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Abstract

Ambient Intelligence Using Wireless Signals

by

Saandeep Depatla

With a recent increase in the number of wireless devices around us, there is a great

interest in using wireless signals to sense and understand our surroundings. Wireless

sensing enables several applications and presents us with unique opportunities such as

sensing behind walls and preserving the privacy of humans involved. Therefore, there

has been a steady growth in the research interests in this area in the recent past. In

this dissertation, we focus on utilizing off-the-shelf wireless devices and fundamentally

understand the information carried by the wireless signals about the surroundings.

This dissertation is focused on passive wireless sensing using off-the-shelf wireless

devices. Since most off-the-shelf wireless device can only make basic measurements such

as the power of the signal, the focus of this dissertation is to enable wireless sensing using

minimal power measurements from the devices. Furthermore, to preserve the privacy of

human subjects in the area, we focus on passive wireless sensing, i.e., without depending

on people to carry any device. Moreover, as we may not have a priori access to the area

of interest, we develop frameworks for sensing that minimize the requirement of prior

calibrations.

This thesis then contributes to the area of wireless sensing through three main topics

1) Robotic through-wall imaging, 2) Occupancy estimation, and 3) Joint crowd counting

and crowd speed estimation. First, in Robotic through-wall imaging, we utilize unmanned

ground robots with standard WiFi connectivity to enable a high-resolution imaging of

an area behind walls. We use theories from electromagnetic literature to mathematically
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characterize the signal propagation, sparse signal processing for efficient processing, and

proper path planning of robots to enable high-resolution imaging of the area. We image

several structures using our framework and present the experimental results. Next, in

occupancy estimation, we first show how to count the number of people walking in an area

using only a single standard WiFi link and without relying on people to carry a device.

Through a new statistical modeling of received signals, we show that the information

on the number of people is captured in the probability density function (PDF) of the

received power measurements, which is then used to estimate the total number of people.

We then extend our framework to through-wall scenarios where WiFi transceivers are

located outside a building and people are walking inside. We show that the received

signal can be modeled as a renewal-type process and show that inter-event times capture

the information about the total number of people. We then show several experimental

results, using our framework, and show that we can estimate up to 20 people with a very

good accuracy.

Finally, in joint crowd counting and crowd speed estimation, we estimate several oc-

cupancy attributes such as the total number of people, their walking speed, and the rate

of arrival of people into the area using a pair of standard WiFi links. We further extend

our approach to estimate these attributes in the adjacent regions where there may not

be any WiFi coverage. We then show several experimental results with various speeds

and up to 20 people and estimate the occupancy attributes. We also show experimental

results of our framework in Costco, a retail store.
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Chapter 1

Introduction

The number of devices with wireless capability has been increasing at an exponential rate

in recent years. This growth is fueled by the advancement of Internet-of-things (IoT)

which includes devices ranging from personal devices such as smart watches to smart

televisions. It is expected that there will be about 50 billion IoT devices by 2020 [1].

The majority of these devices have wireless capability for the purpose of communication.

As we are surrounded by several wireless devices, can we use them to understand the

surrounding environment? More specifically, can we use wireless signals to sense the

surrounding environment? For instance, can we use them to image an area or count the

number of entities? This thesis looks at the fundamental aspects of wireless sensing to

understand how much we can infer about the surrounding environment using wireless

signals.

Wireless signals capture crucial information about the surrounding area. As the

wireless signals propagate, they interact with the objects in the area. For instance,

the signals get absorbed or scattered by the objects and in that process leave their

signature on the signals. This thesis looks at understanding what information is present

in the signals by mathematically characterizing the signal interactions and estimating

the parameters of interest by processing the received signal.

Wireless sensing presents us with several unique capabilities. Since wireless signals
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can pass through objects, they can be used to sense in areas that are occluded. For

instance, they create the possibility to image or count the number of entities in an area

that is occluded by walls, which is not possible by other sensing modalities such as vision-

based techniques. Moreover, when sensing anything related to human subjects, such as

counting the number of people, wireless signals present us with a unique opportunity to

sense without invading the privacy of the people. Furthermore, since wireless signals do

not require any ambient lighting conditions, sensing can be done in dark. Finally, there

are several applications that can be enabled by wireless signals, such as imaging an area,

counting the entities, estimating the speed of a crowd, gesture recognition, tracking, and

localizing people among several others.

In this thesis, we investigate wireless sensing by utilizing only the minimal possible

measurements that can be obtained from off-the-shelf wireless devices and without re-

lying on people to carry any device. More specifically, we utilize only the signal power

measurements (e.g. Received Signal Strength Indicator (RSSI)) and minimize the prior

calibration in the area of interest.1 Although we can extract more information and per-

form more robust sensing by utilizing the signal phase measurements, most off-the-shelf

wireless devices cannot measure the phase in a stable manner. For instance, Bluetooth

Low Energy (BLE), utilized in many IoT devices, can only measure the RSSI. Further-

more, when sensing involves human subjects, we are interested only in passive sensing,

i.e., without requiring people to carry any device. It has been recently shown by several

surveys that requiring people to carry a device is not feasible. For instance, a recent

survey on active WiFi tracking technology [2] revealed that 80% of the shoppers do not

like to be tracked based on their smartphones, while 43% do not want to shop at a store

that employs active WiFi tracking technology. Therefore, in this thesis, we focus on

1In all our experiments, we utilize only RSSI measurements, which can be easily measured in any
device. However, all the proposed approaches can be easily implemented with CSI power measurements.
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wireless sensing using off-the-shelf wireless devices, with minimal prior calibration in the

area of interest, and without requiring human subjects to carry any devices.

In this thesis, we focus on three different areas of wireless sensing as described below.

� Robotic through-wall imaging: Consider the scenario shown in Fig. 1.1. A couple

of robots equipped with WiFi transceivers move around an area that is completely

unknown to them and collect WiFi RSSI measurements. The objective then is to

obtain a high-resolution image of the area including any occluded objects by utilizing

the WiFi RSSI measurements.

The ability to see through occluded objects can be beneficial to many applications,

such as search and rescue, surveillance and security, archaeological discovery, detec-

tion/classification of occluded objects, and medical applications.

Unknown

volume D 

Figure 1.1: Two robots are tasked with imaging the unknown area D that is marked
with the red superimposed volume, which involves seeing through walls, based on only
a small number of WiFi measurements.

� Occupancy estimation: Consider the scenario shown in Fig. 1.2 where a number of

people are walking in an area. A WiFi link in the area collects the RSSI measurements.

The objective then is to estimate the total number of people walking in the area without

relying on people to carry any device. Fig. 1.2 (left) considers a scenario where the

WiFi Transmitter (Tx) and Receiver (Rx) are located in the same area. Fig. 1.2

3



Introduction Chapter 1

Figure 1.2: A stationary WiFi transmitter and receiver are tasked with determining
the number of people in the area based on only the received power measurements over
a short period of time. (left) Considers a scenario where the Tx and Rx are located
in the same area where people are walking, while (right) considers a scenario where
the Tx and Rx are located outside a building while people are walking inside.

(right) considers a scenario where the WiFi Tx and Rx are located outside a building

while people are walking inside.

The ability to estimate the total number of people in an area can be useful for several

applications. For instance, smart buildings can optimize the energy consumption based

on the number of people in the building [3, 4]. Retails can better plan their business

by assessing which parts of the store get more visitors [5]. Smart cities can better plan

the resources by estimating which areas of the city are more crowded [6].

� Joint crowd counting and crowd speed estimation: In this part, our objective is

to infer various occupancy attributes of an area, such as the total number of people in

the area, their walking speeds, and the rate of arrival of people into the area by utilizing

a pair of WiFi links. Consider a scenario shown in Fig. 1.3 (left) where people are

walking in an area and a pair of WiFi links collect WiFi RSSI measurements. This is

a typical museum room scenario where people can traverse the area several times back

and forth. The objective, in this case, is to estimate the total number of people along

with the average walking speed of the crowd. Fig. 1.3 (right) considers a retail store

type scenario where people enter an aisle, spend some amount of time, and exit the
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Figure 1.3: A pair of WiFi links are tasked with determining the occupancy attributes
in the area based on the received power measurements over a short period of time.
(left) Considers a museum room type scenario where the number of people is changing
slowly with time and the objective is to estimate the total number of people in the
area as well as the average walking speed of the crowd. (right) Considers a retail store
type scenario where the objective is to estimate the rate of arrival of people into the
area along with the average speed of the crowd.

aisle. Our objective here is to estimate the rate of arrival/departure of people into/out

of the area along with the average speed of the people. We are further interested in

estimating these occupancy attributes in the surrounding WiFi free regions, i.e., where

there is no WiFi coverage.

Sensing the occupancy attributes of an area, such as the corresponding speed of people

when traversing the area, their arrival/departure rate into/out of the area, as well as

the total number of people in the area can be useful in many applications. For instance,

retail stores can learn about the popularity of the products in different aisles, if they

know buyers’ speed/density in different parts of the store. Consider an aisle in a retail

store containing a specific type of product, for instance. Shoppers that are entering

this aisle will walk at a normal pace if the products in the aisle do not attract their

attention. On the other hand, they may slow down, or stop to look at the items if they

find them of interest. Therefore, by estimating the average speed of the shoppers in an

aisle, the popularity of the products in that aisle can be inferred. This information, in

turn, can significantly help with business planning. Similarly, museums can estimate
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which of their exhibits are more popular, based on the speed of the visitors, as well as

their arrival rate into different areas.

We next review the literature and summarize our contributions in each of the above-

mentioned areas.

1.1 Robotic Through-Wall Imaging

A survey of the related literature indicates that localization and mapping has been

investigated by three different communities. More specifically, in the networking com-

munity, both device-based and device-free localization based on RF signals have been

explored, typically in the context of tracking human motion [7–13]. However, in most of

these setups, either the object of interest is not occluded or the information of the first

layer of occluder is assumed known. Furthermore, most focus has been on motion tracking

and not on high-resolution imaging. Finally, most work on RF sensing in the networking

literature do not use off-the-shelf devices or readily available signal measurements, such

as received signal power.

In robotics, localization and mapping of objects is crucial to proper navigation. As

such, several work, such as Simultaneous Localization and Mapping (SLAM), has been

developed for mapping based on laser scanner measurements [14–17]. However, in these

approaches, mapping of occluded objects is not possible. For instance, in [18], some

information of the occluded objects is first obtained with radar and then utilized as part

of robotic SLAM.

In the electromagnetic community, there has been interest in solving an inverse scat-

tering problem [19], i.e., deducing information about objects in an environment based on

their impact on a transmitted electromagnetic wave [20–22]. For instance, remote sensing

to detect oil reserves beneath the surface of the earth is one example [23]. Traditional
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medical imaging based on X-ray also falls into this category [19]. There has also been a

number of work on using a very general wave propagation model for inverse scattering,

such as Distorted Born Iterative method [20], contrast source inversion method [24], and

stochastic methods [25]. However, the computational complexity of these approaches

makes it prohibitive for high-resolution imaging of an area of a reasonable size. Further-

more, most such approaches utilize bulky equipments, which makes their applicability

limited.

In this thesis, we are interested in high-resolution see-through imaging of a com-

pletely unknown area, based on only WiFi RSSI measurements, and its automation with

unmanned vehicles. We next describe our contributions in this area

Contributions:

� Modeling: We mathematically characterize the interaction of transmitted wireless

signals with the objects in the area by tapping into the electromagnetics literature

and show that information about the objects is captured in the received power of the

wireless signals. More specifically, we utilize WKB and Rytov approximations for this

purpose. We further utilize compressive sensing theories to take advantage of image

compressibility.

� Robotic path planning: We utilize unmanned vehicles and focus on their path

planning to optimize imaging through walls.

� Experimental imaging of several areas: We experimentally demonstrate imaging

of several areas through walls. As compared to [26], this work uses a more extensive

wave modeling that results in a better imaging.
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1.2 Occupancy Estimation

In the second part of the thesis, we focus on occupancy estimation, i.e., estimating the

total number of people walking in a given area, based on only WiFi power measurements

between a transmitter and a receiver. Fig. 1.2 shows an example of our considered

scenario, where a fixed Tx/Rx pair are tasked with estimating the total number of people

that are casually walking in an area.

A survey of the literature indicates that the problem of crowd counting has been

investigated by researchers from computer-vision, wireless networking, and environmental

science communities. In computer-vision, for instance, photographic images of an area

are used to identify the number of people present in the area [27–29]. However, these

methods 1) require a network of cameras to be installed in the area of interest and as such

have a high deployment cost, 2) cannot work in the dark, 3) cannot work behind walls,

and 4) pose privacy issues. Researchers in the environmental science community utilize

the characteristics of the area of interest such as temperature, concentration of carbon

dioxide, and dew point to identify the number of people in the area [30–33]. However,

sensing the environment in this manner requires a direct access to the area of interest

and cannot be used in areas occluded by walls or in areas where access is restricted.

Furthermore, they require installing specialized sensors.

The ability of radio frequency (RF) signals to penetrate through objects, such as

walls, combined with the ubiquity of wireless devices, such as WiFi routers, provide a

great potential for imaging [34–36], tracking [37], and occupancy estimation using RF

signals. Crowd counting based on wireless devices can be mainly classified into (i) device-

based active and (ii) device-free passive methods. The device-based active methods rely

on people to carry a communication device [38, 39], which can limit their applicability.

For this reason, there has recently been a considerable interest in device-free methods,
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which do not require people to carry any device. Instead, device-free methods rely on

the interaction of the wireless signals with the people in the area of interest.

In this context of device-free counting, [40] classifies the crowd density in an area

into low, medium, and high using a network of wireless nodes. [41] uses the variance of

the WiFi received signal strength indicator (RSSI) to estimate up to 7 people. However,

this approach uses an extensive prior learning phase with different number of people.

Furthermore, the approach requires a large number of wireless nodes (10 Rx and 1 Tx).

[42] simultaneously estimates the number and the locations of up to 4 people with 22

wireless nodes. [43] uses differential channel state information (CSI) to classify the number

of people. The method has an extensive calibration phase and is only tested with up to 7

people. [44] counts up to 30 people, using CSI measurements at 30 subcarriers and with

4 WiFi links located in the area. The method requires an extensive training phase with

7 experiments and up to 7 people walking in the same area a priori.

In this thesis, through a proper mathematical characterization of the blocking and

multipath fading effects, we show how we can count up to and including 20 people in both

indoor and outdoor environments with a good accuracy. To the best of our knowledge, a

similar characterization and performance have not been reported before with only RSSI

measurements. We then extend our approach to count the number of people in a behind-

wall scenario i.e., estimating the number of people walking inside a building using a

pair of WiFi transceivers located outside the building. We mathematically characterize

the statistics of the inter-event times which are less prone to wall attenuation and show

that they carry information about the number of people which we then use to infer the

occupancy.

Contributions: We separate the impact of a walking person on the transmitted

WiFi signal into two key components: 1) blocking of the LOS and 2) multipath effect.

This separation is important as each component carries information on the total number
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of people in a different way. We then mathematically characterize the first component

probabilistically. Our results indicate that this component carries vital information on

the total number of people. We further characterize the scattering impact of people

through probabilistically analyzing the resulting multipath fading as a function of the

number of occupants. By putting the two components together, we finally develop a

mathematical expression for the probability distribution function of the received signal

amplitude as a function of the total number of occupants, the first such expression to

the best of our knowledge. This derived PDF is then compared to the experimental one

via using Kullback-Leibler divergence as a metric, and the argument that minimizes it

is taken as the estimate of the number of occupants. We then run extensive indoor and

outdoor experiments with up to and including 9 people and both omni and directional

antennas. Our results confirm that the proposed framework can estimate the total num-

ber of walking people with a good accuracy. For instance, an error of 2 or less is achieved

96% and 63% of the time for the outdoor and indoor cases respectively, when using the

typical omni-directional antennas that come as part of the standard WiFi cards. When

using directional antennas, we further observe an error of 2 or less 100% of the time for

both the outdoor and indoor cases.

In the scenario of through-wall crowd counting, we rely only on the LOS blockage

event and characterize the inter-event times where an event corresponds to the LOS

blockage event. We show that the effect of a single person on the WiFi link can be

modeled using a process that we refer to as a “Renewal-type” random process. We then

show that the inter-event times carry vital information on the total number of people, and

are more robust to the attenuation caused by the walls (as compared to the dip values),

enabling a high-accuracy estimation through walls. More specifically, we use theories

from Renewal process literature to model the effect of N people as a superposition of

“Renewal-type” processes. We then derive the Probability Mass Function (PMF) of
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the inter-event times based on this model and use it to estimate the number of people

using a maximum likelihood (ML) estimator. It is noteworthy that no existing work has

shown the relationship between inter-event times and the total number of people. We

extensively validate our framework using 44 real experiments in five different areas on

our campus, three classrooms, a conference room, and a hallway. More specifically, we

show that we can estimate up to and including 20 people with an error of 2 people or less

100% of the time and with an error of 1 person or less 75% of the time. Our experiments

further include areas with different wall materials, such as concrete, plaster, and wood,

to validate the robustness of our approach. To the best of our knowledge, this is the first

demonstration of crowd counting through walls.

1.3 Joint Crowd Counting and Crowd Speed Esti-

mation

In the last part of this thesis, we propose a framework that can estimate the occu-

pancy attributes of an area, including the speed of a crowd when traversing the area, the

arrival/departure rate into/out of the area, or the total number of people in the area, us-

ing only the received signal strength (RSSI) of two WiFi links in the area of interest, and

without relying on people to carry any device (i.e., passively). Since a person may not

have a constant speed in an area, in this thesis “speed estimation” refers to estimating

the average speed of the people, where the average is the spatial average of the speed of a

person in that particular area. In other words, people can stop several times in an area,

or change their instantaneous speed. We are then interested in estimating their average

speed, which is area-dependent and can thus reveal valuable information about an area.

We next summarize the related work and our contributions.
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Infrared-based approaches: Infrared (IR) sensors are mainly used for occupancy de-

tection by sensing the motion of the occupants [3, 45, 46]. IR sensors located at the

entrances/exits can also count the number of people entering and exiting the area [47].

Recently, IR sensors are also used to estimate the number of people in an area, without

relying on door counters [48]. However, they are limited to counting up to 8 people in

the area. More recent work also classifies the walking speed of a single person in an area

based on IR sensors [47, 49]. However, there is no work based on IR sensors that can

estimate the speed of a crowd (i.e., estimate the speed beyond one person), or count the

number of people beyond 8.

Vision-based approaches: Vision-based methods can be potentially used to estimate

the occupancy attributes of an area [28,29,50]. This involves continuous recording of an

area, using cameras, followed by computer-vision algorithms for processing the videos.

However, while consumers are fine with security cameras being probed in an on-demand

manner for security purposes, serious privacy concerns arise when cameras are utilized

in public places to analyze customer behaviors. For instance, a recent survey on retail

shoppers [51] revealed that 75% of the people who understood the capabilities of vision-

based tracking technologies found it intrusive for retails to track their behavior using such

a technology. Furthermore, employing such tracking techniques could lead to shoppers

choosing not to visit the corresponding stores [2]. In summary, vision-based occupancy

estimation methods have the major drawback of privacy violation. Furthermore, they

can only estimate the occupancy attributes in the areas that are in the direct line-of-

sight of the cameras, while Radio Frequency (RF) based approaches have a through-wall

sensing capability.

Device-based active RF approaches: The device-based active methods depend on

the RF signals transmitted from a device carried by people in the area to assess the

occupancy attributes [38,52,53]. However, these methods require the shoppers to carry a
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wireless device, or an on-body sensor, which limits their applicability. More importantly,

if a store is to use shoppers’ devices to gather store analytics, it can only gather crude,

low resolution tracking data, based on monitoring which router the device is connected

to in the store (e.g., this data may not directly translate to speed estimation in different

aisles). Even then, serious privacy concerns limit the applicability of such an approach in

public places. For instance, Nordstrom, a clothing company which implemented an ac-

tive WiFi-based in-store tracking technology to analyze the behavior of their customers,

withdrew it due to privacy concerns of the shoppers [54]. Furthermore, a recent survey

on active WiFi tracking technology [2] revealed that 80% of the shoppers do not like to

be tracked based on their smartphones, while 43% do not want to shop at a store that

employs active WiFi tracking technology.

Device-free passive RF approaches: The device-free passive methods, on the other

hand, leverage the interaction of RF signals with the pedestrians and hence do not re-

quire the pedestrians to carry any device. In this manner, they can preserve the privacy.

For instance, [40, 42, 43] use the variations in the WiFi RSSI signals, caused by people,

to estimate the number of people. [44] uses channel state information (CSI) measure-

ments and its corresponding variations for counting. However, these methods rely on

extensive prior calibrations to the extent of running an actual experiment with several

people walking in the area. They further require several wireless links, and cannot han-

dle time-varying number of people in the area. [55] estimates the number of people in

an area by minimizing the required prior calibration. However, they have to assume the

speed of the people. In terms of speed estimation, some recent work started to estimate

the speed of people in a device-free manner. For instance, [56] estimates the speed of a

single person walking in a circle of radius 2 m, based on the RSSI measurements of a

mobile phone located at the center of the circle. [57] classifies the speed of a single person

based on the FM radio receivers. However, all these methods require an extensive prior
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training phase and are limited to a single person. In [58], RSSI measurements of several

WiFi links are used to track up to 4 people walking in the same area. Such an approach

can in principle be extended towards speed estimation. However, this and other work on

tracking typically have to assume very few people (less than 5). Moreover, in order to

estimate the speed of a crowd of pedestrians, there is no need to track every individual,

as we shall see in this thesis. In summary, to the best of our knowledge, there is no work

in the literature that can estimate the speed of a crowd passively. Furthermore, there is

no work that can jointly estimate the speed and total number/rate of arrival of people.

In this dissertation, we propose a framework to estimate both the crowd speed and

crowd count, passively, and by using only a pair of WiFi links in the area. We then extend

our framework to estimate the speed of people in the adjacent regions where there may

not be WiFi coverage. Furthermore, we propose to use only the RSSI measurements

of WiFi links which can be measured with any generic off-the-shelf device. We next

summarize our main contributions in this area.

Contributions:

� We mathematically characterize the cross-correlation between two WiFi link measure-

ments and show that it contains key information about the crowd speed in the area.

� We mathematically characterize the probability of crossing a link and explicitly show

its dependency on the total number of people for the scenario of Fig. 1.3 (left), and

on the rate of arrival of people for the scenario of Fig. 1.3 (right). Our mathematical

characterization is general in the sense that it can include any type of motion patterns

dictated by the environment.

� We implement a framework to estimate the crowd speed, total number of people,

and rate of arrival of people in an area, using a pair of WiFi links, and validate its

performance using a total of 51 experiments, in both indoor and outdoor areas, with

14



Introduction Chapter 1

up to 20 people, and show that our framework can accurately estimate the occupancy

attributes of an area in a device-free manner.

� We deploy our framework in an aisle of a local retail store, Costco, and estimate the

behavior of shoppers in the aisle.

� We extend our framework to estimate the speed of crowd in the adjacent regions where

there may not be any WiFi coverage. We conducted a total of 108 experiments, with up

to 10 people walking in both an indoor and an outdoor area that has two regions, with

a variety of speeds per region, and show that our approach can accurately estimate

the speeds of pedestrians in the two adjacent regions.
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Chapter 2

Robotic Through-Wall Imaging

In this chapter, we consider a scenario where a number of unmanned vehicles are tasked

with seeing a completely unknown area behind thick walls, based on only wireless power

measurements using WLAN cards. We show that a proper modeling of wave propagation

that considers scattering and other propagation phenomena can result in high-resolution

images of the unknown area. More specifically, we develop a theoretical and experimental

framework for this problem based on Rytov wave models and integrate it with sparse sig-

nal processing and robotic path planning. Our experimental results show high-resolution

imaging of three different areas, validating the proposed framework. Moreover, they show

considerable performance improvement over the state-of-the-art that only considers the

Line Of Sight (LOS) path, allowing us to image more complex areas not possible before.

Finally, we show the impact of robot positioning and antenna alignment errors on our

see-through imaging framework.

This chapter is organized as follows. In Section 2.1, we mathematically formulate

our imaging problem based on Rytov wave approximation. In Section 2.2, we pose the

resulting optimization problems and discuss how to solve them based on total variation

minimization. In Section 2.3, we introduce the hardware and software structures of our

experimental robotic platform, which allows for more autonomy in WiFi measurement

collection. In Section 2.4, we then present our imaging results of three different areas
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and show the impact of robot positioning and antenna alignment errors.

2.1 Problem Formulation

Consider a completely unknown workspace D ⊂ R3. Let Dout be the complement of

D, i.e., Dout = R3 \D. We consider a scenario where a group of robots in Dout are tasked

with imaging the area D by using only WiFi. In other words, the goal is to reconstruct

D, i.e., to determine the shapes and locations of the objects in D based on only a small

number of WiFi measurements. We are furthermore interested in see-through imaging,

i.e., the area of interest can have several occluded parts, like parts completely behind

concrete walls and thus invisible to any node outside. Fig. 1.1 shows an example of

our considered scenario. The red superimposed volume marks the area that the two

unmanned vehicles are interested in imaging but that is completely unknown to them.

