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Abstract

Designing novel cell-based structures for energy absorption

by

Steven Craig Wehmeyer

The design of cellular materials with controlled energy dissipation is relevant to a broad

range of applications, ranging from cushioning (such as shoes and athletic protection)

to vibration control in damped, lightweight structures. Additive manufacturing has dra-

matically expanded the design space for such structures, enabling a diverse range of

topologies. This dissertation establishes analysis techniques to make quantitative links

between base properties, strut topology and cellular response; those techniques are then

used to conduct case studies of various classes of strut-based structures to generate in-

sight regarding effective strategies for designs that achieve specific types of response. Key

contributions include: (i) a detailed numerical study of buckling behaviors that control

large deformation response of low-density, elastic structures, (ii) the development of an-

alytical and reduced-order models for buckling behaviors in viscoelastic struts subject

to dynamic loading, (iii) a highly efficient framework to predict the damped frequency

response of cellular materials, and (iv) a broad study of the effects of topology in single-

celled structures, including the use of multiple strut sizes.

These contributions have led to several new, quantitative insights regarding the design

of low- density structures to control energy dispersion. (i) For cellular materials that

include struts that lie at an angle to the direction of compression, snap-through behaviors

influence both the initial softening at small strains and the stiffening behavior observed

at moderate strains. The models presented in this work illustrate that novel structures

comprising cells with struts at multiple angles create significant opportunities to control
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the softening regime that falls between initial response and stiffening associated with

large deformation. (ii) Cellular structures comprising viscoelastic struts create significant

opportunities to improve vibration damping through a combination of materials selection

and topological design. The use of high damping materials as the core of composite struts

can improve damping over the base shell material by a factor of 5-10 while maintaining the

stiffness of the base structure. The use of non-uniform cells that disrupt standing waves

insight structures can further increase damping by a factor of two, with potentially larger

gains possible with topology optimization. (iii) The use of internal struts that sub-divide

larger cells provides stabilization of buckling events; this can be exploited to improve

both the onset of non-linearity (broadly defined, strength) and the energy absorbed by

purely elastic structures subjected to compression. The broad topology study illustrates

that response is highly sensitive to small variations in internal topology, indicating that

topology optimization must rely on direct search algorithms.
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Chapter 1

Introduction

1.1 Brief overview of low relative density materials

Lightweight, highly porous polymers are widely used to control the transmission of

force, momentum or energy between two bodies, in applications such as running shoes,

car interiors, clothing for blast protection, and athletic equipment such as helmets and

floor padding. In many of these, high specific modulus and high specific strength are

highly desirable for weight reduction, while reversible energy dissipation is desirable to

mitigate transmitted forces during repeating impacts. Figure 1.1A illustrates key aspects

of the macroscopic compression response of low relative density materials. A central fea-

ture is the presence of sharp stiffness drops upon compressive loading. In the extreme,

the effective tangent modulus goes to near zero, such that a constant (plateau) stress

persists to relatively large values of macroscopic strain, typically about 50% when mea-

sured macroscopically. The presence of a large plateau region is typically associated with

relative densities less than ∼ 10%, although there are many examples where such low

relative densities exhibit no clearly defined plateau [3–5]. For some low density materials,

the stiffness can be a strong function of strain even prior to densification. It should be

1



Introduction Chapter 1

appreciated that the behaviors shown schematically in Figure 1.1A are meant to highlight

the diversity of foam behavior; specific details of the range of stiffness, strength and den-

sification strains vary widely with base properties, relative density and cell architecture.
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Figure 1.1: (A) Schematic illustrations of compression stress-strain curves of low
density materials, showing a range of non-linear beahviors achievable with stochastic
and architected foams. (B) An example of a architected foam from the literature [1].
(C) Classical examples of the microstructures of closed and open celled stochastic
foams. [2]

By far, the most common material used for such applications are stochastic, polymeric

foams made by expanding bubbles of gas dissolved in the uncured resin. Such foams can

have either open cells (i.e. adjacent voids are all connected, leaving a network of struts)

or closed cells (i.e. adjacent voids are separated by thin plates or membranes of resin).

The size and shape of the cells can be varied significantly, spanning from micron to

centimeter scales and from equiaxial to highly elongated pores, respectively; classical

examples are shown in Figure 1.1C. [2] The ability to synthesize such strong variations in

microstructure enables materials designers to produce a variety of stress-strain responses.

The degree of non-linearity can be varied significantly, with stiffness changes spanning
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from small reductions in tangent modulus to plateau stresses that span large strain

ranges. It is critical to recognize that in many foams, large macroscopic strains do not

necessarily imply large strains in the struts or cell walls. As such, many foams exhibit

reversible behavior, often with hysteresis generated by viscoelastic behaviors exhibited

by the base resin.

The relationship between foam structure and mechanical response has largely been

elucidated by the work of Ashby and Gibson [6], who identified powerful scaling relation-

ships to describe the effective modulus and strength of the foam in terms of cell size and

the dimensions of the walls or struts. The key insight of this impressive body of work is

that relative density is the dominant scaling factor in foam response; approximate values

for specific modulus, specific strength and densification strains can all be predicted using

relative density. For low density foams (say densities less than 20%), the response is

dominated by bending of cell walls or struts. Elementary beam theory combined with

idealizations of the cell geometry provide a means to translate cell dimensions to both rel-

ative density and effective macroscopic stiffness. Similarly, the models produce estimates

for plateau stress based on strut buckling. It is worth noting that while densification is

discussed extensively in Gibson/Ashby, the associated modeling approaches are largely

empirical.

Structured cellular materials, often referred to as lattice or metamaterials, create

many opportunities to overcome the inherent limitations of stochastic foams; a recent

example is shown in Figure 1.1B [1]. In these materials, cell topology is exploited to

control deformation mechanisms. Generally, the architecture is chosen to suppress bend-

ing deformations in favor of axial extension/compression of the cell walls (struts). (Such

structures are typically referred to as stretch-dominated, even when designed for com-

pression.) For stretch-dominated structures, yielding of the struts often occurs first due

to the fact that buckling is suppressed to higher loads.
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Much, if not most, of the earlier work on such materials focused on honeycombs and

metallic truss-based structures (such as the octahedral truss [7]), typically fabricated by

stamping or folding cell walls and subsequent bonding. Not surprisingly, the mechanics

of such structures is similar to that of stochastic foams, with additional consideration of

topology constraints that elevate strut stresses and promote yielding. Gibson and Ashby

illustrate that the transition from wall buckling to yielding can be described in terms of

relative density and yield strength. As a rule of thumb, the strength of metallic structures

is buckling dominated below 10% relative density, and yielding dominated above. (Of

course, the transition depends strongly on the yield strength of the base material.) While

this dissertation touches upon this work, the emphasis is placed on applications where

reversibility is a primary objective, and hence buckling-controlled behavior is the principle

focus.

The term architected materials is increasingly used for cellular materials with topolo-

gies designed to control deformation modes. The emergence of additive manufacturing

approaches has dramatically expanded the range of accessible materials and topologies,

leading to renewed interest in cellular design and optimization [8]. Arguably, the design

and optimization of linear behaviors is well in hand (e.g. [9]); linear, small-deformation

solutions for complex topologies can be rapidly generated with conventional finite ele-

ment analysis, and these combine efficiently with existing optimization frameworks. For

most topologies, the small deformation limit is sufficient to accurately predict stiffness

and strength, with the latter defined as the onset of yielding or buckling.

In contrast, new insights and numerical schemes are needed to address the design of

topologies to control non-linear response, which is the principle focus of this dissertation.

While many of the key scaling relationships describing the non-linear response of cellular

materials have been elucidated (and summarized in Ashby and Gibson [6]), it is worth

noting that there are several important issues that prior work does not address, or does
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so only in part.

The first of these issues pertains to post-buckling behavior, which should be con-

trasted with the onset of buckling. Prior analyses of buckling typically address the

critical buckling load using strength-of-materials approaches and assume the load on the

structure is constant under subsequent deformation. There has been far less modeling of

the changes in stiffness arising during post-buckling deformation, with the exception of

empirical approaches to capture the stiffness rise associated with densification. Changes

in load capacity at moderate strains can arise from a variety of sources prior to cell col-

lapse, notably non-linear stiffening of struts due to stretching and subsequent buckling of

additional struts. Related to this, a second issue that has not be substantially addressed

is the role of struts of different sizes; cellular materials often involve cells with multi-

ple struts or wall thicknesses, and little is known about their role in altering buckling

behavior. By and large, the existing understanding of cellular material design is based

on structures with a single characteristic strut size, and more often than not, a single

cell size and/or shape. Finally, a third issue that has received only cursory treatment

is the interplay between dynamic loading and the intrinsic viscoelastic response of the

strut material; this has important implications for the hysteresis observed during cyclic

loading of cellular materials.

The next section outlines the key questions that are addressed in this dissertation

and intended to fill in these gaps; additional context and references are included in the

chapters that follow.

1.2 Scope, key questions and organization

This work focuses on low density cellular structures made from purely linearly elastic

or linearly viscoelastic polymers. The central questions of this dissertation relate to
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identifying instances where architected polymeric cellular structures provide benefits over

their stochastic counterparts. The work is strongly motivated by the critical need for

new insights to tailor non-linear macroscopic response and exploit the power of additive

manufacturing.

Specifically, this work addresses the development of cellular configurations that con-

trol the onset of buckling and post-buckling behaviors, which control the stiffening be-

haviors observed at moderate strains (under ∼ 50%). Emphasis is placed on the strength

associated with the initial buckling events, and the post-buckling load path that deter-

mines the associated energy stored and dissipated during during cyclic loading. While

additive manufacturing enables cellular materials with a broad range of intrinsic proper-

ties, the scope here is limited to polymeric materials that exhibit purely linearly elastic

or viscoelastic response at small strains (less than 10%). Throughout the dissertation,

it is assumed that the struts experience smalls strains that can be appropriately mod-

eled with small strain theory, although it must be emphasized that large configurational

changes (i.e. large rotations) are possible and may produce large macroscopic strains.

With this in mind, the key research questions addressed in this dissertation are out-

lined below, with a brief description of the chapters or sections that contain contributions

in each area.

• What is the influence of strut angles and cell topology on post-buckling

behaviors that control the degree of non-linearity? Struts loaded at shallow

angles to the loading direction can exhibit complex transitions during and after

buckling (e.g. switching from axial compression to tension), with profound im-

plications for the macroscopic non-linear response. Chapter 3 presents a detailed

analytical study of angled struts that can be used to gain insights regarding how

these behaviors dictate the degree of non-linearity exhibited by foams. Chapter
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4 provides additional insight regarding the role of cell topology on post-buckling

behaviors in structures with several cells.

• What is the role of dynamics during buckling instabilities, and how do

they relate to intrinsic material damping in the struts? Many cellular ma-

terials are intended for use in applications that experience dynamic loading, and

the interaction between cyclic loading rates and post-buckling response have impor-

tant implications for energy storage and dissipation. Further, new insight is needed

regarding how the viscoelastic properties of the struts influence those behaviors.

Chapter 3 addresses these questions and identifies loading regimes where quasi-

static hysteresis curves (arising from structural non-linearity) provide acceptable

insight into dynamic response.

• How should mass and topology be adjusted within a unit cell comprising

multiple internal struts to control nonlinear response? Given that buck-

ling is strongly dependent on the free spans of the struts, and that post-buckling

behaviors often induce stretch, the question arises as to whether rearranging mass

to sub-divide larger cells can achieve improvements in strength and energy stor-

age. Put another way, can tension members be included to improve post-buckling

response without compromising strength or absorption on a per unit weight basis?

Chapter 4 addresses this by considering a host of different topologies with identical

total mass but different mass distributions within strut-based structures.

• What are efficient frameworks to analyze damping in cellular structures,

and how can they be used to quantify the impact of materials selection

and topology? By and large, the damped response of cellular structures is an-

alyzed using heuristic approaches to include damping, creating a critical need to

understand how viscoelastic properties of base materials impact cellular response.
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Chapter 5 presents a highly efficient framework to predict structural damping in

terms of intrinsic viscoelastic properties, and illustrates that significant gains in

structural damping are possible through material selection and topology modifica-

tions.

• What are effective numerical approaches to simulate large deflection re-

sponse and can these be made scalable to address the behavior of com-

plex lattices? Large displacements of struts relative to the wall thickness induce

strongly non-linear behaviors, even though the strains in the struts may be small

and the material response is linear elastic. The associated non-linear kinematic

relationships create several computational challenges, which are detailed in Chap-

ter 2, along with a detailed study to identify effective numerical parameters (time

stepping, damping, imperfections) for accurate simulations. Chapter 6 presents a

novel numerical framework based on total energy minimization, with the goal of

developing robust numerical techniques to optimize topology for non-linear behav-

ior.
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Chapter 2

Numerical methods for elastic truss

structures with slender members

2.1 Introduction

The analysis of truss-based structures comprising slender, linearly elastic struts is

quite challenging when strut displacements are larger than the strut thickness. Even

though the strains in the struts may be small (in comparison to those required to in-

duce material nonlinearity), such problems are strongly non-linear due to the complex

kinematic relationships associated with large rotations. These relationships can allow

the possibility of multiple equilibrium states, which confound numerical techniques that

are based on incremental projections from a base state (i.e. a previously determined

equilibrium). The simplest example of this is the buckling of a slender column, where

the solution switches from pure axial compression to the buckled state: at the precise

instant of buckling, both the uniform compression and buckling solutions are valid.

In a nutshell, incremental approaches that use previous deformation states as the

basis for continued deformation often fail to recognize the buckled state as a nearby
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solution. The result is a valid equilibrium solution that has greater energy than the

alternative, equally valid, equilibrium solution of the buckled state. Such difficulties are

compounded significantly when multiple struts are present, since there may be multiple

buckling modes, each associated with a distinct pattern of multiple buckled struts.

The principle method to address these difficulties is to include small imperfections

to the initial geometry, such that the structure is inherently biased towards a buckling

mode with a lower energy state. The central limitations of this technique are that: (i)

it is difficult to determine whether or not the imperfections introduced are sufficient to

trigger the buckling mode associated with the lowest energy state, and (ii) it is difficult

to know a priori whether even small imperfections influence the results beyond merely

allowing the numerical algorithm to capture abrupt transitions.

The most common procedure to introduce these imperfections is to conduct an eigen-

value analysis of buckling modes [10]; this analysis uses a first order expansion of the

non-linear stiffness matrix to solve for equilibrium solutions associated with a deformed

state where non-linear kinematics produce a solution. This procedure yields both an esti-

mate for the macroscopic load associated with the onset of buckling and the shape of the

buckled structure. The shape of the structure at the instant of buckling is then used to

define the shape of initial imperfections, thereby biasing the numerical solution towards

the buckled state. In order for this method to be effective, the structure must exhibit

negligible changes in stiffness prior to the buckling load, which is generally tantamount to

there being only small changes in geometry prior to the onset of buckling. This condition

is not overly restrictive, since many slender structures will be stretch-dominated up until

the onset of buckling, while those that are influenced by bending prior to the onset of

buckling usually exhibit less abrupt bifurcations that are easier to simulate.

Even with suitable imperfections in hand to bias the solution toward buckling states,

it can still be challenging to solve for post-buckling response, due to the abrupt change
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in system stiffness. For systems that exhibit non-monotic stiffness (e.g. loads that first

decrease with imposed deformation at the onset of buckling, then increase), implicit

solution techniques are notoriously unreliable, as stiffness projections can be extremely

poor indicators of future behavior.

As a simple illustration, consider the non-monotonic load deflection behavior shown in

Figure 2.1 for several different topologies. With sufficient imposed deformation, all four

of these beam-based structures encounter configurations with zero macroscopic stiffness.

This creates serious headaches for implicit, iterative techniques such as Newton-Raphson;

the projected increase in deformation is absurdly large due to the low (or zero) stiffness

at the onset of buckling. One recourse is to limit the allowable increment in deforma-

tion (commonly referred to as step size); this works well in some instances, such as the

structure in Figure 2.1A and the first buckling event for the structure in Figure 2.1B.

However, abrupt changes in load such as those shown in Figure 2.1C and Figure 2.1D

exhibit persistence convergence challenges. This lack of robustness is highly problematic

when considering a range of topologies, as they typically must be resolved through on

a case-by-case basis. Unfortunately, even modified methods designed to address such

behavior, such as the RIKS method [11], are increasingly prone to similar behaviors for

structures involving more than a few struts.
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Figure 2.1: Illustrations of load-deflection behavior in structures with slender struts,
exhibiting instances of zero-stiffness. The structures all have relative density in the
range ρ/ρo = 5 − 7%, depending on how mass is distributed. (A) A low-angle 8o

V-structure loaded in force control to illustrate dynamic snap-through behavior. (B)
A horizontally braced 60o V-structure loaded in displacement control. (C) A 60o

V-structure with a single set of inner braces loaded in displacement control. (D) A
60o V-structure with two sets of inner braces loaded in displacement control.

Due to the lack of robustness of implicit methods, explicit dynamic simulations are

generally preferred. In such simulations, the incremental equations of motion include
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inertia (acceleration) terms and the structural response is found using integration with

respect to time. Imperfections are included to bias the structural response towards

buckling modes (as before), but inertia provides a limitation on structural response in

instances where the global stiffness measures trend toward zero. It should be noted that

while this aids in finding post-buckling solutions, they do not necessarily ensure that

buckled states associated with lower energy are tracked.

There are two central considerations when generating such dynamic solutions; first,

to capture quasi-static responses, the imposed loading rates must be sufficiently small to

prevent dynamic stabilization of buckling modes. This immediately establishes a trade-

off between effectiveness and speed, since computational time will scale inversely with

time steps. This trade-off is exacerbated by the fact that adaptive time-stepping must be

intentionally limited, such that bifurcations are not stepped over. Second, some measure

of damping must be included to ensure post-buckling behaviors are not unduly influenced

by dynamic oscillations induced by abrupt changes in stiffness. Such oscillations can be

very problematic when they persist to later stages of deformation and influence secondary

buckling events.

The above considerations dictate that a number of interrelated simulation parameters

must be carefully chosen to reliably non-linear response. These include: (i) element

size in each strut, (ii) the imposed deformation rate (in this work, defined in terms of

imposed boundary velocities), (iii) artificial damping to mitigate post-buckling behaviors,

(iv) imperfections, both the number of included eigenmodes and the absolute size of

prescribed deviation from nominal geometries. The sections that follow outline the results

of a general parameter study designed to identify widely applicable numerical procedures;

the central objective is to identify numerical parametesr that are appropriate irrespective

of the truss topology. This is critical to enable a systematic design study of structures

involving many geometry parameters. The four types of structures used in this numerical
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study are shown in Figure 2.2.
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Figure 2.2: Schematic diagrams of the four topology classes used to identify broadly
applicable numerical procedures, as well as the design study in Chapter 4: (A) A
simple straight-sided arch, used as the comparator for later studies considering the
impact of internal bracing. (B) Horizontal brace; cases are run with multiple parallel
internal braces, which are defined as the same class. (C) Single angled internal brace
structure; the geometry is varied by changing the internal brace angle, but the topol-
ogy is the same. (D) Double angled internal brace structure; the geometry is varied
by changing the internal brace angles, but the topology is the same.

2.2 Convergence metrics and parameter study out-

line

Two metrics were used to evaluate the sensitivity of the simulation to numerical

parameters; the load at the onset of buckling, and the work defined by the area under

the load-deflection curve. Figure 2.3 illustrates typical load-deflection results used to

compute these metrics, for several different topologies.
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To identify the load at the onset of buckling (also referred to herein as strength),

the instantaneous macroscopic stiffness of the structure was computed from the load-

deflection relationships generated by the simulation. The strength of the structure was

defined as the load associated with the first instance where the tangent modulus fell below

1% of the initial stiffness of the structure. Even when bucking-induced oscillations were

present, this method proved highly reliable, as in no case did the structure immediately

resume a high stiffness value after the onset of strong non-linearity.

To identify the energy stored by the deformed elastic structure, one must choose a

relevant macroscopic strain range. Here, we used a single estimate for the macroscopic

strain associated with densification, determined by an efficiency parameter that correlates

with self-contact. The efficiency parameter is defined as [12]:

η =

∫ x′
0
F (x̄)dx̄

Fmax|x′
(2.1)

F (x̄) is the load on the structure for imposed displacement x̄; the load-deflection curve is

integrated up to a specified maximum displacement; the result is divided by the maximum

force encountered up to the same specified displacement. As shown in Figure 2.3, the

maximum efficiency hits a peak well after the first buckling instability, at the instance

where the stiffness of the structure begins to increase substantially. This point is defined

in this context as the densification strain; the reported energy stored is the area under

the load-deflection curve up until this point.

Hundreds of spot-checks conducted from thousands of simulations revealed that effi-

ciency parameter always exhibited a local peak, such as those shown in Figure 2.3, just

prior to abrupt increases in system stiffness. The densification point, associated with

an abrupt increase in local stiffness, consistently correlates with self-contact between

members or the platens. No attempt was made to accurately simulate behaviors after
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self-contact was initiated; such behaviors are sensitive to contact descriptions. As such,

the present study is limited to macroscopic strains in the 30-50% range, as determined

via the peak efficiency. Hence, the estimates for energy store in this work is a lower

bound.

A detailed numerical study was conducted to quantify the impact of element density,

loading rate, damping parameters and imperfections. The goal was to ensure that varia-

tions in the metrics from one topology to another (or one geometry to another within a

given topology) are not a consequence of poorly chosen numerical parameters. The para-

metric studies were conducted on four different truss topologies, as shown in Figure 2.2.

Each of these structures exhibits non-linear behaviors that are characteristic of that class

of topology, e.g. a linear stiffness after buckling (Figure 2.2.A), snap-through behaviors

with smooth transitions (Figure 2.2.B), and varying degrees of load drops after buckling

(Figure 2.2.C and Figure 2.2.D). In order to avoid interplay between various numerical

parameters (e.g. loading rate and damping), an ad hoc set of calculations were first

conducted across the parameter space to establish the strength of such interactions.

Using the insights from the ad hoc study of numerical parameters, appropriate ranges

were identify for further study. Then, one parameter was held fixed at an extreme value

where sensitivity was small (e.g. an extremely slow loading rate) while a second parameter

was varied (e.g. the level of damping). This process was repeated for all combinations

of mesh density, loading rate, and damping. After identifying regimes where these three

parameters played little role, the influence of imperfections was studied. The sections

below outline the convergence studies on each individual parameter; the selection of a

‘universal’ set of numerical parameters is summarized in the final section.
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Figure 2.3: Typical force-displacement and efficiency parameter results for three differ-
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2.3 Element type and mesh convergence

In this work, explicit dynamic calculations were performed using a Timoshenko-

Mindlin element (named B21 in Abaqus Explicit); each element has two nodes, with

displacement and rotation degrees of freedom at each node. The element is shear de-

formable1, such that plane-sections remain planar but can shear relative to the neutral

axis of the beam. The spatial variation of displacements is quadratic, while the strain

variations are linear. While the element cross-section is described herein as circular with

diameter D, the results are presented in normalized form which renders the shape of the

cross-section immaterial.

Mesh convergence studies were conducted on the four classes of structures shown in

Figure 2.2; for each structure, the global height of the structure is fixed to 30 millimeters,

the diameter of the main struts is fixed to 1 millimeter, and any bracing strut diameter

is fixed to 0.5 millimeters. This corresponds to a relative density of ρ/ρo ∼ 5%. The

number of elements in each strut was set by prescribing a fixed element length relative to

the strut length; this dictates that longer struts will have a greater number of elements,

but the element density per unit length of the struts is constant. The simulations fixed

the bottom nodes of the structure (connected to a rigid platens) against all displacements

and rotations, while only the horizontal displacement and rotation of the top node are

fixed. The top node is then subjected to a vertical downward displacement with the

following time-history:

δ = δo (1− cosωt) (2.2)

where δo is the maximum displacement of the simulation, and ω defines the period of

time over which the deformation is imposed. (Section 2.3 below discusses the role of the

1Shear is likely negligible in such low density structures; however, Bernoulli-Euler elements are not
available in Abaqus/Explicit.
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loading rate as defined by ω.) The maximum displacement δo was chosen to be a large

number to ensure densification (i.e. self-contact) is reached.

Figure 2.4 shows the results of the mesh convergence study, plotting the peak load and

area under the load-displacement curves (up unto the point of the first local maximum

in efficiency) as a function of element size. In this figure, the load is normalized by

the scaling factor characteristic of beam bending, i.e. EI/L2; here, I is the moment of

inertia of the struts’ cross-section, while L is taken as the full length of one side of the

outer struts in the V-structure. Similarly, the energy stored in the compressed structure

is normalized by EI/L. Both quantities become independent of the mesh for element

sizes less than about twice the strut thickness; this is much smaller than those required

when using cubic beam elements, which have cubic displacement interpolation. However,

shear deformable elements exhibited more robust convergence for large rotations. The

mesh requirements for the double-angle brace structure in Figure 2.4 proved the most

demanding of all the structures considered. Convergence was demonstrated for this case

for values `e/Ls < 0.03 where Ls is the length of the outer main strut. Hence, this limit

was to guide the mesh density for all other topologies; in the remainder of the paper, all

studies use a characteristic element size of `e/Ls = 0.024.

2.4 Effect of loading rate

A parametric study of the effect of loading rate was conducted for the four classes of

structures shown in Figure 2.2. The objective of this study was to establish sufficiently

low loading rates that did not impact the peak load and energy storage. The central

challenge is illustrated in Figure 2.5A, which depicts load-displacement results for a ‘V’

structure subjected to three different loading periods. For rapid loading associated with

a small time to peak load, inertial stabilization of the structure delays on the onset of
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Figure 2.4: (A) Representative load-displacement responses for a two-brace structure
with different mesh densities defined by the normalized element length `e/Ls, where
Ls is the length of the outer main strut. Corresponding convergence behavior for both
peak load (B) and energy storage (C); both yield converged results under `e/Ls = 0.03,
so a conservative value of 0.024 is used in subsequent studies.

buckling to higher levels of deformation.

There are two characteristic time-scales associated with deformation of the struts;
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Figure 2.5: (A) Load-displacement curves for three different loading periods with
no damping; ωo =

√
EI/ρAL4 is the characteristic bending frequency of the struts.

(B, C) Peak load and energy stored as a function of the loading frequency; for large
loading periods (relative to that associated with vibration), the results are independent
of loading rate and hence are taken as the quasi-static limit.

the time scale associated with axial deformation is given by:

taxial = L

√
ρ

E
(2.3)

where ρ is the density of the strut material, E is the elastic modulus and L is the strut
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length. This corresponds to the time required for an axial compression pulse to traverse

the length of the outer strut. The characteristic time scale associated with bending is

given by:

tbending =

√
ρAL4

EI
=

1

ωo
(2.4)

where A is the cross-sectional area of the strut and I is the strut’s moment of inertia.

