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Abstract
Purpose  Gliomas are the most common primary tumors of the central nervous system and are categorized by the World 
Health Organization into either low-grade (grades 1 and 2) or high-grade (grades 3 and 4) gliomas. A subset of patients 
with glioma may experience no tumor-related symptoms and be incidentally diagnosed. These incidental low-grade gliomas 
(iLGG) maintain controversial treatment course despite scientific advancements. Here we highlight the recent advancements 
in classification, neuroimaging, and surgical management of these tumors.
Methods  A review of the literature was performed. The authors created five subtopics of focus: histological criteria, diag-
nostic imaging, surgical advancements, correlation of surgical resection and survival outcomes, and clinical implications.
Conclusions  Alternating studies suggest that these tumors may experience higher mutational rates than their counterparts. 
Significant progress in management of gliomas, regardless of the grade, has been made through modern neurosurgical 
treatment modalities, diagnostic neuroimaging, and a better understanding of the genetic composition of these tumors. An 
optimal treatment approach for patients with newly diagnosed iLGG remains ill-defined despite multiple studies arguing in 
favor of safe maximal resection. Our review emphasizes the not so benign nature of incidental low grade glioma and further 
supports the need for future studies to evaluate survival outcomes following surgical resection.

Keywords  Glioma · Low-grade glioma · Incidental glioma · Surgical management

Introduction

Gliomas are the most prevalent primary central nervous 
system (CNS) tumors with an age-adjusted incidence of 
6/100,000 [1]. These tumors arise from atypical growth 
of glial cells, most commonly astrocytic and oligodendro-
glial cell lineages [2, 3]. As histopathologically classified 
in 2016 by the World Health Organization (WHO), low-
grade gliomas (LGGs) consist of grades 1 and 2 gliomas, 
whereas more aggressive high-grade gliomas (HGGs) com-
prise grades 3 and 4 tumors [2, 4]. In 2021, WHO clas-
sified Gliomas into (1) Adult-type diffuse gliomas (the 
majority of primary brain tumors in neuro-oncology prac-
tice of adults); (2) Pediatric-type diffuse low-grade gliomas 
(associated with better prognoses); (3) Pediatric-type dif-
fuse high-grade gliomas (expected to behave aggressively); 
and (4) Circumscribed astrocytic gliomas (“circumscribed” 
referring to their more solid growth pattern, as opposed to 
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the inherently “diffuse” tumors in groups 1, 2, and 3) [5]. 
Gliomas classically present with symptoms such as sei-
zures, headaches, or focal neurologic deficits [6]. Magnetic 
resonance imaging (MRI) is the gold-standard neuroimag-
ing modality used for diagnosis [7]. First-line treatment for 
gliomas includes surgical resection alone, adjuvant radiation 
and/or chemotherapy [8]. Although the prognosis for HGGs 
has improved due to advances in diagnosis and therapy, the 
overall outlook remains poor [9]. Conversely, patients with 
LGGs have favorable survival outcomes as these tumors are 
slower-growing compared to HGGs [3, 10].

LGGs account for nearly 17–22% of all primary brain 
tumors [11]. The natural history of LGGs is defined by slow, 
continuous growth, and a preference for migration along 
white matter pathways [10]. Despite their benign nature, 
LGGs are at a high risk for recurrence and may progress to 
HGGs [3, 8]. Although almost 80% of patients with LGGs 
present symptomatically, a subset of them may experience no 
tumor-related symptoms [12]. This unique subset of lesions 
termed incidental low-grade gliomas (iLGGs) are defined in 
this study as asymptomatic low grade glioma (WHO grade 
1 and 2) discovered on brain imaging for reasons not related 
to neuron-oncology and are incidentally diagnosed when 
undergoing radiographic evaluation for unrelated reasons to 
the underlying tumor such as trauma, annual physical exami-
nation, headache, dizziness, otolaryngological symptoms, or 
volunteer studies [12–15]. Conversely, LGGs manifest with 
neurological symptoms and deficits associated with tumors 
[16]. iLGGs constitute approximately 10% of LGGs [12, 
13, 17, 18].