The area has several occluded parts, such as the parts blocked by the outer concrete wall,

which is highly attenuating. Note that both empty and full spaces inside the red volume

as well as its outer surfaces are all unknown to the robots and need to be imaged. The

robots only have WiFi for imaging. As the robots move outside of D, one robot measures

the received signal power from the transmissions of the other robot. The unknown area

D then interacts with each transmission, as dictated by the locations and properties of

its objects, leaving its impact on each reception. The robots then need to image the

structure based on all the receptions.

In this section, we start with the volume integral wave equation and discuss how it

can be linearized and solved under certain assumptions, developing the system models

that we shall utilize later for our imaging. The readers are referred to [19, 59] for more

details on the wave propagation modeling.
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2.1.1 Volume Integral Equations [19]

Let E(r) be the electric field, J(r) be the current density, ε(r) be the electric permit-

tivity, and µ(r) be the magnetic permeability at r ∈ R3, where r is the position vector in

the spherical coordinates.1 Then, we have the following volume integral equation relating

the electric field to the current source and objects in D [19]

E(r) = jωµ0

∫∫∫
R3

~G(r, r′) • J(r′) dv′

+

∫∫∫
R3

~G(r, r′) • (O(r′)E(r′)) dv′,

(2.1)

where ~G(r, r′) is the dyadic Green’s function given by

~G(r, r′) =

(
I +
∇∇
k2

0

)
g(r, r′), (2.2)

g(r, r′) =
ejk0|r−r′|

4π|r− r′|
, (2.3)

O(r) = k2(r)− k2
0 denotes the material property of the object at position r, k2

0 = ω2ε0µ0

denotes the wavenumber of the free space,2 k2(r) = ω2µ0ε(r) denotes the wavenumber

of the medium at r, ε0 and µ0 are the permittivity and permeability of the free space

respectively, ω is the angular frequency, and • denotes the vector dot product. The

robots are then interested in learning O(r), for r ∈ D, as it carries the information of the

location/material property of the objects in the workspace. Note that (2.1) is valid for

any inhomogeneous, isotropic, and non-magnetic media. Also, O(r)E(r) is the equivalent

current induced in the object at r. This induced current in turn produces an electric field.

The total field is then the sum of the electric field due to the current in the transmit

antenna, the first term on the right hand side (RHS) of (2.1), and the electric field due

1In this dissertation, single-frequency operation is assumed and all the materials are considered
isotropic and non-magnetic, i.e., µ(r) = µ0, for all r ∈ R3, where µ0 is the permeability of the freespace.

2In this dissertation, free space refers to the case where there is no object.
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to the induced current in the objects (the second term on the RHS of (2.1)).

First, we start by assuming free space in Dout. Then, ε(r) = ε0, for r ∈ Dout, resulting

in k2(r) = k2
0 and O(r) ≡ 0, for r ∈ Dout. When there are no objects in D, we have

k2(r) = k2
0 and O(r) ≡ 0, for all r ∈ R3, and the second term on the RHS of (2.1)

vanishes. This means that the first term is the incident field when there are no objects

in D and the second term is the result of scattering from the objects in D. By denoting

the first term on the RHS of (2.1) as Einc(r), we then get

E(r) = Einc(r) +

∫∫∫
D

~G(r, r′) • (O(r′)E(r′)) dv′, (2.4)

where ~G(r, r′) is a second-order tensor and can be represented as the following 3 × 3

matrix in the Cartesian coordinates:

~G(r, r′) =


Gxx(r, r

′) Gxy(r, r
′) Gxz(r, r

′)

Gyx(r, r
′) Gyy(r, r

′) Gyz(r, r
′)

Gzx(r, r
′) Gzy(r, r

′) Gzz(r, r
′)

 .
In reality, there will be objects in Dout. Then, Einc denotes the field when there are

no objects in D.3 Without loss of generality, we assume that the transceiver antennas

are linearly polarized in the z-direction. This means that we only need to calculate the

z-component of the electric field, which depends on the last row of ~G(r, r′). Let Jeq(r) =

[Jxeq J
y
eq J

z
eq]T = O(r)E(r). We further assume near-zero cross-polarized components Jxeq

and Jyeq and take Jeq(r) u [0 0 Jzeq]T . This approximation is reported to have a negligible

effect [60]. By using this approximation in (2.4) and only taking the z-component, we

3In our experiments, we will not have access to the exact incident field when there is nothing in D.
Thus, the two robots make a few measurements in Dout where there are no objects in between them to
estimate and remove the impact of Einc. If the robots have already imaged parts of Dout, that knowledge
can be easily incorporated to improve the performance.
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get the following scalar equation:

Ez(r) = Ez
inc(r) +

∫∫∫
D

Gzz(r, r
′)O(r′)Ez(r′) dv′, (2.5)

where Ez(r) and Ez
inc(r) are the z-components of E(r) and Einc(r), respectively.

2.1.2 Linearizing Approximations

In (2.5), the received electric field Ez(r) is a non-linear function of the object function

O(r), since Ez(r′) inside the integral also depends on O(r). This nonlinearity is due to

the multiple scattering effect in the object region [59]. Thus, we next use approximations

that make (2.5) linear and easy to solve under the setting of sparse signal processing.

Line Of Sight-Based Modeling [19,61]

A simple way of modeling the receptions is to only consider the LOS path from the

transmitter to the receiver and the impact of the objects on this path. This model has

been heavily utilized in the literature due to its simplicity [61]. However, it results in a

considerable modeling gap for see-through imaging since it does not include important

propagation phenomena such as scattering. In this part, we summarize the LOS model

in the context of wave equations.

At very high frequencies, such as in X-ray, the wave can be assumed to travel in

straight lines with negligible reflections and diffractions along its path [19]. Then, the

solution to (2.5) is given as follows by using Wentzel Kramers Brillouin (WKB) approx-

imation,4

E(r) =
c√
α(r)

e
jω

∫
LT→R

α(r′) dr′
, WKB Approximation (2.6)

4Here, the field is along the z-direction, as explained before. From this point on, superscript z is
dropped for notational convenience.
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where α(r) is a complex number that represents the slowness of the medium at r and

is related to k(r),
∫
LT→R

is a line integral along the line joining the positions of the

transmitter and the receiver, and c is a constant that depends on the transmitted signal

power.

It can be seen that the loss incurred by the ray is linearly related to the objects

along that path, resulting in a linear relationship between the received power and the

objects, as we shall see. This approximation is the base for X-ray tomography [62]. How-

ever, the underlying assumption of this method is not valid at lower frequencies, like

microwave frequencies, due to the non-negligible diffraction effects [63]. [61,64], proposed

a see-through wall RF-based imaging framework based on this approximation. In this

dissertation, our goal is to use a considerably more comprehensive modeling of the re-

ceptions (which has been a bottleneck in see-through imaging) by tapping into the wave

literature. We show that by addressing the modeling of the receptions through using

Rytov wave approximation, we can image areas not possible before.

Rytov Approximation [19]

In general, the field inside any inhomogeneous media can be expressed as

E(r) = ejψ(r), (2.7)

and satisfies

[∇2 + k2(r)]E(r) = 0, (2.8)

where ψ(r) is a complex phase term. It can then be shown that the solution to (2.8) can

be approximated as follows:

E(r) = Einc(r)ejφ(r), Rytov Approximation (2.9)
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where

φ(r) =
−j

Einc(r)

∫∫∫
D

g(r, r′)O(r′)Einc(r
′) dv′. (2.10)

The validity of Rytov approximation is established by dimensional analysis in [19] and

is accurate at high frequencies,5 if

δε(r)
4
=
ε(r)

ε0
− 1� 1,

where δε(r) is the normalized deviation of the electric permittivity from the free space.

At lower frequencies, the condition for validity of the Rytov approximation becomes

(k0Lobj)
2δε(r)� 1,

where Lobj is the order of the dimension of the objects. In our case, with a frequency of

2.4 GHz and Lobj of the order of 1 m, we satisfy the condition of high frequency, except

at the boundaries of the objects, where there are abrupt changes in the material.

For the sake of completion, a more commonly-used linearizing approximation, called

Born approximation, is summarized in the appendix A. Rytov approximation is reported

to be more relaxed than the Born approximation at higher frequencies [19]. Also, Rytov

approximation lends itself to a simple linear form, when we only know the magnitude

of the received electric field, as described next. Thus, in this dissertation, we focus on

Rytov wave modeling.

5In this thesis, high frequency refers to the frequencies at which the size of inhomogeneity of objects
is much larger than the wavelength.
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2.1.3 Intensity-Only Rytov Approximation

In the aforementioned equations, both magnitude and phase of the received field are

needed. In this dissertation, however, we are interested in imaging based on only the

received signal power.

Then, by conjugating (2.9), we get

E∗(r) = E∗inc(r)e−jφ
∗(r). (2.11)

From (2.9) and (2.11), we then have

|E(r)|2 = |Einc(r)|2e−2Imag(φ(r)), (2.12)

where Imag(.) and |.| denote the imaginary part and the magnitude of the argument,

respectively. Since the received power6 is proportional to the square of the magnitude of

the received field, we have the following equation by taking logarithms on both sides of

(2.12):

Pr(r)(dBm) = Pinc(r)(dBm) + 10 log10(e−2)Imag(φ(r)), (2.13)

where Pr(r)(dBm) = 10 log10

(
|E(r)|2

120π×10−3

)
is the received power in dBm at r, and Pinc(r)(dBm) =

10 log10

(
|Einc(r)|2

120π×10−3

)
is the power incident in dBm at r when there are no objects.

To solve (2.12) for object O(r), we discretize D into ND equal-volume cubic cells. The

position of each cell is represented by its center position vector rn, for n ∈ {1, 2, · · · , ND}.

The electric field and the object properties are assumed to be constant within each cell.

6This is the received power by an isotropic antenna. For a directional antenna, this should be
multiplied by the gain of the antenna.
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We then have

O(r) =

ND∑
n=1

O(rn)Cn, (2.14)

Einc(r) =

ND∑
n=1

Einc(rn)Cn, (2.15)

where r, rn ∈ D, Cn is a pulse basis function which is one inside cell n and zero outside.

By substituting (2.14) and (2.15) into (2.10), we get

φ(r) =
−j

Einc(r)

ND∑
n=1

O(rn)Einc(rn)

∫∫∫
Vn

g(r, r′) dv′

u
−j

Einc(r)

ND∑
n=1

g(r, rn)O(rn)Einc(rn)∆V, (2.16)

where ∫∫∫
Vn

g(r, r′) dv′ u g(r, rn)∆V, (2.17)

Vn is the nth cell and ∆V is the volume of each cell. Note that Cn is not included in

(2.16) since we are evaluating the integral inside cell n where Cn is one.

Let (pi,qi), for pi,qi ∈ Dout, denote the transmitter and receiver position pair where

the ith measurement is taken. Also, let Φ = [φp1(q1) φp2(q2) · · ·φpM (qM)]T , where M is

the number of measurements, φpi(qi) = −j
Einc,pi

(qi)

∑ND

n=1 g(qi, rn)O(rn)Einc,pi(rn)∆V , and

Einc,pi(rn) is the incident field at rn when the transmitter is at pi. Then, we have

Φ = −jF O, (2.18)

where F is an M × ND matrix with Fi,j =
g(qi,rj)Einc,pi

(rj)∆V

Einc,pi
(qi)

and O = [O(r1) O(r2) · · ·
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O(rND
)]T . Using (2.13) for each measurement and stacking them together, we get

Pryt = Imag(Φ), (2.19)

where Pryt = Pr(dBm)−Pinc(dBm)
10 log10(e−2)

, Pr(dBm) = [Pr,p1(q1)(dBm) Pr,p2(q2)(dBm) · · · Pr,pM (qM)(dBm)]T ,

Pinc(dBm) = [Pinc,p1(q1)(dBm) Pinc,p2(q2)(dBm) · · · Pinc,pM (qM)(dBm)]T , and Pr,pi(qi)(dBm)

and Pinc,pi(qi)(dBm) are the received power and incident power corresponding to the

transmitter and receiver pair (pi,qi), respectively. Using (2.18) and (2.19), we get

Pryt = Real(FO) = FROR + FIOI, (2.20)

where Real(.) is the real part of the argument, and FR, FI, OR and OI are the real part of

F , imaginary part of F , real part of O, and imaginary part of O, respectively. This can

be further simplified by noting that FROR � FIOI [65]. Therefore, the above equation

becomes

Pryt u FROR, (2.21)

which is what we shall use for our RF-based robotic imaging.

2.1.4 Intensity-Only LOS Approximation

Starting from (2.6) and following similar steps to the intensity-only Rytov approxi-

mation, we get:

Pr(r)(dBm) =Pinc(r)(dBm)

− 10 log10(e−2)ω

∫
LT→R

Imag(α(r′)) dr′,
(2.22)
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where the integration is the line integral along the line joining the positions of the trans-

mitter and receiver, and r is the position of the receiver. Denoting PLOS = Pr(dBm)−Pinc(dBm)
10 log10(e−2)

and stacking M measurements together, we have

PLOS = ALOSΓ, (2.23)

where ALOS is a matrix of size M×ND with its entry ALOSi,j = 1 if the jth cell is along the

line joining the transmitter and receiver of the ith measurement, and Ai,j = 0 otherwise,

Γ = [αI(r1) αI(r2) · · ·αI(rND)]T , and αI(.) = Imag(α(.)).

Equation (2.23) is what we then utilize in our setup when showing the performance

of the state of the art.

2.2 Brief Overview of Sparse Signal Processing

In the formulations of the Rytov and LOS approximations in Section 2.1, we have a

system of linear equations to solve for each approach. However, the system is severely

underdetermined as the number of wireless measurements typically amount to a small

percentage of the number of unknowns. More specifically, let x ∈ RND be a general

unknown signal, y ∈ RM be the measurement vector, and y = Bobsx be the observation

model, where Bobs is an M ×ND observation matrix. We consider the case where ND �

M , i.e., the number of unknowns is much larger than the number of measurements. Thus,

it is a severely underdetermined problem which cannot be solved uniquely for x given

y. In this section, we briefly summarize how sparse signal processing can be utilized to

solve this problem.

Suppose x can be represented as a sparse vector in another domain as follows: x =

ΘX, where Θ is an invertible matrix and X is S-sparse, i.e., card(supp(X))� ND, where
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card(.) denotes the cardinality of the argument and supp(.) denotes the set of indices of

non-zero elements of the argument. Then, we have y = KX, where K = BobsΘ and X

has a much smaller number of the non-zero elements than x. In general, the solution

to the above problem is obtained by solving the following non-convex combinatorial

problem [66]:

minimize ‖X‖0, subject to y = KX. (2.24)

Since solving (2.24) is computationally-intensive and impractical, considerable research

has been devoted towards developing approximated solutions for (2.24).

In our case, we are interested in imaging and localization of the objects in an area.

Spatial variations of the objects in a given area are typically sparse. We thus take

advantage of the sparsity of the spatial variations to solve our under-determined system.7

More specifically, let R = [Ri,j] denote an m × n matrix that represents the unknown

space. Since we are interested in the spatial variations of R, let

Dh,i,j =

Ri+1,j −Ri,j if 1 ≤ i < m,

Ri,j −R1,j if i = m,
and

Dv,i,j =

Ri,j+1 −Ri,j if 1 ≤ j < n,

Ri,j −Ri,1 if j = n.

Then, the Total Variation (TV) of R is defined as:

TV(R) =
∑
i,j

‖Di,j(R)‖, (2.25)

where Di,j(R) = [Dh,i,j Dv,i,j], and ‖.‖ can represent either l1 or l2 norm. TV minimiza-

7It is also possible to solve an l1 convex relaxation of (2.24). However, our past analysis has indicated
a better performance with spatial variation minimization [61].
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tion then solves the following convex optimization problem:

minimize TV(R), subject to y = KX. (2.26)

In the context of the current problem formulation, X represents the object map D, R

represents the spatial variations of X, K represents the observation model, i.e., K = FR

for the Rytov approach and K = ALOS for the LOS approach, and y represents the

received power (after removing path loss). In solving (2.26), l1 or l2 norm results in a

similar reconstruction [67]. Thus, unless otherwise stated, all results of this thesis are

based on l1 norm.

To solve the general compressive sensing problem of (2.26) robustly and efficiently,

TVAL3 (TV Minimization by Augmented Lagrangian and Alternating Direction Al-

gorithms) is proposed in [68]. TVAL3 is a MATLAB-based solver that solves (2.26)

by minimizing the augmented Lagrangian function using an alternating minimization

scheme [69]. The augmented Lagrangian function includes coefficients which determine

the relative importance of the terms TV(R) and ‖y −KX‖ in (2.26). The readers are

referred to [68] for more details on TVAL3. We use TVAL3 for all the experimental

results of this dissertation.

2.3 Experiment Setup

In this section, we briefly describe our enabling experimental testbed. In our setup,

the robots can take channel measurements over a given route autonomously, and without

any coordination between themselves or stopping. More specifically, each robot travels

a route autonomously and without any coordination with the other robot or positioning

error correction. In the rest of this section, we describe the software and hardware aspects
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of our testbed in more details.

In our setup, we use two Pioneer 3-AT (P3-AT) mobile robots from MobileRobots

Inc. [70], each equipped with an onboard PC, and an IEEE 802.11g (WLAN) card. Each

robot can simultaneously follow a given path and take the corresponding received signal

strength measurements (RSSI) as it moves. The data is then stored and transferred back

to a laptop at the end of the operation.

2.3.1 Hardware Architecture

P3-AT mobile robots [70] are designed for indoor, outdoor, and rough-terrain im-

plementations. They feature an onboard PC104 and a Renesas SH7144-based micro-

controller platform for control of the motors, actuators and sensors. By utilizing a

C/C++ application programming interface (API) library provided by MobileRobots,

users are able to program and control the robot via the micro-controller platform. Fig.

2.1 shows the P3-AT robot. We have furthermore utilized directional antennas for better

imaging results. In order to hold the directional antennas, we have built an additional

electromechanical fixture, as can be seen from Fig. 2.1. This antenna is rotated and

positioned via a Hitec HA-7955TG digital servo mounted on the antenna fixture. Via a

serial port, PWM values are passed from the onboard PC104 to a Digilent Cerebot II

micro-controller on the side of the antenna frame. These PWM waveforms are then out-

putted to the Hitec Servo, specifying a range of 0 - 180 degree angle. We use a GD24-15

2.4 GHz parabolic grid antenna from Laird Technologies [71]. This model has a 15 dBi

gain with 21 degree horizontal and 17 degree vertical beamwidth and is suitable for IEEE

802.11 b/g applications.

One of the robots has a D-Link WBR-1310 wireless router attached to its antenna.

It constantly outputs a wireless signal for the other robot to measure the signal strength.
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Figure 2.1: The figure shows a Pioneer 3-AT robot with the additionally-mounted
servomechanism and a directional antenna.

The overall operation is overseen by a remote PC, which is in charge of passing the initial

plan to the robots to execute, and collecting the final signal strength readings at the end

of the operation. A block diagram of the hardware architecture of the robots is shown in

Fig. 2.2.

Figure 2.2: Block diagram of the hardware architecture of one of the robots.
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2.3.2 Software Architecture

The overall software architecture of our system can be seen in Fig. 2.3. The software

system is composed of two application layers, one running on a remote PC to control

the experiment and one running on the robots themselves. The programs are developed

in C++ using the ARIA library developed by MobileRobots. They communicate via a

TCP/IP connection between the robot-side application, which acts as the server, and the

PC-side application, which acts as the client. The remote PC is in charge of overseeing

the whole operation and giving initial control commands and route information to the

robots. The user can specify the route information involving the direction of movement,

the length of the route and the coordinates of the starting positions of the robots. Next,

we explain our software architecture in more details.

In order to synchronize all the operations - robot movement, antenna alignment and

signal strength measurement, the robot execution is divided into four separate in-software

threads: the antenna control thread, signal strength thread, motor control thread, and

main thread, which respectively control the antenna rotation, manage the reading of the

wireless signal strength, operate the motor such as in driving forward, and send the over-

all commands. The main thread initializes/finalizes other threads and communicates

with the remote PC. Before a route begins, the main thread first creates the threads

needed to run the other operations and freezes their operations using Mutex. It then

receives the path information of both robots from the remote PC. This information is

passed to the antenna control and signal strength threads, where it will be used to cal-

culate when to read the signal strength, and how to rotate the antenna over the route

to keep the antennas on both robots aligned. Once the threads are properly initialized,

the path information is passed to the motor control thread to begin the operation. The

measurements gathered by one robot will be stored on its PC and are transferred back
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to the remote PC at the end of the operation. This is because any kind of TCP com-

munication introduces unnecessary delays in the code during the measurements. It is

necessary, however, to be able to control the robot movement and operation at all times

from the remote PC in case of emergency. Therefore, the code is designed to maximize

the autonomy and precision of the operation, through threading, while being able to shut

down via remote control at any time. This is achieved with the main thread utilizing a

polling approach.

2.3.3 Robot Positioning

Accurate positioning is considerably important as the robots need to constantly put a

position stamp on the locations where they collect the channel measurements and further

align their antennas based on the position estimates. In our setup, our robots utilize on-

board gyroscopes and wheel encoders to constantly estimate their positions. Since we

use a dead reckoning approach to localize our robots, timing is very important to the

accuracy of position estimation. We thus employ precise timers in software to help the

robot determine its own position as well as the position of the other robot based on the

given speed. More specifically, when the motor control thread begins its operation, timers

are simultaneously initiated in all the threads, allowing them to keep track of when and

where they are in their operations. Also, the threads’ Mutex are released, allowing the

robots to move and take measurements.

It is important to note that once the robots start a route, there is no communication

or coordination between them. Each robot constantly uses the set speed and timer infor-

mation to estimate its own location as well as the location of the other robot for antenna

alignment and measurement collection. Thus, all the measurements and alignments are

naturally prone to positioning errors. Currently, we use speeds up to 10 cm/s. A sample
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Figure 2.3: Software architecture of the robot platform.

route is shown in Fig. 2.4 (see the 0 degree angle route, for instance). Our current local-

ization error is less than 2.5 cm per one meter of straight line movement, and our current

considered routes typically span 10 - 20 meters. Additionally, the robot also experiences

a drift from the given path. These robot positioning errors will also result in antenna

alignment errors. In Section 2.4, we discuss the impact of both errors on our imaging

results in details.

2.3.4 Robot Paths

So far, we have explained the hardware and software aspects of the experimental

testbed. Next, we briefly explain the routes that the robots would take. More specifically,

the transmitting and receiving robots move outside of D, similar to how CT-scan is done,

in parallel, along the lines that have an angle θ with the x-axis. This means that the

line connecting the transmitter and receiver would ideally (in the absence of positioning

errors) stay orthogonal to the line with angle θ. Sample routes along 0 and 45 degree

angles are shown in Fig. 2.4. Both of the robots move with a same velocity of 10 cm/s

and take measurements every 0.2 sec (i.e., measurements are taken with 2 cm resolution).
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As explained earlier, there is no coordination between the robots when traveling a route.

To speed up the operation, we currently manually move the robots from the end of one

route to the beginning of another route. This part can also be automated as part of

future work. Additionally, random wireless measurements, a term we introduced in [72],

where the transmitter is stationary and the receiver moves along a given line, can also be

used. In the next section, we only consider the case of parallel routes, as shown in Fig.

2.4. Readers are referred to [73] for more details and tradeoff analysis on using parallel

or random routes in the context of LOS reception modeling.
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Figure 2.4: Sample routes for measurement collection are shown for 0 and 45 degree angles.

2.4 Experimental Results and Discussions

In this section, we show the results of see-through wall imaging with Rytov wave

approximation and further compare them with the state of the art results based on LOS

modeling. We consider three different areas, as shown in Fig. 2.7, 2.8 and 2.9 (top-left).

We name these cases as follows for the purpose of referencing: T-shape, occluded cylinder,

and occluded two columns. Two robots move outside of the area of interest and record the
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signal strength. These measurements are then used to image the corresponding unknown

regions using both Rytov and LOS approaches, as described in Section 2.1. Fig. 2.7,

2.8 and 2.9 further show the horizontal cuts of these areas. In this dissertation, we only

consider 2D imaging, i.e., imaging a horizontal cut of the structure.

Fig. 2.5 shows a sample of the real measurement along the 0 degree line for the T-

shape, with the distance-dependent path loss component. As mentioned previously, the

distance-dependent path loss component does not contain any information about the

objects. Thus, by making a few measurements in the same environment where there

are no objects between the robots, it is estimated and removed. To compare how well

the WKB (LOS modeling) and Rytov approximations match the real measurements, the

simulated received signal loss using each approximation is plotted in Fig. 2.6 for the

route along the 0 degree angle for the occluded cylinder structure. As can be seen, the

Rytov approximation matches the real measurement considerably better than the LOS

modeling.
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Figure 2.5: Real received signal power along the 0 degree line for the T-shape, with
the distance-dependent path loss component removed.

