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ABSTRACT OF THE DISSERTATION 

 

Machine Learning-Based Detection of Depression Symptoms with Smartphones and 

Consumer Wearable Devices 

 

by 
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Doctor of Philosophy in Medical Informatics 

University of California, Los Angeles, 2024 

Professor Alex Anh-Tuan Bui, Chair 

 

Consumer wearable devices and smartphones are ubiquitous and generate valuable 

health-related data that remain underexplored. These data have the potential to 

enhance our understanding of depression by bridging gaps left by traditional methods 

that often rely on retrospective self-reports. By leveraging machine learning, we 

identified relationships between specific passively measured behaviors and 

retrospective self-reports related to depression severity, reward functioning, and sleep 

quality. Focusing on sleep quality, our findings indicate that self-reported and 

physiologically measured sleep quality assess different constructs and offer distinct 

insights into depression. Anomaly detection (AD) methods were examined and aimed at 

identifying correlations between deviations from typical behavior, as recorded by mobile 

health (mHealth) devices, and changes in depression severity and symptoms. Although 
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no significant relationship was found, the AD methods effectively detected multivariate 

anomalies, indicating potential applications beyond depression. Additionally, real-time 

data from wearable devices proved effective in detecting momentary reward functioning 

and affect, with models performing above random chance and performance varying 

across demographic and clinical groups. This dissertation highlights the importance of 

nuanced approaches in using consumer device-generated data to passively detect 

depression symptomology. 
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Chapter 1: Introduction 

This dissertation centers on using smartphones and consumer wearable devices to 

detect symptoms of depression. I leveraged machine learning techniques to train 

models with passive sensor data streams to detect self-reported measures of 

depression. I additionally developed novel methods to detect abnormal or anomalous 

behavior that can utilize all the new and changing data streams we obtain from 

wearable devices.  While there are significant limitations inherent in the use of 

consumer products for research, I find that consumer wearable devices can detect self-

reported depression symptomology and can be used to advance the boundaries of how 

depression is measured and defined. 

1.1 Defining and measuring depression 

Depression is a condition that has been studied under different names since at least the 

Greek philosophers and is a leading cause of disability, suffering, and death globally2. 

However, it was only in the mid-20th century that the study of depression formally began 

in psychology. In fact, the reliability of diagnosing major depressive disorder (MDD) is 

incredibly low (kappa = 0.25)3 for such a highly prevalent condition (lifetime prevalence 

18.5% in the United States)4. 

To improve clinical outcomes in depression we need a more granular 

understanding of depression beyond classification, starting with a look at 

symptomology5. The specific symptoms one experiences during a depressive episode 

are critical to the response to antidepressant treatment6. This finding is crucial to 
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consider, as medication-based treatments have side effects that are themselves 

symptoms of depression. Attempts are being made to better define depression as a 

multidimensional measure rather than a simple classification to treat the condition more 

precisely and effectively. There are two key attempts to redefine how we view mental 

health in ways that are driven both by empirical data and theory. The Hierarchical 

Taxonomy of Psychopathology (HiTOP) represents a top-down approach based on 

empirical data regarding symptoms, diagnoses, and maladaptive behaviors7. The 

taxonomy is based on currently measured symptoms and leverages existing diagnoses, 

making the framework relatively immediately actionable, and the hierarchical structure 

has been validated on clinical and biological data8–10. Within HiTOP, the most common 

depressive symptomology falls under the distress subfactor within the internalizing 

spectra of psychopathology alongside commonly comorbid conditions such as 

generalized anxiety disorder (GAD). In contrast to HiTOP, the Research Domain Criteria 

(RDoC) framework from the National Institute of Mental Health (NIMH) represents a 

more theoretically driven, bottom-up approach to understanding mental health and 

cognitive functioning11. The RDoC framework focuses on domains of basic human 

neurobehavioral functioning (e.g., negative valance, social processes, reward 

functioning, etc.) and specific ways in which they can be measured in the context of the 

environment and developmental stage. It does not immediately have clinically 

actionable insights but sets a stage for research to build a mechanistic understanding of 

the brain. By combining current findings from HiTOP that are linked to RDoC, Michelini 

et al. summarized areas to validate the mechanism from RDoC with empirically 
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observed phenotypes detailed in HiTOP12, providing targets for empirical exploration 

and validation.  

1.2 Consumer devices for mental health symptom monitoring 

Linking HiTOP phenotypes with domains in RDoC provides clearer targets for 

exploration with novel forms of data collection, such as mobile health (mHealth), 

especially where domains traditionally relied on, such as neuroscience13 and genetics14, 

have not shed as much light. With respect to depression, Michelini et al. reported that 

Negative Valence and Arousal & Regulatory domains in RDoC are associated with the 

Internalizing HiTOP domain, which contains the bulk of MDD-related symptomology. We 

may thus expect to validate relationship components in domains such as circadian 

rhythm, sleep-wake with key depressive symptoms via wearable devices, or 

smartphone data. By detecting specific symptomology with these devices, we can 

improve and expand our understanding of how depression is currently defined and link it 

to new and emerging frameworks for understanding mental health. 

This dissertation focuses on how consumer wearable technology and 

smartphones enable more precise and high temporal monitoring of depression 

symptoms in the context of such frameworks to investigate mental health. Consumer 

trends in recent years have shown the growing prevalence of mHealth devices, with 

most adults owning smartphones and increasing adoption of fitness trackers or 

smartwatches. In 2019, 21% of American adults used fitness trackers or 

smartwatches15, and that number increased in 2023, with 26% of internet users in the 

United States (US) using a smartwatch (e.g., the Apple watch) and 30% of internet 

users 16--64 using a smartwatch or fitness tracker (e.g., Fitbit)16. 
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Data from wearable devices and smartphones show promise in bridging the time 

gap between the sparse clinical touchpoints used in traditional assessments of mental 

health. Mental health trajectories, or changes in symptom severity over time, are highly 

heterogeneous across populations, and different patterns emerge across age, sex, and 

socioeconomic status17. Given this variation in depression symptomology as well as 

trajectories, large sample sizes or very clinically homogenous studies are needed to 

account for the variance. In realizing larger cohorts, consumer wearable devices are 

particularly useful given their large prevalence. Data from mHealth devices can provide 

an understanding of the key behaviors that may lead to changes in symptoms, 

particularly as they occur in real-world settings and daily activities. Such insights will be 

a critical step for developing targeted and personalized interventions that address 

diverse needs. The use of research devices can be limited by cost, research staff 

burden in manually retrieving the data, and lack of clean user interfaces that naturally 

incentivize the use of the product. And in contrast to research devices, people want to 

use consumer-facing smart watches. 