This corresponds to the characteristic period of bending vibration modes in the strut; the

axial natural frequency is given by the inverse of this scaling time multiplied by a scalar

constant that depends on boundary conditions. See Chapters 3 and 5 for additional

details. One can anticipate quasi-static behaviors in the limit that tpeak >> tbending and

tpeak >> taxial. For slender members, taxial << tbending; as such, the present study varied

the loading rate in relation to tbending. Quasi-static behaviors can be expected when

ωot >> 1.

It should be pointed out that while the load-displacement response of stable con-

figurations is quasi-static, the behavior during unstable transitions from one state to

another can by highly dynamic. This is illustrated by the post-buckling oscillations in

Figure 2.5A. The focus here is on ensuring that the peak load reached at the onset of

buckling instability is independent of loading rate. As will be illustrated in the next

section, even small amounts of damping mitigate the post-buckling oscillations seen in

Figure 2.5A.

Figures 2.5B and 2.5C illustrate the effect of loading rate on peak load, and area

under the load-displacement curve, respectively. The figures demonstrate that rate-

independence is achieved for ωotpeak > 2000 for all four classes of structures. Note from

Figure 2.5A that the frequency of post-buckling oscillations generally depends on the

loading rate. However, the area under the curve is much less sensitive, regardless of the
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nature of post-buckling vibrations. This is because the area under such oscillations is

virtual identical to the area under the time-averaged response, i.e. the oscillations above

and below the mean cancel one another. For all subsequent calculations, the time to

peak load is set to ωotpeak = 2200.

2.5 Effect of damping

As shown in Figures 2.1, 2.5 and 2.6, instabilities triggered by strut buckling intro-

duce oscillations associated with the release of strain energy that can occur during the

transition from one deformed state to another. Such oscillations are entirely plausible

for highly elastic materials; however, even small amounts of internal damping will sig-

nificantly reduce their appearance. One can easily anticipate that polymer materials

motivating this work will have at least some damping to suppress such behavior. Here,

a simple phenomenological damping model is utilized merely to produce lightly damped

structures that minimize the role of dynamic oscillations on post-buckling response. This

phenomenological description is used for the design study in Chapter 4. Realistic consti-

tutive laws with intrinsic damping are addressed in Chapter 5.

The phenomenological damping model used in this convergence study is the widely-

adopted ‘proportional damping’ description, which introduces velocity-dependent dissi-

pative terms into the dynamic equations of motion. That is, the governing equations are

modified to be of the form:

[M ]
[
Q̈
]

+ [C]
[
Q̇
]

+ [K] [Q] = [F (t)] (2.5)

where [Q] are the generalized nodal variables resulting from the finite element discretiza-

tion, [M ] is the generalized mass matrix, [K] is the generalized stiffness matrix, and
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[F (t)] is the generalized force vector. The damping matrix [C] is expressed in terms of

the mass and stiffness matrices:

[C] = α [M ] + β [K] (2.6)

where α and β are phenomenological damping constants. Mechanistically, the constant

α is consistent with damping introduced by fluids surrounding the structure, while β

is consistent with internal viscoelasticity arising from a single Maxwell model. It can

be shown that α is most impactful at low frequencies, while β is impactful at high

frequencies [13]. As β typically plays a more significant role in elevating viscous forces,

the present study sets β = 0 and modulates the mass damping parameter α. In Abaqus

Explicit, α is scaled by the inverse of the natural frequency (α ∝ 1/ωo).

Figure 2.6 illustrates the impact of various damping levels on the four classes of

structures shown in Figure 2.2. Zero damping enables large, high frequency oscillations

such as those shown in Figure 2.6A. As damping is introduced, these oscillations are

mitigated, as shown in Figure 2.6B; high levels of damping are also shown, which can

delay the onset of buckling instabilities and produce higher peak loads that are likely

not representative of lightly-damped structures. The results in Figures 2.7A and 2.7B

show the influence of the damping parameter α on the peak load and area under the

load-displacement curve, respectively. It is clear that low levels of damping, with α/ωo <

0.5, have a negligible impact on these quantities, while severely curtailing post-buckling

behaviors (as seen in Figure 2.6). Hence, α/ωo = 0.45 is chosen for the study of truss

topology presented in Chapter 4.
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Figure 2.6: Illustrations of the effect of damping on load-deflection response: (A)
a simple “V” structure with no damping, (B) a simple “V” structure with several
damping levels, (C) a horizontally braced structure with no damping, and (D) a hori-
zontally braced structure with several damping levels. Damping levels that completely
suppress post-buckling vibrations can also artificially elevate the buckling load.

2.6 Effect of imperfections

As described in Section 2.1, deviations from the nominal geometry (i.e. imperfec-

tions) can be effective in ensuring that incremental methods capture relevant buckling
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Figure 2.7: Peak load and energy stored versus the damping parameter used to
suppress post-buckling oscillations, illustrating that small levels of damping have
little influence on the metrics used to test convergence. The scaling frequency is
ωo =

√
EI/ρAL4.

modes. Imperfections are generally based on the eigenmodes of the system, i.e. states

associated with a first-order expansion of the non-linear stiffness matrix. For truss struc-

tures involving more than a couple members, post-buckling behaviors can be influenced

by higher order eigenmodes that occur at larger displacements than the first buckling

event. This complicates the selection of eigenmodes to be included and their associated

amplitudes. Figure 2.8 illustrates various buckling modes computed from an eigenvalue

analysis that are used as the basis for defining imperfections; note that the amplitude of

deformation includes arbitrary scaling to highlight the deformed shape.

The results shown in Figure 2.9 illustrate the role of imperfections, by plotting the

peak load and area under the load-displacement curve for various types of imperfections

for the four classes of structures shown in Figure 2.2. In Figure 2.9A, the number of

superposed eigenmodes is fixed at seven (i.e. modes 1-7 added together), while the

amplitude of the imperfection is varied relative to the strut size. In this study, the

contribution of each eigenmode to the total imperfection (i.e. the amplitude for each
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5 modes 3 modes 1 mode

Imperfections imposed (amplified by 10x)

7 modes

Figure 2.8: Examples of truss topologies with imperfections based on superposition
of buckling modes; actual deviations from nominal geometry are slight, and increase
slightly as higher buckling modes are included.

eigenmode) is equal.

For small imperfections, the peak load is relatively unaffected by their magnitude. It is

worth emphasizing that setting the imperfection size to zero leads to inconsistent results,

with some structures exhibiting dramatic increases in peak load because the first buckling

load is stepped over during the incremental solution. At large imperfection sizes, the peak

load decreases due to the increase in bending compliance associated with macroscopic

changes to the shape of the structure. Imperfections that lead to changes in bending
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compliance are generally observable in the geometry without the scaling amplification

shown in Figure 2.8. Figure 2.9B shows the impact of imperfection size on the area under

the load-displacement curve. While this quantity is relatively insensitive to imperfection

size for three of the four structures, the case of a V structure with two sets of angled

braces shows that some structures can be strongly influenced by the imperfection size.

In Figure 2.9C, the size of the imperfections is held fixed, while the number of eigen-

modes used to define imperfection shape is varied (e.g. 3 eigenmodes indicates the first

3 eigenmodes superposed to create the initial imperfection). Note that for certain struc-

tures, the peak loads obtained with higher order imperfections are slightly lower than

those with just an imperfection based on the lowest eigenmode. This behavior is even

more pronounced in the energy stored, as seen in Figure 2.9D; a dramatic drop is observed

when at least two modes are included.

From the results in Figures 2.9C and 2.9D, it is clear that including at least the

first three eigenmodes will produce results that are not influenced by the specific choice

of included modes. The results in Figures 2.9A and 2.9B show that the selection of

imperfection amplitude is more nuanced; apparently, there is a lower limit required to

achieve consistent results (see the results for the V-structure with two sets of angled struts

in Figure 2.9B), as well as an upper limit to ensure the imperfections do not introduce

significant bending compliance (see all cases in Figure 2.9A). For the broad topology

discussed in Chapter 4, the first seven eigenmodes are included with an amplitude of 1%

of the diameter.
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Figure 2.9: A summary of the impact of imperfections on peak load and energy storage,
including both amplitude (A and B) and number eigenmodes (C and D). Results for
all four truss topologies are shown. The loading rate is defined by the period of
ωotpeak = 2200. In the amplitude study in A and B, the first seven eigenmodes are
added to the structure as an initial imperfection and the imperfection amplitude is
varied relative to the main strut diameter. For the eigenmode study in C and D, the
imperfection amplitude is fixed to be 1% of the main strut diameter and the number
of eigenmodes is varied.
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2.7 Summary of numerical parameters used in sub-

sequent studies

In summary, the mesh size required for convergent simulations is assumed to be

independent of the structural topology, and corresponds roughly to the strut thickness

when using Timoshenko-Mindlin elements. Similarly, the minimum loading time interval

required to avoid inertial effects (prior to buckling) is also relatively independent of the

structural topology, and corresponds roughly to 103 times the temporal scale associated

with bending vibrations. (The time scale for axial waves is much smaller, and is therefore

satisfied by meeting the limitation associated with bending.) With regards to damping,

the results will be relatively insensitive to the mass damping parameter when α/ω0 ≤ 0.5;

structural oscillations during unstable transitions in deformed state are damped out in

less than ten or so oscillations when the damping is set near this limit. In contrast to

these three parameters, the role of imperfections is more nuanced. Studies on the four

topologies considered in this chapter have shown that it is most effective to include at least

three eigenmodes with a amplitude of 1% of the strut diameter; this avoids macroscale

imperfections that alter the initial stiffness, and ensures that the lowest buckling loads

are obtained during incremental dynamic solutions. A summary table of the parameters

chosen for later simulations, and the associated scaling factors, is provided in Table 2.1.
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Parameter Normalized form Value

Element size `e/Ls 0.024

Load rate ω0tpeak 2200

Damping coefficient αD/ω0 0.45

Imperfection amplitude Aimp/D 0.01

Number of eigenmodes — 7

Table 2.1: Summary of parameters that produce consistent results for the four topolo-
gies shown in Figure 2.1 and used as the basis for the design study in Chapter 4.
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Chapter 3

Post-buckling and dynamic response

of angled struts in elastic lattices

3.1 Introduction

The emergence of three-dimensional fabrication techniques at length-scales spanning

from the nanoscale to the macroscale has renewed interest in design of cellular solids.

Over the last decade or so, significant attention has been placed on developing novel

structures that specifically exploit buckling of struts or cell walls, notably metamaterials

that exhibit hysteretic damping or stable changes in configuration that alter macroscale

mechanical, optical or acoustic properties. [For examples, see [8, 14–27].] While cellular

topologies to achieve ‘programmable’ non-linear responses are highly varied, a unifying

design element is the use of struts that lie at angle to the principle loading direction,

such as those shown in Figure 3.1A.

With suitable lateral constraint, angled struts experience ‘snap-through’ during com-

pressive loading due to buckling instabilities arising from non-linear kinematic motions,

as shown in Figures 3.1 and 3.2. Such instabilities are highly sensitive to the angle of
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Figure 3.1: (A) Lattices with angled struts; the focus here is on buckling behavior
of struts under various states of biaxial straining without shear. (B) Original and
deformed shapes when the lattice is constrained against expansion and the angled
struts experience snap-through. (C) Load-deflection curves for two different strut
angles when constrained against lateral expansion, showing both reversible (top) and
irreversible (bottom) snap-through.
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the struts and their length-to-thickness (aspect) ratio L/h; this is illustrated in Figure

3.2 with theoretical predictions described in the remainder of the paper. The force-

displacement response in Figure 3.2B for L/h = 15 and L/h = 20 exhibit an unstable

linear unloading portion (during load control); this straight segment is a consequence

of imperfections in the strut. As shown in Figure 3.2C, significant forces are generated

perpendicular to the loading direction.

Prior treatments of snap-through phenomena (and structures capable of exploiting

related behaviors) are extensive [e.g. [28–44]] and highlight many salient aspects of design,

analysis and performance. On the one hand, previous treatments have established a solid

foundation to identify relevant geometries and predict the behaviors shown in Figures 3.1

and 3.2. On the other, a comprehensive framework has not been presented that spans the

entire design space and enables the evaluation of critical design parameters, such as the

influence of biaxial loading, peak strains in the members governing failure, and expected

hysteresis during cyclic loading. To address the need for a flexible design tool that covers

all aspects of non-linear response, we present a comprehensive analytical solution for the

angled struts shown in Figure 3.1. This solution encompasses most (if not the entirety)

of analytical approximations and numerical simulations in prior work, and provides the

following new capabilities.

First, the solution addresses lateral constraints (in the horizontal direction of Figure

3.1) and allows one to identify combinations of geometry and biaxial strain states that

lead to instabilities. Second, the solution provides estimates for strains in the struts after

snap-through, which are critical to assessing strut failures and the cyclic durability of

bistable lattices. Third, the analytical solution accounts for imperfections (i.e. slightly

curved struts), allowing predictions of the defect sensitivity of various topologies. Fourth,

the analytical solution can be used with superposition to predict the response of different

cell types used in parallel, facilitating the conceptual design of novel lattices to achieve
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specific non-linear responses. Fifth and finally, it provides insight into strut deformations

that can be exploited in dynamics models; this enables an efficient, single degree-of-

freedom dynamics model that can be used to evaluate the dynamics of instabilities,

angled struts utilized in series (as opposed to parallel), and hysteretic losses during cyclic

loading.

It should be emphasized that the merit of the present analysis centers on its band-

width (in spanning all predicted various behaviors considered elsewhere), efficiency (com-

plex numerical solutions are avoided) and the extension to dynamic behaviors, notably

damping during cyclic loading. The efficiency of the framework is particularly powerful,

as it enables rapid parametric studies to identify desirable regions of the design space,

including those that avoid failures and/or involve the cooperative movement of multiple

struts. Put simply, the present analysis should be viewed as a comprehensive design tool

that provides rapid assessment of various architected topologies, and in certain contexts,

stochastic foams. As such, the model should find rich utility in guiding the development

of programmable materials.

This perspective is substantiated by numerous outcomes of the model that have not

been previously elucidated. First, combinations of strut aspect ratio and strut angle

that lead to reversible snap through (a requirement of exploiting cyclic hysteresis arising

from non-linearity) are closely correlated with relative density. E.g., for rhombic lattices,

reversible snap-through occurs only for relative densities in the range 0.25 < ρ̄ < 0.4;

the corresponding relative density range for other topologies are easily achieved from

analysis of different unit cells. Together with well-established scaling of lattices, this sets

limits on the achievable stiffness and strength of such lattices. Second, reversible snap-

through regimes must tolerate strains of 1-10%; this sets design limits on geometry and/or

materials selection. Third, the models allow for rapid assessments of dynamic behaviors

during snap-through: notably, peak strains associated with overshoot and the dissipated
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work under cyclic loading. The results reveal that dramatic increases in damping are

possible even in scenarios that do not achieve snap-through. Finally, lattices that exploit

struts at different angles hold promise for improving strength and energy absorption;

combining cell based struts with different characteristic angles offers increased stiffness,

strength, and post-buckling stability.

The solutions presented in this work, and illustrations of its utility, draw inspiration

from three substantial bodies of literature whose seminal contributions have launched

interest in such structures. Following Williams’ landmark treatment of an angle toggle

switch [28], there have been numerous treatments of bistability in beam-like sensors and

switches, notably in the MEMS community [e.g. [41, 42, 45–52]]. Similarly, the consid-

eration of large deformation in frames (notably for space structures) have established

powerful numerical techniques to consider more complex structures [e.g. [29–40,43]]. Fi-

nally, over the last decade, there have been numerous specific implementations of snap-

through structures, particularly those enabled by advances in three-dimensional printing

[e.g. [21–24, 27]]. These works highlight many (but not all) aspects of the models pre-

sented here.

3.2 Governing equations and solutions for moderate

rotations

The analysis presented here describes the response of one of the angled struts in Figure

3.3A, with (X1, X2) defining the global coordinate system. The struts are assumed to

have an initial curvature, defined by κo = 1/R in Figure 3.3B; in the limit that κo → 0,

the strut is perfectly straight. In what follows, we adopt a Kelvin-Voigt viscoelastic model

(σ = Eε+ηε̇) to gain insight regarding the nature of hysteretic losses relative to intrinsic
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Figure 3.2: Typical plane strain (δ1 = 0) behavior of angled struts, loaded in compres-
sion: (A) the strut geometry, indicating vertical positive forces that put the strut into
axial compression, (B) representative load-displacement curves for a shallow angle and
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Figure 3.3: (A) Global coordinates and geometric variables used in the non-linear
analysis that invokes moderate rotation theory. (B) Illustration of strut curvature, as
characterized by the dimensionless radius of curvature, k̃appao = κo/L, which can be
related to the eccentricity of the midspan. (C) Local coordinates and variables used
to solve for the response.

material damping. Throughout the following, (x, y) refers to the local coordinate system

aligned with the beam, as shown in Figure 3.3C.

Moderate rotation theory is utilized that invokes the approximation that sin θ ' θ,

where θ is the angle of an infinitesimal line segment in the deformed state relative to

the original x−axis. This approximation is reasonably accurate for θ <∼ 30o. As a

rule of thumb, the analysis presented here can be expected to be accurate up until

δ sin (α + β) ≈ 0.3, where δ is the magnitude of the deflection of one anchor point relative

to the other, and β defines the direction of loading with respect to the global X1−axis.

This encompasses a surprisingly large range of behavior (as quantified in Section 5.1),

including virtually all bistable solutions.
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3.2.1 Coupled non-linear dynamic governing equations

Assuming moderate rotations and that plane sections remain plane, the strain in the

beam is given by:

ε(x, y, t) = u′(x, t) +
1

2
[w′(x, t)]

2
+ κow(x, t)− y · w′′(x, t) (3.1)

= εo(x, t)− y · w′′(x, t) (3.2)

where u(x, t) is the axial displacement of the strut’s neutral axis, w(x, t) is the displace-

ment perpendicular to the neutral axis, y is the distance from the neutral axis of the

strut, and primes denote differentiation with respect to x. In eqn. 3.2, the stretching of

the centerline is re-defined as εo, i.e. the sum of the first three terms in eqn. 3.1, while

the last term represents the bending strain.

The governing equations can be derived from the principle of virtual work, which

dictates the difference of internal and external virtual work is:

δWint − δWext =

∫ L

0

E

[∫
A

(εo − y · w′′) (δu′ + w′δw′ + κoδw − δw′′y) dA

]
dx

+

∫ L

0

η

[∫
A

(ε̇o − ẇ′′y) (δu′ + w′δw′ + κoδw − δw′′y) dA

]
dx

+

∫ L

0

ρAẅδwdx+

∫ L

0

ρAüδudx− Fxδu(L)− Fyδw(L) = 0 (3.3)

where δu and δw are virtual displacements, Fx,y are the applied forces referenced to the

local coordinate system, and the axial and transverse accelerations are given by ü and

ẅ, respectively. (See Figure 3.3.) Here, rotary inertia is neglected, as its virtual work

contribution is negligible when (h/L)2 << 1 for deflections on the order of L. After

expanding, performing the usual integration by parts and collecting like terms, eqn. 3.3
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leads to:

EA

[
u′ +

1

2
(w′)

2
+ κow + η̄ (u̇′ + w′ẇ′ + κoẇ)

]′
+ ρAü = 0 (3.4)

ρAẅ + EI [w′′′′ + η̄ẇ′′′′]

−EA
[(
u′ +

1

2
(w′)

2
+ κow + η̄ (u̇′ + w′ẇ′ + κoẇ)

)
w′
]′

+ EAkoεo = 0 (3.5)

where I is the moment of inertia of the strut and η̄ = η/E. The boundary terms

arising from the integration dictate the reaction forces (for imposed displacements) or the

boundary conditions (for imposed forces). For the present case, the boundary condition

at x = L appears as:

[EA (u′(L) + κow(L) + η̄u̇′(L) + η̄κoẇ(L))− Fx] δu(L) = 0 (3.6)

EI [w′′′(L) + η̄Iẇ′′′(L) + Fy] δw(L) = 0 (3.7)

In what follows, we use the following normalizations: U = u/L, W = w/L, x̄ = x/L,

and h̄ = h/L. The characteristic inertial time scale and characteristic free vibration

frequency are given by:

to =

√
ρAL4

EI
; ωo =

1

to
=

√
EI

ρAL4
(3.8)

These are simply the scalings controlling the vibration characteristics of the structure;

the actual natural frequency will be proportional to ωo through a scalar factor that

depends on geometry, as described below. Defining normalized time as τ = t/to = ωot,
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the governing equations become:

[(
U ′ +

1

2
(W ′)

2
+ κ̃oW

)
+ η̃

(
U̇ ′ +W ′Ẇ ′ + κ̃oẆ

)]′
+
h̄2

12
Ü = 0 (3.9)

Ẅ +
[
W ′′′′ + η̃Ẇ ′′′′

]
−12

h̄2

[(
U ′ +

1

2
(W ′)

2
+ κ̃oW + η̃

(
U̇ ′ +W ′Ẇ ′

)
+ κ̃oẆ

)
W ′
]′

+
12

h̄2
κoεo = 0 (3.10)

with

η̃ = η̄

√
EI

ρAL4
. (3.11)

The normalized boundary conditions for a clamped end condition at x̄ = 1 are given by:

F̃x(τ) =
L2Fx(τ)

EI
= U ′(1) + κ̃oW (1) + η̃

[
U̇ ′(1) + κ̃oẆ (1)

]
(3.12)

F̃y(τ) =
L2Fy(τ)

EI
= −W ′′′(1)− η̃Ẇ ′′′(1) (3.13)

When displacements are applied, the above forces represent the corresponding reaction

forces resulting from the applied displacements. The relationship between the reaction

force in the local and global coordinates are easily found via a simple coordinate trans-

formation.

3.2.2 Quasi-static solutions

For quasi-static conditions, the time-derivative terms in the dynamic governing equa-

tions can be neglected; in this case, the axial equilibrium equation given as eqn. 3.9

implies that the strain at the neutral axis is constant, i.e.:

U ′ +
1

2
(W ′)

2
+ κ̃oW = εo (3.14)
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where εo is a parameter to be determined. Here, we re-define the unknown parameter

describing strain at the neutral axis:

Λ =

√
12εc,to

h̄2
(3.15)

with εc,to representing the magnitude of axial strain at the neutral axis. With the sign of

this strain taken into account in the definition of Λ, the remaining governing equation,

eqn. 3.10, in the quasi-static limit becomes:

W ′′′′ ∓ Λ2W ′′ ± κ̃oW = 0; W (0) = W ′(0) = W ′(1) = 0; W (1) = ∆ sin (α + β)(3.16)

where ∆ is the displacement of the end of the beam. Hence, the top signs are used if

the axial strain εo = εto > 0 and the bottom signs are used if −εco = εo < 0 (i.e. the

neutral axis of the strut is in compression). The final piece of the puzzle is to determine

Λ; integrating eqn. 3.14 along the length of the beam, one obtains:

∆ cos (α + β) +

∫ 1

0

(
κ̃oW +

1

2
[W ′]

2

)
dx̄ = ± h̄

2

12
Λ2 (3.17)

where the geometric relationship U(1) = ∆ cos (α + β) has been utilized. Solving eqn.

3.16 and plugging the result into eqn. 3.17 yields a non-linear equation that defines Λ,

which is quadratic in terms of the applied end displacement. Once the full solution is

found, one can compute the reaction forces at the right end of the strut, i.e. F̃x = ∓Λ2

and F̃y = −W ′′′(1).

The governing equations described in eqns. 3.16 - 3.17 provide a complete set of equa-

tions that can be solved for the response as a function of the slenderness ratio L/h = 1/h̄,

strut angle α and loading direction β. Since the nature of the solutions depends on the
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sign of the strain of the neutral axis, it is most convenient to present two sets of solutions:

one for the tensile regime and one for the compressive regime. A convenient and robust

way to generate response relationships (e.g. load-deflection, strain-displacement, etc.) is

outlined in Section 2.3.

The tension regime, εo > 0: In this regime, the average axial stress in the strut

is positive. The solution is found from eqns. 3.16 and 3.17 using the top signs in the

equations, yielding:

W (x̄) = ∆ sin (α + β)

[
Λx̄ cosh (Λ/2)− sinh (Λ/2) + sinh ([Λ− 2Λx̄] /2)

Λ cos (Λ/2)− 2 sin (Λ/2)

]
+ κ̃oft(Λ, x̄)

ft(Λ, x̄) =
Λ(x̄− 1)x̄+ sinh(Λx̄)− coth

(
Λ
2

)
(cosh(Λx̄)− 1)

2Λ
(3.18)

F̃x = Λ2 (3.19)

F̃y =
1

2
Λ2

(
2∆ sin(α + β)

(
eΛ + 1

)
Λ

eΛ(Λ− 2) + Λ + 2
+ κ̃o

)
(3.20)

where the parameter Λ is related to the applied displacement according to:

at(Λ, α, β) ·∆2 + bt(α, β, κ̃o) ·∆ + ct(Λ, κ̃o, h̄) = 0 (3.21)

at(Λ, α, β) =
Λ sin2(α + β)(Λ(cosh(Λ) + 2)− 3 sinh(Λ))

4
(
Λ cosh

(
Λ
2

)
− 2 sinh

(
Λ
2

))2

bt(α, β, κ̃o) = cos (α + β) +
κ̃o
2

sin (α + β)

ct(Λ, κ̃o, h̄) =
κ̃2
o(Λ(cosh(Λ) + 2)− 3 sinh(Λ))

24Λ (cosh(Λ)− 1)
+
h̄2

12
Λ2

Note that eqn. 3.21 indicates that the displacement for a given level of tensile strain

(defined by Λ) can be multi-valued: this reflects the fact that tensile strains can be

developed either by pulling downwards on the strut (see Figure 3.1), or pushing the strut
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upwards through the ‘flat’ position to the point that strains become tensile.

The above solution is valid unless the strain at the strut centerline is compressive.