Our imaging results for the T-shape, the occluded cylinder and the occluded two
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Figure 2.6: Comparisons of the Rytov and LOS approximations for the route along
the 0 degree angle for the occluded cylinder. As can be seen, the Rytov approximation
matches the real measurement considerably better than the LOS modeling through
WKB approximation.

columns are shown in Fig. 2.7, 2.8 and 2.9 respectively. For the T-shape and the

occluded cylinder, we have measurements along four angles of 0, 90, 45, and 135 degrees.

For the occluded two columns we have measurements along five angles of 0, 90, 80, -10

and 10 degrees. The total measurements thus amount to only 20.12%, 4.7% and 2.6%

for the T-shape, the occluded cylinder, and the occluded two columns respectively. Fig.

2.7 (left) shows the T-shape structure with its horizontal cut marked. This horizontal

cut, which is the true original image that the robots need to construct, is an area of

0.64 m × 1.82 m, which results in 2912 unknowns to be estimated. Fig. 2.7 further

shows the imaging results with both Rytov and LOS for this structure. As can be seen,

Rytov provides a considerably better imaging quality, especially around the edges. The

reconstructions after thresholding are also shown in Fig. 2.7, which uses the fact that we

are interested in a black/white image that indicates absence/presence of objects (more

details on this will follow soon).

Fig. 2.8 shows the imaging of the occluded cylinder. This area of interest is 2.98 m×
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Horizontal

    Cut

Original Completely Unknown Area

(0.64 m x 1.82 m)

Reconstructed Image - Rytov

with 20.12% measurements

Reconstructed Image - LOS

 with 20.12% measurements

Thresholded Image - Rytov Thresholded Image - LOS

 42 cm

 56 cm 43.4 cm

Figure 2.7: The left figures show the T-shape structure of interest that is completely
unknown and needs to be imaged, as well as its horizontal cut (its dimension is 0.64
m × 1.82 m). The white areas in the true image indicate that there is an object while
the black areas denote that there is nothing in those spots. Imaging results based
on 20.12% measurements are shown for both Rytov and LOS approaches. Sample
dimensions of the original and the reconstructed images are also shown. It can be
seen that Rytov provides a considerably better imaging result.

2.98 m, amounting to 22201 unknowns to be estimated based on only 4.7% measurements.

This structure is more challenging than the T-shape to reconstruct because 1) it is fully

behind thick brick walls, and 2) it consists of materials with different properties (metal

and brick). Similarly, we can see that Rytov provides a better imaging result for this

structure as well, with the details reconstructed more accurately. Thresholded images

are also shown.

Fig. 2.9 shows the imaging of the occluded two columns. This area of interest is

4.56 m × 5.74 m (amounting to 65436 unknowns) and is estimated only with 2.6% WiFi

measurements. This structure is more challenging to image than both the T-shape and

the occluded cylinder since 1) there are two columns close to each other, which results

in a higher multipath and other propagation phenomena and, 2) smaller percentage of

measurements are available for imaging (half of that used for the occluded cylinder). The

figure shows the thresholded imaging results as well. More specifically, any value above

40% and below 20% of the maximum value is thresholded to the 40% and 20% values

respectively (the same thresholding approach is used for the past two areas). As can be
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       Reconstructed Image - Rytov

          with 4.7% measurements

   Reconstructed Image - LOS

      with 4.7% measurements

Horizontal 

    Cut

   Horizontal

        cut

       Thresholded Image - Rytov        Thresholded Image - LOS

Original Completely Unknown Area

              (2.98 m x 2.98 m)

Figure 2.8: The left figures show the occluded cylinder structure of interest that
is completely unknown and needs to be imaged, as well as its horizontal cut (its
dimension is 2.98 m × 2.98 m). The white areas in the true image indicate that there
is an object while the black areas denote that there is nothing in those spots. Imaging
results based on 4.7% measurements are shown for both Rytov and LOS approaches.
It can be seen that Rytov provides a considerably better imaging result.

seen from Fig. 2.9, the LOS approach fails to image this more complex structure while

Rytov can image it. From Fig. 2.7 and 2.8, it can be seen that imaging based on LOS

modeling can vaguely image the details. But for more complex areas such as Fig. 2.9, its

performance becomes unacceptable while Rytov can locate the objects fairly accurately.

This signifies the importance of properly modeling the receptions.

In general, the computational complexity of our imaging approach depends on the size

of the unknown area and the number of gathered measurements. Furthermore, the uti-

lized solver typically converges faster if the model better matches the real measurements.

Hence, we expect that the Rytov approach runs faster than LOS approach because of
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   Horizontal

        cut

Original Completely Unknown Area

              (4.56 m x 5.74 m)

Thresholded Image - Rytov

with 2.6 % measurements

Thresholded Image - LOS

with 2.6 % measurements

1.98 m

1 m

1 m

1.96 m

Figure 2.9: The top figures show the occluded two columns structure of interest that
is completely unknown and needs to be imaged, as well as its horizontal cut (its
dimension is 4.56 m × 5.74 m). The white areas in the true image indicate that
there is an object while the black areas denote that there is nothing in those spots.
Imaging results based on 2.6% measurements are shown in the bottom figures for both
Rytov and LOS approaches. Sample dimensions are also shown. It can be seen that
the LOS approach fails to properly image the occluded objects while Rytov performs
significantly better.

its better match with the real measurement. We verify this on a desktop equipped with

a 3.7 GHz CPU. For the T-shape with 4096 unknowns and 586 measurements, the Ry-

tov approach takes 3.6 seconds, while the LOS approach takes 5.74 seconds. For the

occluded cylinder with 22201 unknowns and 1036 measurements, the Rytov approach

takes 17.01 seconds, while the LOS approach takes 27.14 seconds. For the occluded two

columns inside with 65436 unknowns and 1699 measurements, the Rytov approach takes

54.8 seconds, while the LOS approach takes 64 seconds. However, it should be noted

that Rytov also requires an offline calculation of the FR matrix for a given set of routes.

This takes 9 minutes for the occluded cylinder structure for example. Once this matrix

is calculated, it can be used for any setup that uses the same routes.
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(a) Length of the Route = 4.88 m

Accumulated robot positioning
error of the route = 2 cm

 Antenna alignment error = 0%

(b) Length of the Route = 4.88 m

Accumulated robot positioning
error of the route = 18.7 cm

 Antenna alignment error = 9.5%

(c) Length of the Route = 4.88 m

Accumulated robot positioning
error of the route  = 22.36 cm

 Antenna alignment error = 27%

Figure 2.10: The figure shows the effect of robot positioning and antenna alignment
errors on imaging based on Rytov approximation. It can be seen that they have
negligible impact.

Finally, we note that the measurements of the T-shape were collected with our past ex-

perimental setup since we do not have access to this site anymore. However, we expect

similar results with our new experimental setup for this site, for the reasons explained in

Section 2.4.1.

2.4.1 Effect of robot positioning and antenna alignment errors

As each robot travels a route autonomously and without coordination with the other

robot or positioning error correction, there will be non-negligible positioning and antenna

alignment errors accumulated throughout the route. We next show the impact of these

errors on our see-through imaging performance.

Fig. 2.10 and 2.11 show the impact of localization and antenna alignment errors

on Rytov and LOS approaches respectively. More specifically, each figure compares

experimental imaging results of three cases with different levels of localization/antenna

alignment errors. The most accurate localization case was generated with our old setup

where positioning errors were corrected every 1 m. The middle and right cases are

both automated but the robot has different speeds, which results in different positioning
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(a) Length of the Route = 4.88 m

Accumulated robot positioning
error of the route = 2 cm

 Antenna alignment error = 0%

(b) Length of the Route = 4.88 m

Accumulated robot positioning
error of the route = 18.7 cm

 Antenna alignment error = 9.5%

(c) Length of the Route = 4.88 m

Accumulated robot positioning
error of the route  = 22.36 cm

 Antenna alignment error = 27%

Figure 2.11: The figure shows the effect of robot positioning and antenna alignment
errors on imaging based on LOS modeling. It can be seen that they have negligible
impact.

accuracy. In each case, the positioning error leads to a non-negligible antenna alignment

error, the value of which is reported (as a % of the antenna beamwidth). However, we

can see that the combination of both antenna alignment and positioning errors, which

are not negligible, has a negligible impact on the imaging result. This is due to the

fact that the main current bottleneck in see-through imaging is the modeling of the

receptions, which is our main motivation. For instance, as we showed in Fig. 2.6, the

gap between the state of the art modeling (LOS) and the true receptions is huge, which

we have reduced considerably by a proper modeling of the receptions. However, the gap

is still non-negligible as compared to other sources of errors such as robot positioning

and antenna alignment errors, as Fig. 2.10 and 2.11 confirm. It is needless to say that if

these errors become more considerable, they will inevitably start impacting the results.

Thus, Fig. 2.10 and 2.11 imply that with our current setup and the size of the areas we

imaged, the impact of robot positioning and antenna alignment errors was negligible on

our results.
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Chapter 3

Occupancy Estimation

In this chapter, we show how to estimate the total number of people walking in an area

based on only WiFi received signal strength measurements (e.g, RSSI) between a pair

of stationary transmitter/receiver antennas. We first propose a framework based on un-

derstanding two important ways that people leave their signature on the transmitted

signal: blocking the Line of Sight (LOS) and scattering effects. By developing a simple

motion model, we first mathematically characterize the impact of the crowd on blocking

the LOS. We next probabilistically characterize the impact of the total number of people

on the scattering effects and the resulting multipath fading component. By putting the

two components together, we then develop a mathematical expression for the probability

distribution of the received signal amplitude as a function of the total number of occu-

pants, which will be the base for our estimation using Kullback-Leibler divergence. In

order to confirm our framework, we run extensive indoor and outdoor experiments with

up to and including 9 people and show that the proposed framework can estimate the

total number of people with a good accuracy with only a pair of WiFi cards and the

corresponding RSSI measurements.

In the second part of this chapter, we focus on counting the total number of people

walking inside a building (or in general behind walls), using readily-deployable WiFi

transceivers that are installed outside the building, and only based on WiFi received
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signal strength measurements (e.g., WiFi RSSI). Since the WiFi power measurements are

severely attenuated due to walls, we propose a new methodology for crowd counting for

through-wall scenarios. Furthermore, we focus on reducing the prior calibration required

in the area of interest. We first observe that the inter-event times, corresponding to the

dip events of the received signal, are fairly robust to the attenuation through walls (for

instance as compared to the exact dip values). We then propose a methodology that can

extract the total number of people from the inter-event times. More specifically, we first

show how to characterize the wireless received power measurements as a superposition

of renewal-type processes. By borrowing theories from the renewal-process literature,

we then show how the probability mass function of the inter-event times carries vital

information on the number of people. We validate our framework with 44 experiments

in five different areas on our campus (3 classrooms, a conference room, and a hallway),

using only one WiFi transmitter and receiver installed outside of the building, and for

up to and including 20 people. Our experiments further include areas with different wall

materials, such as concrete, plaster, and wood, to validate the robustness of the proposed

approach. Overall, our results show that our approach can estimate the total number

of people behind the walls with a high accuracy while minimizing the need for prior

calibrations.

The rest of this chapter is organized as follows. In Section 3.1, we explain our problem

formulation and develop our motion model. In Section 3.2.1, we characterize the proba-

bility of crossing the LOS. Multipath effects are then modeled in Section 3.2.2, where a

final expression is developed by putting both blocking and multipath effects together. In

Section 3.3, we present several indoor and outdoor experimental results confirming that

our approach can estimate the total number of people with a good accuracy. In Section

3.4, we then propose our framework to estimate the total number of people by using

properties of the inter-event times. In Section 3.5, we thoroughly validate our framework
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using several experiments in five different areas on our campus.

3.1 Problem Formulation

Consider a scenario where N people are walking casually in an area as shown in Fig.

1.2. A WiFi transmitter (TX) and receiver (RX) are positioned (both stationary) at

the border of this area to collect measurements, as marked in the figure. The goal of

this dissertation is to estimate the total number of people based on only the received

signal strength measurements over a small period of time. In this section, we present

the mathematical formulation of our motion model. It should be noted that in our

experiments, we have no control over how people walk and they are simply asked to walk

casually. Thus, the purpose of this section is to derive a simple mathematical model for

a casual walk.

3.1.1 Workspace Model

Consider a rectangular region of dimension L × B, as shown in Fig. 3.1 (left). We

discretize it to form a 2-D discrete workspace W consisting of cells, wherein the position

of each cell is specified by the coordinates of its center. The origin is taken to be at the

lower left corner. Moreover, the length and breadth are partitioned into Ndiv,x and Ndiv,y

segments respectively. The dimension of a cell is thus ∆x×∆y, with ∆x = L/Ndiv,x and

∆y = B/Ndiv,y. The workspace can then be summarized by W = {(x, y)|x ∈ X , y ∈ Y}

where X = {1
2
∆x, 3

2
∆x, · · · 2Ndiv,x−1

2
∆x} and Y = {1

2
∆y, 3

2
∆y, · · · 2Ndiv,y−1

2
∆y}.

A transmitter and receiver are located at the coordinates (L/2, 0) and (L/2, B) re-

spectively. N people are moving in this workspace. In our mathematical modeling of

this section, we discretize the position of each person to the center of a cell. This is

solely for modeling purposes and people are not walking in a discretized manner in our
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Figure 3.1: (left) An illustration of the workspace, (right) An illustration of the mod-
eled boundary behaviour.

experimental setup.

3.1.2 Motion Model

In general, mathematical modeling of the motion of people is a challenging problem

and not the focus of this dissertation. Instead, we are interested in a simple probabilistic

motion model in order to characterize the stationary distribution of the position/heading

of the people in the next section.

In our experiments, people were asked to walk casually. We observed that people had

a tendency to maintain their direction for a while before changing it. In this section we

come up with a simple mathematical model to characterize the movement of the people.

For the sake of mathematical characterization, we assume that each person moves around

the workspace independent of the others and at a speed of dstep per iteration.1 At each

iteration, we assume that a person chooses a direction θ (w.r.t the x axis as shown in Fig.

3.1 (left)) and moves a distance of dstep in that direction. If a step results in a person

crossing the boundary, we assume that the person reflects off the boundary and lands

1An iteration refers to a time instant under the discretization of time.
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back inside the workspace, as shown in Fig. 3.1 (right). Note that the total distance

traveled is still dstep, as shown in Fig. 3.1 (right). At every iteration, the position of a

person would be quantized to the center of the cell in which she currently resides.

We discretize the angle space [0, 2π) into ϑ = {0,∆θ, · · · , (Ndiv,θ − 1)∆θ} with ∆θ =

2π
Ndiv,θ

. At each iteration, we assume that each person maintains the same heading of the

previous iteration, i.e. chooses the same θ, with the probability pθ < 1, and selects an

angle uniformly from ϑ with the probability 1− pθ. The motion of person i can then be

characterized by the following,

θi(t+ 1) =

 θi(t) w.p. pθ

uniformly from ϑ w.p. 1− pθ
, (3.1)

xi(t+ 1) =



−xi(t)− roundx(dstep cos θi(t))

if xi(t) + roundx(dstep cos θi(t)) < 0

2L− xi(t)− roundx(dstep cos θi(t))

if xi(t) + roundx(dstep cos θi(t)) > L

xi(t) + roundx(dstep cos θi(t))

otherwise

, (3.2)

yi(t+ 1) =



−yi(t)− roundy(dstep sin θi(t))

if yi(t) + roundy(dstep sin θi(t)) < 0

2B − yi(t)− roundy(dstep sin θi(t))

if yi(t) + roundy(dstep sin θi(t)) > B

yi(t) + roundy(dstep sin θi(t))

otherwise

, (3.3)

where roundx(d) = (arg mink∈Z |d−k∆x|)∆x and roundy(d) = (arg mink∈Z |d−k∆y|)∆y
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are functions that round the input to the closest multiple of ∆x and ∆y respectively.

Furthermore xi(t) and yi(t) denote the position of the ith person at time t along the x

and y axis respectively, and θi(t) represents the angle of person i at time t. Note that

we excluded the case of pθ = 1 as it implies a purely deterministic motion model, which

is not a good representation of a casual walk.

3.2 Estimation of the Total Number of People Based

on WiFi Power Measurements

In this section, we discuss our proposed approach for estimating the total number of

people based on only WiFi power measurements. A person will leave her signature on the

received signal in two ways. First, when she crosses the LOS path between the TX and

RX, she blocks the transmitted signal, resulting in a drop in the received signal power.

Second, she acts as a scatterer of the signal, contributing to multipath fading (MP). As

a result, we have two underlying effects: possible blockage of the LOS and multipath

fading, both of which carry implicit information of N . Fig. 3.2 shows an example of

a received signal power measurement (N=5 in this case). Sample arrows on the figure

mark the impact of LOS blockage as well as MP. For a lower level of occupancy, the

blocking effect typically results in more pronounced drops as compared to MP.

Our proposed approach is thus based on the understanding and characterization of the

impact of N on these two phenomena.2 We start by modeling the probability of blocking

the LOS path in Section 3.2.1. This characterization is then utilized in Section 3.2.2,

to mathematically model both effects and find an expression for the overall probability

2We note that there are several propagation phenomena when a transmission occurs. Our goal is not
to model all these effects but rather have a simple yet comprehensive enough modeling for the purpose
of estimating N .
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density function (PDF) of the received signal amplitude as a function of N .

Figure 3.2: Sample received signal power for N=5, where a few examples of LOS
blocking and MP effects are marked.

3.2.1 Characterization of the Probability of Blocking the LOS

In this section, we characterize the probability that k number of people cross the LOS

in an iteration. We begin by finding the stationary probability distribution of the position

and heading of a person. The main reason to characterize a stationary distribution is

to make our framework as independent of the details of the motion as possible. We

discuss this further in Remark 3.1. This, however, does not imply that we need to collect

measurements for a very long period of time in practice. For instance, as we shall see in

Section 3.3, we collect measurements for only 300 seconds, and our modeling provides a

good approximation.

Asymptotic Distribution of the Position and Heading

In this part, we prove that the position and heading of a person takes a uniform

distribution asymptotically.
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Let Θ(t) ∈ ϑ be a random variable denoting the heading of a person at time t.

Equation (3.1) induces a Markov chain as follows:

µΘ(t+ 1) = PΘµΘ(t), (3.4)

where µΘ(t) is a column vector with the ith entry as [µΘ(t)]i = Pr(Θ(t) = (i− 1)∆θ) for

i ∈ {1, 2, · · · , Ndiv,θ} and PΘ is a matrix with the (i, j)th entry as [PΘ]ij = Pr
(

Θ(t+1) =

(i− 1)∆θ|Θ(t) = (j − 1)∆θ
)

for i, j ∈ {1, 2, · · · , Ndiv,θ}.

Lemma 3.1 Consider the heading dynamics of (3.1). Then the stationary distribution

of Θ(t) is uniform.

Proof: From the heading dynamics, we have the probability transition matrix as

PΘ =



pθ + 1−pθ
Ndiv,θ

1−pθ
Ndiv,θ

· · · 1−pθ
Ndiv,θ

1−pθ
Ndiv,θ

pθ + 1−pθ
Ndiv,θ

· · · 1−pθ
Ndiv,θ

...
...

. . .
...

1−pθ
Ndiv,θ

1−pθ
Ndiv,θ

· · · pθ + 1−pθ
Ndiv,θ


.3 (3.5)

It can be seen that PΘ is doubly stochastic. By applying the Geršgorin disk theorem [74],

it can be easily seen that the spectral radius of PΘ is 1. Since pθ < 1, we have PΘ � 0,

i.e. PΘ is positive. Then, by applying the Perron-Frobenius theorem [75], we have

limt→∞(PΘ)t = 1Ndiv,θ
eTl , where el is the left eigenvector of PΘ, 1TNdiv,θ

el = 1 and 1r

denotes a column vector of ones of size r. It can be easily confirmed that el = 1
Ndiv,θ

1Ndiv,θ
,

since PΘ is doubly stochastic, resulting in limt→∞(PΘ)t = 1
Ndiv,θ

1Ndiv,θ
1TNdiv,θ

and

µΘ = lim
t→∞

µΘ(t) =
1

Ndiv,θ

1Ndiv,θ
. (3.6)

3An additional 1−pθ
Ndiv,θ

term is present along the diagonal since a person may still select its previous

angle when she selects uniformly from ϑ.
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This means that the heading takes a uniform distribution asymptotically.

We next characterize the asymptotic distribution of the position. Let X(t) ∈ X be

a random variable denoting the x axis coordinate of a person at time t. Equation (3.2)

then induces the following Markov chain,

µX(t+ 1) = PXµX(t), (3.7)

where µX(t) is a column vector with the ith entry [µX(t)]i = Pr(X(t) = 2i−1
2

∆x), for

i ∈ {1, · · · , Ndiv,x}, and PX is a matrix with the (i, j)th entry as [PX ]ij = Pr
(
X(t+ 1) =

2i−1
2

∆x|X(t) = 2j−1
2

∆x
)

for i, j ∈ {1, · · · , Ndiv,x}.

Lemma 3.2 Consider the motion dynamics of (3.1)-(3.3). Then, the stationary distri-

bution of X(t) is uniform.

Proof: Let Θ = limt→∞Θ(t). Let Dx = roundx(dstep cos Θ) be a random variable

denoting the distance traveled by a person (rounded to a multiple of ∆x) along the x

axis when the probability distribution of Θ(t) has converged to its stationary distribution.

The probability mass function (PMF) of Dx, pDx , is given as

pDx(k∆x) =
∑

i∈{1,··· ,Ndiv,θ}:dstep cos( i−1
Ndiv,θ

2π)∈[k∆x−∆x
2 ,k∆x+ ∆x

2 )

(µΘ)i

=
∑

i∈{1,··· ,Ndiv,θ}:dstep cos( i−1
Ndiv,θ

2π)∈[k∆x−∆x
2 ,k∆x+ ∆x

2 )

∆θ

2π

≈ 2

∫
θ∈[0,π):dstep cos θ∈[k∆x−∆x

2 ,k∆x+ ∆x
2 )

1

2π
dθ

=

∫ k∆x+ ∆x
2

k∆x−∆x
2

1

π
√
d2

step − r2
dr

≈


∆x

π
√
d2

step−(k∆x)2
, if k ∈ Z and |k∆x| < dstep

0 else

,

(3.8)

where the second equality follows since [µΘ]i = 1
Ndiv,θ

= ∆θ
2π

for i ∈ {1, · · · , Ndiv,θ}.

Moreover, the fourth equality follows from the change of variable r = dstep cos θ.
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The (j, i)th element of PX can then be expressed as

[PX ]ji = Pr

(
X(t+ 1) =

2j − 1

2
∆x|X(t) =

2i− 1

2
∆x

)

=



pDx((j − i)∆x) + pDx((−j − i+ 1)∆x)

if j ∈ {1, · · · , bdstep

∆x
c}

pDx((j − i)∆x)+

pDx((2Ndiv,x + 1− j − i)∆x)

if j ∈ {Ndiv,x − bdstep

∆x
c, · · · , Ndiv,x}

pDx((j − i)∆x)

else

= [PX ]ij,

(3.9)

where the second terms in the first and second cases denote the probability of a transition

from the ith to the jth cell via reflections off of the boundaries, and the last line follows

since pDx(i∆x) = pDx(−i∆x). It can be seen that PX is thus doubly stochastic. More-

over, the graph induced by PX is strongly connected and aperiodic. This implies that

PX is primitive [76]. Thus, similar to (3.6), we can apply the Perron-Frobenius theorem

to deduce that

µX = lim
t→∞

µX(t) =
1

Ndiv,x

1Ndiv,x
. (3.10)

A similar analysis can be carried out for the probability of the position along the y-axis.

Lemma 3.1 and 3.2 show that the position and heading of a person takes a uniform

distribution asymptotically.

Remark 3.1 While we derived the uniform asymptotic distribution for the angle model

of (3.1), constant speed, and boundary behavior of Fig. 3.1 (right), we expect that an
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asymptotic stationary distribution will be achieved whenever there is a small amount of

randomness in the motion model. A more rigorous characterization of this, however, is

a subject of further studies.

Characterization of the Probability of Blocking

In this part, we derive a mathematical expression for the probability of blocking the

LOS.

Definition 3.1 We say a blocking (crossing)4 has occurred at time t+1 if either xi(t) ≤

L/2 and xi(t+ 1) ≥ L/2 or xi(t) ≥ L/2 and xi(t+ 1) ≤ L/2.

Based on the definition above, a cross has also occurred if a person lands exactly on the

LOS path or moves along it. Thus, this probability of crossing considers slightly more

cases than the case of only cutting the LOS, which is of interest to us. However, as we

shall see, since we take ∆x → 0, the probability of these special cases tends to zero,

resulting in the desired probability of crossing.