1.3 Contributions 

While consumer wearable devices hold significant promise for improving our 

understanding of mental health, the data they generate are messy, large, and currently 

not clinically useful. My work centers on finding what signals may be present in these 

consumer device data in relation to depression in several ways: 

• Aim 1: Investigate which key symptoms of depression and reward functioning are 

detectable with passive sensor data. Machine learning models were tested to 

determine if there was any relationship across participants (nomothetic modeling) 



 5 

between their sensor data and depression symptomology. We find that there is a 

signal between the device data and depression symptoms (appetite, reward 

functioning, and sleep quality measures) and find notable discrepancies between 

self-reported symptoms and objectively measured behavior. We highlight that self-

reported sleep disturbances in those with depression are not necessarily a reflection 

of changes in physiological sleep measures but are still associated with worsening 

neurocognitive performance. 

• Aim 2: Develop anomaly detection techniques to investigate whether deviations 

from normal behavior, as measured by mHealth devices, are associated with 

changes in mental health. Anomaly detection algorithms were developed for use on 

large multimodal datasets, such as those with consumer wearable and smartphone 

data, and tested in simulations and with two different datasets with depression 

outcome measures. The approach to AD used extends the previous methodology, 

making fewer assumptions on the input data and applying the methods specifically 

to depression. While the detectors do find behavioral anomalies, the number of 

these daily anomalies is not found to be significantly associated with changes in 

depression severity, suggesting that for depression, we need to investigate specific 

behavioral changes rather than general instability in behavior. 

• Aim 3: Assessment of momentary reward functioning and affect with passive sensor 

data. Using passive sensing data, we detect responses to ecological momentary 

assessments (EMAs) using between 15 minutes and 3 hours of passive sensor data 

prior to the EMA response. We find that 11 of 15 EMA items related to affect and 

reward functioning can be detected, but models perform significantly differently 
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across participants on the basis of demographic characteristics and self-reported 

mental health. Features not typically investigated or measured in the study of 

depression, such as environmental audio exposure and basal energy expenditure, 

are highly important to models detecting momentary reward and affect. 

 

1.4 Dissertation Organization 

 

This dissertation is organized as follows: 

• Chapter 2 presents a description of prior investigations of smartphones and 

wearable devices in relation to depression outcomes. I also describe the analytic 

methods typically utilized and introduce the primary dataset investigated in this 

dissertation. 

 

Figure 1.1 Overview of dissertation organization 
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• Chapter 3 (Aim 1) reports on the use of passive sensor data to detect individual 

question responses to retrospective self-reports related to depression, anhedonia, 

and sleep quality. This work is a preliminary investigation of which specific 

depression-related symptoms can be linked to passive sensor data. 

• Chapter 4 (Aim 1) builds off chapter 3 by specifically investigating how sleep quality 

measured via self-reports or by wearable devices and phones is related to 

depression symptomology. This work is intended to clarify whether physiologically 

measured sleep from the phone and watch measures the same construct as self-

reported sleep quality in relation to depression and neurocognitive performance. 

• Chapter 5 (Aim 2) describes the creation of a new anomaly detection method for 

detecting anomalies in passive sensor data and characterizes whether those shifts 

from normal behavior are related to changes in self-reported depression 

symptomology. 

• Chapter 6 (Aim 3) looks at a finer temporal resolution of self-reported factors 

relevant to depression by examining ecological momentary assessment (EMA) 

responses related to reward functioning and affect. A machine learning modeling 

approach is taken to determine whether momentary affect and reward functioning 

can be detected with real-time sensor data and on which population subgroups the 

models work best. 

The concluding section, Chapter 7, highlights the key contributions made to the field of 

digital sensing in mental health, the limitations of working in the space, and future 

directions to move the work presented forward.  
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Chapter 2: Related Work 

The field of digital sensing in mental health is relatively new and rapidly evolving. Initial 

studies using consumer devices for depression monitoring focused on data collectable 

through smartphones, including location, calls, texts, voice, usage of device apps, 

websites, and keyboard interactions. Research-grade wearable devices such as the 

GeneActiv and Actiwatch wrist-worn actigraphy devices have been used for the passive, 

continuous assessment of sleep and activity patterns since the 1970s18. However, 

outside of sleep and activity, other sensors common to more recent consumer wearable 

devices, such as heart rate, heart rate variability, and respiratory rate, are not commonly 

utilized in studies monitoring depression, although there is a growing body of literature 

investigating heart rate variability and anxiety19. Fig. 2.1 summarizes the key features 

from phone- and watch-based studies in relation to depression, where all items from 

wearable devices are used in this dissertation. 

Notably, prior work in the field of digital sensing in mental health has tended to 

involve small sample sizes of fewer than 100 participants and short durations of up to 

two weeks20. In recent years, many smartphone-based studies have leveraged the 

widespread adoption of smartphones to collect larger sample sizes and longer durations 

of data than has been done earlier in the field, with many studies involving several 

hundred participants and lasting months to years21. A recent study by Zheng et al. using 

the All of Us dataset even looked at Fitbit data in 6,785 participants over a median of 

4.5 years22. Some studies in the field of digital sensing for mental health incorporated 

wearable devices but often did not focus on metrics derived from them in analysis. 
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Depression prediction is a task often attempted by studies using passive sensing 

technologies. In these cases, depression is commonly determined via self-reports, such 

as a score above a threshold for the Patient Health Questionnaire-8 (PHQ-8)23. The 

performance varies by study, but the average classification area under the receiver 

operator curve (AUROC) values range from 0.6-0.7. For example, Melcher et al. 

reported that in their sample of 415 participants with phone data, a logistic regression 

model had an AUROC of 0.65624, and Daniel et al., in a study of 112 adults over 2 

weeks, were able to predict MDD with an AUROC of 0.7225. More often, studies have 

attempted to identify whether a specific metric or feature from smartphones and 

wearables is related to self-reported or clinician-assessed depression severity. The 

findings concerning important features for depression monitoring are summarized 

below. 

 

 

Figure 2.1 Summary of evidence for features collected from mHealth devices. All categories in the 
watch-based measurement section are used in this dissertation. Noise refers to environmental audio. 
Acronyms: HRV – Heart Rate Variability. 
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2.1 Smartphone-based features 

2.1.1 Location 

Location-based features from smartphones have been among the earliest indicators to 

show robust associations with depression severity. Their utility was established in 2015 

by Saeb et al., who first defined the metrics of location entropy and location variance26. 

Studies tend to compare these metrics to PHQ-8 or PHQ-9 self-report surveys by 

investigating linear correlations between passively sensed features aggregated over 1–

2 weeks and the total score: 

• The exact findings from Saeb et al.’s original sample of 28 people27, such as 

circadian rhythm-related GPS-derived features, have not been replicated in larger 

samples28. 