Taking the limit of eqn. 3.21 with Λ → 0 and solving for ∆, one determines that the

tensile regime corresponds to:

∆ < 0 & ∆ >
5 [κ̃o + 2 cot (α + β)]

6 sin (α + β)
(3.22)

F̃1 > −10 [κ̃o + 2 cot (α + β)] sinα (3.23)

F̃2 < 0 & F̃2 > 10 [κ̃o + 2 cot (α + β)] cosα (3.24)

Note that the above transition forces have been computed for the global coordinate sys-

tem. An analysis of the compressive solutions yields identical transition points, such

that the relevant solution (tension or compression) is completely determined by the in-

equalities above. In the limit of small deflections, Λ2 ' (12/h̄2)∆ cos (α + β), and the

macroscopic forces and displacements are related by:

 F̃1

F̃2

 =
12

h̄2

 cos2 α + h̄2 sin2 α − cosα sinα
(
1− h̄2

)
− cosα sinα

(
1− h̄2

)
h̄2 cos2 α + sin2 α


 ∆1

∆2

 (3.25)

which can be confirmed independently by conducting a small displacement analysis.

Finally, the strains in the beam are given by:

εmax =
h̄2Λ2

12
± h̄

2

(
κ̃of

t
ε (Λ, x̄) +

∆Λ2 sin(α + β) sinh
(

1
2
(Λ− 2Λx)

)
Λ cosh

(
Λ
2

)
− 2 sinh

(
Λ
2

) )
(3.26)

f tε (Λ, x̄) =

(
1

2
Λ sinh(Λx̄)− 1

2
Λ coth

(
Λ

2

)
cosh(Λx̄) + 1

)
(3.27)

where the positive sign corresponds to the strains at the bottom of the strut and the

negative sign corresponds to strains at the top of the strut. Referring to Figure 3.1, the
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maximum tensile strain in the beam occurs at the top of the strut at x̄ = 0 when the

beam is pulled downwards, and the top of the strut at x̄ = 1 when the beam is pushed

upwards. (Similarly, the maximum compressive strains occur on the opposite face and

opposite end.) That is, when the average axial strain in the beam is tensile, the maximum

tensile strains always occur at the endpoints, in accordance with the bending strains. In

the compressive regime, this is not necessarily true. These observations can be easily

verified numerically using the above solutions.

The compressive regime: εo < 0: In this regime, the average axial stress in

the struts is negative. The solution for this regime is found using the bottom signs of

eqns. 3.16 and 3.17, yielding the results:

W (x̄) =
∆ sin(α + β)

(
cos(Λx̄) + cot

(
Λ
2

)
(Λx̄− sin(Λx̄))− 1

)
Λ cot

(
Λ
2

)
− 2

+ κ̃ofc(Λ, x̄, κ̃o)

fc(Λ, x̄, κ̃o) =
κ̃o
(
Λ(x̄− 1)x̄+ sin(Λx̄) + cot

(
Λ
2

)
(cos(Λx̄)− 1)

)
2Λ

(3.28)

F̃x = −Λ2 (3.29)

F̃y = −2∆ sin(α + β)Λ3 sin(Λ) csc2
(

Λ
2

)
4Λ cot

(
Λ
2

)
− 8

− κ̃oΛ
2 csc2

(
Λ
2

)
(Λ sin(Λ) + 2(cos(Λ)− 1))

4Λ cot
(

Λ
2

)
− 8

(3.30)

where the parameter Λ is related to the applied displacement according to:

ac(Λ, α, β) ·∆2 + bc(α, β, κ̃o) ·∆ + cc(Λ, κ̃o, h̄) = 0 (3.31)

ac(Λ, α, β) =
Λ sin2(α + β)(Λ(cos(Λ) + 2)− 3 sin(Λ))

4
(
Λ cos

(
Λ
2

)
− 2 sin

(
Λ
2

))2

bc(α, β, κ̃o) = cos(α + β) +
κo
2

sin(α + β)

cc(Λ, κ̃o, h̄) =
κ̃2
o

(
3(Λ− sin(Λ)) csc2

(
Λ
2

)
− 2Λ

)
48Λ

+
h̄2Λ2

12
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Again, the displacement can be multi-valued: the two solutions split the compressive

regime roughly in half, with one solution generating the load displacement curve in the

initial loading stage through the buckling event seen in Figures 3.1 - 3.3, and the other

covering the transition to the tensile regime. Taking the limit of eqn. 3.31 with Λ → 0

and solving for ∆, we obtain transition points and small deformation results that are

identical to those listed earlier from the tension solution, as expected.

In the compression regime, the strain in the beam is given by:

ε(x̄) = − h̄
2Λ2

12
± h̄

2

(
κ̃of

c
ε (Λ, x̄) +

∆Λ2 csc
(

Λ
2

)
sin(α + β) sin

(
1
2
(Λ− 2Λx)

)
Λ cot

(
Λ
2

)
− 2

)

f cε (Λ, x̄) = 1− 1

2
Λ

(
sin(Λx) + cot

(
Λ

2

)
cos(Λx)

)
(3.32)

where the top sign refers to the bottom of the beam, and the bottom sign refers to the

top of the beam. The position of the maximum strains in the compressive regime depend

on the level of average axial strain, Λ.

3.2.3 Computation of relationships between loads, deflections,

and strains

The above relationships between loads, deflections and the implicit parameter Λ are

most easily evaluated parametrically. For example, one can use Λ as the specified pa-

rameter, and then compute associated deflections ∆ by solving the associated quadratic

function, then solve for the associated loads once ∆ is determined. Figure 3.4 illustrates

the relationships that emerge from this process for β = π/2 (i.e. δ1 = 0 for a lattice

subject to zero lateral strain).

In Figure 3.4A, the term corresponding to
√
b2 − 4ac in the quadratic solution for ∆ is

plotted as a function of Λ for compressive loading. At discrete points, the radical becomes
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Figure 3.4: (A) Ranges of the axial strain parameter corresponding to real displace-
ment solutions for several strut angles; smaller strut curvatures make the transitions
more abrupt. (B) Axial strain parameter versus applied deflection for plane strain
(ε1 = 0) illustrating the displacements associated with the domains in (A). (C) Load-
-displacement curves for the domains shown in (A). (D) Axial strain parameter as a
function of applied force for the domains shown in (A-C).
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negative, indicating imaginary displacement solutions: these discrete points correspond

to the critical buckling points. As the imperfection is reduced (i.e. decreasing κ̃o),

the regions with imaginary solutions decrease in size. It is interesting, and critically

important, that setting κ̃o ≡ 0 yields similar solutions that eliminate the first critical

point, i.e. the first buckling mode. Thus, the inclusion of an infinitesimal but non-zero

value for κ̃o is needed to capture the lowest buckling mode, indicating that the problem is

sensitive to imperfections. For values of Λ beyond the first critical point shown in Figure

3.4A, one recovers higher buckling modes; these higher order modes are seen in Figures

3.4B - 3.4D. As indicated by Figure 3.4A, the presence of ‘higher order’ buckling modes

may disappear all together for certain strut angles, slenderness ratios and undeformed

beam curvatures.

Once a set of (Λ,∆) values are computed, all other solution variables can be computed

in the following way. Critical loads and displacements for transitions, such as those shown

in Figures 3.1 and 3.2, are most easily computed by ordering the triplets according to ∆,

and then fitting an interpolation curve for subsequent computation. In generating the

dataset, one must take care to specify a range of Λ associated with the lowest energy

state of the solution; this was done by using the results in Figure 3.4 with a root finding

algorithm to determine the maximum relevant value of Λ in the compressive regime. It

is worth noting that the loads and deflections vary substantially for very small variations

in Λ when Λ approaches the maximum allowable value. Hence, to resolve the response

in detail, a non-uniform ‘grid’ in the parameter Λ is needed, with a densely populated

grid in Λ near the peak values.
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3.2.4 Approximate dynamic solutions with δ1 = 0 (constrained

lattices)

Unlike the quasi-static response, the axial and transverse behavior cannot be decou-

pled in the dynamic response, and full solutions require both spatial and temporal dis-

cretization. However, building upon insights from the quasi-static solution, we present an

approximate solution for the dynamic behavior that is shown to be accurate for α <∼ 20o.

Further, we present the solution for a strut without imperfections (κ̃o = 0), motivated by

the fact the results are imperfection insensitive for these angles.

The approximate solution assumes that the time-dependent deflection of the beam

can be described by:

W (x̄, τ) = ∆(τ)f(x̄) cosα; U(x̄, τ) = −∆(τ)g(x̄) sinα (3.33)

where ∆(τ) is the time-dependent vertical displacement of the center of the beam, and

f(x̄) is a time-independent function that describes the deformed shape of the beam.

This is only an approximation, because the non-linear kinematics implies that it is not

strictly possible to find such a separable solution. For the sake of simplicity, we will

assume that f(x̄) = sin2 (πx̄/2), which satisfies the boundary conditions f(0) = f ′(0) =

f ′(1) = 0 and f(1) = 1, and further, is the exact solution for buckling at large strut

angles. Alternatively, we could choose f(x̄) = (3− 2x̄)x̄2, which is the quasi-static small

deflection solution: the impact of the specific choice of x̄ is surprisingly small, as can be

demonstrated by repeating the following analysis with that assumption.

The full governing equations described earlier illustrate that the average axial stress in

the beam is uniform provided the forces from axial accelerations are small in comparison

to those arising from axial straining. Since the axial accelerations scale with ∆̈h̄2 sinα
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(in comparison to the transverse accelerations which scale with ∆̈ cosα), this is a fair

approximation for moderate α but is not true for nearly vertical beams. Neglecting axial

accelerations in eqn. 3.9 and using eqn. 3.33, one obtains:

− sinα∆(τ)g′(x̄) +
cos2 α

2
(∆(τ)f ′(x̄))

2
= εo(τ) (3.34)

Differentiating with respect to space, we find that:

− sinα∆(τ)g′′(x̄) = −cos2 α

2
(∆(τ))2 f ′(x̄)f ′′(x̄) (3.35)

Solving this subject to the boundary conditions g(0) = 0 and g(1) = 1, we obtain:

g(x̄) = x̄−∆(τ)
π

32

cos2 α

sinα
sin [2πx̄] (3.36)

This completely defines the strain and strain rate distributions, as controlled by the

displacement amplitude ∆(τ):

ε(x̄, y, τ) = −∆(τ) sin[α] +
π2

16
cos2 α∆(τ)2 − π2

2
cosα cos πx̄∆(τ) · y (3.37)

ε̇(x̄, y, τ) = −∆̇(τ) sin(α) +
π2

8
cos2 α∆(τ)∆̇(τ)− y · ∆̇(τ)

π2

2
cosα cosπx̄ (3.38)

where the first terms reflects u′(x̄), the second term reflects (1/2) [w′(x̄)]2, and the last

terms reflects w′′(x̄).

Using this approximation in a statement of virtual work and integrating over the area

of the strut yields an approximate dynamic governing equation for ∆(τ):

mo∆̈(τ) + η̃{co + cnl [∆(τ)]}∆̇(τ) + {ko + knl [∆(τ)]}∆(τ) = F̃2(τ) (3.39)
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where the linear (small deflection) coefficients are given by:

mo =
3

8
cos2 α; ko =

12

h̄2
sin2 α +

π4

8
cos2 α; co = η̃

(
12

h̄2
sin2 α +

π4

8
cos2 α

)
(3.40)

and the non-linear (large deflection) coefficients are given by

knl [∆(τ)] =
3π2 cos2 α

32h̄2

[
(π2 cos2 α ·∆(τ)2 − 24 sinα ·∆(τ)

]
(3.41)

cnl [∆(τ)] = 6π2 cos2 α
[
π2 cos2 α ·∆(τ)2 − 16 sinα ·∆(τ)

]
(3.42)

The linearized solution for small deflections (i.e. neglect of cnl and knl) give an

indication of the approximation’s accuracy. First, it can be shown that ko differs from

the exact small-displacement solution by 1.5%. (That is, the pre-factor π4/8 ' 12.18

in eqn. 3.40 is strictly equal to 12). Second, the undamped natural frequency of the

approximation for small deflections is given by:

Ωn =
ωn
ωo

=

√
ko
mo

=

√
32

h̄2
tan2 α +

π4

3
(3.43)

The approximate solution differs from the exact solution for small deflections by 3.9%,

in that the term corresponding to π4/3 ' 32.5 is equal to 31.28 in the exact solution.

Hence, the approximate solution provides highly accurate estimates for both the statics

solution and first vibration frequency, with small differences arising from the fact that

the assumed displacement functions are not strictly equal to either the static deflection

profile or the first mode shape.

Finally, it is useful to note the effective damping coefficient in the limit of small
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displacements, which is given by:

ξo =
co

2
√
komo

=
1

2
η̃Ωn =

1

2
η̃

√
32 tan2 α

h̄2
+
π4

3
(3.44)

The effective damping coefficient increases quickly with increasing strut angle; this is a

consequence of the Kelvin-Voigt material approximation that implies rate effects scale

with the system stiffness. For h̄ = 0.1, over the range of 0o < α < 20o, the effective

damping coefficient falls in the range of ∼ 3η̃ < ξo <∼ 12η̃.

3.3 Illustrations of quasi-static response

3.3.1 Nature of the solutions for δ1 = 0 (constrained lattices)

The compressive regime is of primary interest for applications seeking to exploit

bistable behavior. Here we examine compression, assuming the struts are constrained

against displacement in the X1−direction, which corresponds to β = 90o in the above

solutions. Under displacement control and quasi-static loading, only the first buckling

mode is relevant. The higher order loops shown in Figures 3.4(B-D) are indeed valid

equilibrium solutions, but they are associated with higher energies due to higher neutral

axis strains and deformed shapes with higher spatial frequencies. Hence, perturbations

to the state of deformation associated with the first mode would be needed to overcome

the associated energy barriers.

That said, it is interesting to note in Figure 3.4 that the higher order loops cross the

lowest order loop for sufficiently large displacements. This raises interesting possibili-

ties that external perturbations may overcome those energy barriers leading to a switch

from one load-deflection path to another. Such perturbations would not have to involve

changes in the macroscopic deformation of a lattice, since they involve only changes in the
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deformed shape of the beam and not the displacements of the strut end-points. While the

practical relevance of this higher order equilibrium states is open to question, knowing

of their existence may shed light on future dynamic observations where oscillations may

provide the impetus for switching modes.

Figure 3.5 provides illustrations that give insight into the nature of non-linear response

under load control. All of these results are easily computed using the results presented

earlier. Figure 3.5 depicts the relationship between the total potential energy of the

system, the displacement, and strain energy as a function of applied load and resulting

displacement. Figure 3.5 clearly illustrates that the total potential energy is reduced at

the first critical load point by jumping to lower state at a fixed load. Upon unloading, the

structure follows the lower path, as a return to the original displacement at the critical

load would require an increase in the system’s potential energy. If the structure is loaded

to the second critical point, it snaps back to a new displacement, as shown in Figure

3.5. Note that the strain energy as a function of displacement does not shed much light

on these transitions. Further, the strain energy at zero load is multi-valued (for this

structure): the positive value at zero load corresponds to the strain energy stored in the

structure in the deformed equilibrium state.

3.3.2 Complete response maps for compressive regime with δ1 =

0 (constrained lattices)

Here we illustrate the behavior of angled lattices subject to compression and plane

strain deformation, i.e. δ1 = 0 (β = π/2). For simplicity, we cast the results in terms

of a rhombic lattice (see Figure 3.1); however, it is worth emphasizing that the above

solutions can be easily modified to generate results for other cell configurations, even

three-dimensional structures provided appropriate symmetry constraints are applied. For
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∆

∆
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Total potential
energy

Strain energy

Strain
energy

Figure 3.5: Schematic illustrations of the relationship between total potential energy,
Π̃T , strain energy Π̃e, normalized force F̃2 and displacement, ∆. Under load control,
the path depends on whether the load is increasing or decreasing. The curves can be
generated using the solutions presented here.
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a rhombic lattice consisting of intersecting beams (see Figure 3.1A), the relative density

of the lattice is given by:

ρ̃ =
h̄+ h̄2 cosα sinα(

h̄ cosα + sinα
) (
h̄ sinα + cosα

) , (3.45)

which takes into account the size of the nodes created by intersecting beams of finite

width. A contour map of the relative density of rhombic lattices as a function of strut

aspect ratio and strut angle is shown in Figure 3.6A. (Adopting the results for hexago-

nal lattices will naturally lower the relative density values.) The parametric algorithm

described earlier was used to identify the type of response associated with each (h̄, α)

combination. The bottom red line indicates the boundary between structures that do

and do not experience snap-through (i.e. negative stiffness). Below the bottom red curve,

the behavior is non-linear but never unstable. The top red line indicates the boundary

between structures that do and do not experience reverse snap-through upon unloading.

It is striking that the contours for ρ̃ = 0.4 and ρ̃ = 0.25 align extremely well with the

boundaries separating the three deformation regimes. This implies that an extremely ac-

curate and simple calculation using eqn. 3.45 can be used to identify the critical length

or angle needed to ensure each type of behavior.

Figures 3.6B and 3.6C illustrate contours of the specific strength of the cell and critical

strain for snap-through, respectively. The strength is computed as the snap through load

divided by the width of the cell, i.e. σ2 = F2/L cosα. The cell strain is computed as

ε2 = δ2/(L sinα), which is only strictly valid for rhombic lattices; critical strains for

hexagonal lattices will be smaller, due to the presences of vertical struts. The results

in Figure 3.6B illustrate that decreasing the aspect ratio of the struts (or increasing the

strut angle) increases the snap-through stress faster than associated increases in density.

For lattices with struts at low angles, the macroscopic strain at snap-through is quite
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Figure 3.6: Summary of quasi-static response for δ1 = 0, i.e. lattices subjected to
plane strain; (A) Contours of relative density for a rhombic lattice (in increments
of 0.05), with superimposed boundaries between various regimes. (B) Contours (in
increments of a factor of two) of specific strength for a rhombic lattice. (C) Contours
of macroscopic strain on a rhombic lattice at the onset of snap-through (in increments
of 0.08). (D) Contours of peak strut strain (in increments of 0.02) at the conclusion of
snap-through, i.e. at the second displacement associated with the snap-through load.
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large (0.32 < ε2 < 0.64), because the displacement at snap through is comparable to the

vertical spacing of the lattice.

For all lattices experiencing snap-through, the displacement is greater than L sinα,

indicating that self-contact always occurs for rhombic lattices. Neglecting self-contact

(e.g. for hexagonal cells that have vertical struts), the displacement approaches L sinα

for small angles and large aspect ratios. Hence, for all practical purposes, snap-through

without densification can only be achieved by including vertical struts in the lattice that

are greater than 2L sinα. Without such vertical struts, the lattice densifies at snap-

through and the effective stiffness of the lattice rises by orders of magnitude.

Figure 3.6D depicts the peak strain in the struts after snap-through has occurred; the

results correspond to strains at the snap-through load at the second (larger) displacement.

These results were generated by finding the extrema of equation 3.26 and 3.27 with respect

to position, at the second displacement associated with the snap-through load. One can

see that in order to survive the snap-through event, the allowable strain in the nodes

must be relatively high, creating significant concerns for struts and nodes made of brittle

materials. This points to the desirability of using compliant or ductile materials at the

nodes; in those instances, insightful results could be generated by re-solving the present

framework to have zero moment at the nodes, instead of zero slope.

3.3.3 Buckling and loss of stiffness for lattices subjected to bi-

axial strain

The complete solutions (generated parametrically) described at the end of Section 2.2

can be easily searched to solve for biaxial strain states associated with a loss of stiffness.

Each loading angle β corresponds to a given ratio of biaxial strains; for a rhombic lattice,

these are ε1 = ∆ cos β/ cosα and ε2 = ∆ sin β/ sinα. The corresponding stress state
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can be computed from reaction forces using σ1 = F1/(L sinα) and σ2 = F2/(L cosα).

For other types of cells, ε2 and σ1 must be adjusted to account for vertical posts. In

what follows, we neglect the possibility of vertical post buckling. A complete illustration

of biaxial strain states associated with buckling is show in Figure 3.7, along with the

corresponding stresses.

To generate the results in Figure 3.7, the critical displacement associated with a loss

of stiffness in each direction was computed as a function of loading direction, β; results

are shown for critical displacements associated with a tangent stiffness that is 10% of the

initial stiffness of the lattice. These critical displacements (and the associated reaction

forces) were then converted to strains (and stresses) using the results above for a rhombic

lattice. Strictly speaking, the ‘instability’ points associated with a loss of stiffness in each

direction are different; practically speaking, buckling in either direction causes a similar

loss of stiffness in the other. The curves in Figure 3.7 demonstrate that instabilities occur

even for cases where there is a small tensile strain in one direction.

Figure 3.7A shows a close up of the results for small strains; the stiffness is relatively

high in the third quadrant, where both strains are compressive. In this region, the usual

impressions of buckling behavior are relevant. Similarly, in the first quadrant, the lattice

is under tension in both directions and, though the stiffness may be highly non-linear, it

will not decrease. Lines are also shown for the loading states associated with minimum

stiffness, as inferred from the small deflection results in Section 2. These lines reflect

end displacements that act perpendicular to the beam axis. When the strains are of

opposite sign (i.e the second and fourth quadrants), the load-displacement curves are

highly non-linear, and the range of displacements corresponding to linear behavior can

be exceedingly small. Figure 3.7B shows a more macroscopic view of the strain space, and

one observes ‘loss of stiffness’ boundaries very close to the minimum stiffness line. The

associated states of stress are shown in Figure 3.7C; the high stress regions correspond
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to the fourth quadrant (nearly equi-biaxial compression), while the needles pointing to

zero stresses are traverses as the strain state migrates out of this quadrant.

The behavior of such ‘soft’ loading states is not associated with conventional buckling,

but rather the fact that the reaction force changes sign due to large displacements relative

to the beam thickness. While this domain may be irrelevant for lattice applications

designed for robust snap-through behavior, it is likely relevant for other applications,

such as the use of patterned electrodes utilized in soft actuators.

3.4 Illustrations of dynamic behavior for δ1 = 0 (con-

strained lattices)

The dynamic model of Section 2.4 can be use to predict the response to cyclic loading

or impacts with comparatively rigid objects. In displacement control at slow loading rates

(to be defined subsequently), the dynamic terms ∆̈ and ∆̇ can be neglected; one obtains a

simple cubic approximate solution for F̃2(∆). Figure 3.8A provides a comparison of this

cubic approximation and the full non-linear quasi-static solutions defined earlier. The

quasi-static cubic approximation is quite accurate for 0o < α < 15o and 0.05 < h̄ < 0.1.

In what follows, we limit our attention regarding dynamic responses to this regime, as

the approximate solution does not accurately capture non-linearities outside this regime.

To understand when quasi-static hysteresis estimates are relevant, consider the re-

sponse of an angled strut subjected to an applied harmonic force given as:

F̃2(τ) =
1

2
F̃o (1− cos [rΩnτ ]) (3.46)

where F̃o is the peak force and r ≡ ωa/ωn is the ratio of excitation frequency to the

natural frequency of the structure. Hence, r << 1 represents nearly quasi-static loading
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Figure 3.7: Buckling maps illustrating combinations of biaxial strains and stresses as-
sociated with a stiffness drop relative to the undeformed configuration, i.e. k/ko ≤ 0.1
where ko is the stiffness at zero displacement. (A) A close-up view of the region of
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drop contour is a closed loop. (C) Buckling stress space associated with the strain
space shown (B).
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in the sense that the applied loading rate is much smaller than the inertial response of

the system. However, it is important to note that the structure’s non-linear response

under force control can be decoupled from the loading rate: simply put, any response

influenced by decreasing stiffness will be strongly influenced by the inertial time scale,

not the loading time scale.

This is illustrated in Figures 3.8B, which depicts the temporal response of the system

for two different strut angles (α = 5o and α = 8o), which exhibit different degrees of non-

linearity. These results are for a ‘slow’ load cycle, whose period is fifty times greater than

the small-displacement natural frequency of each strut (ω5o

n = 9.1ωo and ω8o

n = 12.7ωo).

The corresponding small-displacement damping coefficients in eqn. 3.44 are ξo = 0.045

(5o) and ξo = 0.064 (8o). These results clearly illustrate that decreases in stiffness trigger

dynamic oscillations; for this level of damping and loading rate, the dynamic oscillations

are essentially damped out prior to the return of the loading cycle to the low stiffness

region.

Figures 3.8C and 3.8D show the force-displacement relationships for the third loading

cycle, which are essentially equivalent to the second. Fully explicit dynamic FEA results

are also shown, illustrating the excellent accuracy of the approximate model. The re-

sults for α = 5o illustrate that any softening behavior due to strut geometry can trigger

dynamic events, even for cases without quasi-static ‘snap-through’ events. Thus, non-

linear behavior in angled lattices can effectively increase the damping of the structure,

by exploiting dynamic oscillations triggered by softening regions of the load-deflection re-

sponse. Importantly, the associated dissipation increase occurs even when the quasi-static

response is fully stable, i.e. it occurs when the quasi-static response shows no hysteresis.

When snap-through occurs (i.e. an instability), additional increases in dissipation can

be dramatic.

To illustrate these effects, consider the energy required to drive the oscillator in force
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Figure 3.8: Illustrations of approximate dynamic response for low strut angles. (A)
Quasi-static force-displacement curves associated with the approximation, compared
with the complete solution. (B) Displacement versus time relationship for two differ-
ently angled struts loaded in force control, at a low frequency relative to the small
displacement natural frequency. (C) Dynamic force-displacement curve of a structure
that does not experience snap-through. (D) Force-displacement curve of a structure
that experiences reversible snap through. Red lines in (C) and (D) are the results of
fully explicit dynamic FEA with beam elements.
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control. In terms of normalized response, the energy required over any time cycle is given

by:

Π̃d =
LΠd

EIω2
o

=

∫ τ2

τ1

F̃2(τ)∆̇(τ)dτ =
F̃ o

2

2

∫ τ2

τ1

(1− cos [rΩnτ ]) ∆̇(τ)dτ (3.47)

For small deflections (i.e. small applied force), the energy dissipated at steady-state is

given by:

Π̃o
d =

πF̃ 2
o

2

(
ξor

4ξ2
or

2 + (1− r2)2

)
(3.48)

which is identically zero for quasi-static loading (r → 0) and scales linearly with η̃ and

loading rate r for slow loading frequencies.

To begin, Figure 3.9A shows the hysteretic work computed using the quasi-static

force-displacement solution. For cases with reversible snap-through, this is simply the

area under the force-displacement curve as computed from the full solution. The central

question at hand is whether this provides a reasonable estimate for hysteretic losses

during cycling. Figures 3.9(B-D) illustrate the response under cyclic loading.