iLGGs may undergo malignant transformation, a pro-
cess in which the tumor converts to a biologically aggres-
sive HGG [19]. The incidence of this conversion is highly 
variable, ranging from 17 to 73%, and the reported median 
interval is between 2 and 10 years [7]. The literature sug-
gests that malignant transformation occurs earlier in larger 
tumors, likely because the larger size is a consequence of a 
higher proliferative rate [20]. Additionally, malignant con-
version does not always lead to a symptomatic presentation, 
as there has been a case report of malignant transformation 
to glioblastoma following 6 years of conservative manage-
ment with annual MRI, in which the patient had no symp-
toms at the time of surgical resection [21]. Nonetheless, this 
process dramatically affects prognosis and has significant 
clinical implications.

While there has been significant improvement in under-
standing the pathogenesis of iLGG prognosis due to scien-
tific advancements, the surgical management of these tumors 
remains a controversial topic. Recent literature highlights 
a shift in neurosurgeons’ opinions surrounding treatment 
for iLGGs from a conservative “wait and see” approach to 
implicating early preventative resection [22]. Early gross 
total resection (GTR) of iLGGs offers several benefits, 

however, the decision to resect iLGGs before the onset of 
clinical symptoms is complicated by concerns for preserv-
ing quality of life and eloquent brain structures [7, 23]. Here 
we highlight the current viewpoints surrounding the pathol-
ogy, diagnostic imaging, and management of these tumors 
(Table 1).

Methods

A review of the literature was performed using Boolean 
operators and a combination of search terms including 
"surgical management” AND “incidental gliomas", "surgi-
cal management of incidental gliomas", "incidental” AND 
“low grade gliomas", and "incidental glioma management". 
Independent reviewers screened titles, abstracts, and full-
text manuscripts for pertinent studies. Abstract-only texts, 
book chapters, animal studies, articles in languages other 
than English, and studies without any primary focus on inci-
dental gliomas were excluded from this review. The authors 
created five subtopics of focus: histological criteria, diagnos-
tic imaging, surgical advancements, correlation of surgical 
resection and survival outcomes, and clinical implications.

Histological criteria

The natural history of glioma depicted in Fig. 1 is repre-
sented by four stages: (1) the occult stage—where the glioma 
elicits no symptoms and is undetectable with brain MRI, 
(2) the clinically silent stage—this phase encompasses 
asymptomatic individuals with iLGGs where the glioma 
is discernible on neuroimaging, but patients show no clini-
cal symptoms, (3) the symptomatic stage—where patients 
commonly experience seizures, and lastly (4) the malignant 
transformation stage—where the LGG undergoes conver-
sion to HGG [7, 8, 18, 19]. In 2021, WHO Classification of 
Tumors of the Central Nervous System significantly updated 
the histopathological classification of brain tumors to incor-
porate molecular and genetic parameters [2, 5]. This rede-
fined grading system acknowledges several recent advances 
in molecular markers and genotypic features of gliomas, 
which are current targets for therapy [4]. There are four 
grades and the classification is characterized by the presence 
of some or all of the essential histological criteria including 
cytological atypia, anaplasia, mitotic figures, microvascular 
proliferation, and necrosis [4]. Like most LGGs, iLGGs lack 
many of these key histological features and mainly consist 
of WHO grades 1 and 2 oligodendroglioma, astrocytoma, 
oligoastrocytoma, and ganglioglioma [2, 16, 27]. While 
grade 1 lesions have no discernible histological features, 
grade 2 lesions are notable for cytological atypia [4]. Stud-
ies have elucidated that iLGGs have histomolecular profiles 
analogous to that of early-stage symptomatic LGGs, with 
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IDH-mutant gliomas and 1p/19q co-deletion being predomi-
nantly associated with iLGGs [15, 18, 28].