• For the metrics of location entropy and location variance, several larger studies with 

sample sizes of 1,01329, 290 participants30, 18231, and 16432 participants confirmed 

an association with self-reported depression severity. 

• A review by Leaning et al. revealed that across studies, higher depression symptom 

scores are associated with less mobility, as measured via the GPS21. 

• Additionally, Xia et al. reported that the distinctiveness (how unique a pattern is 

relative to a full sample) of mobility patterns was associated with unstable affect33. 

2.1.2 Call and Text Data 

Call and text data are often aggregated as the number of calls and texts an individual 

sends or receives and the number of unique contacts communicated with: 
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• Cao et al. reported that higher depression scores were correlated with fewer social 

interactions on the phone34. 

• Currey et al. reported that when assessing the correlation of mHealth features with 

depression severity, features from calls were among the most important35. 

• In a multilevel modeling approach with a large sample size of 1013 participants, 

Stamatis et al. did not find call or text data to be significant predictors of depression 

severity29. 

Call and text data may represent a feature whose utility may be in specific 

symptom detection rather than overall depression severity, as individuals largely differ in 

how they use these phone-based communication tools, especially in different age 

groups. 

 

2.1.3 Smartphone Usage 

Metrics related to smartphone usage, such as screen time, unlock duration, and app 

category usage, have had mixed efficacy in predicting or correlating with depression 

severity: 

• Sverdlov et al. reported that communication app usage metrics such as “lower count 

of use” and lower entropy of usage time are correlated with depression severity36. 

• Sun et al. reported that unlock duration of smartphones was correlated with 

depression. However, Zou et al. reported that very few device use features related to 

depression severity37, and Currey et al. reported that screen time was not predictive 

of depression severity35. 
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2.1.4 Voice Data 

Voice-derived features have been a promising area for depression biomarker derivation 

for decades, with early work looking at markers showing relationships with depression 

severity38,39: 

• A recent review by Low et al. revealed that prosodic features such as decreases in 

perceived pitch and vocal range and features related to vocal vibrations such as jitter 

and shimmer increase with depression severity and psychomotor retardation40. 

• Wasserzug et al. reported that automated vocal depression scores could predict 

depression in 40 depressed, 104 nondepressed, and 14 participants in remission41. 

With new developments in machine learning and large language models, emotion and 

vocal features are likely to become more important and useful over time. Initiatives such 

as Bridge2AI-Voice, which are developing datasets to enable these models, will only 

further accelerate progress42. 

2.1.5 Keyboard Metrics 

Keyboard-derived metrics have promising early data suggesting that they may work as 

digital biomarkers for cognitive functioning43. Several companies, including Mindstrong, 

which went out of business in 2023, started on this promise and linked these biomarkers 

to mental healthcare. Since these early results, more recent studies have demonstrated 

additional promising and more nuanced ideas of what metrics from keyboard use can 

tell us about mental health and depression, particularly when coupled with phone 

accelerometer data. Ning et al. reported that the combination of accelerometer and 

keyboard data was useful for understanding diurnal patterns in cognitive function, a 

finding that may translate to symptom tracking in mental health disorders44. Additionally, 



 13 

Knol et al. reported that less phone movement during typing was related to increased 

levels of anhedonia45. 

2.2 Wearable Devices in Mental Health Monitoring 

Most studies conducting digital sensing for mental health outcomes rely on 

smartphones. Those that include fitness trackers or smartwatches are often relatively 

small sample sizes given the frequent need to supply participants with wearable 

devices. Studies have focused on either consumer-facing devices or traditional research 

devices, with most earlier studies focusing on research actigraphy devices comprising a 

wrist worn accelerometer, gyroscope, and sometimes ambient light sensor. Data from 

different studies reveal that metrics from these wearable devices can augment our 

ability to detect depression symptoms beyond smartphone data alone46. 

2.2.1 Wrist Worn Actigraphy 

Wrist-worn actigraphy devices have been commonly used in research to assess 

physical activity, sleep, and circadian rhythm and are considered the gold standard for 

assessing physical activity: 

• In a meta-analysis, Wüthrich et al. reported that actigraphy-measured rest–activity 

rhythms were associated with depression severity47, validating the idea that 

psychomotor slowing can be measured objectively with these devices. 

• In a 359-person sample, Difrancesco et al. reported that objective, not subjective, 

sleep, activity, and circadian rhythm parameters changed in depressed or anxious 

individuals compared with healthy controls48. 



 14 

When investigating sleep specifically, polysomnography (PSG) is the gold standard 

used to compare sleep parameters such as efficiency, latency, duration, and sleep 

stages: 

• Razjouyan et al. reported that wrist-based actigraphy may not be enough to capture 

sleep parameters, as it may miss core components of motion in comparison with 

chest-based devices49. However, in a recent white paper, Apple described the ability 

to capture both sleep timings and staging using accelerometer data from the watch 

alone50. The sensitivity and specificity of these algorithms are better than those of 

state-of-the-art algorithms that use other wrist-based devices51. 

• In a sample of 2,317 people, Glaus et al. reported significant associations with 

current MDD and sleep parameters measured by wrist actigraphy52. 

• In sample of 6,785 participants over a median of 4.5 years, Zheng et al. found a 1.75 

odds ratio for MDD per hour increase in standard deviation of sleep duration22 

• Sleep has also been determined with acceptable accuracy via metrics from 

smartphones alone, with a high Pearson correlation between predicted and self-

reported sleep (r=0.83)53. 

• A comparison of self-reported sleep via daily sleep diaries or longer duration 

retrospective instruments revealed correlations between 0.40 and 0.6854. 

Common devices used in research settings for actigraphy include wrist worn 

devices from companies such as Empatica, ActiGraph, and GeneActiv. Devices from 

research wearable device companies commonly include accelerometers and 

gyroscopes. Proprietary software is used to calculate “activity counts,” a measure of 

activity, which is then further analyzed by researchers. The software used to calculate 
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these “activity counts” was recently made public55 by ActiGraph. Other features 

common to research-grade devices include ambient light, and some newer research 

wearables also include measures of electrodermal activity, photoplethysmography (for 

measures such as heart rate and heart rate variability), and skin temperature 

readings56,57. 

2.2.2 Vital Signs 

Elevated heart rate has been associated with depression severity58 and may be a 

byproduct of stress and physical inactivity. Generally, cardiorespiratory fitness can be 

measured by combining features related to respiratory rate, heart rate, and physical 

activity from a wearable device. 

