. Austin, "The

Lucent LambdaRouter: MEMS Technology of the

Future Here Today," IEEE Communications

magazine, vol. 40, pp. 75-79, 2002.

[24] E. Weigle and A. A. Chien, "The Composite

Endpoint Protocol (CEP): Scalable Endpoints for

Terabit Flows," IEEE Conference on Cluster

Computing and the Grid (CCGrid 2005), 2005.

[25] R. Wu and A. Chien, "GTP: Group Transport

Protocol for Lambda-Grids," 4th IEEE/ACM

International Symposium on Cluster Computing and

the Grid (CCGrid2004), Chicago, Illinois, 2004.

[26] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S.

Fabry, "A Fast File System for UNIX," Computer

Systems, vol. 2, pp. 181-197, 1984.

[27] C. Ruemmler and J. Wilkes, "UNIX Disk Access

Patterns," Winter USENIX, San Diego, CA, 1993.

[28] J. S. Plank, "A Tutorial on Reed-Solomon Coding

for Fault-Tolerance in RAID-like Systems," Software

-- Practice & Experience, vol. 27, pp. 995-1012.,

1997.

[29] I. Reed and G. Solomon, "Polynomial codes over

certain finite fields," Journal of the Society for

Industrial and Applied Mathematics, vol. 8, pp. 300--

304, 1960.

[30] M. Luby, "LT Codes," IEEE Symp. On Foundations

of Computer Science 2002.

[31] R. G. Gallager, Low Density Parity-Check Codes.

Cambridge, MA: MIT Press, 1963.

[32] F. Uyeda, H. Xia, and A. Chien, "Evaluation of a

High Performance Erasure Code Implementation,"

UCSD, Technical Report CS2004-0798, 2004.

[33] J. Kubiatowicz, D. Bindel, and e. al., "OceanStore:

An Architecture for Global-Scale Persistent Storage,"

the Ninth international Conference on Architectural

Support for Programming Languages and Operating

Systems (ASPLOS 2000), 2000.

[34] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M.

K. Reiter, and J. J. Wylie, "Fault-Scalable Byzantine

Fault-Tolerant Services," Symposium on Operating

Systems Principles, Brighton, UK, 2005.

[35] M. K. Aguilera, R. Janakiraman, and L. Xu, "Using

Erasure Codes Efficiently for Storage in a Distributed

System," DSN 2005: The International Conference on

Dependable Systems and Networks, Yokohama,

Japan, 2005.

[36] A. Shokrollahi, "Raptor codes," Digital Fountain and

EPFL, 2003.

[37] M. Luby, "Practical Loss-Resilient Codes," ITW

1998, San Diego, CA, 1998.

[38] J. F. Bartlett, "A NonStop Kernel," the Eighth

Symposium on Operating System Principles, 1981.

[39] G. A. Gibson, J. S. Vitter, and J. Wilkes, "Strategic

directions in storage I/O issues in large-scale

computing," ACM Computing Surveys (CSUR), vol.

28, 1996.

[40] "The Panasas File System," http://www.panasas.com

[41] I. Foster, C. Kesselman, and S. Tuecke, "The

Anatomy of the Grid: Enabling Scalable Virtual

Organizations," Intern. J. High Performance Computing

Applications, vol. 15, pp. 200-222, 2001.

[42] S. Miltchev, V. Prevelakis, S. Ioannidis, J. Ioannidis,

A. D. Keromytis, and J. M. Smith, "Secure and

Flexible Global File Sharing," USENIX 2003 Annual

Technical Conference, San Antonio, TX, 2003.

[43] J. S. Bucy and G. R. Ganger, "The DiskSim

Simulation Environment Version 3.0 Reference

Manual," Carnegie Mellon University CMU-CS-03-

102, January 2003.

[44] J. Zedlewski, S. Sobti, N. Garg, F. Zheng, A.

Krishnamurthy, and R. Wang, "Modeling hard-disk

power consumption," 2nd USENIX Conference on

File and Storage Technologies (FAST '03), 2003.

[45] J. L. Griffin, J. Schindler, S. W. Schlosser, J. C.

Bucy, and G. R. Ganger, "Timing-accurate storage

emulation," USENIX Conference on File and Storage

Technologies (FAST'02), Monterey, CA, 2002.

[46] A. Riska, E. Riedel, and S. Iren, "Managing

Overload Via Adaptive Scheduling," 1st Workshop

on Algorithms and Architecture for Self-Managing

Systems, San Diego, CA, 2003.

[47] G. J. Popek, B. Walker, J. Chow, D. Edwards, C.

Kline, G. Rudisin, and G. Theil, "LOCUS: A Network

Transparent, High Reliability Distributed System,"

the Eighth ACM Symposium on Operating Systems

Principles, published in Operating Systems Review

15, Pacific Grove, CA, USA, 1981.

[48] J. H. Hartman and J. K. Ousterhout, "The Zebra

striped network file system," ACM Transactions on

Computer Systems (TOCS), vol. 13, pp. 274 - 310,

1995.

[49] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M.

Nishimoto, and G. Peck, "Scalability in the XFS File

System," USENIX 1996 Technical Conference, San

Diego, CA, 1996.