A comprehensive understanding of the molecular and 
genetic features of gliomas is fundamental to guide clini-
cal management. Several genetic markers of gliomas have 
been identified including: (1) mutations of isocitrate dehy-
drogenase 1 (IDH1) and isocitrate dehydrogenase 2 (IDH2), 
(2) codeletion of chromosome arms 1p and 19q, (3) alpha 
thalassemia retardation syndrome X-linked (ATRX) gene 
loss, (4) tumor suppressor protein p53 mutation, (5) pro-
moter methylation of O6-methylguanine-DNA methyltrans-
ferase (MGMT), and (6) telomerase reverse transcriptase 
gene (TERT) promoter mutations [29]. IDH mutations are 
associated with prolonged overall survival compared to non-
mutated gliomas [30]. It is hypothesized that the reason why 
mutations in IDH1 and IDH2, which are crucial enzymes 

involved in the Kreb’s cycle, are strongly correlated with 
improved prognosis is because of decreased NADPH pro-
duction in the cell which makes tumors like LGGs more sus-
ceptible to damage from reactive oxygen species [31]. The 
codeletion of chromosome arms 1p and 19q are also consid-
ered to result in better prognosis and is commonly associ-
ated with IDH1/IDH2 mutations [31]. Almost all tumors 
with 1p/19q codeletions have mutations in TERT promoter 
and IDH; these tumors, known as triple-positive gliomas, 
may show increased benefits from treatment therapies [31]. 
Tumors classified with either TERT and IDH mutations or 
triple-positive glioma status are associated with an improved 
prognosis compared to lesions with only TERT mutation 
[32]. Further molecular classification within IDH-mutant 
gliomas has also shown prognostic utility as homozygous 
deletion of cyclin-dependent kinase inhibitor 2A (CDKN2A) 
was associated with poor survival in a series of 911 high-
grade IDH-mutant gliomas [25]. These alterations in genetic 
background of LGGs compared to HGGs are important find-
ings that have transformed our understanding of glioma pro-
gression and helped clinicians develop potential therapies 
for treatment. iLGGs, unlike symptomatic gliomas, utilize 
mitochondrial aerobic respiration, which is a process that 
slows the growth of tumors and may be the reason why these 
patients are asymptomatic and have a better prognosis [3]. 
In a physiological state, mitochondrial respiration consists 
of the preparatory reaction, the citric acid cycle, and the 
electron transport chain. During glycolysis which takes 
place in the cytoplasm outside of the mitochondria, enzymes 
break down glucose into two molecules of pyruvate where 2 
ATPs are produced and NADH is released. These pyruvates 
are then converted to Acetyl CoA in the mitochondria and 
in the process producing more NADH. Then, in the citric 
acid cycle, the remaining glucose are oxidized producing 
2 ATPs along with NADH and FADH2. However, most of 
the ATP production occurs in the electron transport chain 
stage of the respiration process where NADH and FADH2 
give up electrons to the chain. Energy is then released and 
captured as the electrons move from a higher energy state 
to a lower energy state using a series of proteins embedded 
in the membranes of the mitochondria where this energy 
is later used to produce 32 to 34 ATPs per glucose [3, 33]. 
However, cancer cells exhibit mitochondrial respiration mal-
function and increased glycolysis for ATP production due 
to aerobic glycolysis, also known as the “Warburg effect” 
which entails the conversion of glucose into lactic acid in 
an aerobic environment resulting in less sufficient ATP [3, 
33, 34]. Studies have stated that glioma glycolysis or aer-
obic respiration is not dependent of IDH mutation status 
given mitochondrial aerobic respiration is not disturbed in 
iLGGs despite the number of IDH mutations present [3, 34]. 
Of note, recent investigation assessing genetic features of 
iLGGs compared to LGGs revealed that iLGGs comprise 

Fig. 1   Graphic illustration of the natural history of gliomas
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of a high proportion of IDH1/IDH2 mutations and 1p/19q 
codeletions, which suggests that iLGGs are not of an entirely 
different molecular and genetic subset compared to LGGs 
[28]. While data regarding the molecular and genetic profile 
of iLGGs remains sparse, recent histopathological findings 
support the 2016 and 2021 WHO restructuring of glioma 
classification and facilitate progress in understanding glioma 
genesis [2, 4, 5, 7, 29].