Heart rate variability (HRV) is typically measured in a laboratory setting and is 

derived from electrocardiogram (ECG) readings. The intervals between specific peaks 

in the ECG waveform are analyzed and can provide insight into autonomic nervous 

system function. Early studies initially reported no difference in R‒R interval variability 

between healthy controls and depressed individuals59. However, a body of evidence 

demonstrating that lower heart rate variability is observed in patients with severe MDD 

than in healthy controls is emerging60. However, this decrease can be modulated or 

obscured in the presence of psychopharmaceutical treatment61. 

The context in which HR and HRV are measured can influence the utility of the 

metrics derived. A systematic review by Schiweck et al. revealed that a reduced heart 

rate and HRV response to stress in validated tasks were found in those with MDD62. 

Wearable devices represent one way to find context-specific heart rates and HRVs. 

However, few studies have investigated wearable devices that measure heart rate 
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variability and depression. One example study modeling heart rate variability from an 

apple watch revealed an association between circadian HRV features and emotional 

support and resilience63. 

Respiratory rate is known to be related to mental stress and anxiety64. However, 

it is not often measured or reported in studies investigating mental health with mHealth 

devices. A lab-based study by Kral et al. revealed that a lower respiratory rate after 

mindfulness training was associated with better well-being65, suggesting that respiratory 

rate from mHealth devices may be a useful biomarker in studies of mental health. 

2.3 Analytic Methodologies Employed 

The analysis of mHealth data for depression-related outcomes generally follows a 

framework in which passive health data are aggregated prior to self-reported or 

clinician-assessed measures of depression severity. 

2.3.1 Feature Generation and Imputation 

Typically, aggregation of features is performed daily (e.g., average daily steps) and then 

further aggregated into 2nd-order statistics over a period relevant to a particular outcome 

(e.g., standard deviation of average daily steps during the two weeks prior to a 

depression screening survey). Alternatively, features are aggregated only via 1st-order 

statistics over the full relevant timespan for a survey (e.g., average heart rate over the 

month prior to a retrospective sleep quality survey). This approach can lead to fewer 

features being generated, improving the interpretability and power of each feature. 

Imputation can be performed on missing passive sensor data in multivariate, univariate, 

or not at all. Many studies looking at passive mHealth data for depression detection 
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either do not disclose how missing data are handled or use simple median imputation20. 

When imputation is typically performed, there are criterion set per study for a minimum 

amount of information required before imputation will be considered21. Research 

investigating the effects of various imputation methods and their effects on downstream 

predictive tasks has revealed that simpler imputation methods may be less accurate in 

reconstructing the true data but are better for predictive modeling66. 

  

2.3.2 Modeling Approaches 

 

 

Figure 2.2 Primary model training and evaluation strategies. 
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A key promise of smartphones and wearable technology is that by leveraging the dense 

data streams they generate; we can quickly personalize models to detect symptomology 

and tailor treatments. In this spirit, several studies have shown that personalized 

modeling approaches, or idiographic modeling, improve the predictive performance for 

depression and mood detection, as outlined in Fig. 2.267–70. 

Personalized modeling trains a model on a variable amount of data from a participant 

and uses that same participant’s later data to evaluate performance. In contrast, global 

(or nomothetic) modeling separates individuals and trains models on one set of 

individuals; evaluating performance on a set the model has never seen. A third 

approach is mixed effect modeling, where an adjustment is made per individual and a 

separate model is used to find changes across individuals. 

The higher performance of personalized as opposed to nomothetic models may 

be driven by the model’s ability to “remember” the past responses of a participant. 

When predictive personalized models and mixed effects models are compared to simply 

predicting a participant’s prior response, several studies have found past response to be 

the best predictor71,72. This observation may be driven by the highly identifiable nature 

of mHealth data73, allowing models to quickly identify the individuals from whom a set of 

data comes and predict their prior response set. A more recent 2024 study by Balliu et 

al., however, revealed that individualized modeling improved predictive performance, 

even in comparison to participants’ prior response74. 

Personalized modeling is aimed at addressing the incredible heterogeneity in the 

relationship between behaviors and changes in depression symptomology75. However, 

by leveraging nomothetic modeling, and identifying key participant characteristics that 
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are associated with differences in model performance to detect depression symptoms, 

we may be able to identify parameters that begin to explain that heterogeneity and 

improve our understanding and definition of depression. 

2.3.3 Anomaly Detection 

The data from smartphones and smartwatches are incredibly complex, being 

multimodal, being sampled dynamically and at different timepoints, and suffering from 

complex missingness. One way to leverage these data while minimizing assumptions is 

to use them to detect shifts in behavior. Anomaly detection (AD) represents a 

framework to look at multimodal data streams and determine if a given day or region is 

different than temporally proximate data points. This approach has not been used to 

successfully detect changes in the symptomology of depression. However, there has 

been success from Tourous’ lab in linking anomalies to relapse of schizophrenic 

episodes in a 17-patient sample over 3 months76, 126 participants over 3-12 months77, 

and 132 participants from 3 international sites by Cohen et al.78. The study by Cohen et 

al. did find a relationship between passive sensor changepoints and measures of 

depression, anxiety, and sleep quality, suggesting that instead of online anomaly 

detection, the offline changepoint detection used may be of interest in unipolar 

depression. 

Amor et al. investigated the use of AD on medical data streams and reported that 

principal component analysis (PCA)-based methods are effective and interpretable79. In 

addition, nonnegative matrix factorization (NMF) represents a potential improvement in 

the interpretability of PCA, especially for use in biology and other physiologic and 

clinical phenomena80. The interpretability of NMF over PCA is due to all components of 
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an NMF decomposition being unable to cancel each other out, as they can contain no 

negative values. This is demonstrated in Fig. 2.3 Lee and Seung, where NMF and PCA 

were used to analyze facial images1. The NMF matrix decomposition of faces shows the 

isolation of individual facial features, whereas the PCA decomposition is more difficult to 

interpret. 

 

   

Figure 2.3 Comparison of non-negative matrix factorization (NMF) and principal component analysis 
(PCA) matrix interpretability adapted from figure 1 of Lee and Seung 19991. 
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2.4 The Operationalizing Digital PhenoTyping In the 

Measurement of Anhedonia (OPTIMA) Study  

 

The UCLA Depression Grand Challenge is conducting some of the largest studies 

leveraging mHealth devices to investigate mental health alongside traditional and 

investigational clinical assessments. The Operationalizing Digital PhenoTyping In the 

Measurement of Anhedonia (OPTIMA) study recruits participants with high or medium 

depression severity and high, medium, and low levels of anhedonia. As part of the 

study, extensive digital phenotyping data were collected from participants via their own 

iPhone and a study-provided Apple Watch series 7 or higher over the course of 13 

weeks; data were collected between October 2022 and April 2024. Notably, the 

OPTIMA study specifically enriches for those with higher levels of anhedonia, a 

 

Figure 2.4 Overview of the Operationalizing Digital PhenoTyping In the Measurement of Anhedonia 
(OPTIMA) study data collection protocol. 
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symptom of depression that common serotonergic therapeutics often fail to improve81 

and is associated with worse mental health outcomes82. The OPTIMA study data 

collection design is shown in Fig. 2.4. 