Figure 3.9B illustrates the required work per unit cycle to drive struts of different

angles, normalized by the result for small deflections, Π̃d/Π̃
o
d, and plotted as a function

of applied force amplitude. Clearly, loads that produce snap-through reflect the large

jump in hysteresis. This is also shown in Figure 3.9C for a single force amplitude, which

plots the applied work per cycle versus the strut angle. For struts that experience snap-

through, the results asymptotically approach the quasi-static hysteresis estimates. Note,

however, that dramatic increases in damping can be observed even for cases that are

stable under quasi-static loading. The results in Figure 3.9 illustrate that the small-

deflection result for dissipated energy is an overestimate for very small strut angles; this
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Figure 3.9: Work during cycling loading. (A) Hysteretic work of a quasi-static load-
-deflection cycle using the full solution. (B) Applied work per cycle normalized by
the small deflection solution for several differently angled struts and slow load rates,
as function of applied force amplitude. (C) Applied work per cycle normalized by
the small deflection solution as a function of strut angle, for several frequencies and a
single force amplitude.
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is simply because these struts exhibit stiffening behavior. That is, the small-deflection

solution overestimates the cyclic deflection range.

3.5 Discussion

3.5.1 Accuracy and range of applicability

As stated in the introduction, the moderate rotation theory is reasonably accurate

for rotations less than about 30o. Since snap-through (buckling) occurs at relatively

small displacements, rotations are generally quite small up until snap-through, and the

theory provides a very accurate estimate of the behavior. Quasi-static FEA calculations

with Abaqus using shear-deformable beam elements (and including imperfections) were

conducted for the range of 10 < L/h < 40 and 0o < α < 60o; the present solutions have

less than 8% error over this entire domain, with regards to force-displacement results up

until snap-through. The largest discrepancies occur for aspect ratios at the low end of

this range (10 < L/h < 15) and moderate strut angles (20 < α < 48). In this region,

shear in the strut contributes to the compliance, such that FEA load predictions are

lower. Outside of this sub-domain, the errors are less than 5% and decrease rapidly in

the (L/h, α) space away from this sub-domain.

The errors in post-buckling response can be (but are not necessarily) greater, since

snap-through increases rotation. To get a sense of the practical implications of this limit

for cellular materials, consider hexagonal cells (such as those in Figure 3.1) that are

placed within a square box of dimension a. For angles below 15o, set the height of the

vertical sides to be the minimum required to ensure the struts do not touch when rotating

through 30o; in this case, the side struts are of dimension a tan (30o − α) and the center

vertical posts required to fill in the square are slightly smaller than half this value. For
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angles above 15o, the vertical side and center struts are set to be of equal length, given

by (a/3)(1 − tanα). Cells with angles greater than α = 45o are precluded from this

discussion, as they no longer fit with the square cell.

For these cells, contact after snap-through occurs only after rotations exceed 30o,

and this level of deformation is precluded from the subsequent discussion. Assuming

the vertical struts do not buckle, and their axial compression is negligible in relation to

the vertical compression of the angle struts, the maximum allowable cell strain prior to

exceeding the accuracy limit for moderate rotations is given by:

ε∗ = tanα− tan (α− 30o) , (3.49)

which is always greater than 0.52 for α < 45o; hence, the model accurately predicts cell

compression up to 50% strain for such lattices. The relative density of the cell in this

exercise is given by:

ρ̃ =
h̄

2

(
2 + cosα− sinα

cos2 α

)
, (3.50)

which ranges from 0.18 < ρ̃ < 0.25 for h̄ = 0.125 (arguably the upper limit for slenderness

ratios accurately treated by a theory that neglects shear strains), and from 0.04 < ρ̃ <

0.05 for h̄ = 0.025 (a relatively large aspect ratio of L/h = 40). Thus, setting the relative

density of the cells between 0.04 < ρ̃ < 0.25 and limiting the focus to ε2 < 0.5 ensures

such hexagonal cells are appropriately addressed with moderate rotation theory.
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3.5.2 Evaluating designs for multi-cell lattices that target spe-

cific responses

The ease of generating force displacement curves across the (h̄, α) space, combined

with the power of superposition, provides an opportunity to explore the design of multi-

cell lattices that target specific macroscopic responses. Since the solutions enforce the

restriction that lattice nodes do not rotate, such studies should be regarded as exploratory

and limited to confined lattices such as those shown in Figure 3.10, or similar designs

where nodal rotations are unlikely.

Figure 3.10 illustrates two different concepts for multi-cell lattices between stiff face

plates: in (A), two different types of cells with different angles and strut thickness alter-

nate parallel to the loading direction. The idea is to combine the stiff, unstable response

of a high angle cell with slender members and the soft, stable response of a low angle cell

with thicker members. The composite response is approximated as the sum of the forces

in each cell generated during uniform compression. The struts in Figure 3.10A were cho-

sen to minimize hysteresis associated with the plateau region; naturally, the strut angles,

strut aspect ratios, and the lateral periodicity of the cell pattern (e.g. area fraction of

each cell) and aspect ratios can be adjusted to modify the level of hysteresis.

Figure 3.10B illustrates a second concept, where struts of various slenderness ratios

and angles are embedded within a master cell; the idea is to exploit the sequential buckling

of struts (naturally leading to self contact at the cell vertex). The uppermost strut has

an aspect ratio of L/h = 20, with aspect ratios of inner struts adjusted according to their

angle (with fixed lateral span). The composite cell response is computed by assuming the

force on the inner struts is zero until the outer struts experience snap through and come

into contact. The response can only be regarded as approximate, as possible changes in

response due to contact outside the vertex of the angled struts are ignored. Nevertheless,
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same rigid displacement leads to high stiffness and a plateau stress with negligible
snap-through, (B) embedded struts that buckle sequentially as they make self-con-
tact.

it is insightful that one can approximately double the plateau stress and densification

strain in comparison to the multi-cell truss in Figure 3.10A. The present framework thus

provides an efficient tool for programmable materials.

3.6 Conclusions

The results presented here lead to several important conclusions regarding the non-

linear response of cellular materials that utilize angled struts:

• The complete solutions enable a comprehensive view of the design space, in that

they provide: (i) a regime map indicating all combinations of slenderness ratios and

strut angles that produce snap-through behavior and/or permit a second stable con-
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figuration, (ii) estimates for the macroscopic lattice stresses and strains associated

with the onset of buckling, including biaxial states, and (iii) estimates of the strut

strains that result from instabilities. Peak strains in the struts after snap-through

generally range from 0.01 (at low densities) to 0.5 (at high densities), indicating

the importance of future work to incorporate flexible nodes.

• The results can be expected to be highly accurate for hexagonal lattices with relative

densities in the range of 0.04 < ρ < 0.25 and macroscopic strains less than 50%.

Snap-through regimes correlate strongly with relative densities; e.g. ρ̄ < 0.4 for

snap-through and ρ̄ < 0.25 for stable deformed configurations. This enables one to

quickly identify combinations of slenderness ratio and angle associated with each

regime of behavior. Further, the present results for biaxial loading indicate the

degree of orthogonal constraint required to achieve snap-through.

• Damping is increased dramatically by structures that exhibit softening behavior,

even if the structure is otherwise stable under quasi-static loading. This implies

high damping lattices can be constructed without the strong non-linearity of snap-

through. Quasi-static hysteresis loops underestimate the work dissipated under

cyclic loading, although they can be reasonable estimates for loads well above the

critical snap-through load.

• The present framework provides an opportunity to explore multi-cell design spaces

and evaluate the efficacy of candidate structures with regards to achieving a pre-

scribed desired response.
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Chapter 4

Inner bracing of low density truss

structures to improve peformance

4.1 Introduction

Cellular materials with low relative density are important for a broad range of ap-

plications, notably cushioning for human-related contact. For relative densities below

∼15%, the mechanical response is controlled by buckling of struts or cell wells during

large deformations—a potentially favorable mechanism that allows repeated use provided

yielding does not intervene [8, 14–27]. As compared with stochastic elastic foams, regu-

larized cellular materials offer a potentially broader range of performance, since topology

can be exploited to elevate stresses needed to trigger cell buckling. The emergence of

additive manufacturing creates tantalizing opportunities to fabricate ‘architected foams’

that combine various cell and strut sizes to achieve a specific non-linear response. [24,53]

The design of cell configurations that control large deformation response is quite chal-

lenging in several respects. First, the strongly non-linear behavior associated with large

rotations requires iterative solution approaches that often fail to find acceptable equi-
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librium states, even for simple structures with relatively few struts. Second, converged

simulations tend to be very time consuming. This suggests that routine numerical topo-

logical optimization is a non-starter; the computational expense and lack of robustness

lead to halting searches that do not cover much of the design space. Third and finally,

large deformation response can be quite sensitive to angular orientation of the struts (as

will be illustrated). This implies a design space that does not vary smoothly with geom-

etry, suggesting that direct search algorithms will be necessary for optimization. All of

these considerations are in stark contrast to linear responses—e.g. the initial stiffness, or

strength defined by the onset of buckling or plasticity— where numerical optimization

of cellular structure is feasible, owing to the speed and robustness of elastic simulations

and smoothness of the design space. [54–60].

With this in mind, a seemingly unavoidable design exercise is to make strategic modi-

fications to well-understood configurations to suppress unwanted deformation. We adopt

this approach here, considering triangular structures defined by angled struts connecting

two rigid platens as shown in Figure 4.1. We explore the impact of including highly

slender, interior struts that divide the ’base cell’ into trapezoidal sub-cells (i.e. horizon-

tal braces) or triangular sub-cells (i.e. angled interior braces). The scope is limited to

large, elastic deformations of cells with low relative density (i.e. slender members that

buckle prior to yielding). Several different strategies for distributing mass are considered;

results are presented in terms of specific performance (i.e. strength and energy stored

per unit mass), and normalized by the response obtained for a simple V-structure (i.e.

Figure 1.1A). The focus is on buckling strength and energy stored during post-buckling

deformation.

The overarching goals are to generate insight regarding the efficacy of using mul-

tiple strut sizes, and to provide design guidelines for developing new topologies. The

underlying hypothesis—sub-cells with smaller thickness can improve response without
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Figure 4.1: Schematic illustrations of the principal cell topologies considered here: (A)
the base structure with no sub-cells used as the comparator, (B) trapezoidal sub-cells
formed by horizontal interior struts, (C) triangular sub-cells formed by angled interior
struts, (D) hybrid sub-cells formed by multiple types of interior struts.

comprising specific1 properties —is based on two observations. First, on an elementary

level, adding even a small spring as a lateral constraint can trigger higher order buckling

modes in a vertical column. [61] Second, composites consisting of polymer strut-based

lattices filled with stochastic foams exhibit compressive strengths and tangent moduli

that exceed those expected from the rule of mixtures [62]. This synergy results from the

lateral support provided by the foam to the lattice, which delays the onset of buckling

to higher modes (unless strut yielding intervenes). However, the use of stochastic foams

proves to be inefficient because it does not provide sufficient gains to offset the added

mass [63]. This is because much of the foam, notably that near vertices, plays little role

in altering the buckling behavior of the embedded lattice. This leads naturally to the

hypothesis that buckling can be more effectively controlled with strategic placement of

interior struts.

1i.e., normalized by mass of the structure
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An important alternative approach to delaying the onset of buckling in low-density

cellular materials is to use hollow truss members, which can provide strength increases

of about a factor of three (relative to solid members) [64]. Lattices with hollow members

have been fabricated by coating fugitive polymer lattices that were either printed [65]

or photocured [66] with a metallic alloy, and subsequently removing the polymer phase

via etching or volatilization. (Hollow members with arbitrary orientations are difficult to

manufacture directly with many additive processes due to the need to remove sacrificial or

unconsolidated materials.) The present analysis of solid members can be readily adapted

to hollow structures through adjustments in material density and the second moment of

area of the struts, provided the slenderness ratios are large enough that long wavelength

buckling remains the dominant deformation mode.

Here, we present a comprehensive numerical study of the four topologies shown in

Figure 4.1. While additional calculations will be needed to ensure the insights here

translate into comparable three-dimensional structures (e.g. triangular pyramids with

interior struts supporting each main strut), preliminary calculations reveal deformation

on the faces of the pyramids that is identical to the two-dimensional structures considered

here. Results are presented in the following way. First, each topology (i.e. utilizing a

single type of interior strut or sub-cell strategy) is compared to the base V-structure

(no braces) to demonstrate the range of load-displacement behaviors offered by each

configuration. Then, different topologies are compared in order to identify the most

promising hierarchical concepts. While one might expect a cellular structure with all

of the mass in the main struts to be ideal, we show that this is not the optimal design

in terms of strength and/or energy stored. A map of strength and energy storage is

provided for several different topologies, as well as a global design map that illustrates

the relative performance of all structures.
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4.2 The design space of the present study

The design space is defined by the number of internal struts, their size relative to the

main (outer) struts, and their orientation. In all cases, the outer struts are fixed to 60o

from the horizontal. Three central bracing concepts are explored: (i) the use of horizontal

struts dividing the main structure into a triangular sub-cell and trapezoidal sub-cells as

shown in Figure 4.1B, (ii) the use of a single set of two, angled, internal struts that divide

the structure into two triangular sub-cells and one rhombic sub-cell as shown in Figure

4.1C, and (iii) the use of two sets of angled internal struts that divide the structure as

shown in Figure 4.1D. We refer to these three concepts as having different ‘topology class’

2, each defined by the combination of internal cell shapes created by internal bracing.

Even for fixed total mass, the distribution of mass within a given structure is an

additional design variable that encompasses an extremely large range of possibilities.

For example, each strut in the structure could be assigned its own diameter; a broad

range of relative diameters could then be assigned in a large number of combinations. To

simplify the study, we narrow the focus to consider only cases where the internal struts

are of equal size; the structure using only main struts without internal bracing is used

as the comparator. Three different strategies were explored to define the relative sizes of

the outer and inner struts, as summarized in Figure 4.2.

Strategy A is the simplest approach to varying the mass distribution: the outer

struts have fixed diameterD, and the inner struts have fixed diameter d. This corresponds

to simply adding mass inside the cell; hence, the relative density of the braced structures

increases slightly with the number of struts. The increase in relative density is relatively

small, spanning from 5% for the unbraced ‘base structure’ to 7% for horizontal internal

2To be precise, any structure with different strut connectivity has a different topology, such that
changing the number of horizontal struts changes the topology. However, for simplicity we group these
into a single topology ‘class’

74



Inner bracing of low density truss structures to improve peformance Chapter 4

struts with D/d = 2.3 To mitigate the effect of added mass, specific properties are

reported; for example, the specific strength of the braced structure σb/mb is divided by

the specific strength of the base structure, σo/mo. In the approach, both the total mass

and the partitioning between inner and outer struts changes as inner struts are added.

Strategy B holds the relative density fixed as internal struts are added, using the

following procedure. First, a relative density is chosen for the base structure and the

unbraced main strut diameter D is computed. Then, a single strut (or set of angled

struts) is added to the structure, and the main strut diameter D is reduced to hold

relative density constant and produce an initial diameter ratio, D/d = constant. For the

cases with multiple horizontal bracing and two sets of angled interior struts, additional

struts were created by dividing the first bracing strut into multiple equal volumes. In

this approach, partitioning between the outer strut mass and total inner strut mass was

held fixed.4 Hence, relative density is fixed in this strategy, but the size ratio of outer to

inner strut size changes as more struts are added (i.e. the inner struts become smaller

relative to the outer struts as struts are added).

Strategy C holds the ratio between outer and inner struts fixed at constant ratio,

D/d. As struts are added, both the main struts and inner struts are reduced in size to

maintain both fixed relative density and fixed size ratio D/d. This implies that the mass

partitioning between outer and inner strut varies as struts are added. In the end, this

strategy proves less effective than the other two, since the reductions in the outer strut

diameters dominate the response; for that reason, fewer results are presented for this

strategy in favor of the other two.

In summary, the design space consisted of the number and orientation of internal

3As will be demonstrated, the gain in performance with added mass can be much larger than that
rationalized by increases in relative density.

4Strategy B addresses the question: given a mass fraction to use on the interior, is better performance
achieved using a single set of thick inner struts, or a larger set of thin inner struts?
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struts, and their size relative to the outer struts. The focus is on the mass distribution

within the system, instead of overall mass (i.e. relative density). However, to assess

the impact of relative density, select topologies from each ‘class’ are analyzed . The two

performance metrics used to judge response are the peak load and the energy stored,

both computed on a per mass basis.

4.3 Numerical approach

The truss structures were analyzed using SIMULIA Abaqus 6.12-1 [67] using Abaqus

Explicit. An explicit method was chosen due to the strong non-linearities involved with

snap-through instabilities that are inherent to many of the topologies in the present

study. The structures were modeled using Timoshenko-Mindlin beam elements (B21 in

Abaqus) with an elastic material (E = 1.5 GPa, ν = 0.3); however, we present normalized

quantities that render elastic property values arbitrary. No plasticity is defined; therefore,

any post-buckling load drops that occur are purely geometric in nature. The top and

bottom nodes of the structure were fixed to rigid compression platens. All connections

between struts were modeled as rigid joints, which fixes the angle between two struts at

their intersection. Self-contact between adjacent struts and contact between the structure

and the platens was modeled as hard and frictionless. In the contact algorithm, elements

are considered to be in contact when the beam element axis is coincident with either

another beam element axis or one of the platens. The study defines the instant of self-

contact as the densification strains, and focuses on response up to this limit.

An extensive study was conducted to establish the impact of loading rate, element size,

imperfections, and structural damping coefficients. Small levels of damping were included

using standard mass damping frameworks to suppress post-buckling oscillations. To

establish consistent parameters that could be used across a very broad range of structures,
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Parameter Normalized form Value

Element size `e/Ls 0.024

Loading period ω0tpeak 2200

Damping coefficient αD/ω0 0.45

Imperfection amplitude Aimp/D 0.01

Number of eigenmodes — 7

Table 4.1: Summary of parameters used in simulations; the characteristic frequency
controlling bending dynamics is ωo =

√
EI/ρAL4.

a single configuration in each the four classes of structures shown in Figure 4.1 were

analyzed under uniaxial compression. The study of numerical simulation parameters

identified threshold values that ensure a negligible role in the peak strength and energy

storage. A summary of the parameters used in this study is provided as Table 4.1.

Comprehensive details of this numerical study are available in Chapter 2.

With regards to imperfections, a systematic study of the number of included eigen-

modes and their amplitudes identified the minimum values needed to achieve results

that were independent of specific choices. The overall goal was to choose parameters

that minimize the predicted strength, such that estimates would be conservative. Gener-

ally speaking, including the first seven modes and imperfection amplitudes of 1% of the

diameter lead to consistent load-deflection results across all structures. Fewer eigenmodes

and smaller imperfections lead to higher peak strengths and more complex post-buckling

behaviors, while more eigenmodes had no effect. Larger imperfection amplitudes natu-

rally would impact the results, but they are associated with significant departures from

nominal geometry and hence were not considered. Of course, small changes in the orien-

tation of perfectly straight struts, or their diameter, are additional types of imperfections.

The impact of such deviations are addressed explicitly in what follows.
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4.4 Load-deflection responses of various topologies

Figures 4.3 and 4.4 show the load-displacement response for various topologies, inner

strut angles and size ratios between the outer and inner struts (D/d). The loads on

the structures are represented by the stress5 on the cell per unit mass, divided by the

same quantity computed for an unbraced structure. The cases in Figures 4.3 and 4.4

were chosen from a far more comprehensive design study to illustrate key features of the

response. A detailed discussion of the design space for angled inner struts is presented in

Section 4.5, while Section 4.6 provides a global overview of performance across the entire

design space.

The structures with horizontal bracing in Figure 4.3A were generated with mass dis-

tribution Strategy B, which decreases the size of the outer struts when the first horizontal

inner strut is added. This leads to a slight reduction in peak load relative to the unbraced,

base structure. Horizontal braces produce significant increase in the post-buckling stiff-

ness (relative to the base structure). The most significant increase occurs for three inner

struts. This increase in stiffness is due to the fact that the asymmetric first buckling

mode stretches the inner struts.6

For more than three struts, the strut diameter becomes too small to continue to add

sufficient stiffness to the structure, hence representing an inefficient use of inner brace

material. This is akin to filling low density lattices with stochastic foams; material near

strut intersections experience less deformation and make a negligible contribution to

load capacity. That said, the post-buckling load capacity of the case with five struts is

nearly as good as the case with 3 struts, despite having much thinner members. This

5The stress on the structure is simply the force applied to the load point divided by the width of the
base; for repeated structures between two comparatively rigid platens, this represents the average stress
on the platens.

6The asymmetric first buckling mode is well-established for “V” trusses, and provides an excellent
test of numerical procedures intended to find the lowest energy state.
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Figure 4.3: Typical load-deflection response for various trusses loaded in compression:
(A) Horizontal inner struts, (B) a single set of angled inner struts at various angles,
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suggests that thin tension members, judiciously placed, can have a profound effect on

post-buckling stability and lead to increases in energy storage.

It is important to note that the a single horizontal inner strut that connects the

midpoints of the outer struts is less effective than using a greater number of thinner

struts. This is true even though this case connects the two outer struts at the location

with maximum buckling displacement. From the inset schematic of Figure 4.3A (colored

yellow), a single horizontal strut does not prevent vertical motion of the mid-point of

the main struts. By contrast, including angled struts that connect to the midpoints, as

shown in Figure 4.3B, has a pronounced effect on the peak stress, due to suppression of

the first buckling mode.

Figure 4.4 compares the load-deflection response of the four topologies shown in

Figure 4.1, as well as the response of a structure with 60o inner braces and a single

horizontal strut that completes an inner triangle. The results illustrate that using two

sets of angled inner struts provides improved strength and energy storage; essentially,

60o struts increase strength by suppressing the first buckling mode, while 30o struts

provide post-buckling stability. The cases in Figure 4.4 are merely a subset from a

much larger design study, and are broadly illustrative of the relative performance across

all topologies. As illustrated in Figure 4.3B, however, the precise angle of inner struts

significantly influences the response.

4.5 Complexity of the angled struts design space

A comparison of the cases shown in Figure 4.3 for angled inner braces illustrates that

the response is highly sensitive to orientation (Figure 4.3B) and insensitive to inner strut

size (Figures 4.3C and 4.3D). Of course, it is to be expected that connections near the

mid-point will be most effective in suppressing buckling of the outer struts; indeed, inner
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struts with 60o orientation trigger the second buckling mode of the outer struts, nearly

doubling the peak load. The perhaps surprising result is that even highly slender inner

struts will produce this effect (e.g. D/d = 8, in Figure 4.3D). Apparently, even small

translational or rotational constraints near the node of the outer strut buckling mode

can be effective in pushing the outer struts to their second buckling mode. Interestingly,

using thicker inner struts (D/d = 2) can be less effective, since more mass is taken from

the main struts; the peak load can be pushed higher with thinner inner struts (D/d = 8)

because the reduction in outer struts is smaller.

Motivated by the desire to fully characterize the design space (and ultimately optimize

inner strut topology), a detailed study of inner strut orientation was conducted. The

results for a single set of angled inner struts are shown in Figure 4.5, which depicts the

peak strength and energy stored for a broad range of brace angles. Results are plotted for

angles ranging from 5o to 85o, for inner strut sizes D/d = 2, 4, 8; results are also shown

both Strategy A (simply adding mass) and Strategy B (reducing outer strut diameter

to keep mass fixed). In most cases, Strategy A produces slightly higher results, as one

expects for strategies that do not reduce the outer strut diameter.

The global trend with brace angle is clear from Figure 4.5; the best response is

achieved with angles near 60o that involve mid-point connections with the outer struts.

Angles greater than 60o generally perform better than angles less than 60o. This is is due

to the fact that the orientation of high angle inner struts are more closely aligned with

the loading direction. The scatter in Figure 4.5 has profound implications for algorithms

tasked with finding the angle that optimizes response. The associated sensitivity to

inner brace angle more clearly illustrated in Figure 4.6, which shows the variation in

peak strength and energy storage as a function of inner brace angle. As illustrated in

Figure 4.6 connection locations of slender struts are critical; using thicker struts reduces

the sensitivity to inner strut angle.
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Figure 4.6: Results for one angle-brace structures. Points circled are checked for
imperfection sensitivity, with the results shown in Figure 4.7. The relative density of
the structures is ∼ 5%.

Naturally, the question arises as to whether or not sensitivity to inner strut angle is

merely a consequence of the numerical solution technique: i.e., the parameters identified

in Chapter 2 used throughout the parameter study. To address this question, additional

numerical studies were conducted on the structures corresponding to the abrupt changes

seen in Figure 4.6; black circles indicate the points chosen for this additional considera-

tion. Figure 4.7 illustrates load-displacement responses for these cases, computed using

a range of imperfections. To further substantiate the results, additional simulations were

run using an independent large deformation finite element code developed by J. William

Pro. Pro’s code is an incremental, quasi-static framework (based on Newton-Raphson

algorithms) that allows for arbitrary large rotations. Figure 4.7 shows comparisons of

adding a different number of eigenmodes with two different imperfection amplitudes.

The left figures show amplitudes that are the same for each eigenmode included in the

simulation. Figures on the right show the imperfection amplitudes halved for each mode

that is added.

While arbitrarily including fewer eigenmodes for certain angles elevates their predicted
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Figure 4.7: Results for the additional study of angled struts, performed to verify
results are not due to imperfection sensitivity. Results compared with an independent
large rotation code, which shows very good agreement overall; note the independent
code does not account for self-contact. In all cases, both codes predicted the same
peak load; in two of them, the post-buckling load path is different. The load-step for
independent incremental code that produced the best agreement was δ/H = 5x10−4.
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strength, thus smoothing out the results in Figure 4.6, it is difficult to rationalize a

selective choice of imperfections on a structure-by-structure basis. Rather, it is likely

that the highly non-linear response of structures with very slender interior members is

highly sensitive to the orientation of the interior struts. Simply put, smooth variations

in response with changes in geometry are often not present.

This indicates that numerical solution algorithms will play a critical role in the devel-

opment of structures designed to suppress buckling. As an implicit code, in many cases,

Pro’s independent code can be several orders of magnitude faster than commercial codes.

However, consistent numerical parameters (i.e. incrementation schemes) can be difficult

to identify, supporting the broad arguments outlined in Chapter 2. Several different

load steps were used to make sure results were converged, and in general, a load-step of

δ/H = 0.0005 produced very similar results to Abaqus/Explicit. However, the 55◦ brace

does show some notable differences; with the load-step of δ/H = 0.0005, Pro’s code found

a higher mode solution which buckled around PL2/EI = 200, whereas the solution from

Abaqus buckled around PL2/EI = 135. Using a larger load-step, Pro’s code was able to

find a similar buckling load, but post-buckling solution path without sharp load drops

seen in the dynamic simulations. Also note that for both Abaqus and Pro’s code, using

equal imperfection amplitudes for each mode produced the lowest peak load and lowest

energy storage. Therefore, this imperfection strategy was used for the remainder of the

simulations.