Not only do iLGGs share a similar genetic composition to 
LGGs, but it is also approximated that iLGGs have a radio-
logical tumor growth rate of 4 mm/year [12]. In a series 
of 143 gliomas, Pallud et al. noted an inverse correlation 
between radiographic growth rates and survival, advocating 
for this parameter’s incorporation into treatment planning 
[35]. Additionally, iLGGs demonstrate a median Ki67 pro-
liferative index of 5.0% [7, 15], which is comparable to that 
of symptomatic LGGs, indicating that early surgical resec-
tion may be beneficial to improve prognosis and survival 
outcomes [7, 15, 36]. Gogos et al. reported a key finding that 
13% of iLGGs were observed to have IDH1/IDH2 wild-type 
genetic features which are associated with a worse progno-
sis, however, this information would not have been revealed 
if treatment had been delayed [36]. This finding favors early 
therapeutic intervention for asymptomatic iLGGs. Further-
more, the 2021 WHO Classification of Tumors of the Cen-
tral Nervous System proposed a combined histological and 
molecular grading rather than the traditional exclusively his-
tological tumor grading [5]. As a result, molecular param-
eters have now been added (which include + 7/ − 10 copy 
number changes in IDH-wildtype diffuse astrocytomas) as 
biomarkers of grading and for further estimating prognosis 
within multiple tumor types. This allows a glioblastoma, 
IDH-wildtype CNS WHO grade 4 designations even in cases 
that otherwise appear histologically lower grade potentially 
altering the definition of LGG [5].

Diagnostic imaging

Neuroimaging plays an important role in the diagnosis of 
iLGGs and may provide insight to their molecular profiles 
[31]. In recent years, increasing access and application of 
MRI has led to a rise in the discovery of iLGGs [15]. Most 
LGGs present as isointense or hypointense on T1-weighted, 
and hyperintense on T2-weighted MRIs [7]. Also, LGGs, 
most of which are IDH-mutant, generally do not demon-
strate contrast enhancement and instead have more non-
enhancing solid components [31]. A notable radiographic 
feature among LGGs that is highly specific for IDH-mutant 
1p/19q non-codeleted gliomas is the T2-FLAIR mismatch 
sign [37]. Genetic features not only can be seen with IDH, 
but also 1p/19q codeletion tumors are characterized to have 
indistinct margins and frequently contain calcifications [31]. 
While conventional MRI is the standard tool for identifying, 

characterizing, and measuring response to treatment for 
iLGGs, its ability to accurately discern radiological features 
can be a barrier to providing reliable information [38]. Meta-
bolic and physiological imaging modalities are increasingly 
being incorporated for diagnosing, targeting, and evaluat-
ing treatment progress of LGGs. These include magnetic 
resonance (MR) techniques such as perfusion-weighted 
imaging (PWI), sodium imaging, diffusion-weighted imag-
ing (DWI), and proton MR spectroscopy [39]. These func-
tional techniques are capable of potentially differentiating 
between IDH-mutant and IDH wild-type gliomas [39]. The 
most promising recent advancement in proton MR spectros-
copy involves 2-hydroxyglutarate (2HG) detection which is 
a metabolite that is characterized as a highly specific marker 
for IDH-mutant gliomas [10, 39]. Interestingly, there’s evi-
dence suggesting the epileptogenic nature of 2HG as higher 
tissue concentrations of it have been associated with preop-
erative seizures in glioma patients [40]. Positron emission 
tomography (PET) imaging provides valuable insight about 
tumor metabolism and PET can be combined with radiola-
beled particles such as O-(2–18F-fluoroethyl)-l-tyrosine 
(18F-FET), and 6-fluoro-l-DOPA(FDOPA) to guide glioma 
detection during biopsy or resection [41, 42]. LGGs are typi-
cally hypometabolic on PET with 18F-fluorodeoxyglucose 
compared to HGGs; however, PET with amino acid uptake 
of 18F-FET is noted to be increased in two-thirds of LGGs 
and is therefore utilized to distinguish LGGs from HGGs 
[7]. The metabolic information obtained with PET can be 
combined with the morphological characteristics acquired 
from MRI to improve histological grading and accurately 
perform targeted biopsies [41].