The UCLA Depression Grand Challenge Study App (DGC Study App) built by 

Avicenna Research is installed on participant iPhones and used to collect digital health 

data. The OPTIMA study collected data from 343 participants whose demographic data 

are detailed in Table 2.1. 

Table 2.1 OPTIMA demographic and treatment history breakdown. One participant is missing baseline 
demographic data. 

Demographics and Treatment History 
Yes No 

Sex – Female 224 (65.5%) 118 (34.5%) 

Family Income <100k 191 (55.8%) 151 (44.2%) 

Non-Hispanic White 166 (48.5%) 176 (51.5%) 

History of Psychotherapy 273 (80.1%) 68 (19.9%) 

Depression diagnosis 231 (67.7%) 110 (32.3%) 

Psychotherapy (in past 4 weeks) 151 (44.3%) 190 (55.7%) 

Currently using medication for mental health 147 (43.1%) 194 (56.9%) 

 
Mean Std 

Age 33.48 12.11 
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Chapter 3: Detecting Symptoms of Depression with 

the iPhone and Apple Watch 

This chapter is adapted from the paper: “Detection of Symptoms of Depression Using 

Data From the iPhone and Apple Watch,” published in the 2023 IEEE International 

Conference on Bioinformatics and Biomedicine (BIBM)83. 

   

Digital health data from consumer wearable devices and smartphones have the 

potential to improve our understanding of mental illness. However, in conditions such as 

depression, there is not yet a consistent uniform measurement tool whose results can 

be reliably used as a gold standard measure of depression severity. This work seeks to 

specify what symptoms and dimensions of depression can be detected via vitals, 

activity, and sleep monitored by consumer wearable devices. Machine learning models 

are fit to digital health data and used to detect responses to individual questions from 

surveys (self-reports) as well as summary scores from these self-reports. For high-

performing models, feature importance is investigated. The analysis was conducted on 

preliminary data from 99 participants in an ongoing study with data from the Apple 

Watch and iPhone along with validated self-reports relevant to depression severity, 

anhedonic severity, and sleep quality. The receiver operating characteristic area under 

the curve (ROC AUC) and average precision are used to assess model performance. 

The digital health sensor data investigated were found to significantly detect five of 74 

measures, including overall depression severity and specific symptoms such as poor 

appetite, aspects of anhedonia, and sleep timings (ROC AUC between 0.63 and 0.72). 
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The features these models use in detection vary per detection task and suggest further 

areas for investigation to specify the right features to look at per symptom. 

3.1 Introduction 

Depression is a complex and heterogeneous condition in terms of symptom 

presentation, with 52 symptoms assessed across seven commonly used depression 

screening tools84. A core symptom of depression is anhedonia—the inability or reduced 

ability to feel pleasure. This symptom is present in some but not all people with 

depression. Digital health data from wearable devices represent another domain by 

which we may improve our characterization of depression, its subtypes, and symptoms 

through the continuous measurement of human behavior and physiology. Nonetheless, 

associations between single digital features and overall depression severity vary in 

direction and magnitude across studies, suggesting that overall depression severity may 

be too phenotypically heterogeneous to predict accurately. The goal of the current study 

is to move beyond overall depression severity scores to identify which features derived 

from wearable devices are related to which symptoms of depression and anhedonia85. 

By using machine learning techniques and interpretability methods, this analysis 

attempts to identify how simple features derived from wearable devices and 

smartphones may be associated with self-reported symptoms or dimensions of major 

depressive disorder. A machine learning model was trained to classify high- or low-item-

level responses into participant self-reports, as well as subscale scores and total scores 

of standardized questionnaires that measure depression and related constructs. The 

importance of features from the best-performing models was then investigated to 
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understand which features from digital health sensors contribute to model performance 

and how they do so. 

3.2 Methods 

An overview of the analysis pipeline is shown in Fig. 3.1. 

 

3.2.1 Dataset Overview 

From the OPTIMA study, all collected data until July 7th 2023 are used in this analysis; 

as such, individual participants are contributing between 2 and 13 weeks of data. 

Participant characteristics of those enrolled in the study as of July 7th 2023 are shown in 

Fig. 3.2, note that this is a subset of participants prior to study completion.  

 

Figure 3.1 Flowchart overviewing methods used for to detect self-reported 
itemr esponse with passive sensor data 

 

 

Figure 4.1. Flowchart overviewing methods used for to detect self-reported 
itemr esponse with passive sensor data 
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Self-report Measures 

For this analysis, responses from three self-report questionnaires are investigated to 

compare digital health sensor data to depression, and anhedonia, and sleep quality. For 

all self-reports, baseline (Week 0) administration is excluded from analysis except to 

stratify model performance on participants with high or low levels of depression and 

anhedonia at the beginning of the study. 

1. A modified version of the Patient Health Questionnaire depression scale 9 (PHQ-9) 

is used that has 14 total items. The PHQ-9 has high internal reliability (Cronbach’s 

alpha = 0.89)86. Modifications include splitting compound symptoms (i.e., appetite 

decrease vs. overeating, sleep increase vs. decrease, psychomotor agitation vs. 

retardation, feeling down or depressed vs. feeling hopeless), adding two items to 

assess irritability and libido (i.e., “little interest in sex”), and removing the suicidality 

item. A recent IPD-MA demonstrated the equivalence of the PHQ-8 and PHQ-9 for 

 

 

Figure 3.2 Top row: Distribution of demographic characteristics (age, current gender, family income, 
and race). Bottom row: time in study and self-reported anhedonia (PVSS score) and depression (PHQ-
8 score) at the start of the study. 
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screening/diagnosis87. For this study, a total score representing the PHQ-8 was 

created by taking the max score of each pair of separated compound symptoms and 

excluding the two added items. The PHQ-8 is administered nine total times at 

Weeks 0, 1, 2, 4, 6, 7, 8, 10, and 12.  