Theorem 3.1 The asymptotic probability of a cross of a single person in an iteration

can be characterized as

pcross =
2dstep
πL

. (3.11)

Proof: A crossing occurs if a person who is sufficiently close to the LOS takes a large

enough step to go over the LOS line. Based on Lemma 3.2, we can write the following

4We use the terms crossing and blocking interchangeably since a non-zero speed is assumed.
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expression for the probability of a cross of one person (in one time step):

pcross = 2

b L
2∆x

+ 1
2
c∑

i=b L
2∆x

+ 1
2
c−b dstep

∆x
c

[µX ]i

b dstep
∆x
c∑

k=d L
2∆x

+ 1
2
e−i

pDX (k∆x)

= 2

b L
2∆x

+ 1
2
c∑

i=b L
2∆x

+ 1
2
c−b dstep

∆x
c

∆x

L

b dstep
∆x
c∑

k=d L
2∆x

+ 1
2
e−i

∆x

π
√
d2

step − (k∆x)2

≈ 2

∫ L/2

L/2−dstep

∫ dstep

L/2−x

1

L

1

π
√
d2

step − (r)2
dxdr

= 2

∫ dstep

0

1

L

∫ 1

x/dstep

1

π
√

1− r2
dxdr

=
2dstep

πL
,

(3.12)

where the second equality follows since [µX ]i = 1
Ndiv,x

= ∆x
L
, for i ∈ {1, · · · , Ndiv,x}.

Note that pcross is a linear function of dstep, as expected. Since there are N people in the

workspace, we can have simultaneous crosses.

Corollary 3.1 Let pK,N denote the PMF of random variable K denoting the number

of simultaneous crosses with N people in the workspace. Assuming independent motion

models for the people then results in the following expression

pK,N(k) = Pr(k simultaneous cross)

=

(
N

k

)
pkcross(1− pcross)N−k, (3.13)

where pcross is as defined in Theorem 3.1.

Remark 3.2 Although, our derivation of pcross is under the assumption of a constant
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speed dstep, our result can be extended to the case of a person moving with a variable

random speed. Due to pcross being linear in dstep, the probability of a cross would then

become pcross = 2dstep
πL

, where dstep denotes the average speed of the person.

3.2.2 Derivation of the PDF of the received signal

In this section, we consider both blocking and MP effects and find an expression for

the PDF of the received signal strength as a function of N .

Consider N people walking in the area of interest with a constant speed. As we discussed

earlier, each person impacts the received signal by 1) blocking when she crosses the LOS

and 2) scattering. Furthermore, there may be several other objects in the area impacting

the received signal. We assume that these objects are stationary in our modeling.5 The

baseband equivalent received signal is then given by

A = b0e
jψ0︸ ︷︷ ︸

LOS

+
M∑
j=1

bje
jψj

︸ ︷︷ ︸
MP due to static objects

+
N∑
i=1

aie
jφi

︸ ︷︷ ︸
MP due to walking people

,

= a0e
jφ0 +

N∑
i=1

aie
jφi

= ALOS,ST + AMP,

(3.14)

where b0 and ψ0 are the amplitude and phase of the LOS path respectively, ai and φi

are the amplitude and phase of the path resulting from scattering off of the ith person

respectively, and bj and ψj, for j 6= 0, are the amplitude and phase of the path result-

ing from scattering off of the jth static object respectively. Then
∑M

j=1 bje
jψj denotes

the impact of other static objects on the received signal, with M representing the total

number of such static objects. Let ALOS,ST , b0e
jψ0 +

∑M
j=1 bje

jψj = a0e
jφ0 denote the

5During the experiment, other surrounding objects such as leaves may move. However, the impact
of their motion is typically negligible as compared to other effects.
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summation of the LOS component and the MP due to the static objects. Furthermore,

let AMP ,
∑N

i=1 aie
jφi represent the MP component due to people walking. The phase

of each path, φi, for i = 1, 2...N , and ψj, for j = 0, 1, 2...M , is assumed to be uniformly

distributed in [0 2π].6 φi is assumed independent of ai and φj, and ai is taken indepen-

dent of aj, for j 6= i [78]. Note that the Doppler shifts due to the scatterer motion is

small and thus not considered in this dissertation.

We are interested in deriving the PDF of the received signal amplitude |A|. Since

ALOS,ST and AMP are independent, we have [77]

CA(U) = CALOS,ST
(U)CAMP

(U),

where CALOS,ST
(U), CAMP

(U) are the characteristic functions of ALOS,ST and AMP respec-

tively, and U is the corresponding variable of the characteristic functions.

6This assumption is justifiable since we operate at a high frequency [77].
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CAMP
(U) can be characterized as follows:

CAMP
(U) = EAMP

(ejU•AMP)

= EAMP
(ejU•(

∑N
i=1 aie

jφi ))

= EAMP
(
N∏
i=1

ejU•(aie
jφi ))

=
N∏
i=1

Eai,φi(e
jU•(aiejφi ))

(since ai, φi independent of aj, φj)

=
N∏
i=1

Eai,φi(e
j|U |aicos(φi−∠(u)))

=
N∏
i=1

Eai(J0(ai|U |)),

(3.15)

where J0 is the zeroth-order Bessel function of the first kind, Ea(.) represents the expec-

tation w.r.t a, and • represents the dot product. Similarly, the characteristic function of

ALOS,ST is given by

CALOS,ST
(U) = Ea0(J0(a0|U |)). (3.16)

Note that the characteristic functions depend only on the magnitude of U and therefore
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are circular symmetric [78]. The PDF of A is then given as

pA(Z) =
1

4π2

∫ ∞
|U |=0

∫ 2π

∠U=0

e−jU•ZCA(U)|U |d|U |d∠U

=
1

4π2

∫ ∞
|U |=0

∫ 2π

∠U=0

e−j|U ||Z|cos(∠U−∠Z)CA(U)|U |d|U |d∠U

=
1

4π2

∫ ∞
|U |=0

|U |
(∫ 2π

∠U=0

e−j|U ||Z|cos(∠U−∠Z)d∠U
)

CA(U)d|U |

=
1

2π

∫ ∞
|U |=0

|U |J0(|U ||Z|)CA(U)d|U |

=
1

2π

∫ ∞
|U |=0

|U |J0(|U ||Z|)
( N∏
i=1

Eai(J0(ai|U |))
)

Ea0
(J0(a0|U |))d|U |.

(3.17)

Then, the PDF of |A| can be found as

p|A|(z) =

∫ 2π

∠A=0

zpA(A)d∠A

= z

∫ ∞
|U |=0

|U |J0(|U |z)
( N∏
i=1

Eai(J0(ai|U |))
)

Ea0
(J0(a0|U |))d|U |.

(3.18)

Random variable a0 can only take discrete values corresponding to the received signal

strength when different number of people are along the LOS path. Thus by using Theorem

3.1, we have the following for the PDF of a0
7

pa0 =
N∑
k=0

(
N

k

)
pkcross(1− pcross)

N−kδ(a0 −Bk), (3.19)

where Bk is the received signal amplitude when k people are along the LOS path,8 and

7Note that this is the PDF of the received signal amplitude when there is no MP component due to
people walking, i.e. only the LOS component and MP due to static objects are present.

8Note that impact of static objects is inherently included in Bk.
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δ(.) is the Dirac delta function. Using (3.19), we get

Ea0(J0(a0|U |)) =
N∑
k=0

(
N

k

)
pkcross(1− pcross)

N−kJ0(|U |Bk). (3.20)

In order to evaluate the characteristic function of AMP, we need to characterize the PDF

of ai for i 6= 0, i.e. the amplitude of each component of MP due to people walking. Since

ai for i 6= 0 is the amplitude of the scattered signal from only one scatterer (one person),

Rayleigh statistics cannot be used [78]. In a different context, a K-distribution is widely

used to model the sea clutter and echo signal from biological tissues when the number of

scatterers are low [78], [79], [80]. We thus use K-distribution to model the PDF of ai for

i 6= 0 as follows [78],

pai =
2b

Γ(1 + ν)

(ba
2

)ν+1

Kν(ba) ν > −1, i 6= 0 (3.21)

where Kν(.) is the modified Bessel function of the second kind, and b and ν are the

parameters of the distribution. Since the scatterers are taken to have identical statistics,

we get

N∏
i=1

Eai(J0(ai|U |)) = (Eai(J0(ai|U |)))N . (3.22)

Therefore the PDF of |A| is given by

p|A|,N (z) = z

∫ ∞
|U |=0

|U |J0(|U |z)(Eai(J0(ai|U |)))NEa0(J0(a0|U |))d|U |

= z

∫ ∞
|U |=0

|U |J0(|U |z)f(N)d|U |,
(3.23)
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where we added the subscript N to emphasize the dependency on N , and

f(N) = (Eai(J0(ai|U |)))NEa0(J0(a0|U |)). (3.24)

3.3 Experimental Results

In this section, we show that our proposed framework can estimate the number of

people well in several different cases in both indoor and outdoor environments. We start

by briefly summarizing our experimental setup.

We use an 802.11g card for both the transmitter and the receiver. More specifically,

the transmitter uses D-Link WBR-1310 wireless router [81], broadcasting a wireless sig-

nal. The receiver then constantly measures its receptions. In our setup, the transmitter

and receiver are stationary and mounted on two Pioneer 3-AT mobile robots from Mo-

bileRobots Inc. [70], as shown in Fig. 3.3. It should be noted that any other object could

have been used to hold the TX/RX (since the TX and RX are not moving). However,

the automation through the use of robots hold promises for the future extensions of this

work. The overall operation is then overseen by a remote PC, which is in charge of

communicating the execution plan and collecting the final received signal strength (RSS)

readings at the end of the operation.

We run two different sets of experiments in both outdoor and indoor environments. In

the first set of experiments, we use directional antennas for both the transmitter and the

receiver. We then show that in this case, modeling the received signal with only ALOS,ST

of (3.14) suffices for the estimation of the number of people. In the second case, we use

omnidirectional antennas at both the transmitter and the receiver. We then show that

a good estimation of the total number of people can be achieved by using our proposed

modeling of (3.23).
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Figure 3.3: (left) Pioneer 3-AT Robot with an omnidirectional antenna, (right)
GD24-15 2.4 GHz parabolic grid directional antenna.

Figure 3.4: Outdoor Site

Fig. 3.4 shows the outdoor site, which has the dimensions L = 7 m and B = 10 m.

Fig. 3.5 then shows the indoor site with the dimensions L = 4.4 m and B = 7.5 m. These

dimensions are assumed to be known to the estimator. Experiments are carried out with

1, 3, 5, 7 and 9 people. People are told to walk casually in the area and bounce of the

boundary when they approach it. The data is collected for 300 seconds, at the rate of

50 samples/s. A constant velocity of 1 m/s is assumed for the estimation process. Note

that this is only for the purpose of mathematical modeling and estimation, and that we

have no control over the speed of the people when they walk.
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Figure 3.5: Indoor site

Figure 3.6: KL divergence DKL(pK,exp||pK,M ) between the theoretical and experimen-
tal PMF of simultaneous crosses, as a function of M , for the case of N = 3 (with
directional antennas) in the outdoor site. It can be seen that the curve is minimized
at Nest = 3, resulting in an accurate estimation of the total number of people.

The environment of interest has other objects that will interact with the transmitted

signal,9 as discussed in (3.14), and their impact is modeled in ALOS,ST. As can be seen

from (3.23), prior estimation of Bks is needed for our approach. In order to acquire this,

prior measurements are made when k number of people are walking on the straight line

9We assume that these objects are not moving. However, when we carry out our experiments,
movements of vehicles and leaves (in the outdoor environment) were naturally inevitable.
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connecting the transmitter and the receiver (in order to average the attenuation over

several possible combinations). We should note that in practice this approach is scalable

for the following reason. As the number of people increases, the value of Bk starts to

saturate. Thus, we only need to collect prior measurements in order to estimate Bk

for the lower values of k. In addition, dynamical system models can also be utilized to

further fine tune the estimation of Bk at the higher values of k. Let B̂k represent the

prior estimation of Bk in the rest of this section. As for the MP part (AMP in (3.14)),

we further need a prior estimation of b and ν. We measure these parameters a priori by

having one person move in the area without crossing the LOS path. Then, the PDF of

the collected measurements is matched to the convolution of the K-distribution of (3.21)

and the PDF of the LOS path when no people are around, in order to find the best fit

of b and ν.

3.3.1 Estimation of the Number of People in Outdoor Environ-

ments

In this section, we show our results in outdoor environments with both directional

and omnidirectional antennas.

Estimation with Directional Antennas

In this part, directional antennas are used at both the transmitter and the receiver.

More specifically, we use GD24-15 2.4 GHz parabolic grid antennas from Laird Technolo-

gies, as shown in Fig. 3.3. This model has a 15 dBi gain with 21 degree horizontal and 17

degree vertical beamwidth and is suitable for IEEE 802.11 b/g applications [71]. This is

an important case to study as it brings an understanding to the blocking characterization

of Section 3.2.1 (first term in the second equation of (3.14)). More specifically, we see
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that, in this case, the impact of the crowd on the transmitted signal is mainly captured

through the first term in (3.14), i.e. people impact the signal when they cross the LOS,

and the multipath effect, due to scattering off of people, is negligible.

From (3.13), we have pK,N , the theoretical PMF for the number of simultaneous

crosses per time, as a function of N . Since we are not considering the impact of MP due

to people walking in this case, this equation will be the base for our estimation of N .

Let pK,exp denote this estimated PMF. We then find Nest,dir such that it minimizes the

Kullback-Leibler (KL) divergence between the experimental and theoretical PMFs:

Nest,dir = arg min
M

DKL(pK,exp||pK,M), (3.25)

where DKL(p1||p2) is the KL divergence [82] between the two distributions p1 and p2. Fig.

3.6 further shows the corresponding KL divergence curve as a function of M for a sample

case for N = 3 in the outdoor environment. It can be seen that the curve is minimized

at N = 3, resulting in the accurate estimation of N in this case.

Table 3.1 shows the performance of our approach for different number of people, for a

sample case in the outdoor environment. It can be seen that our approach can estimate

the number of people considerably well in this case. To see the variability of the results

in different runs, we further run 5 experiments on 5 different days for each number of

occupants indicated in the first row of Table 3.1. Fig. 3.7 (left) shows the resulting

Cumulative Distribution Function (CDF) of the estimation error of all the cases (5 runs)

in terms of the number of people for the outdoor case and with directional antennas. It

can be seen that, the estimation error is 0 or 1 person 92% of the time and 2 or less 100%

of the time.

So far, we have presented our results based on the collected measurements of 300
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Number of People in the Area 1 3 5 7 9
Estimated Number of People 1 3 4 7 8

Table 3.1: Sample performance of our approach for the case of directional antennas
in the outdoor environment.
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Figure 3.7: The CDF of the estimation error for the case of (left) directional TX/RX
and (right) omnidirectional TX/RX antennas in the outdoor environment, based on
several experiments with up to and including 9 people. It can be seen that we can
estimate the total number of people with a good accuracy.

seconds. In order to see the impact of the measurement time on the estimation error,

Fig. 3.8 (left) further shows occupancy estimation, as a function of time, for three sample

experiments in the outdoor environment. It can be seen that the estimation converges

to within an error of 1 of its final value after 100 seconds for these sample cases. This

suggests that a shorter time duration could have also resulted in a similar performance

in these cases. In general, the time duration should be chosen such that the experiment

has reached its steady state. An upper bound for this time duration can be obtained

based on the size of the area, the assumed walking speed, and an upper bound on the

expected number of people.
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Figure 3.8: Sample occupancy estimations, as a function of time, for the case of
(left) directional TX/RX and (right) omnidirectional TX/RX antennas in the outdoor
environment. It can be seen that the estimation converges to within 1 person of its
final value in 100 seconds.

Estimation with Omnidirectional Antennas

In this scenario, omnidirectional antennas are used at both the transmitter and the

receiver. Thus, both LOS and MP components need to be considered, which makes the

estimation process more challenging. The PDF of the received signal amplitude is as

derived in (3.23), which is an implicit function of N . Let pexp represent the PDF of

the measured received signal amplitude. Then, we estimate the total number of people

through the following KL divergence minimization:

Nest,omni = arg min
M

DKL(pexp||p|A|,M). (3.26)

Table 3.2 shows the performance of our approach for different number of people for a

sample case in the outdoor environment. It can be seen that the estimation performance

is considerably good for this sample case. To see the variability of the results in different

runs, we further run 5 experiments on 5 different days for each number of occupants

indicated in the first row of Table 3.2. Fig. 3.7 (right) shows the resulting Cumulative
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Number of people in the Area 1 3 5 7 9
Estimated Number of People 1 3 4 7 8

Table 3.2: Sample performance of our approach for the case of omnidirectional anten-
nas in the outdoor environment.

Distribution Function (CDF) of the estimation error of all the cases (5 runs) in terms of

the number of people.

It can be seen that the estimation error is 2 or less 96% of the time, which is a

good accuracy. As expected, probability of error is higher as compared to Fig. 3.7 (left)

where directional antennas were used. Fig. 3.8 (right) shows occupancy estimation, as a

function of time, for sample experiments with omnidirectional antennas. It can be seen

that the estimation converges to within an error of 1 of its final value after 100 seconds

for these cases as well. Finally, Fig. 3.9 compares the corresponding experimental and

theoretical PDFs for sample cases with different number of people. Each plot shows the

amplitude PDF of the experimental data and the best fit theoretical PDF obtained by

minimizing the KL divergence. The resulting N is then shown as Nest,omni. It can be

seen that the experimental and theoretical pdfs are matching well.

3.3.2 Estimation of the Number of People in Indoor Environ-

ments

In this section, we show our results for estimating the level of occupancy in indoor.

The site details are shown in Fig. 3.5 and summarized earlier in Section 3.3. The rest

of the experimental setup is the same as for the outdoor case. As expected, the indoor

environment will experience more multipath effect due to static objects. Our results

indicate that we can still estimate the total number of people with a good accuracy.

66



Occupancy Estimation Chapter 3

−60 −55 −50 −45 −40 −35 −30 −25 −20
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Received Power (dBm)

P
D

F

PDF− Experimental (N= 1)

PDF − Theoretical ( Best Fit N
est,omni

= 1)

−60 −55 −50 −45 −40 −35 −30 −25 −20
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Received Power (dBm)
P

D
F

PDF− Experimental (N= 3)

PDF − Theoretical ( Best Fit N
est,omni

= 3)

−60 −55 −50 −45 −40 −35 −30 −25 −20
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Received Power (dBm)

P
D

F

PDF− Experimental (N= 5)

PDF − Theoretical ( Best Fit N
est,omni

= 4)

−60 −55 −50 −45 −40 −35 −30 −25 −20
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Received Power (dBm)

P
D

F

PDF− Experimental (N= 7)

PDF − Theoretical ( Best Fit N
est,omni

= 7)

−60 −55 −50 −45 −40 −35 −30 −25 −20
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Received Power (dBm)

P
D

F

PDF− Experimental (N= 9)

PDF − Theoretical ( Best Fit N
est,omni

= 8)

Figure 3.9: A Comparison of the theoretical PDF of (3.23) and the experimental PDF
for different cases (with omnidirectional antennas) in the outdoor environment.
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Number of People in the Area 1 3 5 7 9
Estimated Number of People 1 3 4 6 7

Table 3.3: Sample performance of our approach for the case of directional antennas
in the indoor environment.

Estimation with Directional Antennas

Table 3.3 shows the performance of our approach for different number of people for

a sample case in the indoor site when directional antennas are used. In this case, (3.19)

suffices to estimate the number of people, as discussed earlier. It can be seen that our

approach can estimate the level of occupancy well in an indoor setting. To see the

variability of the results in different runs, we further run 7 experiments on 7 different

days for each number of occupants indicated in the first row of Table 3.3. Fig. 3.10 (left)

then shows the resulting Cumulative Distribution Function (CDF) of the estimation error

of all the cases (7 runs) in terms of the number of people for the indoor site. It can be

seen that the estimation error is 0 or 1 88% of the time and 2 or less 100% of time,

showing a good performance.
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Figure 3.10: The CDF of the estimation error for the case of (left)directional TX/RX
and (right) omnidirectional TX/RX antennas in the indoor environment, based on
several experiments with up to and including 9 people. It can be seen that we can
estimate the total number of people with a good accuracy.
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Number of people in the Area 1 3 5 7 9
Estimated Number of People 2 3 8 10 11

Table 3.4: Sample performance of our approach for the case of omnidirectional anten-
nas in the indoor environment.

Estimation with Omnidirectional Antennas

Next, we test our proposed approach with omnidirectional antennas in the indoor site

of Section 3.2.2). Table 3.4 shows the performance of our approach for different number

of people for a sample case. It can be seen that our approach can also estimate the level of

occupancy well in an indoor setting with omnidirectional antennas. To see the variability

of the results in different runs, we further run 7 experiments on 7 different days for each

number of occupants indicated in the first row of Table 3.4. Fig. 3.10 (right) then shows

the resulting Cumulative Distribution Function (CDF) of the estimation error of all the

cases (7 runs) in terms of the number of people. It can be seen that the estimation

error is 2 or less 63% of time, confirming a successful indoor performance with typical

omnidirectional antennas that come as part of the 802.11 WLAN cards.

3.4 Crowd Counting Through Walls

So far, we established a framework to estimate the occupancy in an area where wireless

sensors are present. In this section, we consider a more general scenario of occupany

estimation where the wireless sensors are not necessarily in the same area. Consider an

area that is enclosed by walls, such as a room, where N people are walking. Fig. 3.11

shows an example of this. Our goal is then to estimate the number of people walking

in this area, using only RSSI measurements of WiFi nodes that are located outside of

the area. As wireless signals can pass through the walls, we can in principle utilize

our framework derived in the previous section for crowd counting in the through-wall
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Figure 3.11: An illustration of the workspace with people walking inside. The red
outer boundary denotes the walls. The WiFi Tx and Rx are located behind the walls
and collect wireless measurements as people walk in the region. The goal in this
section is then to estimate the number of people in the workspace using only the
wireless measurements.

scenario. However, when the attenuation due to walls become severe, the wireless power

measurements will be close to the noise floor of the receiver when people are blocking

the LOS link. For instance, a 20 cm concrete wall can attenuate the signal by 40 dB.

Therefore, our previous framework will have higher error in counting the number of

people in this scenario. Furthermore, as we may not have access to the area of interest

before hand, the focus in this section is to estimate the occupancy with minimal prior

calibration. In this section, we propose a new framework to estimate the number of people

walking inside an occluded area using only the RSSI of WiFi nodes located outside of the

area. Specifically, we first model the motion of a single person as a discrete-time random

process. We then utilize theories from the Renewal process literature to characterize the

impact of multiple people and identify the statistics that can be used to estimate the

number of people. As we shall see, the inter-event times of the resulting process carry

vital information on the number of people, as we shall mathematically characterize.
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3.4.1 Motion of a Single Person as a Renewal-type Process

Consider a scenario where N people are walking in the workspace D, as shown in

Fig. 3.11. Without loss of generality, assume that the transmitter and the receiver

are at the midpoint of the corresponding walls. The time intervals between successive

crosses (i.e., LOS crossings) implicitly carry vital information about the total number

of people walking in the area, as we show in the next section. In this section, we first

mathematically characterize the statistics of the time intervals between successive crosses,

when a single person is walking in D. We then utilize the results derived here to model

the impact of N on the statistics of the cross times in the next section, when N people

are walking in D.

Consider a single person walking in the workspace D. Let E denote an event of the

person crossing the LOS link. Due to the non-deterministic nature of the walk, the times

at which event E happens are random in nature. Let X1, X2, . . . , XT denote a sequence

of random variables such that,

Xi =


1 if E happens at time instant i

0 otherwise.

(3.27)

Let S1, S2, . . . , Sn+1 denote the times at which event E occurs and let T1, T2, . . . , Tn denote

the inter-event times. We have discretized the time to a step size of δt. Thus, Si, for

1 ≤ i ≤ n+ 1, and Ti, for 1 ≤ i ≤ n, are non-negative integers.

Fig. 3.12 shows a sample realization of the process along with the sample occurrence

times and the inter-event times. Under the casual motion model, the positions/headings

will have a uniform distribution asymptotically in theory and after a sufficient time in

practice [55]. We thus assume that the positions/headings have no spatial bias in our

derivations. Then, we have,
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Figure 3.12: A sample realization of the event sequence, where an event is crossing the
LOS link. The events occur at S1, S2, . . . , Sn+1. The inter-event times are denoted by
T1, T2, . . . , Tn.

Prob(Ti = k) = Prob(Xi+k = 1, . . . Xi+1 = 0 | Xi = 1)

= Prob(Xj+k = 1, . . . Xj+1 = 0 | Xj = 1)

= Prob(Tj = k) ∀ i, j, and k,

(3.28)

where Prob(.) denotes the probability of the argument. This implies that {Ti} , for i ∈

{1, 2, . . . , n}, are identically distributed. If the inter-event times are also independent,

then the process is called a Renewal process [83]. However, the inter-event times of our

case are not necessarily independent. We thus use the term “Renewal-type process” in

this dissertation, to refer to this type of process where the inter-event times are identically

distributed but not independent. We next characterize the PMF of the inter-event times.