Recent imaging advancements not only serve in diagnosis 
of gliomas, but also can be employed during neurosurgical 
procedures to increase maximal extent of resection (EOR) 
and improve survival outcomes. Diffusion tensor imaging 
(DTI) uses similar principles to DWI except it is more sen-
sitive to the diffusion of protons along white matter tracts 
[31]. DTI can serve as a useful aid when used in conjunction 
with structural MRI to plan the ideal surgical approach for 
maximal safe resection [7, 31]. While preoperative plan-
ning with conventional neuroimaging modalities such as 
MRI or PET is important, brain shift is a phenomenon that 
must be accounted for during surgery due to edema, gravity, 
or fluid changes, which results in unreliable preoperative 
imaging sequences and limits safe maximal EOR [24, 43]. 
To overcome these inherent limitations of neuronavigation, 
innovations including intraoperative MRI (iMRI) and intra-
operative fluorescence microscopy with 5-aminolevulinic 
acid (5-ALA) were developed to visualize tumor tissue dur-
ing resection [43]. iMRI is a frequently used technology 
that facilitates safe maximal EOR to preserve function in 
eloquent brain regions, improve prognosis, and retain quality 
of life [43]. Several studies have shown iMRI’s superiority 
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to conventional MRI with respect to clinical outcomes [43]. 
5-ALA provides enhanced intraoperative visualization of 
LGG tissue which also allows for greater EOR; however, 
this modality does not offer similar findings seen in HGGs 
which show increased levels of florescence [24]. Overall, 
5-ALA fluorescence in LGGs is associated with higher grade 
histology and studies show that 5-ALA serves as a valuable 
and reliable intraoperative marker for identification of intra-
tumoral anaplastic foci and is not vulnerable to brain shift 
[24]. A summary of diagnostic or biopsy/resection neuro-
imaging techniques for iLGGs and other grades of gliomas 
is provided in Table 2.

Surgical Advancements

Surgical resection remains the primary first-line treatment 
for LGGs and HGGs; however, the decision to resect iLGGs 
is a well-disputed debate entwined in ethical and medical 
concerns [16]. iLGGs are typically smaller in volume and 
occur in younger populations [12, 18]. The nature of iLGGs 
complicates the decision to either watchfully wait or surgi-
cally treat these tumors, potentially risking a decrease in 
quality of life due to long-term functional impact or post-
operative complications [12, 18]. However, recent stud-
ies have highlighted that iLGGs are progressive tumors 
that share a similar fate to LGGs, and can evolve towards 
a higher grade of malignancy [10]. Additionally, several 
studies show that maximal EOR is not only associated with 
better overall survival, but also is safe due to the smaller 
size of iLGGs, which makes them less likely to be located 
in eloquent regions compared to symptomatic gliomas [7, 8, 
12, 14–16, 36]. Several advancements have been introduced 
to optimize resection including enhancement of mapping 
of functional pathways and advanced intraoperative brain 
tumor visualization techniques [7, 36]. Awake intraoperative 
cortical stimulation mapping is an innovative modality that 
uses functional boundaries to achieve greater EOR in iLGG 
patients without inflicting treatment-related neurological 
deficits; this modality is also associated with decreased rates 
of post-operative seizures and improved neuropsychological 
outcomes [44]. These advancements may allow for avoid-
ance of not only motor, language, or cognitive disabilities, 
but also social and professional disabilities in patients’ diag-
nosis [45]. While epilepsy is a serious complication from 
early prophylactic surgery in iLGG patients, it is observed 
in less than 10% of patients during long-term follow-up, and 
should not prevent patients from undergoing early resec-
tion [46]. Studies that combine DTI and conventional MRI 
to delineate glioma’s adjacent cortical tracts are associated 
with lower likelihood of neurological deficits or damage to 
motor pathways [7, 47]. Lastly, fluorescence-guided 5-ALA 
resections for LGGs are being optimized to improve fluores-
cence visualization through use of intraoperative confocal 