2. The Positive Valence Systems Scale (PVSS) short form is a 21-item measure of 

anhedonia that assesses pursuit of and response to a wide range of rewards (with 

seven reward-specific subscales: Food, Physical Touch, Outdoors, Positive 

Feedback, Hobbies, Social Interactions, Goals), and across six positive valence 

system domains (domain-specific subscales: Reward Valuation, Reward 

Expectancy, Effort Valuation, Reward Anticipation, Initial Responsiveness, Reward 

Satiation), as well as total score (mean response across all items)88. The PVSS has 

a high internal reliability with Cronbach’s alpha between 0.91-0.9488. The 14 item 

PVSS is administered nine total times at Weeks 0, 1, 2, 4, 6, 7, 8, 10, and 12 (same 

as the PHQ-8). 

3. The Pittsburgh Sleep Quality Index (PSQI) asks participants to rate their prior 1-

month of sleep and assesses sleep quality and disturbances89. The PSQI asks 19 

questions which are used to calculate seven subscales: subjective sleep quality, 

sleep latency, sleep duration, habitual sleep efficiency, sleep disturbances, use of 

sleeping medication, and daytime dysfunction. The subscales are added to form a 

global score. The three PSQI domains (sleep duration, use of medication, and sleep 

quality), which are a discretization of just a single question, are excluded from 

analysis as they are redundant with the item response. This leaves 19 questions, 

four subscales, and one total score used as detection targets. The PSQI also has a 
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high internal reliability (Cronbach’s alpha = 0.8)90. The PSQI is completed at Weeks 

0, 6, and 12. 

For the PHQ-8 and PVSS, there are two versions used across the study, one which 

asks participants to rate their past single week (7/9 administrations), and another that 

asks about the past two weeks (2/9 administrations). For all three questionnaires, item 

level responses, subscales, and total scores are converted to binary outcomes based 

on whether they are greater than the median response across collected data. The 

threshold for binary classification is modified per item to ensure that there is as close to 

an even class distribution as possible. On average across items, the true class (values 

greater than threshold) has 42.7% of responses (minimum 24.1%, maximum 66.2%).  

The conversion to a binary classification target lowers our ability to interpret if 

models would be capable of detecting changes within a participant, especially if 

participants do not switch between the low or high class of the target variable. To 

understand how many participants transition from high to low class or vice versa during 

the study we look at each item per survey and calculate how many participants have 

responses in both the low and high class over the course of the study. For the PHQ-8 

items on average 49% of participants have both a high or low response to items (min 

31%, max 60%). For the PVSS items it is an average of 47% of participants (min 38%, 

max 56%). And for PSQI items, on average only 15% of participants transition class 

during the study (min 5%, max 26%).  

Passive Sensor Features  

Digital health sensor features were generated by aggregating sensor data prior to self-

report administration. For the PSQI, participants are asked about their last month, so 28 
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days of digital health sensor data prior to the timestamp of administration are collected 

per participant response. For the PHQ-8 and PVSS, participants are asked about 7 or 14 

days prior to the timestamp of administration based on whether participants were asked 

about the prior week or prior two weeks. All sensor data is collected utilizing Apple’s 

HealthKit application programming interface (API). A total of 57 features across three 

categories are generated from sensor data expected to have high availability given 

expected watch and phone usage according to the study protocol.   

1. Vitals (23 features): Respiratory rate, oxygen saturation, heart rate, and heart rate 

variability (HRV), as standard deviation of the N-to-N interval (SDNN), are filtered to 

be within plausible ranges (heart rate between 30 and 200bpm, HRV between 0 and 

300ms, oxygen between 0 and 100%, respiratory rate between 0 and 40bpm). Vitals 

are then resampled to median value per hour to account for the dynamic sampling 

rate of metrics by the Apple Watch, resulting in periods with high or low rates of sample 

collection. Aggregation is done by taking the mean, median, standard deviation, 

minimum, and maximum of the given vital during the 1 week, 2 week or 28-day period 

prior to self-report. For heart rate skew, kurtosis, and the count of samples collected 

during the timespan are also calculated as it is the most frequently sampled of the 

vitals. 

2. Sleep (26 features): Annotations of bedtime and sleep times from Apple Health 

annotations are used to calculate bedrest duration, sleep duration, sleep efficiency, 

and sleep onset latency every night. In combination with heart rate data, sleeping 

average heart rate and average heart rate variability are also calculated. The median, 
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minimum, maximum, and standard deviation of these day level features are 

aggregated across the relevant timespan as well as count of sleep and bedrest logs. 

3. Activity (8 features): Apple HealthKit-reported exercise time, active energy burned, 

and step count are aggregated by collecting the total duration, sum of value, and count 

of logs. Sum of value is not calculated for exercise time as it is redundant with duration. 

Watch wear hours are determined by the number of hours that participants have at 

least one heart rate log. Percentage of watch wear hours is calculated for the relevant 

span of data prior to a given self-report. Watch wear is not included as a predictive feature, 

but rather used for quality control. Self-reports with less than 80% of watch wear hours 

during the relevant timespan prior to assessment are removed from analysis. 

3.2.2 Model Training and Evaluation 

Classification models are trained to use the passive sensor features from Section 2C to 

detect high or low values of the self-report responses in Section 2B. All sensor data 

collected prior to the timestamp of a self-report administration is used to classify self-

report response. Model training and testing is done so that individuals in the training data 

are not in the testing set. 

Data Availability 

At the time of analysis, the study has collected 788 responses to the PHQ-8 from 133 

participants, 592 of those responses have digital health data that meet quality control 

measures described in Section 2C. After quality control, any survey response with 

missing or low-quality data is not considered in analysis; no imputation is done. For the 

PVSS, there are 786 responses from 133 participants, where 590 responses (99 

participants) have sufficient digital health data. The PSQI has 152 responses from 91 
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participants with 120 responses (72 participants) having sufficient digital health data for 

analysis. 

Model Training 

A gradient boosting classifier (XGBoost) using the implementation from scikit-learn 

1.2.291 with default parameters was utilized as the machine learning model. XGBoost is 

used because it is a high-performing model capable of learning nonlinear relations on 

sparse data in a variety of domains92. For each of the 74 questions, subscale-scores, and 

total scores from the PHQ-8, PVSS, and PSQI, a 10-fold grouped, stratified cross-

validation was performed. This cross-validation ensures that participants in the training 

data are not in the testing data and vice versa while also approximately balancing levels 

of each class (response to item high or low) across the training and testing splits. 

Model Evaluation 

The metrics of area under the precision recall curve (known as AUPR or Average 

Precision) and receiver operator characteristic area under the curve (ROC AUC) are 

calculated for each fold of a cross-validation. ROC AUC is used as the primary 

performance metric, with Average Precision used to distinguish model performance 

where there may be heavy class imbalance.  