Let f denote the PMF of the inter-event times Ti. Let Z(k) denote the backward

recurrence time at k, i.e., the time from time instant k that we need to travel back before

encountering an event, as shown in Fig. 3.12. Let }(‡; ‖) denote the PMF of Z(k). We

next characterize the relationship between f and g(z; k), which we shall utilize in Section

3.4.2.

Let h(k) denote the probability that E occurs at time k, i.e., h(k) = Prob(k =

Sj) for some j, where Prob(.) denotes the probability of the argument. Then, g(z; k), i.e.,

the probability that we need to travel backward z time steps from time k to encounter

an event, is the product of the probability of an event occurring at time k − z and the
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probability that there is no event at times {k− z + 1, k− z + 2, . . . k− 1}, given that an

event occurs at k − z. Formally, g(z; k) can be written as

g(z; k) = h(k − z)Fc(z), (3.29)

where Fc(z) is the complimentary cumulative distribution function (CCDF) of the inter-

event times. As shown in [55], h is given by the following:

pc , h(k − z) =
2vδt

Bπ
, ∀ k ≥ z. (3.30)

Therefore,

g(z; k) = pcFc(z), ∀ k ≥ z. (3.31)

3.4.2 Motion of Multiple People as a Superposition of Renewal-

type Processes

In this section, we characterize the PMF of the inter-event times when N people

are walking in D and show that it contains useful information about the total number of

people N . We then propose a ML estimator to estimate N , based on our characterization

of the inter-event times.

Consider N people walking in the workspace D. Let {Xj
i }, for 1 ≤ i ≤ T , denote the

sequence of events as defined in (3.27), but for the jth person. Let {Yi}, for 1 ≤ i ≤ T ,

denote the corresponding superposed sequence. We define {Yi} as Yi =
N∑
j=1

Xj
i . Fig.

3.13 shows sample individual and superposed event sequences, for the case of N people,

along with their sample occurrence and inter-event times. For the superposed sequence of

events, we say that an event occurred at time i if Yi 6= 0. In other words, an event occurs

at time i if at least one person crosses the LOS link at time i. Since multiple events can
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Figure 3.13: A sample realization of the event sequence (Y ) for the superposed process,
which corresponds to N people walking in the area of interest. An event E here
corresponds to any crossing of the LOS link. The events occur at S1, S2, . . . , Sn+1.
The inter-event times are denoted by T1, T2, . . . , Tn. The processes corresponding to
individual people are also shown (Xi s).

occur at the same time, we have Yi ∈ {0, 1, ..., N}. However, we do not distinguish the

events based on the value of Yi, as our proposed method does not rely on the exact values

of Yi and only depends on if it is zero or non-zero, which will result in a more robust

estimator to measurement errors.

Let fp(zp;N) denote the PMF of the inter-event times of the superposed process due

to N people. Let Zp(k) and gp(zp; k) denote the backward recurrence time at k and its

corresponding PMF respectively.

Theorem 3.2 We have the following expression for the PMF of the inter-event time:

fp(zp;N) = c∆gp(zp; k),∀ k ≥ zp, where c is a normalizing constant that is not a function

of N , and ∆ is the forward difference operator.

Proof: The backward recurrence time, Zp(k), for the superposed process can be

written as

Zp(k) = min
{
Z1(k), Z2(k), . . . , ZN(k)

}
, (3.32)
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where Zj(k), for 1 ≤ j ≤ N , is the backward recurrence time for the jth event sequence,

and min {.} denotes the minimum of the arguments. Then, since people are walking

independently, we have,

Prob(Zp(k) ≥ zp) =
N∏
j=1

Prob(Zj(k) ≥ zp). (3.33)

By substituting (3.31) in (3.33), we get,

Prob(Zp(k) ≥ zp) =

[
∞∑

m=zp

pcFc(m)

]N
, ∀ k ≥ zp, (3.34)

where Fc(.) is the CCDF of the inter-event times for the case of N = 1, and pc is the

probability of crossing for the case of N = 1, as defined in Section 3.4.1. From (3.34),

we get the corresponding PMF as follows:

gp(zp; k) = −∆Prob(Zp(k) ≥ zp), ∀ k ≥ zp. (3.35)

By following steps similar to (3.29), (3.30), and (3.31), we get the PMF of the inter-event

times for the superposed process as follows,

fp(zp;N) = c∆gp(zp; k) for k ≥ zp

= c∆

[(
∞∑

m=zp

pcFc(m)

)N

−

(
∞∑

m=zp+1

pcFc(m)

)N]
.

(3.36)

This proves the theorem.

It can be seen from (3.36) that the PMF of the inter-event times is an implicit function of

the number of people N . We next use this PMF to derive an ML-based estimator for the

number of people N . Given the inter-event times, we can estimate the number of people
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by maximizing the log-likelihood of the inter-event times. Specifically, assuming the

inter-event times are independent, the log-likelihood of the observed inter-event times,

T1, T2, . . . , Tn, can be characterized as a function of the number of people M as follows:

LL(M) =
n∑
i=1

log(fp(Ti;M)). (3.37)

We can then estimate the number of people by maximizing the log-likelihood function,

N̂renew = arg max
M

LL(M), (3.38)

where N̂renew is the estimate of the number of people based on the underlying renewal-type

process and the inter-event times. We note that we derived (3.37) under the assumption

that Ti’s are independent. As we mentioned earlier, this is not necessarily the case for our

process. Thus, the ML estimator of (3.38) is not the optimum, but can provide a good

estimate of the number of people, as we shall see in the next section, while maintaining

a low computational complexity.

In order to implement our derived estimator, one needs to identify the inter-event

times due to the LOS blocking. Furthermore, an estimate of Fc(z), the CCDF of the

inter-event times when single person is walking, is needed. In the next section, we show

how the inter-event times and Fc(z) can be estimated in practice.

3.5 Experimental Results

In this section, we validate our proposed framework through extensive experiments.

We start by explaining our experimental setup and then present the experimental results

for five different areas with up to and including 20 people.
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(a)

(b)

(c)

Figure 3.14: (a) D-link WBR-1310 Router used as a WiFi Tx, (b) the WLAN card used
as a WiFi Rx, and (c) Raspberry Pi board that controls the measurement operation
and stores the WiFi RSSI measurements.

3.5.1 Experiment Setup

As shown in Fig. 3.11, our experimental setup consists of a pair of WiFi nodes for

transmission and reception of wireless signals. One of the WiFi nodes is configured as a

Tx, which constantly transmits wireless signals. The other WiFi node, which acts as a Rx,

measures the signals that are emitted from the Tx node and records the corresponding

signal strength. We use a D-Link WBR-1310 WiFi router [84] as a Tx node, which

operates using 802.11g wireless standard. For the Rx WiFi node, we use a TP-Link

Wireless N150 WLAN card [85] in 802.11g mode. This wireless card needs to be interfaced

with a computer in order to make WiFi measurements. In our setup, we then use a

Raspberry Pi (RPI) board [86] for this purpose, i.e., to collect and store WiFi RSSI

measurements. Fig. 4.2 shows the WiFi router, the WLAN card, and the RPI board

used in our experiments. Omnidirectional antennas that come along with the WiFi

router/card are used for transmitting and receiving the wireless signals. We use standard
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2.4 GHz frequency of WiFi in all our experiments.

Using the aforementioned experimental setup, we then run several experiments when

up to 20 people walk in the area of interest. We next first discuss the processing of the

experimental data, which is followed by our experimental results.

3.5.2 Initial Data Processing

In Section 3.4, we developed a framework to estimate the number of people based

on the PMF of the inter-event times, where an event refers to an instant of time where

l > 0 people are crossing the LOS link. Since the RSSI measurements are significantly

attenuated when people cross the LOS link. Therefore, the RSSI measurements contain

information about the times at which a cross has occurred and hence about the inter-

event times. However, the received measurements are not only affected by the LOS

blockage but also by the multipath fading that is caused by scattering off of the people

that are not necessarily on the direct LOS. Therefore, we need to identify the times at

which a LOS cross has occurred in the presence of multipath.

Our analysis of several measurements has shown that the fluctuations and dips caused

by multipath are typically much smaller than those caused by any LOS blockage. Fig.

3.15 (left), for instance, shows the RSSI measurements of an experiment with 9 people

walking in an area, while Fig. 3.15 (right) shows the corresponding RSSI measurements

in the same area but when the same number of people were instructed not to cross the

LOS link. More specifically, 4 people were instructed to walk on one side of the LOS

link, with the other 5 walking on the other side, without any person crossing the LOS

link. Since there is no LOS blocking in this second case, the fluctuations in the RSSI

measurements are solely due to the multipath effect. As can be seen, the measurements

in Fig. 3.15 indicate that the effect of LOS blocking is more significant compared to
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Figure 3.15: (left) shows a sample RSSI power measurement when 9 people are walk-
ing inside a building while (right) shows the RSSI power measurements in the same
environment and for the same number of people when people are instructed not to
cross the LOS link. The right figure thus mainly captures the fluctuations due to
multipath fading. By comparing the two figures, it can be seen that the effect of
LOS blocking is considerably more significant as compared to the fluctuations due to
multipath.

Number of people in the Area 1 3 5 7 9
Estimated Number of People 1 3 4 7 9

Table 3.5: A sample result for counting through walls based on our proposed approach,
for the classroom scenario of Fig. 3.16 on our campus (Area 1).

the multipath effect. Specifically, the fluctuations in the RSSI measurements due to

multipath are concentrated around the mean level of the RSSI signal, while blocking the

LOS causes a pronounced dip in the signal level.

Based on several similar observations, we then contribute any dip in the RSSI signal

level that is larger than a sufficiently-large threshold, TLOS, to people blocking the LOS

link.10 Furthermore, if TLOS is chosen properly (not too large), then the chance of filtering

a dip that was due to the LOS blockage becomes low. Thus, we utilize this approach in

our experiments in order to identify the events of people crossing the LOS and hence the

inter-event times.

10Note that we are only interested in detecting the time instants where any number of people block
the LOS link, without the need to know the particular number of people that are along the LOS.
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Figure 3.16: (a) The first area of interest (Area 1), a closed classroom on our campus
with wall made of concrete, where people are walking, (b) the Tx WiFi node located
outside the classroom, behind one of the walls of the classroom as marked, and (c)
the Rx WiFi node, along with the Raspberry Pi board that is used to control the data
collection, which is located outside of the classroom behind the wall that is indicated.

In terms of the choice of the threshold, we choose the threshold TLOS of 5 dB in all

our experiments, based on several observations similar to Fig. 3.15. This means that

any dip that is larger than TLOS is labeled as a LOS blockage. We note that, based on

our observations, the choice of TLOS is not strongly dependent on the area of interest,

which allows us to set it without the need to make prior measurements in a specific

area of interest. We thus use the same value of TLOS in all the five areas of interest

considered in the next section. Furthermore, as we shall see in the sensitivity analysis

of Section 3.5.5, the threshold TLOS is not sensitive to the specifics of the scenario such

as the density of people and their walking speeds. Thus, TLOS estimated with a specific

number of people walking at a specific speed can be used to estimate a different number

of people walking at other speeds, and more importantly in other areas. Finally, Section

3.5.5 explicitly shows that our experimental results are not that sensitive to the assumed

TLOS and moderate errors in estimating TLOS are well tolerated.
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Figure 3.17: The cumulative distribution function of counting estimation error based
on 5 sets of experiments in the classroom area of Fig. 3.16 on our campus (Area 1).
In each set of experiment, we asked 1, 3, 5, 7, and 9 people to walk in the classroom.

3.5.3 Considering the Temporal Width of a Dip

In practice, when a person crosses the LOS, the drop in the signal level is not an

impulse drop. Rather, crossing the LOS link takes a finite amount of time, which means

that each dip will have a small temporal duration. Let Tmin denote this time. Therefore,

a person crossing the LOS link blocks the signal for a period of time Tmin. This then

implies that we can not identify inter-event times that are less than Tmin. In other words,

any two events of crossing the LOS with an inter-event time smaller than Tmin are not

identifiable. Therefore, given that we can only identify inter-event times that are larger

than Tmin in practice, we modify our derived PMF of (3.36) to account for this. Then,

Ti, ∀ i ∈ 1, 2, . . . , n, is given as follows:

Ti|Ti ≥ Tmin ∼ fmod
p (m;N) ,

fp(m;N)
∞∑

r=Tmin

fp(r;N)
(3.39)
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Figure 3.18: (left) The second area of interest between two concrete walls (Area 2),
and (right) an example where people are walking in between these walls. The WiFi
nodes are located outside of the area of interest, behind the walls, as indicated in the
left figure. Readers are referred to the color pdf for better visibility.

Number of people in the Area 1 3 5 7 9
Estimated Number of People 3 5 6 6 7

Table 3.6: A sample result for counting through walls based on our proposed approach,
for the two-wall hallway scenario of Fig. 3.18 on our campus (Area 2).

fp in (3.37) is then replaced with fmod
p to estimate the total number of people.

The value of Tmin depends on the speed of people. In this dissertation, we have

assumed that people are walking casually. Based on simple experimental tests of one

person crossing a link at a walking speed, we have chosen Tmin = 1 second in our results

of the next section. We note that we do not need to measure this value in the particular

experimental site of interest, as it is not that dependent on a particular site, but is rather

more a function of the speed of people. Furthermore, as we shall see in section 3.5.5, the

experimental results are not that sensitive to the exact value of the assumed speed (and

thus not that sensitive to the exact value of Tmin).

The PMF of inter-event times in (3.39) is a function of the CCDF of a single person

Number of people in the Area 3 5 7 9
Estimated Number of People 3 4 6 7

Table 3.7: A sample result for counting through walls based on our proposed approach,
for the classroom scenario of Fig. 3.19 on our campus (Area 3).
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Figure 3.19: (a) The third area of interest (Area 3), a closed classroom on our campus
where people are walking. The room is enclosed by concrete walls on all four sides,
(b) the Rx WiFi node located outside the classroom, behind one of the walls of
the classroom as marked, and (c) the Tx WiFi node which is located outside of the
classroom behind the wall that is indicated.

inter-event times, Fc(z), as shown in (3.36). In this dissertation, we obtain Fc(z) using

simulations. More specifically, we simulate motion of 1 person using the motion model.

We then identify the times at which the person crosses the LOS link and extract the

inter-event times. Fc(z) is then obtained using these simulated inter-event times for a

single person. We note that such a simulation is low in computation time (e.g., 1 s),

since it involves only one person.

3.5.4 Experimental Results and Discussion

To validate the proposed framework of Section 3.4, we ran several experiments using

the aforementioned experimental setup. We next present the results.

Fig. 3.16 shows the first experimental area (Area 1), which is a closed classroom on

our campus, bounded by concrete walls on all four sides. We asked people to walk inside

the room while the WiFi nodes are located outside of the room, as shown in Fig. 3.16.

The walls are made of concrete bricks which are highly attenuating. The thickness of

each wall is 20 cm based on our assessment. The dimensions of inside of the room, where

people are walking, are L = 6.3 m and B = 7.8 m, with the Tx and Rx positioned at B
2
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Figure 3.20: Estimation of the total number of people as a function of time, for the
classroom of Fig. 3.16 (Area 1) and for the three cases where 1, 5 and 9 people are
walking. It can be seen that the estimates converge to within one person of their final
values within the first 100 seconds.

(See Fig. 3.11).

We have conducted several experiments in Area 1 when 1, 3, 5, 7, and 9 people walked

inside the room. In each experiment, the measurements are collected for 300 seconds

at 20 samples/sec. People are assumed to have a casual walking speed, which we take

it to be 1 m/s in our theoretical modeling.11 Table 3.5 shows sample results for the

estimation of the number of people. It can be seen that our approach can estimate the

total number of people walking inside the classroom with a high accuracy, by making

WiFi measurements from outside, behind the classroom walls. To further validate our

framework statistically, we have run a series of experiments on different times/days to

collect statistics of the estimation error. More specifically, we have run experiments on 5

different occasions in the classroom area of Fig. 3.16 (Area 1). In each run, 1, 3, 5, 7, and

9 people are asked to walk in the classroom. Fig. 4.22 shows the Cumulative Distribution

11Note that we do not ask people to walk with a specific speed or in a specific pattern during the
experiments. Instead, we simply ask them to walk casually in the area of interest.
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Figure 3.21: (a) The fourth area of interest (Area 4), a closed conference room on
our campus where people are walking. The room is enclosed by wooden walls on all
four sides, (b) the Rx WiFi node located outside the room, behind one of the walls of
the room as marked, and (c) the Tx WiFi node which is located outside of the room
behind the wooden wall that is indicated.

Number of people in the Area 1 2 3 4 5 6 7 8 9
Estimated Number of People 2 2 5 4 6 6 8 8 11

Table 3.8: A sample result for counting through walls based on our proposed approach,
for the classroom scenario of Fig. 3.21 on our campus (Area 4).

Function (CDF) of the estimation error based on these repeated measurements. It can

be seen from the CDF plot that the estimation error is 1 person or less 81% of the time

and 2 people or less 100% of the time, confirming a good statistical performance.

To further validate our approach, we next run experiments in an outdoor area oc-

cluded by walls. Fig. 3.18 shows the outdoor area of interest (Area 2). As can be seen,

two parallel walls are constructed with concrete bricks. The thickness of each wall is 5 cm

in this case. The dimensions of the area of interest are L = 10 m and B = 7 m. People

are then asked to walk in the hallway created in between the walls, while a Tx and a Rx

Number of people 1 3 5 9
Estimated Threshold (dB) 4 4 4 5

Table 3.9: Sensitivity of the estimated threshold TLOS to the number of people walking
in the area. It can be seen that the optimum threshold is not that sensitive to the
number of people in the area.
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Figure 3.22: (a) The fifth area of interest (Area 5), a closed classroom on our campus
where people are walking. The room is enclosed on all four sides by walls that are
made of a mixture of concrete and plaster, (b) the Rx WiFi node located outside the
classroom, behind one of the walls of the classroom as marked, and (c) the Tx WiFi
node which is located outside of the classroom behind the wall that is indicated. The
performance of our framework with 20 people walking in this area is also shown. It
can be seen that our framework accurately estimates the number of people.

node are mounted outside of each wall. Table 3.6 shows a sample result obtained in Area

2. As can be seen, the number of people is estimated with a good accuracy. Fig. 3.19

shows a third area of interest (Area 3), which is another classroom on our campus. The

area is bounded by concrete walls on all four sides. People walk in part of this room with

the dimensions of L = 7.8 m and B = 3.96 m as shown in Fig. 3.19. Note that Area

3 has rich multipath due to the furniture in the room. Table 3.7 shows a sample result

obtained in Area 3. It can be seen that the number of people are estimated accurately.

To further validate our framework with walls made of different material than concrete,

we ran experiments in a room enclosed by wooden walls. Fig. 3.21 shows the fourth area

of interest (Area 4), which is a conference room on our campus. The dimensions of the

area of interest are L = 4.1 m and B = 7.5 m. We then run experiments with up to and

including 9 people in this area. Table 3.8 shows the performance of our framework in

this case. It can be seen that our framework can estimate the number of people with a

high accuracy, which shows the robustness of our approach to the wall material.
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So far, we demonstrated experimental results with up to and including 9 people in

4 different areas on our campus. To test the scalability of our approach, we further run

experiments with 20 people walking inside a classroom. Fig. 3.22 shows the fifth area

of interest which is a classroom on our campus enclosed on all four sides by walls that

are made of a mixture of concrete and plaster (Area 5). The dimensions of this area are

L = 7.9 m and B = 12.6 m. We then run experiments with 20 people walking inside this

classroom as shown in Fig. 3.22. Our framework estimates the number of people inside

as 19 in this case, which shows the scalability of our framework to the higher number of

people with only one WiFi link.12 This experiment further tests the proposed approach

with a third kind of wall material, a mixture of plaster and concrete, and confirms its

robustness. Overall, considering all five areas, our framework can estimate up to and

including 20 people with an error of 2 people or less 100% of the time and with an error

of 1 person or less 75% of the time.

So far, we have demonstrated that the proposed framework can estimate the total

number of people walking inside an occluded area of interest with a high accuracy. In all

the experimental results so far, we have used data collected for 300 seconds. Next, we

show the time we need to wait before the estimates converge to their final values. More

specifically, Fig. 3.20 shows the estimates as a function of time for an experiment with 1,

5, and 9 people for the classroom scenario of Fig. 3.16 (Area 1). It can be seen that the

estimates converge to within 1 person of their final values within the first 100 seconds.

Overall, our experimental results confirm that the proposed framework can estimate

the number of people inside a room or a building, or in general behind walls, solely from

WiFi RSSI measurements acquired from outside, with a good accuracy.

12We note that as the size of the area and the number of people increases, at some point we inevitably
have to use more links. However, the fact that 20 people can be counted through walls with only one
WiFi link in an area of the size 100 m2 is promising for how this approach will scale to bigger areas and
more people.
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Figure 3.23: Sensitivity of our crowd counting to the errors in the assumed walking
speed. The casual speed of people is assumed to be 1 m/s. Other speeds were then
assumed in our derivations when estimating the number of people. It can be seen that
our framework is robust to moderate errors in the assumed speed.

Speed of
People

Standing
Still

Normal
Walking

Running

Estimated
Threshold

(dB)
4 5 4

Table 3.10: Sensitivity of the optimum threshold TLOS to the speed of people walking
in the area. It can be seen that the estimated optimum threshold is not that sensitive
to the speed of people in the area.

3.5.5 Sensitivity Analysis

In the experimental results of this section, we took TLOS as 5 dB and assume a walking

speed of 1 m/s. We next show that the our framework is not sensitive to the exact value

of TLOS and the speed of people and that moderate errors in both can be well tolerated.

Furthermore, we show that the estimation of TLOS is not that sensitive to the specifics of

the scenarios such as the density of people and their walking speeds. This then greatly

reduces the calibration demand of our approach as TLOS estimated with a specific number

of people walking at a specific speed in the calibration phase can be used to estimate

a different number of people walking at a different speed in the estimation phase. We
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Figure 3.24: Sensitivity of our crowd counting to the errors in the assumed threshold
TLOS. It can be seen that our framework is robust to moderate errors in the assumed
value of the threshold.

furthermore have only calibrated TLOS in one area and have used it in the other 4 areas

in all our experiments, which indicates the generalizability of it across different areas,

further reducing the calibration burden, which is important for behind-wall scenarios.

Sensitivity to the Assumed Walking Speed

The results of Section 3.5.4 assumed that the people in the area of interest are walking

at an average speed of 1 m/s, based on the typical walking speed of humans. However,

the average walking speed could vary slightly from this value depending on the person or

the environment, for instance due to the density of people in the region. In this section,

we consider the effect of errors in the assumed walking speed (as compared to the true

speed of people) on the estimation of the number of people.

In order to analyze the effect of the assumed walking speed and its deviation from the

true speed of people during the experiment, consider an experiment where people are told

to walk casually, which amounts to a speed of around 1 m/s. We then assume that people

are walking at a speed of v m/s in our derivations and estimate the number of people based

on our framework. Fig. 3.23 shows the mean absolute estimation error in the number
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of people as a function of the error in the assumed walking speed. At each assumed

speed, the estimates with different number of people (N=1, 3, 5, 7, and 9) walking in the

classroom area of Fig. 3.16 are obtained over 5 repeated sets of experiments. The mean

of the absolute error is then shown in Fig. 3.23. It can be seen that the estimation error

is less than 2 people in most of the assumed speed range, showing the robust nature of

our framework to small errors in the assumed walking speed of the people as compared

to the true speed.

Sensitivity to the Assumed Threshold

As explained in Section 3.5.2, a threshold TLOS is used to separate the dips of the

wireless measurements that are due to people blocking the LOS path from the dips due

to multipath. The time instants at which these dips occur are then used to estimate

the number of people in the area as explained in Section 3.4. As discussed in Section

3.5.2, we have used TLOS = 5 dB in all our results. However, the true optimal value of

TLOS is hard to quantify. In this section, we consider the impact of the choice of TLOS on

the estimates of the number of people. More specifically, we consider a range of values

for TLOS and estimate the number of people. At each TLOS, the estimates with different

number of people (N=1, 3, 5, 7, and 9) walking in the classroom area of Fig. 3.16 are

obtained over 5 repeated sets of experiments. The mean of the absolute error is then

shown in Fig. 3.24. As can be seen, the mean error is less than 2 people for a wide

range of TLOS, which shows the robust nature of our framework to moderate errors in the

estimated threshold TLOS.

Sensitivity of the Threshold to the Density and Speed of People

As explained in Section 3.5.2, the threshold TLOS is estimated by collecting wireless

measurements when people are walking without blocking the LOS link. This threshold is

90



then used to separate the LOS blockage from the multipath. For instance, the estimate

of TLOS = 5 dB used in all our experiments is obtained in the calibration phase when

9 people are walking on either side of the LOS link in one area. In this section, we

consider the effect of the number of people walking in the area and their walking speed

in estimating TLOS. More specifically, we let different number of people (N=1, 3, 5, and

9) walk on either side of the LOS link without blocking the LOS link as explained in

Section 3.5.2. Furthermore, we let 9 people walk at three different speeds of standing

still, normal walking, and running. Table 3.9 and 3.10 show the estimated threshold as

a function of the number of people in the area and their walking speeds, respectively. It

can be seen that the estimated threshold is not that sensitive to the number of people

walking in the area or to their speeds, which explains the good accuracy of our results

with different number of people and with an assumed speed of 1 m/s.
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Chapter 4

Joint Crwod Counting and Crowd
Speed Estimation

In this chapter, we propose a framework to sense occupancy attributes of an area, such

as speed of a crowd traversing through the area, the total number of people in the area,

and the rate of arrival of people into the area, using only the received power measure-

ments (e.g., RSSI) of two WiFi links, and without relying on people to carry any device.