microscopy and other advances to improve EOR and deter-
mine tumor histopathology [24, 43]. These advancements 
may facilitate the neurosurgery community’s inclination to 
resect these tumors earlier, instead of watchful waiting.

Correlation of surgical resection and survival 
outcomes

Although optimal management of iLGGs is still a dilemma, 
there has been a growing consensus amongst neurosurgeons 
that these tumors are not as indolent as originally character-
ized to be, which has sparked new evaluation of survival out-
comes in iLGG patients who undergo early surgical resec-
tion [48]. Even small volume iLGGs are not benign lesions, 
but instead are tumors that carry a risk of progression to a 
higher grade and possible anaplastic transformation resulting 
in death [49]. Therefore, iLGG’s risk of malignant progres-
sion should encourage clinicians to treat these tumors in a 
manner similar to symptomatic LGGs [36, 49]. Studies have 
shown that early maximal EOR improves overall survival 
(OS) in symptomatic LGGs through delaying risk of malig-
nant transformation [7, 36, 44, 48]. It is also possible for 
malignant transformation to occur even if the patient remains 
asymptomatic [21]. Numerous studies have reported that an 
early prophylactic surgery approach results in a greater EOR 
and prolonged survival for iLGGs compared to symptomatic 
LGGs [10, 14, 16, 36, 48]. iLGGs may be more amenable to 
GTR because they are less likely to be located in eloquent 
brain regions and therefore are associated with improved OS 
[7]. While certain genetic parameters are associated with a 
better prognosis of iLGGs, early preventative surgery is also 
a crucial component [8, 46]. One study reported a 20 cm3 
volume increase over an average of 28 months which sup-
ports early resection when iLGG tumor volumes tend to be 
lower and accordingly allow for greater rates of EOR [16]. 
Zeng et al. reported an intriguing comparison of surgical 
timing between two cohorts of iLGG patients: (1) those who 
underwent surgical resection prior to symptom onset and 
(2) those who delayed surgical treatment until symptoms 
arose [17]. This study found that surgical timing was not 
significantly associated with OS, progression-free survival 
(PFS), and malignant PFS (MPFS) rates [17]. However, total 
resection was a significant factor that showed positive cor-
relation to OS, PFS, and MPFS; therefore, surgical timing 
should be utilized to assist neurosurgeons with achieving 
maximal EOR [17]. Additionally, in a series of patients, 
Jakola et al. and Ius et al. noted better overall survival in 
patients with LGG and iLGG undergoing early resection 
compared to those managed conservatively through biopsy 
and “wait and see” approach [23, 26]. The aforementioned 
studies provide compelling data advocating for early surgi-
cal resection of iLGGs [14, 29, 36, 48]. Similarly, the new 
2021 WHO classification of molecular subtypes among the 
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EOR classes, and the proposed combined histological and 
molecular grading alters the definition of LGGs, therefore 
impacting the management strategy (surgical intervention 
versus surveillance) and survival outcomes [5, 26].

Although some groups have shared concern about sac-
rificing cognitive function in young patients with iLGGs 
for early resection, recent data shows neuropsychological 
results were not impacted by awake surgery [44]. A novel 
study assessed the return to work rate in iLGG patients who 
underwent awake resection with intraoperative mapping and 
demonstrated that while postoperative seizures were associ-
ated to a delayed return to work, 97.1% of patients were still 
able to resume their professional activities, suggesting that 
early surgery to prevent malignant progression is capable 
of producing favorable outcomes [45]. Additionally, Zeng 
et al. noted a higher rate of postoperative complications and 
postoperative seizures in patients with symptomatic LGGs 
compared to asymptomatic ones [17]. This data further 
supports early surgical resection as delaying surgery until 
the onset of symptoms may increase the risk of complica-
tions. In combination with the likely shared natural history 
of iLGGs with symptomatic LGGs, these survival outcome 
findings collectively support early preventative surgical 
resection of iLGGs.