To confirm if models are performing greater than by random chance, a 1-sided t-test 

was conducted on the ROC AUC value across the 10-folds to determine if average 

ROC AUC was greater than 0.5. As we are investigating performance of 74 models 

(one per item response, subscale score, or total score), Benjamini-Hochberg multiple 

testing correction is applied to control for the false discovery rate (FDR; a=0.05), and 
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models with a p-value < 0.05 after correction are examined further for feature 

importance and population subgroup performance.  

The performance for items and subscales where models had statistically significant 

aggregate performance are examined for discrepancies in performance across 

subgroups. Subgroup evaluation is done across baseline PHQ-8 and PVSS scores as 

well as current gender identity (at study intake), family income, age, and ethnicity. No 

correction is done for multiple testing for investigating difference in performance across 

subgroups. An independent t-test comparing difference in ROC AUC scores is used to 

assess if performance differences across groups are statistically significant. Statistical 

testing is done using the Pingouin 0.5.3 python package93. 

Feature Importance 

For models whose ROC AUC is significantly greater than 0.5 (FDR<0.05), feature 

importance is examined to investigate which features appear important to model 

performance and how they relate to model decision making. Feature importance was 

analyzed using SHapley Additive exPlanation (SHAP) scores94. SHAP feature 

importance scores help explain each individual prediction from a model, allowing 

researchers to understand how different feature values impact model decisions in the 

testing set. 

3.3 Results 

3.3.1 Overall Performance 

Five models were shown to have ROC AUCs significantly greater than 0.5 after multiple 

testing correction. From the PHQ-8 models, models detected total score (ROC AUC = 
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0.64, p=0.029) and poor appetite (ROC AUC=0.67, p=0.016). From the PVSS models 

detected endorsement of, “A fun activity during the weekend sustained my good mood” 

(ROC AUC=0.63, p=0.026). From the PSQI, models detected bedtime (ROC AUC=0.72, 

p=0.009) and trouble staying awake (ROC AUC=0.71, p=0.029). Results outlined in 

Table 3.1. 

Table 3.1 Performance of significantly performing models and class balance within the data 

Survey Item 
Average 
Precision 

ROC 
AUC 

Adjusted p-
value 

% True 
Class 

PHQ-8 PHQ-8 Total Score 0.6 0.64 0.029 0.45 
  Poor appetite 0.59 0.67 0.016 0.49 

PVSS 
A fun activity during the weekend sustained 
my good mood 0.58 0.63 0.026 0.43 

PSQI Bedtime 0.8 0.72 0.009 0.56 
  Trouble staying awake 0.67 0.71 0.029 0.38 

 

Performance Across Symptom Severity 

For most items model performance did not significantly differ when evaluated across 

those with high vs. low PHQ-8 or PVSS total scores. For the PVSS item, “A fun activity 

during the weekend sustained my good mood,” there was a significant difference in those 

with a total PHQ score >14 having greater detection performance (p=0.006, ROC AUC 

0.74 with high PHQ-8 score vs. 0.56 with low PHQ-8 score). 

Performance across demographic characteristics 

There were no significant differences in performance across ethnicity (Hispanic vs. non-

Hispanic), current gender (male vs. female), or family income (>$100k vs. ≤ $100k annual 

income).  Due to limited sample size, evaluation was not done across race or endorsed 

genders outside of male and female. 
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3.3.2 Feature Importance  

 

The top ten features from all folds of cross validation were assessed for the five models 

with high performance. Features and SHAP feature importance scores are shown in Fig. 

3.3. Physical activity related measures such as step count, and energy expenditure were 

the most important features across models. The exception being the model predicting the 

PSQI measure of bedtime which prioritized more sleep related features such as those 

related to bedrest duration. 

 

 

Figure 3.3 SHAP feature importance for top ten features per classification task. Each dot represents a 
a prediction within the test set of a cross-validation fold. Color indicates relative feature value (e.g, higher 
mean heart rate will be red, lower mean heart rates would be blue). SHAP value indicates how influential 
a feature was to a single prediction. The sign (positive or negative) of the SHAP value denote whether 
importance was for classifying as negative or positive class (low vs high class). Magnitude of the SHAP 
value indicates its importance to the model for a prediction. 
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3.4 Discussion 

3.4.1 Findings 

The PHQ-8 total score, a measure of depression severity, was detectable, with an 

average ROC AUC of 0.642. Features important to this model centered around physical 

activity, with higher levels of activity linked to lower total PHQ-8 scores. The model 

detecting the PHQ-8 item for poor appetite had slightly better performance than the total 

score. This model revealed that poor appetite was related to increased respiratory rate, 

heart rate, and oxygen saturation and decreased physical activity. The directional 

association of these features with poor appetite suggests that in the presence of low 

physical activity, increases in those vital signs may be indicative of poor appetite. 

However, the XGBoost models were not able to detect overeating, an item normally not 

separated from poor eating, highlighting the utility in separating out these two directions 

when screening for symptoms of depression. 

The primary feature associated with detecting the PVSS item, “A fun activity during the 

weekend sustained my good mood” was active energy expenditure, with higher values 

corresponding to the positive class. Interestingly, this item’s model ranked active energy 

expenditure highly but did not rank step count as an important feature, in contrast to the 

model predicting depression severity (PHQ-8 total score). Step count may act as a proxy 

for location entropy (a metric derived from GPS data), one of the most consistently related 

digital health features linked to depression severity20. An area for future work would be to 

determine whether location entropy is related to anhedonia or if it is specific to depression 

severity. 
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Notably, only one item from the PVSS was detectable via the digital health data 

streams. Given the limited set of features centered on sleep, vitals, and activity, 

incorporating features such as patterns of app usage, screen time, and social 

connectedness from the phone may improve our ability to predict domains represented 

by the PVSS. 

Compared with the PHQ-8 and the PVSS, the models trained to detect items from the 

PSQI performed better. For bedtime detection, metrics related to sleep duration were 

most important. In contrast, energy expenditure and vitals related features were prioritized 

when detecting trouble staying awake. 

The models were unable to detect the PSQI item asking about overall sleep quality 

(mean ROC AUC 0.509), suggesting that the metrics used in this analysis can detect 

objective measures but are insufficient for subjective aspects of sleep known to be related 

to depression95. 

3.4.2 Limitations 

In this initial analysis, for model training and evaluation, there is no accounting for time or 

repeated measures. Similarly, the act of converting ordinal and numeric values into binary 

categories reduces the model’s ability to detect smaller changes in item response. While 

binary classification is done to simplify the model detection task and gain a preliminary 

understanding of how digital health features may detect self-reported responses, it 

obfuscates more nuanced shifts in response items and interpretability of results. With a 

larger sample size, multilevel modeling or regression will be utilized. 