We first show that the cross-correlation between the two WiFi link measurements and

the probability of crossing a link implicitly carry key information about the occupancy

attributes and develop a mathematical model to relate these parameters to the occu-

pancy attributes of interest. Based on this, we then propose a system to estimate the

occupancy attributes and validate it with 51 experiments in both indoor and outdoor

areas, where up to (and including) 20 people walk in the area with different possible

speeds, and show that our framework can accurately estimate the occupancy attributes.

For instance, our framework achieves a Normalized Mean Square Error (NMSE) of 0.047

(4.7%) when estimating the speed of a crowd, an NMSE of 0.034 (3.4%) when estimating

the arrival rate to the area, and a Mean Absolute Error (MAE) of 1.3 when counting the

total number of people. We finally run experiments in an aisle in Costco, showing how

we can estimate the key attributes of buyers’ motion behaviors.
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We then extend our framework to the scenario where we estimate the crowd speeds in

multiple regions where people could be walking with different speeds by having wireless

links in only one region. More specifically, we use a pair of WiFi links in one region,

whose received power measurements (e.g., RSSI) are then used to estimate the crowd

speed, not only in this region, but also in adjacent WiFi-free regions. We first prove

how the cross-correlation and the probability of crossing the two links implicitly carry

key information about the pedestrian speeds and develop a mathematical model to relate

them to pedestrian speeds. We then validate our approach with 108 experiments, in both

indoor and outdoor, where up to 10 people walk in two adjacent areas, with variety of

speeds per region, showing that our framework can accurately estimate these speeds with

only a pair of WiFi links in one region.

This chapter is organized as follows. In Section 4.2, we mathematically characterize

two key statistics, the cross-correlation between two WiFi links, and the probability

of crossing a link, and show how they carry vital information on the crowd speed and

number of people/arrival rate, and propose a methodology to estimate them accordingly.

In Section 4.3, we thoroughly validate our framework with 51 experiments where up to 20

people walk in both indoor and outdoor areas, and for both closed and open scenarios.

We further test our methodology in Costco. We then describe the problem setup for

multiple regions in Section 4.4. In Section 4.5, we mathematically characterize two key

statistics, the probability of crossing and the cross-correlation between a pair of WiFi

links, and show how they carry vital information on the speeds of pedestrians in both

regions, and present a methodology to estimate these speeds accordingly. In Section 4.6,

we thoroughly validate our framework with several experiments.
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4.1 Problem Setup

To keep our framework applicable to many scenarios, we consider two possible general

cases, as shown in Fig. 4.1. The first case (Fig. 4.1(a)), can represent a museum, a

conference, or an exhibit-type setting where the total number of people inside the overall

area changes slowly with time such that it can be considered constant over a small period

of time. People can have any motion behavior in this area and can possibly traverse the

area several times back and forth, depending on their interest. We refer to this case as

the closed area case. The second case (Fig. 4.1(b)), on the other hand, captures the

cases where people can enter and exit through both ends, and can form flow directions

through the area. Then the total number of people can change rapidly with time and

cannot be considered a constant. This case represents scenarios like train stations or a

store aisle. We then refer to the second case as the open area case. As we shall show

in this chapter, the estimation of occupancy attributes can be achieved under the same

unifying framework for both cases, by estimating the rate of arrival of people for the

open case, and the total number of people in the area (over a small period of time) for

the closed case.

4.2 Proposed Methodology and System Design

In this section, we propose a system to estimate the occupancy attributes of an

area, i.e., the speed of a crowd as well as the total number (or arrival rate for the open

case), using only a pair of WiFi links, as shown in Fig. 4.1. More specifically, we first

show that the cross-correlation between the two links is mainly a function of the crowd

speed. We next derive a mathematical expression for the probability of pedestrians

crossing a WiFi link. Our analysis shows that these parameters carry key information
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Figure 4.1: Two example scenarios of the problem of interest, (a) a closed and (b) an
open area. A pair of WiFi links are located in the area. We are then interested in esti-
mating the occupancy attributes of the area, based on only WiFi RSSI measurements
of the links. (a) shows an example of a closed area, such as an exhibition or a museum,
where the total number of people inside the area changes slowly with time and people
can traverse back and forth or change directions inside the area any number of times
depending on their interest. For a closed area, we are then interested in estimating
the total number of people in the area and their walking speed, (b) shows an example
of an open area such as a train station, where people can come and go from both sides
and can form flow directions. In this scenario, we are then interested in estimating
the walking speed and the rate of arrival of people into the area.

on the speed/number of the pedestrians, which we then use to estimate the occupancy

attributes. We next start by summarizing a probabilistic model to capture the motion

dynamics of a casual walk in the area, followed by discussing how occupants affect the

received signal power.
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4.2.1 Pedestrian Motion Model

In this chapter, we extend the pedestrian motion model developed in chapter 3, which

captures casual walking patterns, to more general cases where environmental character-

istics can also be captured.

Consider the motion of a single person in the workspace. Let x(k), y(k), and θ(k)

denote the position along x-axis, the position along y-axis, and the heading of the person

w.r.t. the x-axis, at time k, respectively, as marked in Fig. 4.1(a). In a casual walk,

a person keeps walking in a particular direction while occasionally changing his/her

direction. This walking pattern can then be captured by the following model as discussed

in chapter 3:

θ(k + 1) =


θ(k) with probability p

Uniformly in µ with probability 1− p.
(4.1)

For the case of Fig. 4.1(a), people can change their direction any time and can traverse

the area back and forth as many times as they wish. In this chapter, we make the motion

model more general by using µ = [−θmax, θmax] ∪ [π − θmax, π + θmax], to capture this

behavior. θmax then defines the maximum angle for the direction of motion, and is an

environment-dependent parameter. For instance, in long hallways, people may have a

pattern more close to a straight line, resulting in a smaller θmax, while in a supermarket,

people may often deviate from a straight line to check out grocery items. Parameterizing

the motion model with θmax then allows us to capture the characteristics of different

environments. For this closed-area case, we assume that when a person encounters any

of the four boundaries of the area, she/he reflects off of the boundary, similar to a ray of

light.1

1This boundary behavior is only assumed for the purpose of modeling. In our experiments, we have
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For the case of open area of Fig. 4.1(b), on the other hand, we assume that people

walk mainly in the forward direction, entering from one end, and exiting from the opposite

end of the area. Such a motion behavior can characterize the motion in many open areas,

such as exhibitions and aisles. Thus, we take µ = [−θmax, θmax] or µ = [π−θmax, π+θmax]

depending on the direction of motion.

Based on Eq. (4.1), the position dynamics are then given as follows for both open

and closed cases:

x(k + 1) = x(k) + vδt cos(θ(k))

y(k + 1) = y(k) + vδt sin(θ(k)),

(4.2)

where δt is the time step and v is the walking speed.

Our proposed methodology relies on the LOS blockage events. Thus we first extract

the LOS blockage event sequence from the RSSI measurements, as explained in Chapter

3.

4.2.2 Cross-correlation to Estimate the Crowd Speed

In this section, we propose to use the cross-correlation between the LOS event se-

quences, corresponding to the two WiFi links, and show that it contains implicit infor-

mation about the walking speed of the pedestrians in an area.

Consider the closed area of Fig. 4.17(a). Let Y1(k) and Y2(k) denote the event

sequences corresponding to Link 1 and Link 2, defined as,

Yi(k) =


l if El happens at time k

0 otherwise

, for i ∈ {1, 2},

no control over how people walk.

97



where El denotes an event corresponding to l people blocking the LOS path. The cross-

correlation between the two event sequences, Y1(k) and Y2(k), is then given by

RY1Y2(τ, v) =
Cov

(
Y1(k), Y2(k + τ)

)
√

Var
(
Y1(k)

)
Var
(
Y2(k + τ)

) , (4.3)

where τ represents the time-lag, and Cov(. , .), and Var(.) denote the covariance and

variance of the arguments, respectively. Since the pedestrians walk independent of each

other, we have, Yi(k) =
∑N

j=1 Y
j
i (k), for i ∈ {1, 2}, where Y j

i (k) = 1 if the jth person

blocks Link i at time k, and is 0 otherwise. N is the total number of people in the area,

which we take to be constant over the estimation period for the closed case.

Lemma 4.1 The cross-correlation, RY1Y2(τ, v), between the event sequences Y1(k) and

Y2(k) is a function of only the speed of the people v in the area and is independent of the

number of people in the area for the case of closed area.

Proof: Consider the closed area of Fig. 4.17(a). Since we assume independent

motion for the pedestrians, it can be easily confirmed that the numerator and the de-

nominator of Eq. (4.3) are proportional to N , resulting in the cross-correlation becoming

independent of N . This can be seen by substituting Yi(k) in (4.3), and further simplifi-

cations, which results in

RY1Y2(τ, v) =
Pr(Y j

2 (k + τ) = 1|Y j
1 (k) = 1)− pc,single person

1− pc,single person

, (4.4)

for any j ∈ {1, 2, · · · , N}, where pc,single person denotes the probability of crossing a link by

a single person. While it is considerably challenging to derive a closed-form expression

for the cross-correlation, the dependency on the crowd speed can be easily seen. For

instance, the first term in the numerator of Eq. (4.4), Pr(Y j
2 (k + τ) = 1|Y j

1 (k) = 1), is
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the probability that the jth person is at Link 2 at time k+τ , given that she/he is at Link

1 at time k. Clearly this depends on the speed at which the jth person is walking. Hence

the cross-correlation in Eq. (4.4) contains information about the speed of the pedestrians.

Lemma 4.2 For the case of the open area, the cross-correlation RY1Y2(τ, v) is a function

of only the speed of the people v and is independent of the rate of arrival, when the arrivals

follow a Poisson process.

Proof: The Lemma can be proved after a few lines. We skip the proof due to space

limitations.

For the case of open area of Fig. 4.1(b), deriving an expression for the cross-

correlation, for a general arrival process distribution is considerably challenging. How-

ever, our extensive simulations with various speed and arrival rate combinations show

that the cross-correlation is mainly a function of the speed of the people in the area.

The strong dependency of the cross-correlation on the crowd speed, for both open and

closed cases, then allows us to devise a simple low-complexity approach for estimating

it. More specifically, we simulate a single person walking in the area, according to the

motion dynamics in Eq. (4.2) and with different possible speeds, and generate the event

sequences corresponding to the two links in the area. We then generate a database

for the cross-correlation function RY1Y2(τ, v) for a range of walking speeds v. Since the

cross-correlation is independent of the number of people in the area, the database for

RY1Y2(τ, v), obtained with 1 person walking in the area (or one rate of arrival for the

open case), is valid for any number of people in the area. This makes the database

generation a one-time and low complexity operation. The walking speed in an area is
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then estimated by matching the cross-correlation with the database as follows:

v̂ = min
v

τ=T∑
τ=0

(
Rexp
Y1,Y2

(τ)−RY1,Y2(τ, v)
)2

, (4.5)

where Rexp
Y1,Y2

(τ) is the cross-correlation between the two event sequences obtained during

the real experiment.

4.2.3 Characterization of the Probability of Crossing

To build a complete picture of occupancy attributes, we next show that the pair of

links can also estimate the total number of people or their arrival rate to the area as

well. We first characterize the probability of crossing for the case of the closed area of

Fig. 4.1(a), the analysis of which is more involved since a person can reverse the direction

of motion anytime and can bounce back and forth in the area as many times as he/she

wishes. We then show how to extend the analysis to the case of open area of Fig. 4.1(b),

putting everything under one unifying umbrella. A key feature of our analysis is using a

generalized motion model where different motion behaviors can be captured through the

parameter θmax of Section 4.2. We then show how to derive a mathematical expression

for the probability of crossing a link, under this motion model.

Head Counting for the Case of Closed Area

Consider Fig. 4.1(a) and the motion model of Eq. (4.2). Since the heading, and the

positions along the x-axis and y-axis at time k + 1, depend only on the corresponding

values at time k, we use a Markov chain model to describe the motion dynamics of

each pedestrian. We then use the properties of the corresponding Markov chain to

mathematically derive the probability of crossing a given link by a single pedestrian and

show its dependency on the walking speed of the pedestrian. This is then followed by
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characterizing the probability that any number of people cross a given link, and showing

its dependency on the total number of people and their speed.

For the purpose of modeling, we discretize the work-space and assume that people

can choose only discrete positions along x-axis, y-axis, and the heading direction.2 More

specifically, θ(k) ∈ µd = {−θmax, −θmax + ∆θ, · · · , θmax} ∪ {π − θmax, π − θmax +

∆θ, · · · , π + θmax}, x(k) ∈ {0, ∆x, · · · , B}, and y(k) ∈ {0, ∆y, · · · , L}, where ∆θ,

∆x, and ∆y denote the discretization step size for heading and position along x-axis and

y-axis respectively. Let Nθ denote the number of discrete angles for the heading.

Let Θ(k) denote the random variable representing the heading of a pedestrian at

time k. Let πθ(k) represent the corresponding probability vector with the ith element

(πθ(k))i = Pr(Θ(k) = (µd)i), where Pr(.) is the probability of the argument, and (µd)i

denotes the ith element of the set µd. Then from Eq. (4.1), we have the following Markov

chain for the heading Θ(k):

πθ(k + 1) = πθ(k)PΘ, (4.6)

where PΘ is the probability transition matrix for the heading with (PΘ)ij = Pr(Θ(k+1) =

(µd)j|Θ(k) = (µd)i) and is given by (PΘ)ij = δ(i − j) × p + 1−p
Nθ

= (PΘ)ji, where δ(.) is

the Dirac-delta function, Nθ = card(µd), and card(.) denotes the number of elements in

the argument. Since the probability transition matrix PΘ is symmetric, it is a doubly-

stochastic matrix, which implies a uniform stationary distribution for Θ(k) [75]. This

implies that the probability that a pedestrian heads in any given direction (in µd) is the

same asymptotically.

Let X(k) denote the random variable representing the position of a pedestrian along

the x-axis at time k. Similar to the heading direction, we can describe the dynamics

of X(k) using a Markov chain. Let PX denote the corresponding probability transition

2This is only for the purpose of mathematical characterization. In practice, the position and heading
of the pedestrians are naturally not limited to these discrete values.
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matrix for X(k). Similar to the heading dynamics we can show that the stationary

distribution of X(k) and Y (k) are uniform [55]. We next use these properties of the

motion dynamics to derive the probability that a pedestrian crosses the LOS path.

We say that a pedestrian crosses/blocks a given link3 located at Xi along the x-axis,

at time k + 1, if either x(k + 1) ≥ Xi and x(k) ≤ Xi or x(k + 1) ≤ Xi and x(k) ≥ Xi.

Consider Fig. 4.1(a) and the motion model of Eq. (4.1)-(4.2). Consider a time interval

T , discretized to δt. We then define the probability of crossing link i as follows:

pc = Number of blockage events in time interval [0 T]× δt

T

We then have the following theorem for the probability of crossing a link by a single

pedestrian.

Theorem 4.1 The probability of crossing a link by a single pedestrian in the area is

given by pc,single person = vδt sinc(θmax)
B

, where sinc(θmax) , sin(θmax)
θmax

with θmax in radians.

Proof: See the appendix for the proof of this Theorem.

We next consider the probability of crossing when there are N people in the area.

Since, we assume that people in the area walk independent of each other, the probability

of crossing, pc is given as pc(N, v) = 1 − (1 − pc, single person)N . The number of people in

the area can then be estimated as follows:

N̂ = min
N

(pc(N, v̂)− pexp
c )2, (4.7)

where pexp
c =

pexp
c,1 +pexp

c,2

2
and pexp

c,i for i ∈ {1, 2}, is the probability of crossing corresponding

to Link i obtained from the experiment.

3In this chapter, we consider WiFi links that are located parallel to the y-axis (see Fig. 4.1). However,
the derivation of the probability of crossing can be extended to any general link configuration following
a similar approach.

102



Remark 4.1 If θmax is assumed 90 the derivation of Theorem 1 simplifies to the expres-

sion derived in [55]. Theorem 1 then generalizes the derivation of pc to accommodate

any θmax, thus making it applicable to any environment.

Rate of Arrival Estimation for the case of Open Area

Consider the scenario of Fig. 4.1(b) in which people can enter/exit from either side of

the area as marked. In this case, the number of people in the area changes with time and

hence it is a random variable. As we discussed in Section 4.2.2, the cross-correlation is

mainly a function of the speed of people, and thus Eq. (4.24) can be utilized to estimate

the speed of the pedestrians for both open and closed areas. However, we need to extend

the probability of crossing analysis to the case of time-varying number of people in order

to estimate the rate of arrival to the area, as we show in this part.

Let λ denote the rate of arrival of people into the area (from both ends). In sce-

narios modeled by the open area, such as a retail store, people typically enter an aisle,

spend a random amount of time in the area depending on their interest, before exiting

it. Therefore, assuming that the rate of departure is the same as the rate of arrival λ

is a reasonable assumption. Furthermore people typically walk mainly in the forward

directions rarely turning back. Under these assumptions, the probability of crossing a

link in the area can be related to the rate of arrival into the area as follows:

pc =Number of events in time interval [0 T]× δt

T
= λδt.

We then estimate the rate of arrival, λ, from the crossing probability of each WiFi link

as λ̂ =
pexp
c,1 +pexp

c,2

2δt
.
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4.3 Performance Evaluation

In this section, we evaluate the performance of our proposed system using extensive

experiments. We start with several experiments in closed areas, where different number

of people (up to 20) walk with a variety of speeds, in both indoor and outdoor envi-

ronments, and show that our proposed approach can accurately estimate the occupancy

attributes. In particular, our experiments with 20 people show that our system can esti-

mate occupancy attributes for highly-dense areas. We then show our experimental results

for the open-area cases, in both outdoor and indoor environments. Finally, we test our

system in a local retail store, Costco, to estimate the rate of arrival and the speed of

people in an aisle. Overall, our extensive tests indicate that the proposed approach can

accurately estimate the occupancy attributes for both closed and open areas.

4.3.1 Experiment Setup

In all our experiments, a pair of WiFi links, located in the area of interest, make RSSI

measurements as people walk in the area. Each WiFi link uses a WBR 1310 router as a

Tx and a TP-Link wireless N150 WLAN card as a receiver. The Rx of each WiFi link

is interfaced with a RaspberryPi (RPI) which controls the data collection operation and

stores the corresponding RSSI measurements. Fig. 4.2 shows the WiFi router, WLAN

card, and RPI used in our experiments. This setup is used in all the experiments of the

chapter.

In order to derive the cross-correlation from the experimental data, the receivers of

the two WiFi links need to be synchronized in time. To achieve this, we interface the

Rx nodes of both WiFi links to the same RPI and program them to receive the wireless

signals from their corresponding transmitters at the same time instants. The data is

collected at a rate of 20 samples/second at each receiver of the WiFi link. Each link is
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(a)

(b)

(c)

Figure 4.2: (a) D-Link WBR 1310 wireless router along with an omni-directional
antenna, (b) the TP-Link wireless N150 WLAN card, (c) Raspberry Pi board used to
control the data collection process and synchronize the two WiFi links.

configured to operate in a different sub-channel of the 2.4 GHz wireless band to avoid

any interference. Specifically, we use sub-channel 1, which operates at 2.41 GHz for one

link, and sub-channel 11, which operates at 2.47 GHz, for the other link. This separates

the two links by the widest frequency margin.

Pedestrian Walking Speeds

As shown in Fig 4.1, our experiments involve different number of people walking at

different speeds in the area. We consider three different speeds 0.3 m/s (slow), 0.8 m/s

(normal walking), and 1.6 m/s (fast) in our experiments. We ask people to walk casually

at a given speed in an experiment. To help people walk at the correct speed, we make use

of a mobile application called “Frequency Sound Generator” which generates an audible

tone every second. Each person then listens to this application on his/her mobile and

takes a step of length v. This ensures correct speeds for people walking in the area. In

order to take steps of length v, we have people practice their step lengths to match v

prior to the experiments. This procedure is employed only to ensure an accurate ground-

truth for the speeds, which is used in assessing the performance of our approach. In our
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experiments in the aisle of Costco, the speeds of people are naturally determined by their

interests in each region, and as such there is no control over peoples’ speeds.

Separation of LOS from MP

As shown in Section 4.2, our framework is based on the event sequences of a pair of

WiFi links located in the area, with the events corresponding to people crossing a WiFi

link. Therefore, we need to first extract the event sequences of each WiFi link from the

corresponding RSSI measurements. We next describe this process.

To convert the RSSI measurements into an LOS event sequence, we first identify

all the dips in the RSSI measurements and the associated times at which the dips oc-

cur. Let kij, for j ∈ {1, 2, · · · , Ji}, denote these times for link i, and let Zi(k
i
j) de-

note the corresponding RSSI measurement at time kij on link i. The event sequence,

Y exp
i (k), for i ∈ {1, 2}, is then obtained from the RSSI measurements as follows:

Y exp
i (k) =


l if k = kij and Zi(k

i
j) is closest to Rl,i

0 otherwise

,

where Rl,i denotes the RSSI measurement of the ith WiFi link when l people simultane-

ously block the ith link. We find the values of Rl,i by performing a small calibration phase

in which l (up to 2) people simultaneously block the ith WiFi link and the corresponding

RSSI is measured.4 Note that small variations in Rl,i due to factors such as different

dimensions of people crossing the WiFi link have a negligible impact on our results. For

instance, we collect Rl,i data for only 2 people in the calibration phase, while a total of

10 different people walk in each campus experiment.

4We need to collect this only for small l as the probability of l people simultaneously blocking the
LOS link is negligible for higher l.
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Rx1

Rx2
Tx1

Tx2

Figure 4.3: The outdoor area of interest. The dimensions of the area are L = 4.26 m
and B = 14.3 m. Two WiFi links, each consisting of a transmitter and a receiver, are
located in the area, as marked.

Rx1

Rx2

Tx1

Tx2

Figure 4.4: The indoor area of interest. The dimensions of the area are L = 4.26 m
and B = 9.76 m. Two WiFi links are located in the area, as marked on the figure.

4.3.2 Experimental Results and Discussion

In this section, we extensively validate our proposed system with several experiments

using the aforementioned experiment setup. We first show our results for the case of

closed area, followed by the open area, and the retail store results.

Closed Area: Fig. 4.3 and 4.4 show the considered outdoor and indoor closed

areas of interest respectively. The dimensions of the outdoor area are B = 14.3 m and

L = 4.26 m and the transceivers are marked on the figure. For the case of indoor, on

107



Figure 4.5: A snapshot of the experiment when a large number of people (20) are
walking in the indoor area of interest.

True Headcount
and Speed

(N , v)

Estimated Headcount
and Speed

in Outdoor Area
(N̂ , v̂)

Estimated Headcount
and Speed

in Indoor Area
(N̂ , v̂)

(5, 0.3) (5, 0.4) (6, 0.5)
(5, 0.8) (4, 0.9) (4, 1)
(5, 1.6) (4, 1.9) (4, 1.6)
(9, 0.3) (10, 0.4) (9, 0.5)
(9, 0.8) (9, 0.9) (10, 0.9)
(9, 1.6) (7, 1.9) (7, 1.9)

Table 4.1: Sample performance of our proposed system to estimate the total number
and the speed of the people in closed areas – the middle and right columns show
the performance for the outdoor area of Fig. 4.3 and the indoor area of Fig. 4.4
respectively.

the other hand, the dimensions are B = 20 m, L = 2.25 m, and the transceivers are

marked on the figure. In our first series of experiments, we collect measurements in

these areas when 5 and 9 people walk with 3 different speeds in each area (6 different

possibilities). Table 4.1 then shows the estimates of the occupancy attributes obtained

by our system in the outdoor and indoor areas. It can be seen that the proposed system

accurately estimates both the number of people and their walking speeds in both indoor

and outdoor settings.
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NMSE of
Speed

Estimates

MAE of
Headcount
Estimates

0.046 (4.6%) 1.3 person

Figure 4.6: Average performance (aver-
aged over several trials) in closed areas
– the table shows the Normalized Mean
Square Error (NMSE) of the speed es-
timation, and the Mean Absolute Error
(MAE) of head counting, based on sev-
eral experiments in both indoor and out-
door settings.

True Headcount
and Speed

(N , v)

Estimated Headcount
and Speed

(N̂ , v̂)

(20, 0.3) (22, 0.4)

(20, 1.6) (19, 1.6)

Figure 4.7: Performance of our system in
very crowded areas – the table shows the
performance when 20 people walk, with
a variety of speeds, in the indoor area
of Fig. 4.5. It can be seen that our ap-
proach can estimate the speed and num-
ber of people accurately even at high
crowd densities.