Regarding individualizing treatment options for patients 
diagnosed with iLGG, there is a lack of consensus. Some 
studies oppose early resection and favor surveillance with 
serial clinical examination and MR imaging because iLGGs 
harbor IDH1 mutation leading to a delayed disease progres-
sion and malignant transformation [12, 18, 50]. Whereas, 
other studies recommend early surgical intervention as 
a primary consideration given iLGGs are a precursor to 
symptomatic LGGs and iLGGs’ non-quiescent nature even 
in asymptomatic patients [8, 10, 12, 14–17, 23, 36, 44, 45]. 
However, despite serval studies reporting in favor of early 
resection over the past decades, surgical resection followed 
by radiation therapy has been the mainstay of treatment 
for high-risk LGG with subtotal resection, early radiation 
being associated with longer progress-free survival [51–53]. 
Furthermore, a large phase III trial has reported an overall 
survival of 7.8 years in patients treated with radiation alone, 
compared with 13.3 years in patients treated with both radia-
tion and chemotherapy [54]. However, surgical treatment for 
concurrent lesions or treatment of early radiation at diagno-
sis versus at the time of recurrence is yet to be elucidated.

Clinical implications

An optimal treatment approach for patients with newly 
diagnosed iLGG remains ill-defined. In iLGG patients, the 
decision to resect early is a medical, ethical, and socioeco-
nomic challenge which must be carefully weighed to assess 
the immediate and delayed consequences of choosing a Ta
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conservative versus surgical approach [50]. Unnecessary 
intervention may cause a disruption in quality of life and 
foster pre- and post-operative anxiety; however, active 
surveillance may also be seen as an ethical dilemma [50]. 
Future studies should comprehensively evaluate additional 
parameters such as employment abilities, as well as social, 
legal, and cultural issues that are inherent to this decision 
[45]. Some authors have proposed implementing a radio-
logical screening policy for healthy individuals ages 20–40 
[10]. Ultimately, a screening policy would also require a per-
sonalized treatment paradigm to ensure reliable patient-cen-
tered care that avoids ensuing lifelong disabilities in young 
patients who prior to diagnosis, were largely unaffected [50].

Treatment of iLGG is controversial due to their asympto-
matic nature and lack of associated histologic confirmation 
leaving the physician to counsel a patient based solely on 
MRI [55]. Shah et al. suggest a conservative protocol of 
active surveillance which includes repeated physical exami-
nations and surveillance MRI every 4 months [55]. Other 
studies have shown that the continuous growth of iLGGs 
(> 2 mm/year) can provide sufficient justification on MRI; 
therefore, physicians could utilize this growth, the onset 
clinical symptoms or a positive 18-fluorodeoxyglucose posi-
tron emission tomography scan to administer treatments [15, 
55, 56]. Furthermore, several studies have implied the safe 
and practical aspect of a conservative protocol of active sur-
veillance prior to actively treating these lesions [15, 55–63].

Conclusions

Significant progress in management of gliomas, regardless 
of the grade, has been made through modern neurosurgical 
treatment modalities, diagnostic neuroimaging, and a better 
understanding of the genetic composition of these tumors. 
However, the clinical protocol for surgical management 
of iLGGs remains controversial. Although more is known 
about the natural history of iLGGs, additional information 
is necessary to thoroughly assess the impact of early surgi-
cal resection on prognosis. Our review emphasizes the not 
benign nature of iLGGs and further supports the need for 
future studies to evaluate survival outcomes following sur-
gical resection.
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