As one might expect, the response of structures with two sets of angled inner struts

is even more complicated, due to the expansion of the design space (i.e. two angles as

opposed to one). Figure 4.8 shows maps of peak strength and energy stoage for various

strut angle combinations, for various size ratios D/d and two different mass distribution

strategies. Again, as a general rule, Strategy A provides slightly better performance,

owing to the fact that mass is simply added without reducing the outer strut diameter.
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However, the differences are slight and not very systematic; the trend is inverted for

some combinations of strut angle, presumably due to subtle interactions between the

strut angle and size ratio.

The response across entire two-angle design space is shown in Figure 4.9; emphasis

should be placed on normalized strength values above 2.0, since equivalent response below

this level can be achieved with the one-angle structures. Considering the throughput of

many additive manufacturing practices, adding struts with little gain is to be avoided.

The orientations for two-angle structures that perform above this cut-off is also shown

in Figure 4.9; there are more points in the complete map (left) than in the angle map

(right) because several D/d ratios and mass distribution strategies are shown in the

complete map. Broadly speaking, inner strut angles that divide the outer struts into

near equal segments are the top performers. However, while this is a useful general rule,

improvements can be achieved by angles that divide the outer struts into slightly different

lengths. This is discussed in the following section, which presents a global comparison of

relative performance across the entire design space (spanning multiple topologies).

4.6 Overview of the design space

An overview of the performance across the entire design space is shown in Figure

4.10 for a relative density of 5%.7 The map clearly illustrates the trends noted earlier:

horizontal braces improve energy storage but do not improve strength, while one-angle

inner struts can improve strength by a factor of two and energy storage by 50%. The one-

angle structures that are top performers provide mid-point bracing, i.e. 60o inner struts.

For the two-angled structures, the peak strength can be nearly tripled while the energy

storage can be nearly doubled; there are clear trade-offs between these two quantities at

7While the relative density can vary slightly for mass distribution Strategy A, the variations are
modest, and all fall in the range of 5− 7%.

88



Inner bracing of low density truss structures to improve peformance Chapter 4

the outer edge of the performance envelope. This is illustrated by comparing the two

labeled points, which involve the same large angle inner struts and slightly different small

angle inner struts.

Since the peak strength is controlled by buckling and energy storage is controlled by

stretching after buckling, the relative density naturally plays a critical role. To illustrate

this, calculations were run for mass distribution Strategy C and various relative densities,

for a select group of structures that are top (or near top) performers for their topology

class. The results are shown in Figure 4.11. Clearly, the benefit of using inner struts is

largest for low relative density structures; the effects at higher relative density are rather

modest, particularly with regards to energy storage. Note in particular that the mass

penalty of horizontal struts at higher relative density completely erases the large gains

seen at low relative density.

It is also interesting to note that the single set of 60o struts outperforms the same

with a completed inner triangle, created by including an additional horizontal strut.

This is not a relative mass effect; presumably, it is a consequence of the complicated

change in buckling mode and subsequent stretching of the inner struts. It is likely that

additional struts can promote rotations that reduce stretching after buckling, thereby

reducing energy storage.

While great care was taken to include imperfections that promote finding the lowest

energy state, it must be acknowledged that some of the complexity of the design space

undoubtedly arises from significant differences in imperfection sensitivity associated with

strut angle. This highlights the importance of future experiments to corroborate the

predictions presented here, and to guide the development of future numerical approaches

that correctly identify buckled states.
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4.7 Concluding remarks

Numerical results have been presented for the compressive response of ‘V’ structures

braced with different types of inner struts, spanning multiple mass distribution strategies.

Despite the sensitivity of the response to small relative changes in inner strut properties,

the results support several general conclusions:

1. Placing all of the mass in the main struts of a lattice does not necessarily yield the

optimal design for low density, elastic structures whose response is dominated by

buckling. Removing mass from the outer struts to form inner struts can lead to

higher strengths and higher energy storage relative to the base structure.

2. Horizontal braces do not increase the initial buckling stress, but allow for more

energy storage because of a positive tangent modulus (geometric hardening) after

the onset of buckling. This is presumably a consequence of stretching induced by

asymmetric buckling shapes. Even highly slender horizontal struts can be effective,

increasing the energy storage by a factor of two. On a per weight basis, optimal

performance is achieved with three struts, due to the fact that inner struts near

the ends of the outer struts do not experience significant deformation (and hence

represent an inefficient use of mass).

3. Angled braces lead to improvements in both strength and energy storage. Most

notably, a single set of 60◦ inner struts leads to a doubling of the buckling stress

due to suppression of the first buckling mode. That said, a single set of struts

does not significantly improve post-buckling stability, leading to modest gains in

energy storage. In contrast, inner struts with 30o angles provide more greater post-

buckling stability and hence energy storage, without significant improvement in

strength.
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4. Structures with braces at multiple angles produce the largest gains in performance,

offering both increase in peak strength and post-buckling stability (energy storage).

For instance, adding braces at both 40◦ and 70◦ leads to a factor of about three

strength increases and almost a factor of two for energy storage. For topologies with

multiple angles, there are likely significant trade-offs between strength and energy

storage due to subtle differences in buckling mode and post-buckling stretching of

interior struts.
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Chapter 5

Damping in cellular materials made

from composite struts

with elastic and viscoelastic phases

5.1 Introduction

While the static response of cellular materials has been exhaustively studied, their

structural dynamic response is far less characterized. Given that additive manufacturing

enables a virtually limitless range of component shapes comprising lattices, there is a

critical need to understand their dynamic response for applications such as vibration

isolation and noise reduction. Further, the ability to make composite walls (struts) –

by coating members, filling hollow members with a second phase, or direct co-printing

of two materials [68–70] – creates new opportunities to integrate viscoelastic material to

improve damping performance. This work addresses two central questions in this area:

(i) what are the properties of composite walls and struts that lead to significant increases

in damping in cell walls, and (ii) what is the macroscopic, steady-state dynamic response
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of honeycombs comprising such walls?

The focus of this work is on the steady-state structural response of cellular struc-

tures subjected to harmonic loading, where the structures consist of dozens (or at most

hundreds) of cells. This is in contrast to applications that utilize cells at a finer scale

(e.g. thousands to millions of cells) to control higher frequency wave propagation. With

this focus, it is important to note that structural dynamic response is inherently tied

to component dimensions, which dictate natural frequencies associated with vibration.

These frequencies are typically much lower than those associated with wave propagation

through a lattice.

In typical analyses of structural vibration, damping is introduced as a heuristic struc-

tural property without explicit connections to intrinsic material properties. For instance,

a common approach is to include ‘proportional damping’, which introduces a velocity-

dependent dissipative term to discretized dynamics equations that are proportional to the

mass or stiffness matrix (or both). A fundamental limitation of such global approaches

is that they make it exceedingly difficult to independently identify the impact of specific

changes to lattice topology and material composition.

To overcome this limitation, we develop a mechanics-based model for walls (struts)

that are made up of a purely elastic phase and a viscoelastic phase. By describing damp-

ing as arising from material models, the extrinsic dynamic response of a structure can be

determined while holding other intrinsic factors constant. That is, damping is introduced

through the dissipative property of the viscoelastic material, which can be characterized

independently from vibration experiments conducted at the component level. This ef-

fectively decouples the source of damping from the global structural response, such that

one can evaluate the performance of various geometries with the same, unambiguous,

and independently measurable ‘source’ of damping.

The paper that follows includes details of the response of composite struts, the fre-
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Figure 5.1: A schematic of a two-dimensional prismatic honeycomb with composite
walls; the composite consists of a purely elastic phase and a viscoelastic phase. The
wall (strut) description developed here is applicable to any wall cross-section with two
fold symmetry in a given cross-section, including face sheets separated by a viscoelastic
core, filled tubes, etc. The focus of this paper is on the response of the honeycomb
when loaded in the (X,Y ) plane; the analysis of single walls gives the response loaded
in the Z−direction.
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quency response of individual struts, and a finite element framework that enables efficient

simulations of structural dynamic response involving large numbers of cells. These are

then used to identify key scaling factors for damping pertinent to cellular structures

(in terms of constituent material properties), and illustrations of the effect of composite

struts on vibration of honeycomb structures. The analyses presented here focus on com-

pression of prismatic cellular materials in the plane of the cells, as shown in Figure 5.1.

Compression parallel to the walls in the Z−direction can be predicted using the analysis

of the single wall, as elucidated in the sections that follow. Finally, while 2D analyses are

presented, the method can be trivially extended to 3D structures with strut-like features.

5.2 Material model

In the following, phase #1 is elastic and has an elastic modulus E1 and density ρ1.

With suitable interpretation of moduli, the results are applicable for either plate-like

walls in prismatic honeycombs, or beam-like struts in open-celled architectures. Phase

#2 is a viscoelastic phase that obeys a ‘standard linear solid’ (or SLS) model, i.e. an

elastic spring with modulus Ee in series with a Kelvin-Voigt viscoelastic element, defined

by a spring of modulus Ev in parallel with a dashpot with viscosity µ.1 For this material,

the constitutive relationship is given by:

(
1 +

Ev
Ee

)
σ +

µ

Ee
σ̇ = µε̇+ Evε (5.1)

1This is the so-called Kelvin representation of the standard linear solid; placing a Maxwell element in
parallel with a spring is different representation of the SLS model, but yields virtually identical behaviors.
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Alternatively, the above constitutive law can be written as:

σ = Ee (ε− εcr) (5.2)

µε̇cr + (Ev + Ee) εcr = Eeε (5.3)

where ε is the total strain, and εcr is the strain in the viscous component. This second

form is advantageous for numerical simulations, which track creep strains as a discretized

variable and utilize eq. (5.3) as the evolution law for those variables.

The standard linear solid (SLS) model is attractive because it combines the best

features of the classical Maxwell and Kelvin-Voigt models. Specifically, it captures: (i)

an instantaneous elastic response to sudden loading, enabling modeling both creep and

relaxation scenarios, (ii) reversal of viscoelastic deformations (i.e. eventual full recovery

upon full unloading), and (iii) a finite limit to deformation under constant loading. This

can be understood by recognizing that one recovers a pure Maxwell model in the limit

of Ev → 0, such that ε̇ = σ̇/Ee + σ/µ. Conversely, one recovers the Kelvin-Voigt model

in the limit that Ee >> Ev, such that σ = Eeε + µε̇. In the limit of both small Ee and

small Ev, the model produces a purely Newtonian viscous response with σ ∼ µε̇.

The parameters of the standard linear solid can be related to storage and loss moduli

and the material loss factor ηmat as follows. Imposition of a harmonic strain ε(t) = εoe
iωt

produces a steady-state stress amplitude with a phase shift, i.e. σ(t) = σoe
i(ωt+δ). The

complex modulus is defined such that:

(E ′ + iE ′′) εoe
iωt = σoe

i(ωt+δ) (5.4)

where E ′ is the storage modulus, E ′′ is the loss modulus, and the loss factor is ηmat =
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tan δ ≡ E ′′/E ′. This implies:

E ′ + iE ′′ =
σo
εo
eiδ =

σo
εo

cos δ + i
σo
εo

sin δ (5.5)

Solving the differential equation given as eq. (1) for a harmonic strain input allows one

to equate the real and imaginary parts of both sides to compute E ′ = σo cos δ/εo and

E ′′ = σo sin δ/εo. Using the harmonic forms for stress and strain in eq. (1) produces the

following:

E ′ + iE ′′ =
Ev + i (µω)

1 + Ev

Ee
+ i
(
µω
Ee

) (5.6)

Simplifying the righthand side of the above, the complex moduli and loss factor are given

by:

E ′ =
EeEv(Ee + Ev) + Ee (µω)2

(Ee + Ev)
2 + (µω)2 ; E ′′ =

E2
eµω

(Ee + Ev)2 + (µω)2 ;

ηmat =
Eeµω

Ev(Ee + Ev) + (µω)2 (5.7)

The loss factor for the viscoelastic material ηmat is identical to the conventional loss

parameter tan δ, which reflects the phase shift between input and output for a monolithic

material. For the composite structures considered in subsequent sections, a structural

loss factor will be introduced, which can be, but is not necessarily, the same as the loss

factor for the viscoelastic phase itself.

While the frequency dependence of the standard linear material does not closely

match that of many materials over all frequencies, it captures the essential trends. In-

terpreting the inverse of frequency as temperature, the storage modulus E ′′ falls from

Ee at low temperatures (high frequencies) to EeEv/(Ee +Ev) at high temperatures (low
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frequencies). It should be noted that the elastic response of the material at very low

loading frequencies, i.e. when µω <<
√
Ev(Ee + Ev), is given by:

E2 =
EeEv
Ee + Ev

(5.8)

where E2 is the effective elastic modulus of phase #2 when dissipation is negligible. In

the limit of low frequencies, the loss modulus scales with µω. The SLS loss modulus is

small at both low and high frequencies (high and low temperatures); it exhibits a peak

at the frequency given by:

ωmax =

√
Ev(Ee + Ev)

µ
; ηmaxmat =

Ee

2
√
Ev(Ee + Ev)

(5.9)

If one assumes that the loss factor ηmat is known at the frequency associated with maxi-

mum dissipation (i.e. the stated loss factor is ηmaxmat ), and quasi-static modulus is known,

then one can show that that the SLS parameters are defined as:

Ee = E2

[
1 + 2η2

mat +
√

1 + η2
mat

]
∼ E2(1 + ηmat) (5.10)

Ev = E2

(
1

2
+

√
1 + η2

mat

ηmat

)
∼ E2

(
1 + ηmat

2ηmat

)
(5.11)

It should be noted that for a structure made from a composite material, maximum

damping may not occur at the frequency associated with maximum dissipation of the

viscoelastic phase. Indeed, it will be shown that the maximum damping for composite

cell walls occurs at the frequency that maximizes the loss modulus of the viscous phase,

not necessarily the frequency that maximizes ηmat.
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5.3 Strut mechanics

As shown in Figure 5.1, a composite member is considered which consists of purely

elastic material defined by an elastic modulus E1 and density ρ1, combined with a second

material described using the standard linear solid model outlined above with density ρ2.

Internal damping of phase #1 is neglected entirely. The results are completely general

in that they can be used to describe any distribution of the two materials, provided each

phase has an identical neutral axis. (This is tantamount to the fact that their centers of

area are identical.) Hence, the formulation applies to any cross-sectional shape, including

filled tubes of circular or rectangular cross-section, struts with embedded continuous

viscous fibers, or vice versa (viscoelastic struts with embedded continuous elastic fibers).

The results are cased in terms of effective bending stiffness, stretching stiffness, and loss

parameters, which can be computed for any phase distribution and any shape.

It is worth noting that a monolithic wall consisting of a viscoelastic material can be

modeled simply by defining phase #1 as empty space and utilizing phase #2 properties

to describe the wall. This allows one to extract material parameters from structural

vibration experiments, although one must naturally take care to consider the presence

of other dissipative mechanisms. For two-phase composites, the limitation of the present

wall definition is that it neglects damping arising from one of the phases, which is obvi-

ously less than desirable if the damping properties of both phases are comparable. That

being said, one could extend the present analysis to include multiple viscoelastic phases,

at the expense of more extensive bookkeeping. This might be desirable for future work

that explores using multiple dissipative materials with different characteristic frequencies

to dampen a broader range of frequency space.

For brevity’s sake, the focus here is on two-dimensional frameworks, such that the

lattice is comprised of plate-like walls rather than struts typical of open-celled structures.
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However, the analysis can be easily extended to three-dimensional cases (i.e. struts)

simply by repeating the derivation to include additional displacements.

The walls are assumed to obey Bernoulli-Euler beam kinematics in the limit of small

deformation; the total strain in the wall is ε(x) = εo−κ(x)y = u′(x)−w′′(x)y, where u(x)

is the axial displacement of the beam centerline, w(x) is the transverse displacement of

the beam center line, y is the distance from the neutral axis, x is the distance along the

wall axis and primes denote derivatives with respect to space. In the dynamic analysis

that follows, rotational inertia is neglected (as consistent with the small slope assumption

embedded in small deformation frameworks), but axial and transverse inertia are both

included.

The constitutive description given as eqs. (2-3) dictate that the creep strain must

also obey a linear distribution through the beam. To see this, consider the response at

time zero (corresponding to zero load), when creep strains are zero. Upon an increment

in loading over infinitesimal time, the response is purely elastic and stress and strain

distributions are linear with respect to the y−direction. The evolution equation given as

eq. (3) dictates that the initial creep strain rate is therefore also linear, and as such the

updated creep strains will also be linear. Hence, the stress in the viscoelastic phase can

be written as:

σ(x, y, t) = Ee [u′(x, t)− u′cr(x, t)− (w′′(x, t)− w′′cr(x, t)) y] (5.12)

where ucr(x, t) is an ‘axial creep displacement’ whose derivative defines the creep strain

at the neutral axis (i.e. stretching), and w′′cr(x, t) is a ‘transverse creep displacement’

whose second derivative defines the linear distribution of creep strain (i.e. bending).
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Using the above assumptions, the corresponding statement of virtual work is:

∫ L

0

(∫
A

[σ(x, t)δε(x, t) + ρẅ(x, t)δw(x) + ρü(x, t)δu(x, t)] dA

)
dx =∫ L

0

p(x, t)δw(x, t)dx+NoδuL +NLδuL +Moδw
′
o +MLδw

′
L + Voδwo + VLδWL (5.13)

where p(x, t) is a transverse pressure load applied to the beam, and the last terms reflect

externally applied axial forces (N), transverse forces (V ) and moments (M) at the ends

of the beam.

The neutral axis for each phase is defined by the condition:

∫
A

EiydA = 0 (5.14)

where A is the cross-section of the beam and Ei = E1 for the elastic phase and Ei = Ee,v

for the viscoelastic phase. Here, it is assumed transverse phase distribution has two-fold

symmetry about the strut axis, such that both phases have identical neutral axes. With

this assumption, the axial and bending responses are decoupled for small deformation,

such that the statement of virtual work reduces to two independent equations:

∫ L

0

(∫
At

[E1u
′ δu′ + ρtü δu] dA+

∫
Af

[Ee(u
′ − u′cr) δu′ + ρf ü δu] dA

)
dx

= N0δu0 +NLδuL(5.15)∫ L

0

(∫
At

[
E1w

′′ y2 δw′′ + ρtẅ δw
]
dA+

∫
Af

[
Ee(w

′′ − w′′cr)y2 δw′′ + ρf ẅ δw
]
dA

)
dx

=

∫ L

0

pδw dx+Moδw
′
o +MLδw

′
L + Voδwo + VLδwL(5.16)

where the explicit reference to time and position has been dropped. A1 is the cross-

sectional area of the elastic phase, while A2 is that of the viscoelastic phase. Let EI =
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E1I1 + EeI2 present a composite bending stiffness of the beam with I1,2 defined in the

usual fashion2. Further, let EA = E1A1 +EeA2 represent a composite stretching stiffness

of the beam, while ρA = ρ1A1 + ρ2A2 is the composite mass per unit length of the beam.

In this case, the above simplifies to:

∫ L

0

[(
EAu′ − EeA2u

′
cr

)
δu′ + ρAüδu

]
dx = NoδuL +NLδuL (5.17)∫ L

0

[(
EIw′′ − EeI2w

′′
cr

)
δw′′ + ρAẅδw

]
dx =∫ L

0

p δw dx+Moδw
′
o +MLδw

′
L + Voδwo + VLδwL (5.18)

These equations can be integrated by parts to yield the coupled space-time PDEs that

govern the response; in addition, they provide the basis for a finite element representation

described later. In bending, integration by parts yields the governing equations:

EIw′′′′ − EeI2w
′′′′
cr + ρAẅ = p (5.19)

µẇ′′cr + (Ee + Ev)w
′′
cr − Eew′′ = 0 (5.20)

where the second equation is the evolution of transverse creep displacements, obtained

from the constitutive law for the material. The boundary conditions are given by:

EIw′′(0, t)− EeI2w
′′
cr(0, t) = M0(t); EIw′′(L, t)− EeI2w

′′
cr(L, t) = ML(t) (5.21)

EIw′′′(0, t)− EeI2w
′′′
cr(0, t) = V0(t); EIw′′(L, t)− EeI2w

′′
cr(L, t) = VL(t) (5.22)

The axial governing equations are obtained in a similar fashion, and yield the following

2Note that this is not the bending stiffness of the beam at zero frequency; this would be E1I1 +E2I2.
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governing equations:

EAu′′ − EeA2u
′′
cr + ρAü = 0 (5.23)

µu̇′cr + (Ee + Ev)u
′
cr − Eeu′ = 0 (5.24)

with boundary conditions given by:

EAu′(0, t)− EeA2u
′
cr(0, t) = N0(t); EAu′(L, t)− EeA2u

′
cr(L, t) = NL(t) (5.25)

Despite their simplicity, the partial differential equations described above do not

have analytical solutions except in highly idealized loading scenarios, notably boundary

conditions that are independent of time. Even the simple case of a wall subjected to

harmonic end forces or moments defies an exact solution, due to the non-homogeneous

boundary conditions implied by time-dependent boundary conditions. The difficulty can

be realized immediately by comparing the quasi-static bending response with the first

natural frequency. For example, consider a wall pinned at both ends and subjected to

applied moments; this is identical to a 4-point bending experiment. The static bending

deflection varies as x̄(1 − x̄), while the first mode shape varies as sinπx̄. Hence, the

spatial response depends on the loading frequency in a non-trivial way. For this reason,

approximate solutions are developed to provide insight regarding the scaling controlling

wall dynamics. Then, a framework for full numerical solutions is presented in later

sections.
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5.4 Bending vibration of a cell wall: approximate

solution

We consider the response of a wall that is pinned at both ends and subjected to

harmonic applied moments at the ends. To illustrate the nature of coupling between

inertial and viscous time scales, the SLS model is used to describe a uniform wall; the

impact of composite walls is considered in subsequent sections. For small deformations,

axial and transverse displacements are decoupled and can be dealt with separately. As

stated above, the PVW for the bending response is:

∫ L

0

[EeI (w′′ − w′′cr) δw′′ + ρAẅδw] dx = Moδw
′
o +MLδw

′
L (5.26)

µẇ′′cr + (Ee + Ev)w
′′
cr − Eew̄′′ = 0 (5.27)

where ( )′ denotes spatial derivatives and ˙( ) denotes derivatives with respect to time; Mo

and ML are the applied moments at the ends. An approximation solution is developed

based on assuming a fixed spatial variation in displacements with a time-dependent

amplitude, e.g. w(x, t) = wo(t)f(x).

The principal focus is on wall responses to excitation frequencies that are below the

second natural frequency of the wall, where one can expect the first mode-shape to be

a dominant contributor to the response. Assume that w(x, t) = wo(t) sinπx/L, i.e. the

spatial distribution of displacements agrees with the first free vibration mode shape.

Similarly, assume wcr(x, t) = wcro (t) sinπx/L. Using this in the above, we obtain:

π4

2

EeI

L
(wo − wcro ) +

1

2
ρALẅo = 2

π

L
Ma (5.28)

µẇ′′cr + (Ee + Ev)w
′′
cr − Eew̄′′ = 0 (5.29)
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where Ma is the magnitude of the moments applied to the ends, which cause opposite

rotations; the pre-factor π on the righthand side arises from δw′o = δwo(sinπx/L)′. Define

the following:

ωo = π

√
EeI

ρAL4
; r =

Ee
Ev

; ξ =
µωo

Ee(1 + r)
=

µωo
Ee + Ev

; M̃ =
4

π3

MaL

EeI
(5.30)

Note that ωo is the first natural frequency for an undamped pinned-pinned beam. Further,

let ∆ = wo/L and ∆cr = (1 + r)wcro /L. The governing equations stated above simplify

to:

∆− 1

1 + r
∆cr + ∆̈ = M̃ (5.31)

ξ∆̇cr + ∆cr − r∆ = 0 (5.32)

Note that the quasi-static response is given by:

(
1− r

1 + r

)
∆ = M̃ (5.33)

∆ =
4

π3
(1 + r)

MaL

EeI
(5.34)

∆ =
4

π3

(
Ee + Ev
Ev

)
MaL

EeI
(5.35)

∆ =
4

π3

MaL

EI
(5.36)

where E = EeEv/(Ee + Ev) is the elastic modulus of the SLS model at zero loading

rate. The pre-factor for the exact elasticity solution is 1/8; hence, the approximate

quasi-static solution with its pre-factor of 4/π3 ≈ 1/7.75 is within 3.3% of the exact

quasi-static solution.

The solution for steady-state harmonic excitation can be found as follows. It is
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convenient to write the dynamic governing equations as:

 1 0

0 0


 Ẅ

Ẅcr

+

 0 0

0 ξ


 Ẇ

Ẇcr

+

 1 1/(1 + r)

−r 1


 W

Wcr

 =

 M̃(τ)

0

 (5.37)

Consider the steady-state response to harmonic applied moments at the ends, e.g. M̃eiΩτ ,

where M̃ now represents the amplitude of the applied moment and Ω = ωex/ωn is the

dimensionless excitation frequency. The response can be written as ∆ei(Ωτ) where ∆ =

Cr + iCi now represents the output displacement amplitude in complex form; Cr is

interpreted as the storage compliance, and Ci is interpeted as the loss compliance. It is

a compliance since the output displacement will be (Cr + iCi)M̃eiΩτ . This is equivalent

to stating that the output will have amplitude |∆| =
√
C2
r + C2

i and phase shift given

by tan δ = Ci/Cr. Similarly, the output creep displacement can be described by ∆cre
iΩτ

where ∆cr = Dr + iDi its the output creep displacement in complex form.