To further validate our system statistically, we repeat experiments for each combina-

tion of N and v on 3 different days for both the indoor and outdoor areas, running a total

of 36 experiments. Table 4.6 then shows the NMSE of the speed estimation of all the

experiments as 0.046 (i.e., 4.6%) and the MAE in estimating the total number of people

as 1.3, which further confirms the high accuracy of our proposed system. Fig. 4.8 and

4.9 further show the cumulative distribution function (CDF) of the normalized square

error (NSE) for speed estimation and the CDF of the absolute error for head counting,

respectively. It can be seen that the NSE of speed estimation is less than or equal to 0.1,

92% of the time, and the occupancy estimates are within 1 person error 70% of the time

and within 2 people error 92% of the time, thus establishing the robust nature of our

proposed system. We further note that the proposed system has a low computational

complexity. For instance, it took 0.2 seconds to solve for the case of N = 20 and v = 0.3.

Furthermore, it converges after collecting RSSI measurements for a couple of minutes,

with several cases (those with higher speeds) converging in much less than a minute.

We next consider the impact of the environment on the estimation performance. More

specifically, Fig. 4.10 and 4.11 compare the CDF error curves of the indoor and outdoor

areas, for speed estimation and head counting respectively. It can be seen that both the
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Figure 4.8: CDF of the NSE for crowd
speed estimation in closed areas (both
indoor and outdoor). It can be seen that
our approach can estimate the crowd
speed with a good accuracy.
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Figure 4.9: CDF of the absolute error for
head counting in closed areas. It can be
seen that our approach can estimate the
number of people with a good accuracy.

indoor and outdoor areas have similar performances.

To further validate our proposed system in very dense areas, we run a number of

experiments where 20 people walked in the area of Fig. 4.5, with 2 different speeds. As

the figure shows, the area can get very crowded when 20 people are present. Table 4.7

then shows the performance of our system. It can be seen that our approach can estimate

the occupancy attributes well even when the area is considerably dense.

Open Area: In this section, we validate the performance of our proposed system

in open areas. More specifically, we run experiments in the same outdoor and indoor

areas of Fig. 4.3 and 4.4 but we allow people to enter/exit the area. In other words,

people enter the area from one side, walk in the area at the given speed, but with any

motion pattern they desire, and then exit the area from the other end. We then run

several experiments for different combinations of rate of arrival into the area and walking

speed in the area. More specifically, we consider Poisson-distributed arrival times with

two rates of 0.2 person/second and 0.1 person/second, and walking speeds of 0.3, 0.8,
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Figure 4.10: CDF of the NSE for crowd
speed estimation as a function of the lo-
cation. It can be seen that the perfor-
mance in outdoor and indoor locations
are comparable.
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Figure 4.11: CDF of the absolute error
for head counting as a function of the
location. It can be seen that the perfor-
mance in outdoor and indoor locations
are comparable.

True Arrival
Rate and

Crowd Speed
(λ, v)

Estimated Arrival
Rate and Speed
in Outdoor Area

(λ̂, v̂)

Estimated Arrival
Rate and Speed
in Indoor Area

(λ̂, v̂)
(0.2, 0.3) (0.2, 0.4) (0.22,0.4)
(0.2, 0.8) (0.16, 0.8) (0.21, 0.7)
(0.2, 1.6) (0.15, 1.6) (0.14, 2.2)
(0.1, 0.3) (0.1, 0.3) (0.14, 0.1)
(0.1, 0.8) (0.1, 1) (0.1, 1)
(0.1, 1.6) (0.09, 1.5) (0.08,2)

Figure 4.12: A sample performance of our system when estimating the arrival rate and
speed of the people in open areas – the middle and right columns show the performance
for the outdoor area of Fig. 4.3 and indoor area of Fig. 4.4 respectively, while the left
column shows the groundtruth.

and 1.6 m/s. Table 4.12 shows the performance of our approach when estimating the

arrival rate and speed of a crowd, for both outdoor and indoor areas. It can be seen that

the proposed system can accurately estimate the occupancy attributes of an open area.

Fig. 4.13 and 4.14 further show the CDF of the normalized square error for speed and

arrival rate estimation respectively. It can be seen that the NSE of speed estimation is
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Figure 4.13: CDF of the NSE for crowd
speed estimation in open areas (both in-
door and outdoor). It can be seen that
our approach can estimate the crowd
speed with a good accuracy.
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Figure 4.14: CDF of the normalized
square error for crowd arrival rate esti-
mation in open areas (both indoor and
outdoor). It can be seen that our ap-
proach can estimate the crowd arrival
rate with a good accuracy.

within 0.1, 83% of the time, and the NSE of rate estimation is within 0.2, 100% of the

time, thus establishing the robust nature of our proposed system.

Costco Experiments

In this section, we use our proposed system to estimate the motion behavior of the

buyers in an aisle of a retail store, Costco. Since people constantly come and go through

the aisle, this will be an example of the open area scenario. We then estimate the rate

of arrival of people into the aisle, and the speed at which people walk while they are

exploring the aisle, thus assessing the popularity of the products in the aisle.

Fig. 4.15 shows the aisle of interest in our local Costco. This aisle contains a specific

type of merchandise, snacks and cookies in this case. Both ends of the aisle are open and

people can enter/exit from either end of the aisle. It is expected that people walk at a

slow pace if the products in the aisle generate interest and they consider buying them.

We are thus interested in estimating such behaviors. A pair of WiFi links are located
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(a)

(b) (c)

TX1

Tx2

Rx2 Rx1

TX1 Rx1

Figure 4.15: The Costco experiment – the figure shows the considered “snacks and
cookies” aisle in Costco along with a pair of WiFi links positioned along the aisle to
make wireless measurements.

along the aisle, as indicated in Fig. 4.15, and make wireless measurements as people walk

through the aisle. We then use our approach of Section 4.2 to estimate the speed of

people in the aisle as well as their rate of arrival into the aisle.

More specifically, we collect wireless RSSI measurements for 15 minutes as people walk

through the aisle shown in Fig. 4.15. We manually record the times at which people

arrive from either entrance of the aisle, through visual observation since camcording was

not allowed, and compute the true rate of arrival. Fig. 4.16 shows the estimated rate of

arrival as a function of time. It can be seen that our framework accurately estimates the

rate of arrival of people into the aisle using a pair of WiFi links. Note that the rate of

arrival on that particular day/time was 1 person per minute (or 0.016 people/second).

Thus, our estimation converges relatively fast, within 400 seconds, which is the time 6
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Figure 4.16: The estimate of the rate of arrival of people into the aisle of Fig. 4.15 at
Costco, as a function of time. It can be seen that our framework correctly estimates
the rate of arrival.

people visited the aisle. Furthermore, the average ground-truth speed of people walking

in that aisle is estimated as 0.48 m/s, by manually recording the entrance and exit

times of people. The average speed of people walking in the aisle is then estimated as

0.2 m/s using our framework, which is consistent with the ground-truth, and indicates a

significant slowdown, showcasing the popularity of the aisle.

Overall, our extensive experiments (total of 51) confirm that the proposed approach

can estimate the crowd speed and total number (or arrival rate) robustly and with a high

accuracy.

4.4 Problem Setup: Two Regions

In this section, we consider the scenario where N pedestrians are walking in an area

that consists of two adjacent regions, Region 1 and Region 2, with region-dependent

speeds, as shown in Fig. 4.17. A pair of WiFi links are located in one region, which make

RSSI measurements as people walk in the two regions. The goal of this section is to
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Region 1 Region 2 (WiFi-Free)
Tx1 Tx2
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Region 1 Region 2 (WiFi-Free)
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 Exit

(a)

(b)

Figure 4.17: Two example scenarios of the problem of interest, where an area consists
of two regions, Region 1 and Region 2, as indicated. People move casually throughout
the area with a specific speed in each region. A pair of WiFi links are located in
Region 1. We are then interested in estimating the region-dependent speeds of both
regions, based on only WiFi RSSI measurements of the links and signal availability in
Region 1. (a) shows an example of a closed area, such as an exhibition or a museum,
where the total number of people inside the area changes slowly with time and people
can traverse back and forth or change directions inside the area any number of times
depending on their interest, whereas (b) shows an example of an open area such as
a train station, where people can come and go from both regions and can form flow
directions.

estimate the speeds of the pedestrians in the two adjacent regions, using the WiFi mea-

surements of the links located in one region. As we show in this section, the estimation

of the region-dependent speeds can be achieved for both cases under the same unifying

framework. We assume that, N , the total number of people in the area (or Navg, the

average number of people for time-varying cases such as Fig. 4.17b) is known. Assuming

the knowledge of the total number of people in the area is reasonable for many applica-

tions. For instance, in stores, there may be mechanisms (such as door sensors) to count
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the total number of people in the store. Then, it would be of interest to estimate the

speed of shoppers in different regions. We further note that the total number of people

can also be estimated with additional sensing in the area. Thus, in this section we focus

on estimating the region-dependent speeds, assuming N (or Navg), and based on minimal

sensing in only one region.

4.5 Estimation of pedestrian speeds: two regions

In this section, we propose a framework to estimate the region-dependent speed of

pedestrians in two adjacent regions, using a pair of WiFi links located in only one region,

as shown in Fig. 4.17. More specifically, we first derive a mathematical expression for the

probability of pedestrians crossing a WiFi link. We then characterize the cross-correlation

between the two links. Our analysis shows that these parameters carry key information

on the speeds of the pedestrians in both regions, which we then use to estimate the

speeds. A key feature of our approach is that it only relies on WiFi signal availability

in the region where the links are but can deduce the speed of the crowd in the adjacent

possibly WiFi-free region. In this section, we first characterize the probability of crossing

and the cross-correlation for the case of the closed area of Fig. 4.17a, the analysis of

which is more involved since a person can reverse the direction of motion anytime and

can bounce back and forth in the area as many times as he/she wishes. We then show

how to extend the analysis to the case of open area of Fig. 4.17b, putting everything

under one unifying umbrella.

4.5.1 Probability of Crossing a Link

Consider Fig. 4.17a and the motion model of Eq. (4.1)-(4.2). Since the heading, and

the positions along the x-axis and y-axis at time k+1, depend only on the corresponding
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values at time k, we use a Markov chain model to describe the motion dynamics of

each pedestrian. We then use the properties of the corresponding Markov chain to

mathematically derive the probability of crossing a given link by a single pedestrian and

show its dependency on the speeds of each region. This is then followed by characterizing

the probability that any number of people cross a given link. We note that the probability

of crossing problem of interest to this section is considerably different from that of [55],

since there are two regions with links in only one region. As such, a new characterization

and methodology is required as we develop in this section.

For the purpose of modeling, we discretize the work-space and assume that people

can choose only discrete positions along x-axis, y-axis, and the heading direction.5 More

specifically, θ(k) ∈ µd = {−θmax, −θmax + ∆θ, · · · , θmax} ∪ {π − θmax, π − θmax +

∆θ, · · · , π + θmax}, x(k) ∈ {0, ∆x, · · · , B1 +B2}, and y(k) ∈ {0, ∆y, · · · , L}, where

∆θ, ∆x, and ∆y denote the discretization step size for heading and position along x-axis

and y-axis respectively. Let Nθ denote the number of discrete angles for the heading.

Furthermore, let N1 and N2 represent the number of discrete positions along the x-axis

in Region 1 and Region 2 respectively.

Let Θ(k) denote the random variable representing the heading of a pedestrian at

time k. Let πθ(k) represent the corresponding probability vector with the ith element

(πθ(k))i = Prob(Θ(k) = (µd)i), where Prob(.) is the probability of the argument, and

(µd)i denotes the ith element of the set µd. Then from Eq. (4.1), we have the following

Markov chain for the heading Θ(k):

πθ(k + 1) = πθ(k)PΘ, (4.8)

where PΘ is the probability transition matrix for the heading with (PΘ)ij = Prob(Θ(k+

5This is only for the purpose of mathematical characterization. In practice, the positions and heading
of the pedestrians are naturally not limited to these discrete values.
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1) = (µd)j|Θ(k) = (µd)i) and is given by (PΘ)ij = δ(i− j)× p+ 1−p
Nθ

= (PΘ)ji, where δ(.)

is the Dirac-delta function, Nθ = card(µd), and card(.) denotes the number of elements

in the argument. Since the probability transition matrix PΘ is symmetric, it is a doubly-

stochastic matrix, which implies a uniform stationary distribution for Θ(k) [75]. This

implies that the probability that a pedestrian heads in any given direction (in µd) is the

same asymptotically.

Let X(k) denote the random variable representing the position of a pedestrian along

the x-axis at time k. Similar to the heading direction, we can describe the dynamics

of X(k) using a Markov chain. Let PX denote the corresponding probability transition

matrix for X(k). We then have the following lemma for the stationary distribution of

X(k).

Lemma 4.3 The stationary distribution of X(k) is given by γ = [c1e1 c2e2], where c1, c2

are constants, and e1, e2 are N1 and N2-dimensional row-vectors with all their elements

as 1.

Proof: Let PX be partitioned as PX =

P11 P12

P21 P22

 , where P11 is a square matrix

of dimension N1. Further, Pij, for i, j ∈ {1, 2}, specify the transition probabilities

from positions in Region i to positions in Region j. The stationary distribution of the

partitioned transition matrix PX is shown in [87] to be γ = [k1γ1 k2γ2], where k1 and k2

are constants, and γ1 and γ2 are the stationary distribution vectors corresponding to the

probability transition matrices, S11 and S22, defined as follows:

S11 = P11 + P12(IN2 − P22)−1P21

S22 = P22 + P21(IN1 − P11)−1P12,

(4.9)

where IN1 and IN2 are the identity matrices of dimensions N1 and N2 respectively.
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Consider any two positions, r∆x and q∆x, along the x-axis that are in the same region

(i.e., with the same speed). Then, based on [55], Prob(r∆x→ q∆x) = Prob(q∆x→ r∆x),

where Prob(r∆x→ q∆x) denotes the probability of going from q∆x to r∆x in one time

step. Since the speed of the pedestrians is the same within a region, we then have,

P11 =P T
11 and P22 = P T

22. (4.10)

Furthermore, by choosing the step size ∆x such that q∆x can be reached from r∆x in

one time step if and only if |q − r| ≤ 1, we have the following property for P12 and P21.

(P12)ij 6= 0 iff i = N1, j = N1 + 1

(P21)ij 6= 0 iff i = N1 + 1, j = N1.

(4.11)

By substituting Eq. (4.10) and (4.11) in (4.9), we get, S11 = ST11 and S22 = ST22.

Since S11 and S22 are symmetric, the corresponding stationary distributions are uniform,

implying γ1 = e1
N1

, and γ2 = e2
N2

. Therefore, the stationary distribution of PX is γ =

[c1e1 c2e2], where c1 = k1

N1
and c2 = k2

N2
are constants. This proves the lemma.

Lemma 1 states that the position of a pedestrian along the x-axis has a uniform

asymptotic distribution within each region.

We next derive the probability that a pedestrian crosses a link, given that the pedes-

trian is in a region where there is a link (Region 1 in this case). We then use this

conditional probability of crossing the link, along with Lemma 1, to derive the overall

probability of crossing. We first mathematically define crossing/blocking a link. We then

have the following lemma for the conditional probability of crossing a given link, given

that the pedestrian is in the region where there is a link.

Lemma 4.4 Given that a person is in Region 1, the probability of crossing a given link in
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Region 1 is given by pc|1 = v1δt sinc(θmax)
B1

, where sinc(θmax) , sin(θmax)
θmax

with θmax in radians.

Proof: Consider a link located in Region 1 of Fig. 4.17a, whose x-coordinate is Xi.

Xi, for instance, can represent X1 or X2 of Fig. 4.17a. Let the position of the person

at time k be x(k) ≤ Xi. The person crosses the link at time k + 1, if he/she chooses a

direction θ(k) at time k such that x(k) + v1δtcos(θ(k)) ≥ Xi, which results in |θ(k)| ≤

cos−1
(
Xi−x(k)
v1δt

)
, where |.| is the absolute value of the argument. Since |θ(k)| ≤ θmax, in

order to cross the link, the heading direction should be as follows:

|θ(k)| ≤ min
{
θmax, cos−1

(Xi − x(k)

v1δt

)}
. (4.12)

Since the heading direction is uniformly distributed over µd, the probability that a person

at x(k) crosses the link in Region 1 at time k + 1, p
x(k)
c|1 , is given by,

p
x(k)
c|1 =

min
{
θmax, cos−1

(
Xi−x(k)
v1δt

)}
2θmax

, for x(k) ≤ Xi. (4.13)

By symmetry, it can be seen that p
x(k)
c|1 , for x(k) ≥ Xi, is given by,

p
x(k)
c|1 =

min
{
π − θmax, π − cos−1

(
x(k)−Xi
v1δt

)}
2θmax

, (4.14)

The probability of crossing the link given the person is in Region 1, pc|1, is then obtained

by summing over all the positions in Region 1 from which a cross can occur:

pc|1 =

Xi+v1δt∑
x(k)=Xi−v1δt

∆x

B1

p
x(k)
c|1 , (4.15)

where ∆x
B1

is the probability that a pedestrian is located at any given position in Region
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1. By substituting Eq. (4.13) and (4.14) in (B.1) and letting δt→ 0, we get,

pc|1 =
1

2B1θmax

∫ Xi+v1δt

Xi−v1δt

min
{
θmax, cos−1

(∣∣∣Xi − x(k)

v1δt

∣∣∣)}dx. (4.16)

By simplifying Eq. (4.16) further, we get

pc|1 =
v1δtsin(θmax)

B1θmax

, (4.17)

which proves the lemma.

By using Lemma 1 and Lemma 2, we then have the following theorem for the proba-

bility of crossing a given link by a single pedestrian.

Theorem 4.2 The probability of crossing a given link by a single pedestrian, pc,single person,

walking with the speed v1 in Region 1 and speed v2 in Region 2, is given by, pc,single person =

v1v2δtsinc(θmax)
v1B2+v2B1

.

Proof: The probability of crossing a given link in Region 1 by a single pedestrian

is given by,

pc,single person = c1 pc|1, (4.18)

where c1, defined in Lemma 1, denotes the probability of the pedestrian being in Region

1, and pc|1 is the conditional probability that the pedestrian crosses the given link in

Region 1, if he/she is in Region 1.

To find the probability c1, we use the pseudo-aggregation properties of the underlying

Markov chain [88]. More specifically, for the transition matrix PX , defined in Lemma 1,

with a stationary distribution of the form [c1e1 c2e2], the constants c1 and c2 are given
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by the stationary distribution of the probability transition matrix P , as we show next.

P =

p11 p12

p21 p22

 , (4.19)

where pij =
1TPij1

Ni
, for i, j ∈ {1, 2}, and 1 denotes a column vector whose elements are

all 1. We can then prove that the stationary distribution of P in Eq. (4.19) is (c1, c2) [88].

It can be seen that p12, is the probability of crossing from Region 1 to Region 2. From

Lemma 2, we have,

p12 =
pc|1
2

and p21 =
pc|2
2
. (4.20)

By substituting Eq. (4.20) in (4.19) and solving for the stationary distribution of P , we

have, c1 = v2B1

v1B2+v2B1
, and c2 = v1B2

v1B2+v2B1
. The probability of crossing a given link in

Region 1 by a single pedestrian can then be characterized as follows,

pc,single person = c1 pc|1 =
v1v2δt sinc(θmax)

v1B2 + v2B1

. (4.21)

This proves the theorem.

Remark 4.2 Note that if there was a link in Region 2, the probability of a single pedes-

trian crossing it would have been the same. This can be seen from the expression for

pc,single person by interchanging B1 with B2 and v1 with v2. Further, note that the proba-

bility of crossing is independent of the location of the link within Region 1.

Since there are N people walking in the area, we next characterize the probability that

any number of people cross a given link, pc(v1, v2), assuming that pedestrians’ motions
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are independent. We then have the following for the closed case:

pc(v1, v2) = 1− (1− pc, single person)N . (4.22)

From Eq. (4.22), it can be seen that the probability of any number of pedestrians crossing

the link is a function of the speeds of the pedestrians in both regions. Furthermore, from

Remark 1, we can see that the probability of crossing a link in Region 2, if there was

one in Region 2, will not provide any additional information in terms of the speeds in

Region 1 and 2, as it has the same exact function form as the probability of crossing a

link in Region 1. In other words, it would not have been possible to estimate the speeds

by utilizing two links, one in Region 1 and one in Region 2.

4.5.2 Characterizing the Cross-correlation

As explained in Section 4.2.2, the cross-correlation in Eq. (4.4) contains information

about the speeds of people in both regions for the scenarios of both open and closed

areas. However, given the vicinity of the two links, and by considering all the possible

motion patterns of the people, it can be easily seen that the cross-correlation carries more

information on the speed of Region 1, as compared to Region 2. As such, in the next

part, we utilize it for the estimation of the speed in Region 1, as we shall see.

4.5.3 Speed Estimation for the Closed Area

As shown in Sections 4.5.1 and 4.2.2, the probability of crossing a WiFi link, and the

cross-correlation between the two WiFi links, carry key information about the speeds of

the pedestrians in the two adjacent regions. Equations (4.22) and (4.4) further model

these relationships, which we then use to estimate the speeds of the pedestrians in the

two regions.
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Let Y exp
1 and Y exp

2 denote the event sequences, corresponding to the two WiFi links,

obtained from an experiment. Let Rexp
Y1,Y2

(τ) denote the cross-correlation between the

event sequences Y exp
1 and Y exp

2 , and let pexp
c,1 , pexp

c,2 denote the probability of crossing Link

1 and Link 2 respectively. The probability of crossing can be computed from the event

sequences as follows:

pexp
c,i =

δt

T
× Number of events in Y exp

i , for i ∈ {1, 2}, (4.23)

where T denotes the total time for which the data is collected, and δt is the discretization

step size.

Since the cross-correlation of Eq. (4.4) is independent of the total number of people,

N , we first estimate v1 from the cross-correlation without assuming the knowledge of N .

Then, given N and an estimate of the speed in Region 1, i.e., v̂1, we use the probability

of crossing in Eq. (4.22) to estimate the speed in Region 2. More specifically, we have,

v̂1 = min
v1,v2

τ=T∑
τ=0

(
Rexp
Y1,Y2

(τ)−RY1,Y2(τ, v1, v2)
)2

v̂2 = min
v2

(
pexp
c − pc(v̂1, v2)

)2

,

(4.24)

where pexp
c =

pexp
c,1 +pexp

c,2

2
. In other words, given that each link will have the same probability

of cross, we average the experimental probability of crossing of the two links in order to

reduce the impact of errors. We further only estimate v1 from the cross-correlation, since

it is heavily dependent on v1, as discussed earlier. As for evaluating RY1,Y2(τ, v1, v2), we

utilize simulations, which are low complexity since the cross-correlation is independent

of N and can thus be simulated for only one person. More specifically, for any given

speed pair, we simulate one person walking in the area and generate the event sequences

corresponding to the two links in the area. RY1,Y2(τ, v1, v2) is then obtained by computing
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the cross-correlation between the two event sequences. Finally, the parameter θmax in

pc(v1, v2) is assumed to be 45n all our results of the closed areas in the next section since

they involve long hallways. We note that our results are not very sensitive to this choice

of θmax, and θmax for a wide range of angles near 45ill lend similar results as we shall see

in the next section.

4.5.4 Speed Estimation for the Open Area

Consider the open area scenario shown in Fig. 4.17b. The number of people in the

area can change during the sensing period and should be considered a random variable.

However, as explained in Section III-C, since the cross-correlation is not a function of the

number of people, Eq. (4.24) can still be used to estimate the speed v1. We next show

how to characterize the probability of crossing for the open area in order to estimate v2.

Let λ denote the rate of arrival of people into the area (from both regions). We

assume that the rate of departure of people from the area is also λ. This will be the case

as long as the average number of people, Navg, averaged over a small time interval, does

not change significantly with time. Furthermore, we assume that each person mainly has

a forward flow, i.e., she/he mainly walks in a forward direction and rarely turns back.

The probability of crossing a link is then related to the rate of arrival as follows:

pc(v1, v2) =Number of events in time interval [0 T]× δt

T

=λδt,

(4.25)

To relate pc to the average speed of people in the two regions, we next use a theory from

queuing systems.

Consider the overall area as a queuing system in which every person is serviced until

the person exits. Then, the Little’s law of queuing theory [89] relates the average number
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of people being serviced, Navg, to the average time spent in the area by a person, Tavg,

and the rate of arrival, λ, as follows:

Navg = λTavg. (4.26)

Since we assume that people mainly walk in a forward direction, the average time spent

in the corridor can be approximated as follows:6

Tavg ≈
B1

v1

+
B2

v2

. (4.27)

From Eq. (4.25), (4.26), and (4.27), we can characterize the probability of crossing in

terms of the speeds of people in the two regions as follows:

pc(v1, v2) ≈ Navgv1v2

v1B2 + v2B1

δt. (4.28)

v1 and v2 can then be estimated by substituting Eq. (4.28) in Eq. (4.24).