[50] Y. Saito, C. Karamanolis, M. Karlsson, and M.

Mahalingam, "Taming Aggressive Replication in the

Pangaea Wide-Area File System," OSDI '02, 2002.

[51] "Kazaa," http://www.kazaa.com.

[52] "BitTorrent," http://www.bittorrent.com.

[53] J. A. Cooley, J. L. Mineweaser, L. D. Servi, and E.

T. Tsung, "Software-based Erasure Codes for

Scalable Distributed Storage," 20th IEEE/11th NASA

Goddard Conference on Mass Storage Systems and

Technologies, San Diego, CA, 2003.

-13-

[54] P. Maymounkov, "Online Codes," Tech Report of

NYU, TR2002-833, November 5, 2002.

[55] J. S. Plank and M. G. Thomason, "A Practical

Analysis of Low-Density Parity-Check Erasure Codes

for Wide-Area Storage Applications," DSN-2004:

The International Conference on Dependable Systems

and Networks, Florence, Italy, 2004.

[56] H. Weatherspoon and J. D. Kubiatowicz, "Erasure

Coding vs. Replication: A Quantitative Comparison,"

the First International Workshop on Peer-to-Peer

Systems (IPTPS), Cambridge, MA, 2002.

[57] C. A. Thekkath, T. Mann, and E. K. Lee,

"Frangipani: A Scalable Distributed File System,"

16th ACM Symposium on Operating Systems

Principles, Saint Malo, France, 1997.

[58] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, and

G. M. Voelker, "Total recall: System support for

automated availability management," the First

ACM/Usenix Symposium on Networked Systems

Design and Implementation (NSDI), 2004.

[59] M. Isard, M. Manasse, and C. Thekkath, "Koh-I-

Noor Project,"

http://research.microsoft.com/research/sv/kohinoor/.

[60] R. L. Collins and J. S. Plank, "Assessing the

performance of Erasure Codes in the Wide Area,"

DSN-2005: The International Conference on

Dependable Systems and Networks, Yokohama,

Japan, 2005.

[61] F. W. Chang and G. A. Gibson, "Automatic I/O Hint

Generation through Speculative Execution," the 3rd

Symposium on Operating Systems Design and

Implementation, New Orleans, LA, 1999.

Appendix: Analysis

General problem description: Assume we have N

original blocks, and we transfer them into 4N output

blocks using either replication or erasure coding. Now

randomly permute the 4N blocks. What is the probability

that we can reassemble the original blocks using the first

M output blocks?

A1. Plain-text Replication

The problem is equivalent to the following:

Given: 4N balls with N different colors (four balls per

color); randomly pick M balls from them

Want: probability of at least one ball per color.

Assume the number of M-ball sets to have at least one

ball per color is FM(N). Then we have:

FM(N) = (All sets) – (sets with less than N colors)
1

1

4
(), (Let =0 if a<b)

N

M

i

N N a
F i

M i b

−

=

= −

∑

We will prove the following using induction:

(A.1)

1

4
() (1)

N
N i

M

i

N i
F N

i M

−

=

 = −

∑

First, since there are only 4 balls per color, we have

FM(N) = 0, if N<M/4,

which satisfies (A.1).

Now we assume (A.1) is satisfied for any number less

than N, then:
1

1

1

1 1

1

1 1

1

4
() ()

4 4
(1)

4 4
(1)

4 4! !
(1)

!()! !()!

N

M M

i

N i
i j

i j

N i
i j

i j

N
i j

i j

N N
F N F i

M i

N N i j

M i j M

N N i j

M i j M

N jN i

M Mi N i j i j

−

=

−
−

= =

−
−

= =

−
−

=

= −

= − −

= − −

= − − ⋅ − −

∑

∑ ∑

∑∑
1

1

1 1

1

11

1 0

4 4! ()!
(1)

!()! ()!()!

4 4! ()!
(1) (let k=i-j)

!()! ()! !

4 4!
((1))

!()!

N

j

N N
i j

j i j

N jN
k

j k

N j

j

N jN N j

M Mj N j N i i j

N jN N j

M Mj N j N j k k

N jN

M Mj N j

−

=

− −
−

= =

− −−

= =

−

=

 −= − − − − −

 −= − − − − −

= − − − −

∑∑

∑ ∑

∑ ∑
1

1

1

4
(1)

N

N
N j

j

N j

j M

−

−

=

= −

∑

∑

So (A.1) also fits for N.

Therefore, the probability of picking M balls to include

at least one ball per color is:

1

4

()
() (1)

4 4

N
N iM

i

N i

i MF N
P M

N N

M M

−

=

 = = −

∑

A2. Erasure-Coded Case

With parameter of C=1.1 and δ=0.5, the average

output-node degree in the LT coding graph is about 5. To

simplify the analysis, we assume that all output nodes

have degree 5 and their neighbors are independently

randomly selected from the N original blocks. The

number of blocks to reconstruct the original N blocks is

about the number of blocks whose neighbors include all

the N blocks. So the probability that M coded blocks are

sufficient is the probability that 5M neighbors can cover

all the N original blocks. Using similar induction as in

above section, we can prove that:

5

1

() (1) ()
N

N i M

c

i

N i
P M

i N

−

=

= −

∑