Using these assumed forms of the solution in the above governing equations, one

obtains: −Ω2 0

0 0


 ∆

∆cr

+

 0 0

0 iΩξ


 ∆

∆cr

+

 1 1/(1 + r)

−r 1


 ∆

∆cr

 =

 M̃

0

(5.38)

This can be solved to obtain complex expressions for ∆ and ∆cr. Note that they assured

to have both real and complex components because of the presence of the imaginary

number in the damping matrix.
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The solution, in terms of the output displacement amplitude and phase shift, is put

into its most compact form by defining β = 1 + r. Also, note that the true static

displacement (without any approximation) is given by:

wst
L

=
1

8

ML

EI
=
π3

32
βM̃ (5.39)

The ratio of output displacement to the exact static result is given by the frequency

response function:

FRF =
w

wst
=

32

π3

√
1 + ξ2Ω2

ξ2β2Ω2 (1− Ω2)2 + (1− βΩ2)2 (5.40)

The pre-factor is 32/π3 ≈ 1.03. This allows for direct comparison with FEA results

presented later, which are expected to accurately describe both quasi-static and dynamic

results. The phase shift between displacement and applied moment is given by:

tan δ = − (β − 1) βξΩ

1 + βΩ2
(
β
[
Ω2 + ξ (1− Ω2)2]− 2

) (5.41)

In the limit of zero frequency, one obtains FRF = 1, as expected. More generally, the

frequency response is analogous to that of a spring-mass-damper system, rising to a peak

and then falling, as shown in Figure 5.2A. However, there is a critical and substantial

difference; increasing the viscosity parameter ξ does not decrease the resonant peak

for all values of ξ. This is shown in Figure 5.2B. Unlike a conventional mass-spring-

damper system, there is an optimal viscosity that minimizes the resonance response, and

increasing the viscosity past this optimal point leads to increases in peak response. While

one can solve for the damped natural frequency and peak response with Mathematica or

something similar, the analytical result is unwieldy and not very insightful. (The reason

for this is that it involves a cubic polynomial in Ω2, not quadratic as for a convential
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Figure 5.2: (A) The frequency response of a single wall, pinned at both ends and
subjected to pure bending; the lines represent the 1DOF model, the circles represent
full FEA results. Several levels of viscosity ξ = µωo/(Ee + Ev) are shown. (B) The
peak amplification Q as a function of viscosity parameter and various r = Ee/Ev
values. The solid lines are the 1DOF model, the dashed lines are Q = 1/ηmat and the
dotted lines are Q = 1/(rξ).

damped oscillator.) For this reason, the results shown in Figure 5.2 were determined

numerically by maximizing the analytical FRF .

It should be noted that the structural phase shift goes through zero at resonance,

unlike the material loss factor ηmat. Hence, to compare the level of damping in the

structure to that of the material, the effective damping level should be estimated from

Q, the peak (resonant) amplification. One can re-cast the material description in terms

of r and ξ as follows:

ηmat =
rξΩ

1 + (1 + r) ξ2Ω2
(5.42)

Figure 5.2 illustrates that for light damping, the 1DOF approximation is virtually iden-

tical to Q ≈ 1/ηmat. Furthermore, when ξ << 1, the system is ‘de-tuned’ in the sense
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that the natural frequency of material is much smaller than that of the structure; in this

limit, the Q-factor is well approximated by Q = 1/(rξ) = 1/ηmat.

A comparison between the structural loss factor Q−1 and material loss factor ηmat is

shown in Figure 5.3, based on the 1DOF model and finite element results (obtained via

the framework in subsequent sections). To create the figure, the loss factor of the material

ηmat and its elastic modulus EeEv/(Ee+Ev) were prescribed and then used to solve for Ee

and Ev explicitly. The viscosity parameter was then chosen such ξ = µωo/(Ee +Ev) = 1,

such that the characteristic material and structural frequencies are matched. The ratio

r = Ee/Ev (or β = 1 + r) used in the analytical FRF expression given above are fully

defined through Ee and Ev. The analytical FRF expression was then solved numerically

for the maximum amplification factor, Q. These results reflect the optimal level of

structural damping that can be achieved, i.e. peak responses near the minimum shown

in Figure 5.2b.

The results clearly show the 1DOF model is in excellent agreement with FEA results,

with less than 1% error. Further, it is clear that the approximation that structural

damping scales as Q−1 ∼ ηmat is only valid for ηmat < ∼ 0.1. It should be kept in mind

that these results are for bending near the first natural frequency. The axial response is

similar, with slight variations illustrated in the next section.

5.5 Axial vibration of a viscoelastic wall

Here, the analysis of a wall subjected to pure bending is repeated for a wall subjected

to purely axial response. Consider a uniform bar of a viscoelastic material subjected to

a cyclic force at its end; again, the material is described with the standard linear model,

defined by two moduli, Ee and Ev and a viscosity µ. For axial vibrations, the statement
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Figure 5.3: A comparison of structural damping in bending with the material loss
factor, for ‘tuned’ structures where ξ = µωo/(Ee + Ev) = 1. The moduli Ee and Ev
are found by prescribing the zero-rate elastic modulus EeEv/(Ee+Ev) and ηmat, then
solving for the µ value that matches the ξ = 1 condition. The 1DOF model has less
than 1% error as compared to a convergent FEA analysis (10 elements). For materials
with loss factors ηmat > ∼ 0.56, bending vibration is over-damped, i.e. the static
displacement represents the peak response.
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of PVW is:

∫ L

0

[EeA (u′ − u′cr) δu′ + ρAüδu] dx = N0δu0 +NLδuL (5.43)

µu̇′cr + (Ee + Ev)u
′
cr = Eeu

′ (5.44)

A simple approximation for the dynamic response of the bar can be developed as follows.

Let x̄ = x/L, u = uo sinπx̄/2 and ucr = uocr sin πx̄/2. This is, in essence, a finite element

model with one element that uses an interpolation function consisting of a half-wave in

the bar. The variables uo(t) and uocr(t) define the amplitude of the total displacement

and axial creep displacement, respectively. Eq. (5.43) becomes:

π2

8

EeA

L
(uo − uocr) +

1

2
ρALüo = NL (5.45)

µu̇ocr + (Ee + Ev)u
o
cr = Eeuo (5.46)

In a similar fashion to the earlier bending analysis, let ∆ = uo/L and Ñ = NL/EeA.

Define r = Ee/Ev, and ∆cr = (1 + r)uocr/L, along with the following dimensionless

parameters:

ωo =
π

2

√
EeA

ρAL2
; τ = ωot; ξ =

µωo
Ee(1 + r)

=
µωo

Ee + Ev
; Ñ =

8

π2

N

EeA
(5.47)

In their final form, governing equations are identical to the bending case:

∆− ∆cr

1 + r
+ ∆̈ = Ñ (5.48)

ξ∆̇cr + ∆cr − r∆ = 0, (5.49)

and as a result, the frequency response solution is identical to the bending case presented

earlier.
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There is one critical difference, however; the frequency response ratio (i.e. the ratio

of output displacement to the exact static result) is given by:

FRF =
u

ust
=

8

π2

√
1 + ξ2Ω2

ξ2β2Ω2 (1− Ω2)2 + (1− βΩ2)2 (5.50)

The pre-factor of 8/π2 ≈ 0.81 arises from the difference between the approximation

and the exact solution in the quasi-static limit. Again, using the exact static result to

normalize the output allows for direct comparison with FEA results (generated via the

framework described in a subsequent section), which are accurate in both quasi-static

and dynamic scenarios.

Following the analysis done for bending, this implies the structural loss factor for

axial deformation is given by Q−1 = (π2/8)ηmat = 1.23ηmat. That is, the structural loss

factor for axial deformation is slightly higher than for bending, and interestingly, slightly

higher than the material’s loss factor. This somewhat surprising result from the 1DOF

model is fully confirmed by finite element calculations; Figure 5.4 shows a comparison

of the structural loss factor obtained from the 1DOF model and FEA, as a function of

the material loss factor. Again, these results were created by specifying the zero-rate

elastic modulus of the rod and the material loss factor in order to compute Ee and

Ev. Once Ee and Ev are obtained, the viscosity is set to ‘tune’ the material damping

frequency that of the rod, such that ξ = µωo/(Ee+Ev) = 1. Clearly, the 1DOF damping

estimate is in excellent agreement with the FEA; both show slightly higher effective

damping levels than ηmat by the exact amount predicted by the half-sine approximation.

Though not shown, the spatial distribution of displacements and creep strains obtained

from the FEA are also virtually identical to the half-wave approximation of the 1DOF

model. Furthermore, if one computes the ratio of work dissipated per cycle and maximum

stored elastic energy during a cycle, and defines loss factor as Q−1 = ∆Wd/(2πW
max
e ),
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one obtains the same result that Q−1 = 1.23ηmat. Simply put, the different pre-factor

relating structural and material loss factors is not numerical error or inconsistencies with

conventional loss-factors.

The slight increase in damping is clearly a result of distributed inertial forces within

the damping material itself. If one analyzes a viscoelastic but massless bar that is con-

nected to a lumped mass at the end, the above analysis produces Q−1 = ηmat for low

levels of damping. This is true regardless of the size of the lumped mass and whether

the viscosity is ‘tuned’ to meet the natural frequency of the system. In this scenario,

the strain in the massless rod is uniform at any instant of time, as demanded by the

equilibrium description for the rod (which does not involve inertia). Hence, the root

cause of the pre-factor lies in the difference between the static displacement distribution

u ∼ x̄ (which occurs in the lumped mass scenario) and the wave displacement distribu-

tion u ∼ sin πx̄/2 (which occurs in the distributed mass scenario). Note that the average

displacement from the dynamic profile is 4/π, which is 27% higher than that from for the

static case (assuming the end displacements from both models are matched). Hence, the

distributed mass case has higher average deformation than that predicted by assuming

strains are uniform (e.g. neglecting inertia). By comparison, for a pinned-pinned beam,

the quasi-static and dynamic displacement are virtually identical; hence, inertial effects

have a negligible impact on damping for bending.

5.6 Finite element implementation

The finite element model developed here mirrors the derivation of strut behavior

presented earlier, and uses conventional interpolation functions for displacements. That

is, linear interpolation functions are used for axial displacements and cubic interpola-

tion are used for transverse displacements, typical of Bernoulli-Euler beam elements.
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Figure 5.4: Structural loss factors for axial vibration in a wall that is pinned at one
end and loaded at the other end with a harmonic force, assuming ”tuned” damping
where ξ = µωn/(Ee + Ev) = 1. The resonant amplification factor (i.e. the output
displacement amplitude normalized by the quasi-static result) was found by sweeping
through frequencies and choosing the largest amplitudes. Results are for a constant
value of E2 = EeEv/(E + e+ Ev) and various ηmat values.
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The presence of creep (viscoelastic) displacements in the formulation implies that the

beam elements will have six degrees of freedom per node: u,w, θ representing total dis-

placements, and ucr, wcr, θcr representing creep displacements that account for internal

dissipation.

5.6.1 Elemental matrices for walls in local coordinates

First, consider discretization of the axial equation. Let ξ = x/` be a dimensionless

coordinate along the beam, and use linear interpolation for the axial displacements, i.e.

u(ξ) = u1(1 − ξ) + u2 ξ. We use an identical interpolation for the creep displacements,

i.e. ucr(ξ) = ucr1 (1− ξ) +ucr2 ξ. Noting that `d/dx = d/dξ, and δuo = δu1, and δu` = δu2,

integration of the statement of virtual work for axial displacements produces the following

two equations:

EA

`

 1 −1

−1 1


 u1

u2

− EeA2

`

 1 −1

−1 1


 ucr1

ucr2

+

ρA `

 1/3 1/6

1/6 1/3


 ü1

ü2

 =

 N1

N2

 (5.51)

We use a weighted residual method to minimize the average error of the evolu-

tion equation describing creep displacements. This effectively translates the spatially-

dependent evolution equation into corresponding evolution equations for nodal values.

The weight functions in the weight residual approach are chosen as the derivatives of

the shape functions, which are orthogonal to the assumed spatial variation in axial creep

strains. This implies:

Ei =

∫ `

0

[∫
A2

(µu̇′cr + (Ee + Ev)u
′
cr − Eeu′)N ′i(x)

]
dx (5.52)
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Setting the errors to zero produces the following two equations:

µA2

`

 1 −1

−1 1


 u̇cr1

u̇cr2

+
(Ee + Ev)A2

`

 1 −1

−1 1


 ucr1

ucr2

−
EeA2

`

 1 −1

−1 1


 u1

u2

 =

 0

0

 (5.53)

These two sets of equations can be written as a single matrix equation involving nodal

variables. To show this, we use the conventional mass and stiffness matrices for axial

behavior in the wall:

[ka] =
EA

`

 1 −1

−1 1

 ; [ma] = ρA `

 1/3 1/6

1/6 1/3

 (5.54)

With these definitions, the four equations governing nodal variables (for axial response)

are given by:

 [ka]2x2 −αa [ka]2x2

−αa [ka]2x2 βa [ka]2x2


 q2x1

qcr2x1

+

 [0]2x2 [0]2x2

[0]2x2 η̃a [ka]2x2


 q̇2x1

q̇cr2x1

+

 [ma]2x2 [0]2x2

[0]2x2 [0]2x2


 q̈2x1

q̈cr2x1

+

 F a
2x

02x1

 (5.55)

where q2x1 = [u1 u2] are the nodal (total) displacements, rcr2x1 = [ucr1 ucr2 ] are the nodal

creep displacements, and F a
2x1 = [N1N2] are the applied nodal forces. Dots denote

derivatives with resect to time. The composite parameters controlling the role of the
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viscoelastic phase for axial deformation are:

αa =
EeA2

EA
; βa =

(Ee + Ev)A2

EA
; η̃a =

µA2

EA
(5.56)

Next, consider discretization of the bending equation. The interpolation is given by:

w(ξ) = w1(1− 3ξ2 + 2ξ3) + `θ1(ξ − 2ξ2 + ξ3) + w2(3ξ2 − 2ξ3) + `θ2(ξ3 − ξ2) (5.57)

where w1,2 are the transverse displacements at the two nodes, and θ1,2 are the nodal

rotations. We use identical interpolation for the creep displacements, with analogous

nodal variables. The PVW statement for bending produces the following:

EI

`3



12 6` −12 6`

6` 4`2 −6` 2`2

−12 −6` 12 −6`

6` 2`2 −6` 4`2





w1

θ1

w2

θ2


− EeI2

`3



12 6` −12 6`

6` 4`2 −6` 2`2

−12 −6` 12 −6`

6` 2`2 −6` 4`2





wcr1

θcr1

wcr2

θcr2


+

ρAL



13/35 11L/210 9/70 −13L/420

11L/210 L2/105 13L/420 −L2/140

9/70 13L/420 13/35 −11L/210

−13L/420 −L2/140 −11L/210 L2/105





ẅ1

θ̈1

ẅ2

θ̈2


=



V1

M1

V2

M2


(5.58)

Again using the derivatives of the shape functions that are orthogonal to the assumed

spatial variation in bending creep strains, the weighted residual statement for the creep

evolution equation is:

Ei =

∫ `

0

[∫
A2

(µẇ′′cr + (Ee + Ev)w
′′
cr − Eew′′)N ′′i (x)

]
dx (5.59)
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Setting the errors to zero produces the following four equations:

−EeI2

`3



12 6` −12 6`

6` 4`2 −6` 2`2

−12 −6` 12 −6`

6` 2`2 −6` 4`2





w1

θ1

w2

θ2


+

(Ee + Ev)I2

`3



12 6` −12 6`

6` 4`2 −6` 2`2

−12 −6` 12 −6`

6` 2`2 −6` 4`2





wcr1

θcr1

wcr2

θcr2


+

µI2

`3



12 6` −12 6`

6` 4`2 −6` 2`2

−12 −6` 12 −6`

6` 2`2 −6` 4`2





ẇcr1

θ̇cr1

ẇcr2

θ̇cr2


=



V1

M1

V2

M2


(5.60)

As before, we can combine the above equations to produce a single matrix equation

for the nodal variables. The conventional stiffness and mass matrices associated with
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transverse displacements are given by:

[kb] =
EI

`3



12 6` −12 6`

6` 4`2 −6` 2`2

−12 −6` 12 −6`

6` 2`2 −6` 4`2


(5.61)

[mb] = ρA `



13/35 11`/210 9/70 −13`/420

11L/210 `2/105 13`/420 −`2/140

9/70 13`/420 13/35 −11`/210

−13`/420 −`2/140 −11L/210 `2/105


(5.62)

The above equations can be combined into the following single matrix equation:

 [kb]4x4 −αb [kb]4x4

−αb [kb]4x4 βb [kb]4x4


 q4x1

qcr4x1

+

 [0]4x4 [0]4x4

[0]4x4 η̃ [kb]4x4


 q̇4x1

q̇cr4x1


+

 [mb]4x4 [0]4x4

[0]4x4 [0]4x4


 q̈4x1

q̈cr4x1

 =

 F b
4x1

04x1

 (5.63)

(5.64)

where q4x1 = [w1 θ1w2 θ2] are the nodal transverse (total) displacements and rotations,

qcr4x1 = [wcr1 θcr1 wcr2 θcr2 ] are the nodal creep displacements and rotations, and F b
4x1 =

[V1M1 V2M2] are the associated nodal shear forces and moments. The composite pa-

rameters for bending are given by:

αb =
EeI2

EI
; βb =

(Ee + Ev)I2

EI
; η̃ =

µI2

EI
(5.65)

Complete elemental matrices can be constructed from the above equations. Let the
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list of nodal variables be re-defined as:

[q] =

[
u1 u2 ucr1 ucr2 w1 θ1 w2 θ2 wcr1 θcr1 wcr2 θcr2

]
(5.66)

[f ] =

[
N1 N2 0 0 V1 M1 V2 M2 0 0 0 0

]
(5.67)

The complete set of equations for the element is written as:

[me]12x12 {q̈}12x1 + [ce]12x12 {q̇}12x1 + [ke]12x12 {q}12x1 = [f ]12x1 (5.68)

where the total elemental mass, damping and stiffness matrices are given by:

[me]12x12 =



(ma)2x2 02x2 02x4 02x4

02x2 02x2 02x4 02x4

04x2 04x2 (mb)4x4 04x4

04x2 04x2 04x4 04x4


(5.69)

[ce]12x12 =



02x2 02x2 02x4 02x4

02x2 η̃a(ka)2x2 02x4 02x4

04x2 04x2 04x4 04x4

04x2 04x2 04x4 η̃b(kb)4x4


(5.70)

[ke]12x12 =



(ka)2x2 −αa(ka)2x2 02x4 02x4

−αa(ka)2x2 βa(ka)2x2 02x4 02x4

02x2 02x2 (kb)4x4 −αb(kb)4x4

04x2 04x2 −αb(kb)4x4 βb(kb)4x4


(5.71)

Since each node has six degrees of freedom, and an element consists of two nodes; the

elemental matrices are 12x12. Note that these equations describe the behavior of an
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element lying on the local x−axis; they must be converted into global coordinates and

assembled into systems-level matrices for analysis of multi-element systems.

5.6.2 Translation to global coordinates and global assembly

The elemental matrices defined above can be transformed into a global coordinate

system that translates the axial and transverse displacements into global displacements

and rotations. The displacement quantities transform as conventional vector components,

while the rotation quantities are unchanged. Define {Q} = [U1, U2, U
cr
2 . . .] as the global

nodal variables; let [A]12x12 be the global-to-local transformation matrix such that {q} =

[A] {Q}. The only non-zero terms of [A] are:

A1,1 = cos θ A1,5 = − sin θ A2,2 = cos θ A2,7 = − sin θ

A3,3 = cos θ A3,9 = − sin θ A4,4 = cos θ A4,11 = − sin θ

A5,1 = sin θ A5,5 = cos θ A6,6 = 1 A7,2 = sin θ

A7,7 = cos θ A8,8 = 1 A9,3 = sin θ A9,9 = cos θ

A10,10 = 1 A11,4 = sin θ A11,11 = cos θ A12,12 = 1

(5.72)

The elemental matrices associated with the global system are then computed as [Me] =

[A]T [me] [A], [Ce] = [A]T [ce] [A], and [Ke] = [A]T [ke] [A].

Global assembly of system-level mass, damping and stiffness matrices follows the

usual procedure. In the code accompanying this text, the global degrees of freedom for

node n are defined as:

Q6n−5 = Un; Q6n−4 = Wn; Q6n−3 = θn; Q6n−2 = U cr
n ; Q6n−1 = W cr

n ; Q6n = θcrn (5.73)

That is, each node has six degrees of freedom; the first three are the conventional nodal

quantities corresponding to total displacements, which are used to impose boundary
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conditions. For each node, the second three degrees of freedom are the corresponding

creep displacements, which are left to evolve with time.

After global assembly, the final form of the discretized FEA equations is as follows:

[M ] {Q̈}+ [C] {Q̇}+ [K] {Q} = [F ] (5.74)

Following imposition of boundary conditions on total displacements, these can be directly

integrated to obtain the time-history of nodal variables. In the next section, we illustrate

the solution for steady-state response to harmonic loading.

5.6.3 Steady-state response of lattices subjected to harmonic

loading

The finite element framework described in the previous section can be used to extract

the steady-state response of cellular materials when subjected to harmonic loading. In

what follows, we assume the finite element equations have been assembled in the global

system and prescribed degrees of freedom have been eliminated, resulting in the linear

set of equations:

[M ] {Q̈}+ [C] {Q̇}+ [K] {Q} = [F ] (5.75)

Assume that harmonic nodal forces or displacements are imposed in the form Fj =

F o
j e

iωext, where F o
j is a real number representing the amplitude of the applied force

corresponding to the given degree of freedom, and ωex is the excitation frequency. Let

Qj = Q̃je
iωext, where Q̃j is a complex number that represents the amplitude and phase-

shift of the degree of freedom Qj.

This is equivalent to writingQj = Qo
je
i(ωext+δj), whereQo

j is the steady-state amplitude
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of the nodal variable and δj is the phase-shift associated with that nodal variable. That

is, we can solve for a list of complex quantities describing the nodal variables, Q̃j, and

it contains information describing the magnitude of the steady-state response of that

degree of freedom, and the phase shift of that variable with respect to the applied forces.

To illustrate this, note that:

Qo
je
iωext+δj = Qo

j (cos[ωext+ δj]− i sin[ωext+ δj])

= Qo
j (cosωext cos δj − sinωext sin δj)− i (sin[ωext] cos δj] + cosωext sin δj)

Q̃je
iωext =

(
Re[Q̃] cosωext− Im[Q̃] sinωext

)
+ i
(
Re[Q̃] sinωext+ Im[Q̃] cosωext

)

Equating either the real or imaginary parts of the above representations shows that they

are equivalent when:

Qo
j cos δj = Re[Q̃j]; Qo

j sin δj = Im[Q̃j];

tan δj =
Im[Q̃j]

Re[Q̃j]
; Qo

j =

√
Re[Q̃j]2 + Im[Q̃j]2 (5.76)

Thus, without loss of generality, we can assume a complex form Qj = Q̃je
iωt of the

solution; the generalized nodal velocities are therefore Q̇j = iωexQ̃j and the generalized

nodal accelerations are Q̈j = −ω2
exQ̃j. Plugging these expressions into the governing

equations, the exponential terms cancel and one obtains the linear set of equations for

the complex amplitudes of the nodal variables:

−ω2
ex [M ] {Q̃}+ iωex [C] {Q̃}+ [K] {Q̃} = [Fo] (5.77)[

−ω2
ex [M ] + iωex [C] + [K]

]
{Q̃} = [Fo] (5.78)

This linear equation can be solved to find the steady-state respone of nodal degrees of
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freedom, Q̃. Clearly, since the coefficient of the damping matrix is complex, the nodal

degrees of freedom Q̃ will also be complex, indicating phase shifts in displacements due to

damping. Further, the coefficients of the mass and damping matrices are also a function

of excitation frequency; hence we can expect different steady-state nodal motions at

different frequencies.

In summary, after solving the matrix equation above, the amplitude of each node is

found by the magnitude of the complex number Q̃j while the argument represents the

phase shift of that node. The damped mode shape refers to a plot of the nodal motions

at a given instant in time, using the amplitudes of Q̃j; these shapes naturally depend on

the excitation frequency. Animations of vibrations can be created by imposing harmonic

time functions with phase shifts defined by the argument of Q̃j. Since the phase shifts

are generally different for each nodal variable, different parts of a structure can move out

of phase with each other and the applied loading.

This finite element framework is therefore completely analogous to a quasi-static finite

element framework utilizing Bernoulli-Euler beam elements. Indeed, when the excitation

frequency is zero, it produces identical quasi-static results. Steady-state displacement or

force amplitudes can be applied to any of the nodes; such boundary conditions should

be applied to the total nodal variables, not the creep terms.

5.6.4 Finite element verification and convergence

The finite element formulation has been verified by comparing analytical predictions

for undamped natural frequencies for simple cases involving a single wall, with identical

boundary conditions at both ends. The results are shown in Figure 5.5. The cases labelled

“pinned-pinned” correspond to fixing the ends of the wall to have zero displacement,

but free rotation. The cases labeled “clamped-clamped” have zero displacements and
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Figure 5.5: Percentage error in first and third natural frequency of pinned and clamped
walls versus the number of elements used in the computation. Five elements produce
less than ∼1% error.

zero rotation at both ends. Note that for the clamped-clamped condition, more than

one element is needed; otherwise, all degrees of freedom in the system are prescribed

to zero after imposition of the boundary conditions. For the pinned-pinned wall, the

natural frequencies are ωn = (nπ)2ωo, with mode shapes defined by sinnπx/L. For

clamped-clamped walls, the mode shapes are defined by ωn = λ2
nωo, with λn defined by

the solution to cosλn coshλn = 1; the mode shapes are a combination of trigonometric

functions and can be found in standard vibration texts.

Figure 5.5 clearly illustrates that the several lowest natural frequencies of a wall are

captured to within a couple of percent with five or more elements. As the mode number

increases, an increasing number of elements is needed to capture mode shapes described

by higher harmonics; this is clearly illustrated in Figure 5.6, which plots the natural
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frequencies for the first 25 modes for several different mesh densities. Note that for the

discretized system, the maximum mode number that can be predicted is given by the

active number of degrees of freedom in the model, i.e. 3n− 2i, where n is the number of

elements and i are the number of degrees of freedom eliminated at the ends. Hence, the

cases with just a few elements per strut are incapable of predicting higher modes. As a

general rule, the first 2n modes are accurately captured when there are n elements per

strut.

The accuracy of forced vibration amplitudes in damped systems is more difficult to

assess, due to the lack of analytical solutions. However, the formulation and imple-

mentation are clearly convergent. Numerical studies indicate that the predictions are

independent of mesh density for 2n > m, where n is the number of nodes and m is the

highest mode of interest. Figure 5.2, which illustrates the 1DOF approximation out-

lined previously, also shows the results from the present finite element framework for

pinned-pinned beams with four elements (plot points). Simulations with more elements

are indistinguishable from those shown.

The striking agreement between the FEA results and the single degree of freedom

model indicates two points: (i) the frequency response from the finite elements con-

verges upon mesh refinement, and (ii) the single degree of freedom model is an excellent

approximation to converged numerical results (for pinned-pinned walls). The excellent

performance of the analytical single degree of freedom model is a consequence of the fact

that the first mode shape was used to describe the spatial variation of displacements.

(Recall that the approximation assumes W (x̄, τ) = Wo(τ) sinπx̄.) Thus, the spatial dis-

tribution of displacements is highly accurate over the frequency range shown in Figure

5.2; the approximate model will of course fail to capture any peaks associated with higher

modes.