Remark 4.3 Consider the expression derived for pc of Eq. (4.22), for the closed case. If

we assume that the probability of simultaneous crosses are negligible, we can approximate

Eq. (4.22) with Nv1v2δtsinc(θmax)
v1B2+v2B1

. For the open case, Eq. (4.27) becomes a better approxi-

mation if θmax is small. Then, by approximating θmax ≈ 0, we then have the probability of

crossing of the closed case approximated by Nv1v2δt
v1B2+v2B1

, which is similar to the expression

derived for the open case in Eq. (4.28). As mentioned earlier, Eq. (4.27) can be more

rigorously related to θmax as part of future work.

6We note that a better approximation of the average time can be calculated by considering the motion
model of people in Section 4.4, as part of our future work.

126



4.6 Experimental Results

In this section, we validate the proposed methodology of Section 4.5 with several

experiments. We start with a number of experiments in closed areas in both indoor

and outdoor, where different number of people walk in two adjacent regions, with a

variety of possible speeds per region, and show that our framework can estimate the

speeds with a good accuracy. We then run experiments in a museum-style setting, where

two exhibitions showcase two very different types of displays. Our approach can then

accurately estimate the visitor speeds in both exhibits, and thus deduce which exhibit is

more popular.

4.6.1 Experimental Validations and Discussions

In this Section, we extensively validate our framework by estimating the speeds of

people in two adjacent regions of an area using the aforementioned experimental setup.

Boundary

between the

 regions

Region  1

Region 2

Region 2

Region 1
Boundary

between the

 regions

Boundary

between the

 regions

Figure 4.18: The outdoor area of interest with two snapshots of people walking in
the area. The black line separates the area into two regions. People move casually
throughout the area with the given region-specific speed. A pair of WiFi links located
in Region 1 makes wireless measurements to estimate the speed of people in both
regions.

Fig. 4.17 shows the considered outdoor and indoor closed areas of interest respectively.

Each area is divided into two regions, with a pair of WiFi links located in one of the
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True speeds
(v1, v2)

Estimated speeds
(v̂1, v̂2)

(0.8, 0.8) (0.9, 0.9)

(0.8, 0.3) (0.8, 0.3)

(0.8, 1.6) (0.8, 2.3)

(0.3, 0.8) (0.4, 0.9)

(0.3, 0.3) (0.4, 0.4)

(0.3, 1.6) (0.3, 2.4)

(1.6, 0.8) (1.7, 0.6)

(1.6, 0.3) (1.8, 0.5)

(1.6, 1.6) (1.9, 2)

Table 4.2: A sample performance of our speed estimation approach for Region 1 (v1)
and Region 2 (v2) of the outdoor area of Fig. 4.18 and the case of N = 5 people.

regions. The dimensions of the outdoor area are L = 4.26 m, B1 = 5.5 m, B2 = 8.8 m,

X1 = 2.5 m, X2 = 3.7 m, while the dimensions of the indoor area are L = 2.25 m,

B1 = 7 m, B2 = 13 m, X1 = 2.5 m, X2 = 4 m (see Fig. 4.17a). People are then asked

to walk casually throughout the area, with a specific region-dependent speed. Sample

snapshots of people walking in the outdoor and indoor areas are shown in Fig. 4.18 and

Fig. 4.19 respectively. We have conducted several experiments in these areas with

different number of people walking at a variety of speeds. More specifically, we test the

proposed methodology with 9 possible combinations of speeds for (v1, v2) for the two

adjacent regions. For each pair of speeds, we then run a number of experiments with

both 5 and 9 people walking in the area. For any given speed, people are instructed on

how to walk with that specific speed as discussed in Section 4.3.1. Table 4.2 shows a

sample performance of our approach when 5 people are walking in the outdoor area and

for all the 9 speed combinations, while Table 4.3 shows a sample performance when 9

people are walking in the indoor area. It can be seen that our proposed methodology

can estimate the speeds of people in the adjacent regions with a good accuracy, for both
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True speeds
(v1, v2)

Estimated speeds
(v̂1, v̂2)

(0.8, 0.8) (0.9, 0.9)

(0.8, 0.3) (1, 0.5)

(0.8, 1.6) (0.9, 1.6)

(0.3, 0.8) (0.5, 0.9)

(0.3, 0.3) (0.5, 0.3)

(0.3, 1.6) (0.4, 1.9)

(1.6, 0.8) (1.9, 0.7)

(1.6, 0.3) (1.7, 0.4)

(1.6, 1.6) (1.9, 2.1)

Table 4.3: A sample performance of our speed estimation approach for Region 1 (v1)
and Region 2 (v2) of the indoor area of Fig. 4.19 and the case of N = 9 people.

Speed v1 v2 v1 or v2

NMSE 0.11 0.24 0.18

Table 4.4: NMSE of the estimation of
speeds in each region as well as the over-
all NMSE of the speeds in any of the two
regions.

NMSE

Scenario v1 v2 v1 or v2

Outdoor 0.09 0.16 0.12

Indoor 0.14 0.33 0.23

Table 4.5: NMSE of speed estimation for
both indoor and outdoor.

indoor and outdoor cases, by using a pair of WiFi links located in only one region.

To further validate our framework statistically, we repeat each speed pair 3 times, on

different days, for both cases of 5 and 9 people walking in the area. This amounts to 108

overall sets of experiments. To evaluate the performance, we calculate the NMSE. Table

4.4 shows the overall NMSE of the estimation error for speed of Region 1 as 0.11, for

speed of Region 2 as 0.24, and for the speed in any of the two regions as 0.18, confirming a

good performance. Fig. 4.20 further shows the Cumulative Distribution Function (CDF)

of the Normalized Square Error (NSE) for the speed of Region 1, Region 2, and the

speed in any region. It can be seen that the NSE is less than 0.15, 90% of the time for

v1 and 70% of the time for v2, further confirming a good performance. We note that the
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NMSE

Number of
people v1 v2

v1 or
v2

N=5 0.06 0.20 0.13

N=9 0.16 0.29 0.23

Table 4.6: NMSE of speed
estimation based on the to-
tal number of people walk-
ing in the area.

Region 1

Region 2

Boundary
between the 

regions

Region 2

Region 1

Boundary

between the 

regions

Boundary

between the 

regions

Figure 4.19: The indoor area of interest with two snapshots of people walking in
the area. The black line separates the area into two regions. People move casually
throughout the area with the given region-specific speed. A pair of WiFi links located
in Region 1 makes wireless measurements to estimate the speed of people in both
regions.

estimation of v1, i.e., the speed of the region where the links are located, is more accurate

as compared to v2. We further note that the convergence time of the presented speed

estimation results is typically within a couple of minutes, with several cases (those with

higher speeds) converging in much less than a minute.

Speed Classification Performance

Thus far, we have established that our approach can successfully estimate the region-

dependent speeds of people walking in two adjacent regions, based on WiFi RSSI mea-

surements in only one region. However, for some applications, an exact speed estimation
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Figure 4.20: CDF of the normalized
square error for speeds in Region 1 (v1),
Region 2 (v2), and for the speeds in any
region. It can be seen that our approach
estimates the speeds with a good accu-
racy.
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Figure 4.21: CDF of the normalized
square error based on the location of the
experiment. It can be seen that the out-
door location has a slightly better per-
formance than indoor, as expected.

may not be necessary. Rather, a classification of the pace to low, normal walking, or

high may suffice. Therefore, we next show the classification performance of the proposed

approach to Low (0.3 m/s), Normal walking (0.8 m/s), or High (1.6 m/s) speeds. More

specifically, we classify the estimated speed v̂i using nearest neighbor classifier as Low

if v̂i ≤ 0.55 m/s, Normal if 0.55 m/s < v̂i ≤ 1.2 m/s, and High if v̂i > 1.2 m/s, for

i ∈ {1, 2}. Table 4.7 shows the accuracy of our classification for both indoor and outdoor

cases and for different number of people. It can be seen that the overall classification

accuracy of the speeds in either of the two regions is 85.2% over all the experiments,

confirming a good performance. For comparison, we note that the probability of correct

classification would have been 33% in any of the two regions for a random classifier.

Underlying Trends of Speed Estimation

We next discuss some of the underlying characteristics of the results, starting with

the impact of the experiment location. Table 4.5 and Fig. 4.21 show the NMSE of the
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Figure 4.22: CDF of the normalized square error based on the total number of people.
It can be seen that the estimation error slightly increases for 9 people as compared to
the case of N = 5.

estimation error and the CDF of the normalized square error respectively, based on all

the experiments in each location. While the estimation error in the indoor environment

is still small, the estimation error is less in the outdoor environment as expected, due

to the smaller amount of multipath. Furthermore, Table 4.6 and Fig. 4.22 show the

performance as a function of the total number of pedestrians. It can be seen that the

estimation error is slightly higher for N = 9 people as compared to N = 5.

Sensitivity to θmax

As described in Section 4.5, we assume θmax = 45 n our models of the closed area,

which characterizes the flow of people in hallway-type scenarios. We next show the

sensitivity of our results to the assumed value of θmax. More specifically, we assume a

broad range of values for θmax to characterize the flow of people in our experiments and

estimate the speeds of people accordingly. Fig. 4.23 shows the NMSE of the estimated

speeds in the two regions as a function of the assumed value of θmax. It can be seen that

the estimation error is nearly constant over a broad range of θmax, which shows that our

132



Classification accuracy (in %)

Experiment
scenario v1 v2

v1 or v2

Outdoor
N=5 people 100 81.4 90.7

Outdoor
N=9 people 88.9 77.8 83.4

Indoor
N=5 people 100 66.7 83.3

Indoor
N=9 people 92.6 74.1 83.3

All
experiments 95.4 75 85.2

Table 4.7: Performance of speed classification to High, Normal Walking, and Low for
indoor and outdoor cases, and for different number of pedestrians.

approach is robust and not that sensitive to the exact choice of θmax.

4.6.2 Museum Experiments

So far, we presented our experimental results for several cases in which people are

walking with a variety of speeds in two adjacent regions of an area. We next consider

a museum-type scenario, in which there are two adjacent exhibitions, showcasing two

very different types of displays. We then utilize our methodology to estimate the visitor

speeds in both exhibits, and deduce which exhibit is more popular. By more popular, we

mean that the exhibit received more attention, i.e., people slowed down to spend more

time there.

For the purpose of this experiment, we stage an exhibition with two types of exhibits

in two adjacent regions. We place basic visually-boring displays on the walls of Region

1, such as basic pictures, list of alphabets, and list of numbers. In Region 2, on the other

hand, we place more visually-involved displays such as “Where is Waldo” pictures [90].
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Figure 4.23: Effect of the assumed value of θmax on the Normalized Mean Square
Error of the estimated speeds in the two regions. It can be seen that NMSE is low for
a broad range of θmax, which shows that it is not that sensitive to the exact choice of
θmax .

Fig. 4.24 (a) and (b) show a sample display in Region 1 and Region 2 respectively. We

use the indoor experiment site shown in Fig. 4.4 for this experiment. We then invite 10

people (randomly selected from our advertisement) to visit this museum. The visitors do

not have any background about our experiments. Upon arrival, they are told to explore

the area that consists of the two exhibits as it interests them. Note that we do not

ask people to walk at a particular speed in a given region, as we did in the validation

experiments. Fig. 4.24 (c) shows a snapshot of the museum with people exploring the

exhibits. We use the same Tx/Rx locations in Region 1 of Fig. 4.4 and collect the data

for 5 minutes. In this setting, we observe that people stop at a display that interests

them before moving on to explore other displays. The experiment is videotaped in both

regions and the ground-truth average speeds of people in Region 1 and Region 2 are

visually estimated as 1.1 m/s and 0.12 m/s, respectively, by extracting the time spent

by each person in the two regions from the video. We then use our proposed approach

to estimate the average speeds in the two regions of the museum. Fig. 4.25 shows the

estimated average speeds in the two regions as a function of time. It can be seen that

134



(c)

(b)(a)

Figure 4.24: Our museum which contains two exhibits – (a) a sample display in the
exhibit of Region 1, which contains non-engaging items, (b) a sample display in the
exhibit of Region 2, which contains more engaging displays such as “Where is Waldo?”,
and (c) a snapshot of the visitors exploring the museum.
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Figure 4.25: Our estimates of the speeds in the two exhibits of the museum experiment
of Fig. 4.24. The speed in the Exhibit of Region 2, which contains the Waldo pictures,
is estimated as 0.3 m/s, indicating a significant slow down, while the speed in Region
1 is estimated as 1 m/s, which is a normal walking speed. The results further indicate
that the exhibit of Region 2 was more engaging and popular.

the speed of people in the Exhibit of Region 2, which contains the Waldo pictures, is

estimated as 0.3 m/s, indicating a significant slow down, while the speed in the Exhibit

of Region 1 is estimated as 1 m/s, which is a normal walking speed. It can be seen that
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these estimates are consistent with the ground-truth and what one would expect based

on the level of engagement of the displays. The estimates further indicate that Exhibit

2 was more engaging and popular since it was estimated that people significantly slowed

down there. This shows the potential of the proposed methodology for estimating the

level of popularity of adjacent displays, based on only sensing and measurement in one

of the regions.
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Chapter 5

Conclusions and Future Work

In this dissertation, we showed how we can sense our surroundings by utilizing everyday

wireless signals such as WiFi. We prioritized having minimal prior knowledge about the

sensing environment, the privacy of the people involved, and sensing with inexpensive

wireless devices that are used everywhere such as WiFi routers. More specifically, we

showed

� How we can image an area, including any occluded objects, using WiFi RSSI mea-

surements without any prior knowledge of the area.

� How to estimate the number of people in an area using only a pair of WiFi

transceivers and without depending on people carrying any device. We have further

shown how to extend this to crowd counting through walls.

� How to jointly estimate the total number of people and their walking speeds, using

only a pair of WiFi links, even in the areas where there is no WiFi coverage and

without relying on people to carry any device.

We next summarize our results in each of these areas.
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5.1 Robotic Through-Wall Imaging

In Chapter 2, we have considered the problem of high-resolution imaging through

walls, with only WiFi signals, and its optimization with unmanned vehicles. We have

developed a theoretical framework for this problem based on Rytov wave models, sparse

signal processing, and robotic path planning. We have furthermore validated the pro-

posed approach on our experimental robotic testbed. More specifically, our experimental

results have shown high-resolution imaging of three different areas based on only a small

number of WiFi measurements (20.12%, 4.7% and 2.6%). Moreover, they showed con-

siderable performance improvement over the state-of-the-art that only considers the Line

Of Sight path, allowing us to image more complex areas not possible before. Finally,

we showed the impact of robot positioning and antenna alignment errors on our see-

through imaging framework. Overall, this chapter addresses one of the main bottlenecks

of see-through imaging, which is the proper modeling of the receptions.

Since the information about material properties of the objects is inherent in the re-

ceived signal, reconstructing the material properties of all the objects, along with location

and shapes of objects, is an interesting future direction of this work.

5.2 Occupancy Estimation

In Chapter 3, we proposed a new approach for estimating the total number of people

walking in an area with only WiFi received power measurements of a wireless link. More

specifically, we separated the impact of the crowd on the transmitted signal into two

key components: 1) blocking of the LOS and 2) MP effects caused by scattering. By

developing a simple motion model, we first mathematically characterized the impact of

the crowd on blocking the LOS. We further probabilistically characterized the resulting
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multipath fading and developed an overall mathematical expression for the probability

distribution of the received signal amplitude as a function of the total number of occu-

pants, which was the base for our estimation using KL Divergence. In order to confirm

our approach, we ran several indoor and outdoor experiments with up to and including 9

people and showed that the proposed framework can estimate the total number of people

with a good accuracy.

We then extended our approach to through-wall scenarios. More specifically, we

proposed a framework to count the total number of people walking behind the walls,

using only the RSSI of two WiFi transceivers that are installed outside of the area. We

proposed to use the inter-event times corresponding to the signal dips for crowd counting

through walls as it is more robust to the attenuation of the walls. More specifically,

we showed how to model the impact of people on the received power measurements

using superposition of Renewal-type processes. We then mathematically characterized

the statistics of the inter-event times of the resulting process and showed how it contains

vital information on the total number of people, which then became the base for our

ML estimation of the total number of people. To validate our proposed framework,

we ran extensive experiments in five different areas on our campus, three classrooms, a

conference room, and a hallway, with walls made of different material such as concrete,

plaster, and wood, and with up to and including 20 people, and showed that our approach

can estimate the total number of people through walls with a high accuracy.

A generic motion model for a casual walk is considered in this chapter. Estimating

occupancy in other settings which would involve other motion behaviors, would be an in-

teresting future direction of this work. Furthermore, tracking people along with counting,

by utilizing multiple sensors, is another promising future direction of this work.
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5.3 Joint Crowd Counting and Crowd Speed Esti-

mation

In Chapter 4, we proposed a system to estimate occupancy attributes in an area such

as the number of people, walking speed, and the rate of arrival, by using RSSI measure-

ments of a pair of WiFi links, and in a device-free manner. More specifically, we showed

how two key statistics, the probability of crossing and the cross-correlation between the

two links, carry key information about the occupancy attributes and mathematically

characterized them. To validate our framework, we ran extensive experiments (total of

51) in indoor and outdoor locations, with up to 20 people and with a variety of speeds,

and showed that our approach can accurately estimate the occupancy attributes of an

area. The NMSE of crowd speed estimation over all the experiments was 0.047, while

the NMSE of the arrival rate estimation was 0.034, and the MAE of head counting was

1.3. Finally, we implemented our framework in Costco, estimated the motion behavior

of buyers in an aisle, and deduced the popularity of the products in that aisle.

We then extended our framework to estimate the average speeds of pedestrians in

two adjacent regions, by using RSSI measurements of a pair of WiFi links in only one

region. Our approach only relies on WiFi signal availability in the region where the

links are located. Thus, it not only allows for estimating the speed of a crowd in the

immediate region where the pair of links are, but also enables deducing the speed of

the crowd in the adjacent WiFi-free regions. More specifically, we showed how two

key statistics, the probability of crossing and the cross-correlation between the two links,

carry key information about the pedestrian speeds in the two regions and mathematically

characterized them as a function of the speeds. To validate our framework, we ran

extensive experiments (total of 108) in indoor and outdoor locations with up to 10 people,

with a variety of speeds per region, and showed that our approach can accurately estimate
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the speeds of pedestrians in both regions. Furthermore, we tested our methodology

in a museum setting, with two different exhibitions in adjacent areas, and estimated

the average pedestrian speeds in both exhibits, thus deducing which exhibit was more

popular.

In this chapter, we estimated the traffic flow in an aisle in Costco. A natural extension

of this work is to estimate traffic in the entire store or a museum based on a small number

of wireless links.
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Appendix A

Born Approximation

Consider the case of weak scatterers, where the electric properties of the objects in D

are close to free space, i.e., ε(r) is close to ε0. In the Born approximation, this assumption

is used to approximate the electric field inside the integral of (2.5) with Ez
inc(r), resulting

in the following approximation:

Ez(r) = Ez
inc(r) +

∫∫∫
D

Gzz(r, r
′)(O(r′)Ez

inc(r
′)) dv′. (A.1)

The validity of the Born approximation is established by dimensional analysis in (2.5)

and it is accurate at high frequencies, only if

k0Lobjδε(r)� 1, for all r ∈ D,

Born approximation is a theory of single scattering, wherein the multiple scattering due

to object inhomogeneities is neglected.
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Appendix B

B.1 Proof of Theorem 4.1

Consider a link located in the area of Fig. 4.1(a), whose x-coordinate is Xi. Xi,

for instance, can represent the x-coordinate of either of the links of Fig. 4.17(a). Let

the position of the person at time k be x(k) ≤ Xi. The person crosses the link at

time k + 1, if she/he chooses a direction θ(k) at time k such that x(k) + vδtcos(θ(k))

≥ Xi, which results in |θ(k)| ≤ cos−1
(
Xi−x(k)
vδt

)
, where |.| is the absolute value of the

argument. Since |θ(k)| ≤ θmax, in order to cross the link, the heading direction has to

satisfy |θ(k)| ≤ min
{
θmax, cos−1

(
Xi−x(k)
vδt

)}
. Since the heading direction is uniformly

distributed over µd, the probability that a person at x(k) crosses the link at time k +

1, p
x(k)
c,singleperson, for x(k) ≤ Xi, is given by, p

x(k)
c,singleperson =

min

{
θmax, cos−1

(
Xi−x(k)

vδt

)}
2θmax

. By

symmetry, it can be seen that p
x(k)
c,singleperson, for x(k) ≥ Xi, is given by, p

x(k)
c,singleperson =

min

{
π−θmax, π−cos−1

(
x(k)−Xi
vδt

)}
2θmax

. The probability of crossing the link by a single person,

pc,singleperson, is then obtained by summing over all the positions from which a cross can

occur:

pc,singleperson =

Xi+vδt∑
x(k)=Xi−vδt

∆x

B
p
x(k)
c,singleperson, (B.1)

where ∆x
B

is the probability that a pedestrian is located at any given position in the

area. By substituting the expression for p
x(k)
c,singleperson in (B.1) and letting δt → 0, we
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get, pc,singleperson =

∫Xi+vδt
Xi−vδt

min

{
θmax, cos−1

(∣∣∣Xi−x(k)

vδt

∣∣∣)}dx
2Bθmax

. By simplifying this further, we get

pc,singleperson = vδtsin(θmax)
Bθmax

, which proves the Theorem.
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Probing crowd density through smartphones in city-scale mass gatherings, EPJ
Data Science 2 (2013), no. 1 1.

[40] Y. Yuan, C. Qiu, W. Xi, and J. Zhao, Crowd density estimation using wireless
sensor networks, in Mobile Ad-hoc and Sensor Networks (MSN), 2011 Seventh
International Conference on, pp. 138–145, IEEE, 2011.

[41] T. Yoshida and Y. Taniguchi, Estimating the number of people using existing WiFi
access point in indoor environment, in Proceedings of the 6th European Conference
of Computer Science, pp. 46–53, 2015.

[42] C. Xu, B. Firner, R. S. Moore, Y. Zhang, W. Trappe, R. Howard, F. Zhang, and
N. An, SCPL: Indoor device-free multi-subject counting and localization using radio
signal strength, in Proceedings of the 12th international conference on Information
Processing in Sensor Networks, pp. 79–90, ACM, 2013.

[43] S. Di Domenico, M. De Sanctis, E. Cianca, and G. Bianchi, A trained-once crowd
counting method using differential WiFi channel state information, in Proceedings
of the Workshop on Physical Analytics, pp. 37–42, ACM, 2016.

149



[44] W. Xi, J. Zhao, X.-Y. Li, K. Zhao, S. Tang, X. Liu, and Z. Jiang, Electronic frog
eye: Counting crowd using WiFi, in IEEE INFOCOM 2014-IEEE Conference on
Computer Communications, pp. 361–369.

[45] A. G. Abuarafah, M. O. Khozium, and E. AbdRabou, Real-time crowd monitoring
using infrared thermal video sequences, Journal of American Science 8 (2012),
no. 3 133–140.

[46] P. Liu, S.-K. Nguang, and A. Partridge, Occupancy inference using pyroelectric
infrared sensors through hidden markov models, IEEE Sensors Journal 16 (2016),
no. 4 1062–1068.

[47] J. Yun and S.-S. Lee, Human movement detection and identification using
pyroelectric infrared sensors, Sensors (2014) 8057–8081.

[48] M. S. Kristoffersen, J. V. Dueholm, R. Gade, and T. B. Moeslund, Pedestrian
counting with occlusion handling using stereo thermal cameras, Sensors 16 (2016),
no. 1 62.

[49] B. Yang, J. Luo, and Q. Liu, A novel low-cost and small-size human tracking
system with pyroelectric infrared sensor mesh network, Infrared Physics &
Technology 63 (2014) 147–156.

[50] R. Tomastik, Y. Lin, and A. Banaszuk, Video-based estimation of building
occupancy during emergency egress, in American Control Conference, 2008,
pp. 894–901, IEEE, 2008.

[51] New CSC Research Reveals Where Shoppers and Retailers Stand on Next
Generation In-store Technology, 2015.
https://turtl.dxc.technology/story/55ee93d8bbfd077f2d4e22ee.pdf?

[52] P. Prasertsung and T. Horanont, How does coffee shop get crowded?: Using WiFi
footprints to deliver insights into the success of promotion, in Proceedings of the
2017 ACM International Joint Conference on Pervasive and Ubiquitous
Computing, pp. 421–426, ACM, 2017.

[53] L. M. Ni, Y. Liu, Y. C. Lau, and A. P. Patil, LANDMARC: Indoor location
sensing using active RFID, Wireless networks (2004).

[54] Attention, Shoppers: Store Is Tracking Your Cell. goo.gl/DrZFXW.

[55] S. Depatla, A. Muralidharan, and Y. Mostofi, Occupancy estimation using only
WiFi power measurements, IEEE Journal on Selected Areas in Communications
33 (2015), no. 7 1381–1393.

150
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