130



Damping in cellular materials made from composite struts
with elastic and viscoelastic phases Chapter 5

0 1 2 3 4 5
0

5

10

15

20

Mode, n

N
at

ur
al

fr
eq

ue
nc

y,
 ω

n/
ω

1

5 10 15 20 25
0

50

200

Mode, n

0 1 2 3 4 5
0

2

4

6

8

10

12

Mode, n

5 10 15 20 25
0

20

40

60

80

100

120

140

Mode, n

clamped-clamped 
ω1 = 4.732ωo

pinned-pinned
ω1 = π2ωo

pinned-pinned
ω1 = π2ωo

clamped-clamped 
ω1 = 4.732ωo

# elem = 1 
# elem = 4 

10
8

6

4

10

8

4

# elem = 6 

4

2, 4, 6, 8, 10

4, 6, 8, 10

# elem = 2 

N
at

ur
al

fr
eq

ue
nc

y,
 ω

n/
ω

1

N
at

ur
al

fr
eq

ue
nc

y,
 ω

n/
ω

1
N

at
ur

al
fr

eq
ue

nc
y,

 ω
n/
ω

1

Figure 5.6: Natural frequencies of pinned and clamped walls, for several different mesh
densities. Accurate computation of high frequency modes are increasingly expensive,
due to the fact high resolution is needed to capture vibration modes with wavelengths
much smaller than the wall size.

131



Damping in cellular materials made from composite struts
with elastic and viscoelastic phases Chapter 5

5.7 Frequency response of honeycombs

Here, we consider prismatic hexagonal honeycombs such as the one shown in Figure

5.1. To elucidate the basic scaling controlling dynamic response, we consider the simple

case of uniaxial loading. A uniform distributed pressure (harmonic in time) is applied to

wall along the top of the structure, while the bottom is fixed to have zero displacement

and rotation. The wall along the top are set to have a bending stiffness that is 106 times

higher than the remainder of the honeycomb, but zero mass3. This effectively constrains

the top of the specimen to behave as a rigid, massless platen with uniform displacement

and zero rotation of the connecting walls. Of central interest is the frequency response as a

function of honeycomb dimensions and material properties, i.e. the output displacement

of the top of the structure relative to the quasi-static response for the same pressure

magnitude.

For solid walls and in the limit that the structure is much larger than the cell size,

the modulus and relative density of a hexagonal honeycomb, denoted by EH and ρH

respectively, are given by [6]:

EHa
3

Et3
=

12

1 + (16.2 + 4.5v)(t/a)2
;

ρH
ρ

=
t

a

(
2− t

a

)
(5.79)

where a is the cell size (measured from one face to the parallel face), t is the wall thickness,

E is the elastic modulus of the base material, v is the base Poisson’s modulus, and ρ is

the base density. This result takes into account shear deformation in the cell walls, while

the finite element result does not; the two predictions should be in complete agreement

when 16(t/a)2 << 1.

Consider a specimen that is infinitely wide and has a vertical height given by H =

3This was done merely to avoid tracking another parameter; the dynamic response will shift due to
the mass of the top platen, and by dropping this term the honeycomb can be thought of as a spring with
distributed mass taken into account.
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aNY . A simple estimate for the first natural frequency of vibration associated with

stretching in the Y−direction4 is:

ωH =
π

2H

√
EH
ρH
≈
√

6π t

2NY a2

√
E

ρ
(5.80)

Recall that the characteristic frequency associated with bending of the walls is given by:

ωo =

√
EI

ρAa4
=

t√
12a2

√
E

ρ
(5.81)

Thus, ignoring shear deformation in the walls, the dimensionless natural frequency of a

panel of dimension H can be written as:

ωH
ωo
≈ 6π√

2NY

=
6π√

2

a

H
(5.82)

In the results that follow (based on the finite element predictions), deviations from this

prediction arise from the fact that panels of finite width may or may not be large enough

for the effective medium properties EH and ρH to be accurate.

Figure 5.7 illustrates the undamped natural frequencies computed from the finite ele-

ment framework for various honeycombs with different numbers of cells in each direction.

The results are normalized by the scaling frequency given as eqn. 5.81. For each dis-

cretized structure, there are 3n natural frequencies (i.e. the number of degrees of freedom

where n is the number of nodes. The results indicate that the simple effective medium

estimate for first natural frequency is highly accurate when there are at least four cells

in both directions. Though not shown, the lowest natural frequency of this particular

structure is associated with a lateral vibration mode, due to the lack of constraint in

this direction. This lateral vibration mode has vertical displacements of the top platens

4It will be shown the first fundamental natural frequency is actually associated with lateral movement.
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that are virtually identical to the quasi-static result. In what follows, this mode is ig-

nored in favor of the second highest natural frequency, which produces large resonant

displacements in the loading direction.

The dynamic response of a honeycomb is shown in Figure 5.8 as a function of exci-

tation frequency, for ‘low’ frequencies associated with the first six modes. Results are

shown for a lightly damped material with a Q-factor of ∼ 150; a complete discussion of

material selection and associated damping is given in the next section. The frequency

response curve depicts the steady-state output displacement amplitude normalized by

that obtained from the quasi-static result (blue), and the maximum force transmitted to

the base platens normalized by the quasi-static result (orange). The mode shapes associ-

ated with several resonant peaks are also shown; these shapes are scaled by an arbitrary

factor that produces a clear image of wall deformation.

One can see from the top of Figure 5.8 that the first mode shape is virtually identical

to the quasi-static deformation result; in essence, the top platen moves up and down

with relatively uniform cell deformation throughout the structure. Note, however, that

the resonant peak implies that the first vibration mode experiences an amplitude ampli-

fication, or Q factor, of ∼ 150; hence the scaling factor for this mode shape in Figure 5.8

is quite small to avoid obfuscation. Note that resonance also dramatically increases the

forces transmitted to the base.

Beyond the first natural frequency, the mode shapes illustrate that deformation is

highly non-uniform. Note that resonant frequencies exist wherein the top platens es-

sentially remains motionless; the case with ωex/ωo = 4.78 has the same scaling factor

as the quasi-static result, A = 30, yet the top platens don’t move (in comparison to

the quasi-static result). In this mode, the region of compressed cells oscillates from the

bottom half of the structure (as shown) to the top half of the structure, while the platen

remains largely motionless. A possibly helpful interpretation is that the top half of the
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structure moves out of phase with the bottom half, canceling the output displacement

of the platens. At slightly higher frequency, the phase shift between the bottom and top

halves of the structure is no longer in balance, and the top platen experiences large dis-

placements as the compressed cells travel upwards; stretch of the bottom cells allows for

platen movement. This alternating behavior (between platen motion and no movement)

continues for the next several modes, with only subtle changes in the mode shape.

At higher frequencies, the vibration modes transition from coordinated movements

of the cells to internal vibration of the walls, as shown in Figure 5.9. This transition

occurs at a frequency of ωex/ωo ∼ 35, which is in reasonable agreement with the natural

frequency of pinned beams; it is higher than this approximation due to the fact that

intersections impose constraints on the wall rotations. Note from the bottom left of Figure

5.9 that ωex/ωo = 25.4 involves compression/expansion of entire cells in the direction of

loading, while ωex/ωo = 33.7 does not; the latter is entirely an internal oscillation mode

at the level of individual cells. As one would expect, this transition (which occurs at the

kink seen in the natural frequency distribution of Figure 5.7) is relatively insensitive to

number of cells in either direction. It should be kept in mind the cell size is fixed as the

normalizing length-scale in this study.

Figure 5.9 also illustrates that the higher vibration modes involve dramatically lower

amplitudes of the platen motion, as compared to those at lower frequencies. However,

the forces transmitted at resonance (shown in orange) are still significantly amplified over

the quasi-static result.

5.8 Damping in honeycombs with monolithic struts

The central question at hand is the relationship between material viscoelastic param-

eters and the damping exhibited by honeycomb structures. In this section, we examine
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this relationship for honeycombs made from a single material. This establishes a baseline

for evaluating the impact of using composite struts, which is outlined in the next section.

Recall that the standard linear model for viscoelasticity is defined in terms of two

moduli, Ee and Ev and a viscosity η. Strictly speaking, these parameters could be deter-

mined from fits to cyclic loading across a broad range of frequencies, or, from translating

temperature data into frequency space. The latter is quite involved and requires more in-

formation than than is typically provided with published temperature-dependent moduli.

As an alternative, we adopt the following approach for parameter estimation, which as-

sumes tabulated material loss factors are relatively constant across the relevant frequency

range.

Viscoelasticity parameters are estimated by assuming that tabulated loss factors,

such as those shown in the Ashby map in Figure 5.10, are associated with frequencies

corresponding to peak material damping. Using these loss factors and the quasi-static

elastic moduli, E2 = EeEv/(Ee + Ev), one can solve for associated values of Ee and Ev.

The viscosity η is then chosen to match the peak damping frequency of the material

to that of the structure. Obviously, this is an optimal condition that produces peak

damping in the structure; it should also be recognized that depending on the natural

frequency of the structures, materials that exhibit this peak frequency may be difficult

to identify. Nevertheless, this procedure provides an upper bound for the increase in

damping possible with composite struts. For metals, the loss factors vary weakly with

frequency over a broad range, and the outlined procedure ensures that the chosen loss

factor at the frequency of interest is representative of this value. For polymers, the

premise is that suitable chemistries can be identified that have peak frequencies near

that of the structure, with loss factors in agreement with tabulated data.

For honeycombs with monolithic struts, the elastic modulus E = EeEv/(Ee + Ev)

plays no role in the frequency-response, provided one compares output dynamic dis-
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Figure 5.10: An adapted Ashby map illustrating the relationship between loss coeffi-
cients and elastic moduli for various classes of materials. The squares indicate the base
material used as face sheets, while the circles denote materials chosen as candidate
fillers.

placements to the quasi-static response. Figure 5.11 illustrates the relationship between

structural loss factors and the material loss factors for several uniform honeycombs. The

structural loss factor was computed by finding the peak response at resonance for the

mode that exhibits the largest displacement in the loading direction. That is, the results

in Figure 5.11 were determined by finding the first peak in the response shown in Figure

5.8. Figure 5.11 clearly demonstrates that structural loss factors are 23% higher than

material loss factors, in precisely the same manner as a uniform rod under axial load-

ing. Recall from Section 5, that this slightly higher damping level can be attributed to

inertial effects arising from the consideration of a material with a distributed mass. The

same holds true for uniform honeycombs subject to their first vibration mode, where cells

deform cooperatively and effective medium descriptions of the honeycomb are accurate.

The question naturally arises as to whether cell geometry can be manipulated to in-

crease structural damping while maintaining static stiffness. To address this question,

novel honeycombs with non-uniform cell shapes were generated using a simple mapping
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algorithm5, as shown in Figure 5.12. The mapping was based on moving strut intersec-

tions according to a simple harmonic function in two directions. The function ensures

that the dimensions of the structure are a multiple of the mapping wavelength, such that

the outer boundaries are unchanged. As shown in Figure 5.12, the effect of the mapping

is to compress or elongate cells near the centerlines of the base structure.

Frequency response curves were generated using the FEA framework described earlier;

several examples are shown in Figure 5.12. Note that changes in cell distribution shift

the natural frequency of the structure, presumably as a result of changes to the static

stiffness. The first resonant peak was used to estimate the structural loss factor (i.e.

Q−1). The structural loss factors are shown along with static stiffness values in Figure

5.12, normalized by the results of the uniform honeycomb. One obtains the same relative

performance between the perturbed and uniform honeycombs regardless of the material

damping used for both cases. Hence, the factor of two improvement in damping exhibited

in Figure 5.12 is purely a function of geometry.

The results indicate that honeycombs with large, centrally placed cells increase struc-

tural damping, presumably because they disrupt the standing half-wave present in a

uniform honeycomb. However, the effect depends strongly on the nature of compressed

cells on either side of the open space. Compare for example the red honeycomb on the

left of Figure 5.12 with the green honeycomb shown on the right; the differences in cell

topology are slight, and yet the overall damping level is quite different. Future work will

address these differences through systematic exploration of the design space.

5The mapping algorithm was developed by Prof. B. Compton at the University of Tennessee, and
will described in forthcoming publications.
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5.9 Damping in honeycombs with composite struts

In this section, we examine the impact of using composite struts, to address whether

or not including high damping phases will be effective improve structural damping. The

labelled points in Figure 5.10 indicate representative materials chosen for the present

study.

The two ”baseline” materials are indicated by squares: a glassy polymer with E2 =

4 GPa and ηmat = 0.02, and aluminum with E2 = 70 GPa and ηmat = 0.001. Point (a) is

representative of silicone elastomers, while point (b) is an arbitrary point at the edge of

the polymer region that maximizes stiffness and loss factors. Point (c) is a typical glassy

polymer (such as PMMA or PC) and considered as both a filler material and an outer

shell. Point (d) is an arbitrary point at the edge of the metal region that maximizes

stiffness and loss factors.

For the purposes of illustration, the present study fixes the cell size to be a = 1 cm

and the wall thickness to be d = 1.4 mm. Composite struts have 1 mm cores with 0.2 mm

face sheets on either side. A specimen with NX = NY = 5 is analyzed (i.e. structures

identical to those shown in Figures 5.8 and 5.9). For comparison with composite struts,

two baseline cases with monolithic struts are identified: solid walls and “shell” walls

created by using the face sheets with an empty core. Properties of these baseline cases

are listed in Table 5.1. The table includes the properties used in the analysis, as well as

the structural damping found by analyzing frequency response curves for the monolithic

struts. As seen from Table 5.1, removing material from the solid core (to convert to shell

walls) leads to higher natural frequencies due to the loss of mass, which outweighs the

associated loss of stiffness. The baseline structural loss factors are comparable to that of

the material loss factor, as discussed in Section 5.8.

The composite struts are created by combining the baseline materials described in

144



Damping in cellular materials made from composite struts
with elastic and viscoelastic phases Chapter 5

Cell walls E, ρ ηmat ω1 kL4/EI Q ξeff

metal, solid 70 GPa, 2.7 g/cm3 0.001 7.6 kHz 27.5 450 0.00123
metal, empty core 70 GPa, 2.7 g/cm3 0.001 11.1 kHz 14.9 450 0.00123
polymer, solid 4 GPa, 1.2 g/cm3 0.01 1.6 kHz 1.6 50 0.0123
polymer, empty core 4 GPa, 1.2 g/cm3 0.01 2.7 kHz 0.9 46 0.0123

Table 5.1: Baselines strut properties used for the comparison with composite struts;
the cell size is a = 1 cm, the wall thickness is 1.4 mm, and the number of cells is
NX = NY = 5. Thus, the specimens measure about 2” square. Viscoelastic moduli are
computed assuming peak damping; the viscosity is chosen to match the characteristic
frequencies of the materials and the structures.

Filler material E, ρ ηmat Ee Ev

a, elastomer 40 MPa, 1.2 g/cm3 0.89 200 MPa 50 MPa
b, polymer with high damping 1 GPa, 1.2 g/cm3 0.2 1.5 GPa 3 GPa
c, polymer with low damping 4 GPa, 1.2 g/cm3 0.02 4.2 GPa 100 GPa
d, metal with high damping 20 MPa, 2.7 g/cm3 0.1 24.4 GPa 111 GPa

Table 5.2: Filler materials considered in the composite comparison; the core size
is 1 mm and the face sheet thickness is 0.2 mm. Viscoelastic moduli are computed
assuming peak damping; the viscosity is chosen to match the characteristic frequencies
of the materials and the structures.

Table 5.1 with the filler materials listed in Table 5.2. The filler materials in the study are

shown as filled circles in the Ashby diagram in Figure 5.10. Again, viscoelastic moduli

of the filler are computed assuming peak damping; the viscosity parameter is chosen to

match the characteristic frequencies of the materials and the structures. For the com-

posite struts, the filler material is treated as the viscoelastic face, while the face sheets

are treated as purely elastic. For this reason, the estimated damping of the composite

honeycombs is an underestimate; for lightly damped systems, the effective damping con-

stant for the face sheets can be superposed with the effective damping constant for the

composite (with elastic face sheets).

The frequency responses of two systems are shown in Figure 5.13: a metal filled

with elastomer, and a polymer filled with elastomer. Clearly, more significant damping
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is achieved when the modulus of the filler material is closer to the face sheet modulus.

Figure 5.13 illustrates that the storage and loss moduli vary only slightly over the same

frequency range. The Q factor is defined as the maximum output displacement (relative

to the quasi-static response) across the entire range of frequencies. Clearly, optimal

structural damping is achieved when (Ee+Ev)/η = ωn, as suggested by the approximate

model presented earlier in this chapter.

Figure 5.14 provides an Ashby-type diagram that maps the structural loss factors with

the structural stiffness, for various composite walls. The data refers to the response at

the first natural frequency, with the loss factor computed as Q−1. Table 5.3 summarizes

the numerical values of the inputs and outputs of the analysis. The stiffness used in the

bottom of Figure 5.14 is defined as the ratio of the normalized pressure magnitude to the

static output displacement, Lpo/EIδst.

The results clearly indicate that significant damping improvements with composite

struts are only possible when the modulus of the filler material is within a factor of 100

of the face sheet material. Further, the shifts in stiffness are relatively small due to

the inefficient use of material near the neutral axis of the beam. When the modulus of

the filler and shell are within a factor of one hundred, the shifts in effective damping

coefficient can be a factor of 5-10. For these bending-dominated structures, the effective

damping of the composite does not follow rule of mixtures, but rather scales with the

ratio E2I
EI

; this diminishes the potential impact of the viscoelastic core because only the

core material near the face sheets contributes to damping.

These effects are more clearly illustrated in Figure 5.15, which fixes the modulus ratio

between filler and shell, or the loss-factor of the filler. When the moduli of the filler is low,

significant gains are only possible using fillers with very high material loss factors. On

the other hand, for structures with high loss factors ηmat ∼ 1, dramatic improvements

are possible if the filler has a modulus within 5% of the shell. The results in Figure
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structural loss factor, for honeycombs made with composite walls.

5.15 clearly indicate the importance of using high modulus fillers. With sufficiently high

modulus fillers, damping can be improved by a factor of 10 relative to the walls, while

stiffness can be improved by a factor of 100 relative to just the filler.

5.10 Conclusions

This chapter has made several important contributions to the understanding of damp-

ing in cellular structures; first and foremost, it provides a clear, efficient framework to

make quantitative connections between viscoelastic materials parameters and structural

damping. While the focus of this chapter was on steady-state response near resonance,

the framework can be applied more generally to consider impacts and other transient phe-

nomena. Approximate solutions for forced dynamic response in bending and stretching

provide elegant scaling relationships that identify effective property combinations; these

invariably involve matching the characteristic frequency of the material to that of the
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Case Face sheets: filler αa, βa αb, βb ηa, ηb Q ηH

1 metal: solid 1, 500 1, 500 182, 182 450 0.001
2 metal: shell 1, 500 1, 500 200, 200 450 0.001
3 metal: a, elastomer 0.014, 0.018 0.004, 0.005 0.007, 0.002 156 0.003
4 metal: b, high damp. poly 0.097, 0.293 0.029, 0.087 0.117, 0.035, 0.03 54 0.009
5 metal: c, low damp. poly 0.229, 5.85 0.076, 1.93 2.26, 0.74 191 0.0026
6 metal: d, high damp. metal 0.64, 3.51 0.32, 1.79 1.3, 0.66 11.5 0.044

7 polymer: solid 1, 50 1, 50 18.5, 18.5 43 0.011
8 polymer: shell 1, 50 1, 50 20, 20 43 0.011
9 polymer: a, elastomer 0.2,0.25 0.064, 0.080 0.1, 0.032 9.9 0.051

Table 5.3: Property combinations used in the study of honeycombs with composite
struts; the loss factors for the composite structures are compared with their monolithic
counter parts in Figure 5.14.

structure. With regards to structural resonance of honeycombs, several key observations

should provide insightful for future development efforts:

• Well-established descriptions of honeycombs based on effective properties yield ac-

curate, closed-form estimates for the lowest structural natural frequencies, provided

there are more than four cells in both directions. Higher order frequencies that

involve deformation gradients acting over the scale of individual cells (e.g strut vi-

brations) require numerical techniques; approximately three elements per vibration

mode at the scale of individual cell walls yields accurate results for the first dozen

or so natural frequencies.

• Uniform honeycombs with monolithic walls subjected to nearly one-dimensional

deformation exhibit structural loss factors that are nearly identical to material

loss factors. Structural loss factors can be a factor of two higher than material

loss factors for honeycombs with non-uniform cell shapes, due to disruption of

standing waves generated during uniaxial vibration. This gain in loss factor can

be achieved without sacrificing structural stiffness, suggesting a path towards stiff,

high damping structures. Future work should focus on optimization to determine
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if larger gains are possible; the framework presented here is highly efficient and

should be useful for this purpose.

• Composite walls in honeycombs can offer significant improvements in structural loss

factors (relative to their monolithic counterparts); for sufficiently high filler modulus

(with a factor of 100), damping can be improved by a favor of 5-10 relative to the

wall material, with stiffness values 100 times greater than just the filler material

itself.
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Chapter 6

Large deformation element

6.1 Introduction

There are many examples of highly porous materials whose microstructure consists of

cells formed by connecting networks of slender members, whose thickness is much smaller

than the pore size. These include the internal structure of plants [71–74], synthetic and

natural foams [6, 75, 76], microtubule networks in biological cells [77–81], and metama-

terials designed to exploit non-linear behaviors [8, 14–27]. In all the these structures,

the large aspect ratio of the members implies that stretching, bending and large rota-

tions are possible and in many instances, central to the macroscopic functionality. In

many instances, large strains are also present, though it is worth emphasizing that in

many instances the strains remain small even in when these three deformation modes are

present.

Modeling the response of long, slender structures (typically called rods, beams or

fibers) have been pursued extensively for decades [28,82–84], and it is fair to say that the

behavior is well-understood and methods are fairly well developed (e.g. [28, 30, 54–56]).

That said, simulations remain quite challenging due to the highly non-linear governing
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equations involved, which often lead to complex behaviors associated with bifurcations,

i.e. buckling and ‘snap-through’; the latter refers to a fiber moving unstably from one

configuration to a dramatically different configuration, often accompanied by a negative

stiffness matrix that causes serious headaches with gradient-based solution methods.

By far, the most common type of solution approach is to cast governing equations

based on conservation of momentum in an incremental framework [55, 56]. Such ap-

proaches effectively track the solution as deformation increases by solving linear equations

representing an expansion from a known state. Certainly these methods have proven suc-

cessful in the context of predicting the response of simple structures comprising a limited

number of slender members; however, serious convergence difficulties often arise for even

modestly more complex fiber arrangements. Even specialized solution techniques such as

the RIKS method frequently fail, either by failing to find any solution or by simply miss-

ing a relevant bifurcation. Explicit dynamic methods are more stable, but can require

exceedingly small time steps to capture rapid events associated with transitions from one

stable configurations to another.

For elastic materials (even highly non-linear ones), one can naturally cast the prob-

lem in terms of energy minimization. The challenge of discovering bifurcations is then

recast as finding the relevant energy minima. Often, the principle minimum of inter-

est is the global minimum, as presumably, physical systems will find a pathway to this

configuration. (This is not always the case: the energy barrier between local minima

and the global minimum may be insurmountable, indicating that the global minimum

is unreachable in practice.) For finding global minima, many robust search algorithms

exist, notably direct search methods that essentially probe the space by evaluating a

large number of possible configurations. For obvious reasons, conventional wisdom is

that such methods are inherently slow: however, they are amenable to high degrees of

parallelization, as such methods rely on function evaluations rather than solving a system

153



Large deformation element Chapter 6

of linear equations based on incremental stiffness matrices.

For large systems, the amenity of parallelization can carry the day; ultimately, the

lack of sophistication in the solution algorithm is overcome by the brute force of an

extreme number of simultaneous function evaluations. Still further, the robustness of

direct search methods implies that failed searches are rare, in contrast to gradient-based

methods that often involve poorly conditioned Jacobians.

This is demonstrated in the present work using a Monte Carlo minimization technique.

In this approach, each degree of freedom in the model is perturbed and the resulting

change in energy is used to either accept or reject the perturbation. The key advantage

of this approach is that the perturbations can be done in parallel, implying that one can

simultaneously evaluate the impact of changing a large number of degrees of freedom

in the energy space. This has recently been demonstrated for large arrays of cohesively

bonded bricks [85–87], whose interactions include the possibility of bond rupture (i.e.

softening behavior). This inherently non-linear behavior (which can include negative

stiffness matrices) can be solved for cases with 105 − 106 degrees of freedom in a matter

of minutes. Relying only on the evaluation of the global system energy as a function of the

unknowns, the complexity of implementation is essentially independent of the degree of

non-linearity (be it kinematic or material) and is only restricted to conservative systems.

In the context of fiber networks modeled with finite elements, this implies that one

merely writes the energy of the system in terms of nodal variables, moving immediately

to the solution algorithm without the complexity of deriving highly non-linear governing

equations (or their linearized incremental form).

In order to use direct search algorithms and account for large rotations (including

both those arising from rigid body rotations and large bending deformations), one must

cast the problem in terms of the deformed state. We do so here using an apparently

novel element based on Bezier curves, which use global nodal positions in the deformed
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state, the global rotation of the element ends, and the stretch ratios at the element ends.

Because stretch is a nodal variable, continuity in deformed tangents, curvature and stretch

between elements is ensured, such that one does not have to enforce additional constraints

relating to prevent elements from “kinking”. This element formulation makes energy

computations extremely straightforward, and hence is ideally suited to direct search

minimization to find solutions. The remainder of this paper describes this element, the

associated energy computations, and the performance of Monte Carlo minimization for

several test cases.

6.2 Element formulation

Here, we define an element that is initially straight in the undeformed state, and

can take on large rotations and curvatures in the deformed state. Here, XA,B
i are the

coordinates of the endpoints in the original state, xA,B are the coordinates in the deformed

state, and θA,B are the global rotations in the deformed state, measured counter-clockwise

with respect to the X1−axis. The deformed state is defined by a cubic Bezier curve, given

generally by:

xi(t) = (1− t)3xAi + 3t(1− t)2xai + 3t2(1− t)xbi + t3xBi (6.1)

where xA,Bi are the coordinates of the end-points, and xa,bi are the coordinates of control

points; t is the parametric variable defined on the interval 0 ≤ t ≤ 1. As shown in Figure

6.1, the curve at A is tangent to the line extending from the end point A to the control

point a, and similarly so for the other end-point. The distance from the end-points to

their respective control points controls the size of the loop, while the direction specifies

the ‘side’ which the loop falls, relative to the straight line connect the end-points. Thus,
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cubic Bezier curve 
with control points
(deformed state)

linear interpolation
(original state)

finite element

Figure 6.1: Schematic illustrations of Bezier curve illustrating the control points( (left)
and the parameters used to describe the finite element based on Bezier interpolation
(right).

an interesting feature of Bezier curves is that they can trace non-convex shapes, including

loops that cross. In what follows, we replace the control points with the stretch ratios at

the ends, λA,B, such that the interpolation involves four nodal variables at each end, i.e.(
xA1 , x

A
2 , θA, λA

)
and

(
xB1 , x

B
2 , θB, λB

)
. Hence, the element has eight degrees of freedom,

as suggested by the pure Bezier curve. However, unlike the pure Bezier curve, the degrees

of freedom have explicit meaning in the context of fiber deformation, unlike the positions

of the control points.

Let s(t) be the distance along the curve in the deformed state; in this case, the tangent

vector to the curve in the deformed state is definedy by:

dx1

ds
=
x′1(t)

s′(t)
= cos θ(t);

dx2

ds
=
x′2(t)

s′(t)
= sin θ(t) (6.2)

where primes indicate the total derivative with respect to t; the derivative of the path

length with respect to the parameter t is given by:

s′(t) =
√
x′i(t)x

′
i(t) (6.3)
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with summations implied by index notation, and x′i(t) computed from the Bezier curve.

To develop a finite element whose nodal degrees of freedom include the end point positions

and tangent in the deformed state (such that one can prescribe forces and moments), we

replace the control points in the pure Bezier curve, eqn. 6.1 with:

xa1 = xA1 +
`o
3
λA cos θA; xa2 = xA2 +

`oλA
3

sin θA

xb1 = xB1 −
`oλB

3
cos θB; xb2 = xB2 −

`oλB
3

sin θB (6.4)

where λA,B represent the stretch ratio of the beam at the end-points, and `o is the length

of the undeformed (straight element) element; the above can be obtained from eqns.

(6.1 -6.3) with t = 0 for point A and t = 1 for point B. Thus, the parametric definition

of the Bezier curve to be utilized in the remainder of the paper is:

x1(t) = N1(t)xA1 +N2(t)`oλA cos θA +N3(t)xB1 +N4(t)`oλB cos θB (6.5)

x2(t) = N1(t)xA2 +N2(t)`oλA sin θA +N3(t)xB2 +N4(t)`oλB sin θB (6.6)

where

N1(t) = 1− 3t2 + 2t3; N2(t) = t(t− 1)2; N3(t) = 3t2 − 2t3; N4(t) = t2(t− 1) (6.7)

For the finite element, we wish to compute the stretch in the beam, which for small

strains (but arbitrary displacements and rotations) is given by:

λ(t) =
ds

dso
− z dθ

dso
(6.8)

where so(t) = f(Xi(t)) is the length along undeformed beam, and z is the distance from

the neutral axis of the beam. For simplicity, we present results for an initially straight ele-
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ment with linear interpolation for the undeformed position, as in Xi(t) = (1−t)XA
i +tXB

i .

Alternative formulations for initially curved elements follow the same exact procedure,

but obviously require non-linear interpolations for the undeformed coordinates; an obvi-

ous choice is to use identical interpolation as the deformed coordinates, i.e. an isopara-

metric element.

From here, the computation of the mechanical performance of the beam is trivial,

though the resulting algebraic forms are somewhat lengthy. Using the above, and recog-

nizing s′o =
√
X ′iX

′
i = `o for straight beams with linear interpolation of the undeformed

coordinates, one must compute:

ds

dso
=

s′(t)

s′o(t)
=

√
x′i(t)x

′
i(t)

`o
(6.9)

which yields the stretch in the beam as function of the implicit (interpolation) parameter

t. One can use eqns. (6.5 -6.7) to demonstrate that ds/dso(t = 0) = λA and ds/dso = λB;

further, one can easily show that the angles at the ends are given by:

dx1

ds
(t = 0) =

x′1
s′

= cos θA;
dx2

ds
(t = 0) =

x′2
s′

= sin θA (6.10)

and so forth for the slopes of the deformed state at t = 1, i.e. dx1/ds = cos θB and

dx2/ds = sin θB. This has important implications for continuity; consider if one were to

approximate stretch in the element as uniform and use the end-points to compute it, i.e.

`oλA ≈
√

(xBi − xAi )(xBi − xAi ). (This is obviously attractive because it eliminates two

nodal degrees of freedom, i.e. λA,B.) However, this can lead to discontinuity in curvature

(manifested as ‘kinking’ in the deformed state), as will be come clear from what follows.
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The curvature of the beam is computed from

dθ

dso
=

1

`o

d

dt

(
tan−1 x

′
2(t)

x′1(t)

)
=

1

`o

(
x′1(t)x′′2(t)− x′1(t)x′2(t)

x′ix
′
i

)
(6.11)

Here again, assuming uniform stretch (instead of eqn. 6.9) which would imply x′ix
′
i =

(s′(t))2 ≈ `2. In turn, this with eqn. 6.11 would imply dθ/dso is not continuous across

element boundaries (as ` is different for each element). This is the essence of ‘kinking’;

while such phenomena can be eliminated by imposing additional constraints relating to

the jump in angle between the lines formed between element end-points, the present

formulation avoids this entirely by using stretch at the nodes as an explicit variable.

As will be illustrated, a single element is only capable of producing uniform curvature

in the limit that the radius of curvature is much smaller than the element length; this is a

consequence of the fact that cubic interpolations are only fair approximations for a circle.

As will be noted, it is interesting to note that while deviations from exactly solutions

for a significant curvature (say, on the order of the beam length) are not significant, the

average curvature shows very small deviations from an exact result.

The results above allow one to compute the energy in the element through the use

of eqns. (6.5 -6.11) and numerical integration. For small stretch (e.g. when the cross-

section dimensions of the beam are not appreciably altered by axial stretch), the strain

in the beam is ε(t) = λ(t)− 1, and the strain energy can be written as:

Πe =
1

2

∫ `o

0

[
EA

(
ds

dso
− 1

)2

+ EI

(
dθ

dso

)2
]
dso

=
`o
2

∫ 1

0

[
EA

(
ds

dso
− 1

)2

+ EI

(
dθ

dso

)2
]
dt (6.12)

where A is the cross-sectional area of the beam and I is the moment of inertia. For

a given set of nodal quantities, eqn. 6.12 is evaluated numerically, and direct search
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algorithms can be applied to the sum of strain energy across all elements. To apply

external forces or moments, one can subtract additional terms corresponding to the

potential energy associated with the set of generalized nodal ‘forces’ (i.e. work conjugate

terms to the nodal displacements). The appropriate generalized work conjugate ‘forces’

can be computed as follows, which also provides the method to compute the reaction

forces when nodal variables are explicitly prescribed.

The variation in potential energy for an element with applied nodal forces and mo-

ments can be written as:

δΠ = `o

∫ 1

0

[
EA

(
ds

dso
− 1

)
δ

(
ds

dso

)
+ EI

dθ

dso
δ

(
dθ

dso

)]
dt

−
(
FA

1 δx
A
1 + FA

2 δx
A
2 +MAδθA + ΛAδλA

)
−
(
FB

1 δx
B
1 + FB

2 δx
B
2 +MBδθB + ΛBδλB

)
= 0 (6.13)

where FA,B
i are nodal forces applied to the end-points, MA,B are the nodal moments,

and ΛA,B are higher order terms that are shown numerically to be zero when stretch is

not prescribed at a node. Note that since δxi(t) = δ [Xi(t) + ui(t)], we have δui = δxi;

hence, the nodal force terms are the usual ones irrespective of the fact they are acting

on the variation of global deformed position. We can lump the external force terms into

a generalized vector of nodal forces, i.e. replace them with [P ]T1x8 [δQ]8x1, where P is

a general notation for all work conjugate force/moment terms, and δQ is the general

notation for the variation in the deformation variables at the nodes.
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For the variation in axial stretch, we have:

δ

(
ds

dso

)
=

1

`o
√
x′ix
′
i

(x′1δx
′
1 + x′2δx

′
2) (6.14)

=

[
x′1

`o
√
x′ix

′
i

x′2
`o
√
x′ix

′
i

0 0

]


δx′1

δx′2

δx′′1

δx′′2


(6.15)

= [Iλ]1x4 [B(t)]4x8 [δQ]8x1 (6.16)

where [Iλ]1x4 can be inferred from the above, while [B(t)]4x8 can be found by differenti-

ating the global positions and taking the variation with respect to nodal variables; full

results are given in the Appendix.

Similarly, for the variation in curvature, we have:

δ

(
dθ

dso
[x′i, x

′′
i ]

)
=

∂

∂x′1

dθ

dso
δx′1 +

∂

∂x′2

dθ

dso
δx′2 +

∂

∂x′′1

dθ

dso
δx′′1 +

∂

∂x′′2

dθ

dso
δx′′2 (6.17)

=

(
2x′1x

′
2x
′′
1 +

[
(x′2)2 − (x′1)2]x′′2

`o
[
(x′1)2 + (x′2)2]2

)
δx′1

+

([
(x′2)2 − (x′1)2]x′′1 − 2x′1x

′
2x
′′
2

`o
[
(x′1)2 + (x′2)2]2

)
δx′2

−
(

x′2
`o
[
(x′1)2 + (x′2)2]

)
δx′′1

+

(
x′1

`o
[
(x′1)2 + (x′2)2]

)
δx′′2 (6.18)

= [Iκ]1x4 [B(t)]4x8 [δQ]8x1 (6.19)

where again the entries of [Iκ]1x4 can be inferred from the above, and [B(t)] and [δQ] are
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identical to the prior result. This implies that the nodal forces are given by:

[P ]T1x8 = `o

∫ 1

0

(
EA

(
ds

dso
− 1

)
[Iλ]1x4 + EI

dθ

dso
[Iκ]1x4

)
[B(t)]4x8 dt (6.20)

Naturally, one could sum the nodal forces arising from each element and set the result

to zero; doing so involves lengthy non-linear equations in terms of the nodal variables.

For direct search methods, this is unnecessary, and eqn. 6.20 is only used to compute

the reaction forces associated with each degree of freedom.

The variation of potential energy implies that the work terms that are conjugate to

the stretch should be zero when stretch is left as a free variable; this indeed turns out to

be the case numerically.

6.3 Numerical solution techniques

The formulation outlined in the previous section forms the basis for several numerical

solution techniques. The simplest and most straightforward to implement is direct energy

minimization, using the total energy of a system defined by multiple elements; the energy

for each element can be computed directly through numerical integration of eqn. 6.12.

The nodal variables that minimize the system’s total energy are then solved for using

standard minimization algorithms. Alternatively, one can utilize non-linear root solving

algorithms in conjunction with the above description of nodal forces; in this approach, a

global system of equations is assembled by summing the forces at nodes associated with

connected elements.

To explore the performance of the element, a variety of energy minimization tech-

niques were explored using the commercial code ABAQUS, i.e. Monte Carlo, Nelder-

Mead and Newton-Raphson methods. The first two are direct search methods that do
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not involve derivatives of the global energy function. Newton-Raphson relies on numer-

ical differentiation of the energy potential to compute derivatives used during energy

minimization iterations. A broad range of numerical parameters were considered to ex-

plore the efficiency of the various methods. By and large, the study was inconclusive,

in the sense that each method has advantages and disadvantages pertaining to classical

trade-offs between accuracy and robustness. In the benchmarking cases in the next sec-

tion, results were generated by Monte Carlo method, which offers more efficient scaling

as the number of elements (degrees of freedom) is increased. The performance of the ele-

ment in these cases is then used as the basis for the discussion of future work addressing

numerical implementation.

6.4 Benchmarking cases

To validate the above framework and generate insight regarding the effectiveness of

direct search algorithms, several benchmark cases involving large rotations with analytical

solutions were analyzed; all of them invoke the assumption that stretching in the beam

is negligible, the so-called “elastica” limit. Hence, the focus is on the element’s ability to

capture arbitrarily large rotations.

Elastica cantilever with end moment

Consider a cantilever of length `o lying along the X1-axis such that dX1/dso = `o,

subjected to a pure moment at the free end, M , and assume that the axial stretch is

negligible such that ds/dso = 1. The solution is uniform curvature given by EIdθ/dso =

M ; hence, θ(X1) = (M`o/EI)X1 ≡ M̃X1. Thus, noting that dx1/ds = dx1/dso = cos θ,
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Figure 6.2: Comparison of elastica theory for a cantilever with an applied moment at
the tip and Bezier finite element results, for A`2o/I = 104. Key: red-1 element, blue-2
elements, green-3 elements.

dx2/ds = dx2/dso = sin θ, x1(so = 0) and x2(so = 0)=0

x1(X1) =
1

M̃
sin

(
M̃o

X1

`o

)
; x2(X1) =

1

M̃

[
1− cos

(
M̃o

X1

`o

)]
(6.21)

Figure 6.2 illustrates the relationship between the tip position of the cantilever and

the applied moment; the beam curls upwards (a positive moment is applied), such that

the horizontal position of the tip decreases and the vertical position increases. The

results illustrate that the present beam formulation is efficient, with three elements being

sufficient to completely capture the large rotation response. By comparison, a simulation

with conventional Bernoulli-Euler beam elements requires five to six elements. Hence,

the novel interpolation functions used in the present formulation are more efficient that

conventional elements for this particular case.
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Buckling of a pinned elastica beam

Consider a cantilever of length `o lying along the X1-axis such that dX1/dso = `o,

subjected to a pure horizontal compressive force at the free end, F = −F1(`o), and

assume that the axial stretch is negligible such that ds/dso = 1. A free body diagram

reveals that the moment at any location is given by M = EIdθ/dso = −Fx2. Taking the

derivative, we note dM/dso = EId2θ/ds2
o = −Fdx2/dso = −F sin θ, since ds/dso = 1.

For convenience, define s̃o = so/`o. Hence, the governing equation is simply:

θ′′ + F̃ sin θ = 0 (6.22)

where ( )′ = d/ds̃o, F̃ = F`2
o/EI and the boundary conditions are θ′(0) = 0 and θ′(s̃o =

1) = 0, since the moments are zero at the ends. Multiplying by θ′ and integrating, we

observe:

[
1

2
(θ′)

2 − F̃ cos θ

]
= C (6.23)

The constant can be cast in terms of the rotation at one end, e.g. θo = θ(0): replacing

the integration constant with −̃F cos θo (since θ′(0) = 0), we obtain:

θ′ = ±
√

2F̃
√

cos θ − cos θo =
dθ

ds̃o
(6.24)

The solution for an upward buckle (where φo > 0 and θ′ < 0) is found by integrating

both sides, yielding:

√
2F̃ s̃o =

∫ θo

θ(s̃o)

dθ√
cos θ − cos θo

(6.25)
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For a symmetric buckle, θ(s̃o = 1/2) = 0 (i.e. the slope at the center of the beam is

zero), such that the load can be determined as function of the initial slope by:

F̃ (θo) = 2

[∫ θo

0

dθ√
cos θ − cos θo

]2

, (6.26)

which is an elliptical integral of the first kind, and can be determined numerically. (Such

functions are explicitly defined in Mathematica.) For small θo, we obtain F̃ = π2, which

corresponds to Euler’s classical buckling result. Let x̃i = xi/`o; the deformed state can

be determined from x̃′1 = cos θ and x̃′2 = sin θ. Using these with equation 6.24 and noting

that the deformation is symmetric, we obtain the following:

x̃max2 = x̃2(1/2) =
1√
2F̃

∫ θo

0

sin θdθ√
cos θ − cos θo

(6.27)

x̃1(1/2) =
1√
2F̃

∫ θo

0

cos θdθ√
cos θ − cos θo

(6.28)

Note that from symmetry, the horizontal displacement in the loading end is twice that

of the horizontal displacement of the loading end, such that x̃1(1) = 2x̃1(1/2).

Figure 6.3 illustrates the response of the pinned beam subjected to axial compression.

As the end displacement increases, the structure buckles into an arc shape with finite

rotation at the ends and maximum displacement in the center. For this particular problem

six elements are required for highly accurate response; this is consistent with the previous

benchmark, in the sense that the pinned beam has mirrored symmetry. It is apparent

that three elements per 90o arc are needed to accurately capture response. This provides

a useful guideline to the number of elements needed for large rotations; for example, if

the ends were clamped (which does not afford a numerical solution), then large rotations

forming a loop will require four times as many elements.
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Figure 6.3: Comparison of elastica theory for a pinned-pinned beam loaded in com-
pression (buckling) and Bezier finite element results, for A`2o/I = 104. Key: red-1
element, blue-2 elements, green-4 elements, black-6 elements.
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Elastica cantilever with a dead transverse load

Consider a cantilever of length `o lying along the X1-axis such that dX1/dso = `o,

subjected to a pure vertical force at the free end, F = −F2(`o), and assume that the

axial stretch is negligible such that ds/dso = 1. A free body diagram reveals that the

moment at any location is given by M = EIdθ/dso = −Fx1. Taking the derivative, we

note dM/dso = EId2θ/ds2
o = −Fdx1/dso = −F cos θ, since ds/dso = 1. For convenience,

define s̃o = so/`o. Hence, the governing equation is simply:

θ′′ + F̃ cos θ = 0 (6.29)

where ( )′ = d/ds̃o, F̃ = F`2
o/EI and the boundary conditions are θ(0) = 0 and θ′(s̃o =

1) = 0, since the slope at the clamped end and moment at the free end are zero. The

solution follows that of the previous section, only with the slope at the free end, θ1 =

θ(s̃o = 1) as the unknown parameter.

F̃ (θ1) =
1

2

[∫ θ1

0

dθ√
sin θ − sin θ1

]2

, (6.30)

which again can be determined numerically. (Such functions are explicitly defined in

Mathematica.) Again, let x̃i = xi/`o; the deformed state can be determined from x̃′1 =

cos θ and x̃′2 = sin θ. Using these, we obtain the following for the tip position:

x̃1(1) =
1√
2F̃

∫ θ1

0

cos θdθ√
sin θ − sin θ1

(6.31)

x̃2(1) =
1√
2F̃

∫ θo

0

sin θdθ√
cos θ − cos θo

(6.32)

These results fully define the tip position and load as a function of the implicit as a

function of the implicit parameter θ1.
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Figure 6.4: Comparison of elastica theory for a cantilever with an load at the tip and
Bezier finite element results, for A`2o/I = 104. Key: red-1 element, blue-2 elements,
green-3 elements.

Figure 6.4 illustrates a comparison of elastic theory and the present beam formulation;

as the load increase, the tip position moves upwards and to the left. As in the case with

applied end moments, the formulation of a single arc requires only three elements for

accurate results.

6.5 Discussion and future Work

The benchmark cases illustrated in the previous section illustrate the accuracy of

the beam formulation; based on comparisons with traditional Bernoulli-Euler elements,

the novel interpolation adopted here is moderately more efficient, in that the number of

required elements for arbitrary large rotations is cut in half as a general rule. This has

important implications for large-scale involving a multitude of slender beams, but less so

for structures involving a limited number of members.
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The advantage of the present formulation for large scale systems lies in the fact that

it provides a direct calculation of energy, and as such can be utilized with non-gradient

methods for energy minimization. As gradient-based methods are well-known to scale

poorly for systems with large degrees of freedom, the present formulation may offer key

speed advantages for such systems. Unfortunately, the implementation of the formulation

in non-parallel codes did not offer much speed advantage, for the limited number of cases

studied in this work. Generally speaking, Monte-Carlo simulations with sufficiently small

perturbations to capture buckling instabilities performed comparably to gradient-based

methods. This is undoubtedly a consequence of the fact that only systems with few

degrees of freedom (less than 20 or so) were explored, and critically, the implementation

of Monte Carlo methods did not include parallel computing.

To scale up to larger systems and more rigorously assess the potential advantage

of the present formulation, highly parallel implementations are required. Direct energy

minimization of other highly non-linear systems on highly parallel platforms such as

GPUs has been demonstrated to offer significant computational advantages [85–87]. This

strongly suggests that the present formulation in similar parallel frameworks will offer

significant advantages to gradient-based methods, owing to the fact that gradient based

methods do not enjoy significant gains from parallelization. Hence, future work should

focus on exploring the efficiency of the present formulation in such frameworks for large

systems involving thousands of members.
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6.6 Appendix

For the element, the variations in the displacement gradients is written in terms of the variation of the nodal quantities

as:



δx′1

δx′2

δx′′1

δx′′2


=



N ′1 0 −N ′2`oλA sin θA N ′2`o cos θA N ′3 0 −N ′4`oλB sin θB N ′4`o cos θB

0 N ′1 N ′2`oλA cos θA N ′2`o sin θA 0 N ′3 N ′4`oλB cos θB N ′4`o sin θB

N ′′1 0 −N ′′2 `oλA sin θA N ′′2 `o cos θA N ′′3 0 −N ′′4 `oλB sin θB N ′′4 `o cos θB

0 N ′′1 N ′′2 `oλA cos θA N ′′2 `o sin θA 0 N ′′3 N ′′4 `oλB cos θB N ′′4 `o sin θB





δxA1

δxA2

δθA

δλA

δxB1

δxB2

δθB

δλB


= [B(t)]4x8 [δQ]8x1 (6.33)
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Chapter 7

Conclusions and future work

The results from this dissertation provide important insights and capabilities for the

design of cellular structures that control non-linear material response and energy absorp-

tion during compressive loading. Specifically, these contributions support the following

general conclusions, and recommendations for future work:

Post-buckling behaviors in structures with angled struts:

• The behavior of angled struts provides important insights regarding the role of post-

buckling behaviors, notably the transition from compression-controlled softening

to tension-controlled stiffening. The models presented in this work provide an

efficient basis to consider novel architectures with multiple angled struts which

can improve strength and energy absorption. In addition, the models should find

utility in the development of ‘programmable materials’ that are designed to exhibit

multiple stable deformation states. A key contribution is the ability to estimate

strut strains during snap-through, which can guide material selection and set limits

of cell topologies that produce robust response.
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• Predictions of viscoelastic struts that experience moderate rotations illustrate that

significant increases in damping are possible due to non-linear response, even in

scenarios where the quasi-static response shows no hysteresis. For structures that

exhibit snap-through, the combination of structural and material hysteresis leads

to dramatic increases in damping during cyclic loading. The models provide a

quantitative basis to estimate the level of intrinsic damping needed to stabilize dy-

namic events associated with snap-through, which should find utility in the design

of effective cellular materials with multiple stable states.

• Future work should focus on the cyclic hysteresis exhibited by angled struts, with

more sophisticated material models that can be correlated with standard viscoelas-

ticity parameters. That is, the standard linear model utilized in Chapter 5 on

damped resonance response should be incorporated into the angled strut model,

such that the implications of specific material selections are more easily under-

stood. This exercise should provide insight into the moderate amounts of hystere-

sis exhibited in stochastic foams; i.e., the hysteresis exhibited by angled struts and

arising from viscoelastic is likely to be effective in quantifying links between base

properties and foam response.

Simulations and design of cellular structures with multiple internal struts:

• Large deformation simulations of structures with multiple internal struts is made

challenging by strong non-linearities and bifurcations; different topologies exhibit

widely different degrees of imperfection sensitivity. A detailed study of four dif-

ferent topologies with hundreds of different geometry parameters has established

numerical parameters – including mesh size, loading rate, imperfection definition,

heuristic damping parameters – that are effective in achieving consistent results

for their strength and energy absorption. Nevertheless, the strong sensitivity of re-
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sponse to small changes in geometry indicates the design space is highly complex,

and claims of broadly applicable numerical procedures are worthy of skepticism.

Future work based on direct energy minimization of structures using global formu-

lations (such as that presented in Chapter 5) is a potentially promising pathway to

improve studies on the effect of topology for structures involving large rotations.

• The use of internal braces to sub-divide larger cells is a promising pathway to con-

trol post-buckling behaviors, with increases in strength and energy absorption of

about a factor of three. Braces between buckling-dominated struts that lie per-

pendicular to the loading direction are highly effective in controlling post-buckling

stability leading to large improvements in energy absorption; however, the con-

comitant change in strength is negligible. Angled internal struts are more effective

in increasing both strength and energy absorption; connections associated with the

first buckling mode of the larger cell structure are most effective.

• Future work should focus on extending the insights generated in this work to struc-

tures with more than a single ‘macro-cell’. As the results of this dissertation indicate

that this extension will be computationally expensive, focus should be on triangular

cells that are subdivided into smaller triangles. The results presented here suggest

that uniaxial response can be significantly improved if the sub-divisions are not

based on uniform sub-divisions, but rather the inclusion of sub-cells that are not

isotropic.

Damping near resonances in cellular structures:

• The framework presented in this work is a highly efficient pathway to predict the

implications of material selection and topology on forced, damped response of cel-

lular materials. The scaling relationships elucidated in Chapter 5 illustrate that

174



Conclusions and future work Chapter 7

optimal responses are achieved when the characteristic frequency of the viscoelastic

material are ‘tuned’ to match the frequency of the resonance mode for which damp-

ing is sought. For isotropic prismatic honeycombs subject to lateral compression,

the level of structural damping mirrors the loss factors of the base material, due to

the fact a standing wave is established in the loading direction.

• Loss factors for honeycombs comprising composite struts can be significantly higher

than the stiff phase utilized to provide static stiffness, suggesting that compos-

ite cellular materials can significantly improve damping over monolithic materials

with high stiffness and low damping. This suggests a clear pathway to creating

lightweight structures with both high stiffness and improved damping; for exam-

ple, include a high damping elastomer in a stiff polymer with relatively low damping

can reduce resonsance response by a factor of 5-10; high damping metals such as

tin used as filler materials inside low damping shells can lead to similar improve-

ments. The increase in damping is most pronounced when the modulus of the high

damping phase is within a factor of twenty of the modulus of the low-damping

phase.

• Cellular structures that comprise a distribution of cell sizes and shapes can be effec-

tive in improving damping in monolithic material structures; the improvements are

most effective when internal cells are included that disrupt the formation of standing

waves established during uniaxial resonance. Damping increases of a factor of two

were demonstrated with concomitant increases in structural stiffness; this strongly

suggests that topology optimization can be exploited to identify non-uniform cell

distributions that lead to further increases. The efficiency of the numerical frame-

work presented here sets the stage for such efforts.

• Future work should focus on the interplay of material selection and topology in
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controlling structural resonance. An important advance would be a tabulation of

the frequency response of various polymers; while temperature-frequency superpo-

sition methods are well-known, existing data in the literature is relatively sparse.

Quantification of the frequency response of common elastomer and glassy polymer

formulations is needed to determine whether the damping gains illustrated in this

work can be realized in structures with dimensions relevant to key applications.
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