The study population is relatively homogenous in demographic characteristics across 

racial distributions and income and is restricted to participants from the Los Angeles area. 
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Furthermore, data is filtered for those with high compliance to study protocol and device 

wear (>80% of hours). Consequently, findings from this analysis may not generalize to 

other populations. 

The analysis conducted is with data from an ongoing study. As such the recruited 

sample to date is not representative of the full final study cohort. Due to limited sample 

size no holdout test set was designated and only cross-validation was used to assess 

model performance leading to potential for over-fitting. 

The sleep features used in analysis are derived from sleep phase annotations reported 

by Apple HealthKit and not derived from raw data. While relying on these annotations is 

convenient, it limits the generalizability of findings both across different devices and sleep 

annotation algorithms.  

3.4.3 Conclusion 

Personal sensing data from consumer phones and wearable devices show promise for 

improving our understanding of mental and physical health. However, adequately 

characterizing how data from these devices fit into the larger landscape of research on 

depression requires us to move beyond the detection of summary scores for depression 

severity. 

This work demonstrates that there are specific features from personal sensing data 

that relate to dimensions of depression that are different than overall depression 

detection. Moreover, investigations of feature importance in machine learning models can 

help uncover potential nonlinear relationships between passive sensor data that are 

worthy of further exploration. 
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Features related to vital, activity, and sleep appear insufficient to detect most aspects 

of anhedonia measured by the PVSS, suggesting potential value in increasing the types 

of features derived from watch and phone data. Measures of physical activity and vital 

signs are important for models predicting depression severity, whereas features more 

directly tied to sleep performance are important for the detection of sleep timing. Vitals 

during sleep (e.g., average heart rate during sleep) were used by models detecting poor 

appetite and sustained mood due to weekend activity. 

With increased participant populations and more domains of passively sensed 

features, approaches leveraging machine learning techniques show promise in showing 

how real-world participant-generated data can improve our understanding of depression.  
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Chapter 4: Comparison of self-reported and 

physiological sleep quality from consumer devices to 

depression and neurocognitive performance 

This chapter is adapted from the manuscript: “Comparison of self-reported and 

physiological sleep quality from consumer devices to depression and neurocognitive 

performance” under review at NPJ Digital Medicine (submitted July 19, 2024). 

 

This study examines the relationship between self-reported and physiologically 

measured sleep quality in individuals with depression and its impact on neurocognitive 

performance. Using data from 249 participants with medium to high depression 

monitored over 13 weeks, sleep quality was assessed via retrospective self-reports and 

physiological measures from consumer smartphones and smartwatches. The 

correlations between self-reported and physiological sleep measures were generally 

weak. Machine learning models revealed that self-reported sleep quality could detect all 

depression symptoms measured via the Patient Health Questionnaire-14, whereas 

physiological measures detected only “sleeping too much” and low libido. Notably, only 

self-reported sleep disturbances correlated significantly with neurocognitive 

performance. Physiological sleep was able to detect changes in the self-reported sleep 

quality domains of sleep medication use and sleep latency. These findings emphasize 

that self-reported and physiological sleep quality do not measure the same construct 

and that both are important for monitoring sleep quality in relation to depression.  
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4.1 Introduction 

Sleep disturbance is a core symptom of depressive episodes, and sleep disorders 

commonly co-occur with major depressive disorder (MDD)96. While polysomnography is 

the gold standard for assessing sleep quality, it is challenging to use in naturalistic 

settings or over the extended periods of time typical of depressive episodes. Actigraphy 

from wrist-worn research-grade devices, which has been compared to 

polysomnography51, represents one alternative that is deployable in naturalistic settings. 

However, these research actigraphy devices are not as easy to use or as prevalent as 

their consumer wearable device counterparts15,16. Researchers thus often rely on self-

reported sleep quality, using tools such as daily sleep diaries or retrospective 

questionnaires such as the Pittsburgh Sleep Quality Index (PSQI), and find that 

changes in self-reported sleep quality are associated with changes in depression 

severity97. 

However, there is low concordance between self-reported and physiological 

sleep measurements98,99, especially in groups with greater depression severity54. 

Differences between self-reported and physiological sleep measures (i.e., misappraised 

poor sleep) are associated with worse neurocognitive functioning100, and decreased 

neurocognitive functioning is associated with depression severity101. This evidence 

suggests the need to better understand how physiological and self-reported subjective 

sleep quality measures relate to each other and to both self-reported depression and 

neurocognitive measures. 

Prior work investigating physiological and self-reported sleep quality has typically 

utilized a single night of physiologically measured sleep, although some studies have 
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measured up to nine nights of sleep54,102. With growing evidence for the comparability of 

sleep-related metrics from the gold standard polysomnography and actigraphy with 

consumer wearable devices50,103,104, we can now leverage large sample sizes over 

longer durations for studying physiological sleep quality in relation to depression. 

In the present report, we studied the relationship between physiological and self-

reported measures of sleep quality in populations with depression. The dataset used 

comes from 342 participants who were monitored via passive sensing and self-reported 

measures over 13 weeks as part of a larger trial investigating features of anhedonic 

depression (Wellcome Leap MPsych). A subset of 249 participants were used in this 

analysis on the basis of the high availability of sleep annotation data from the iPhone 

and Apple watch. From the passively sensed sleep annotation data, sleep quality 

features are extracted per night (sleep duration, bedrest duration, onset, efficiency, 

latency, etc.). Self-reported depression symptoms are taken from individual items in the 

Patient Health Questionnaire-14 (PHQ-14), and subjective sleep quality is assessed via 

the Pittsburgh Sleep Quality Index (PSQI). 

First, we investigated correlations between self-reported sleep quality measures 

that have a direct correspondence with physiological sleep quality measurements (sleep 

duration, bedrest onset, sleep offset, sleep latency, sleep efficiency, and nightly 

awakenings) and found weak correlations (|r| < 0.5) for all measures except wakeup 

time (r=0.78). Second, building from our prior findings83 and extending prior work 

associating depression with self-reported sleep quality, we use either physiological 

measurements of sleep quality from smartphones and wearable devices or self-reported 

sleep quality from the Pittsburgh Sleep Quality Index (PSQI) to detect self-reported 
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symptoms of depression. All 14 measured depression symptoms were detectable via 

self-reported sleep quality, whereas only “sleeping too much” and “little interest in sex” 

were detectable with respect to physiological sleep quality. Third, as there is a 

tautological connection between self-reported sleep quality and self-reported depression 

severity (i.e., both forms of data are acquired via the same method with overlap in item 

topic, which could artifactually correlate these measures to a greater degree compared 

to correlating methodologically mismatched measures, such as self-report 

questionnaires and physiological measurements), we investigate how both subjective 

and objective measures of sleep quality correlate with neurocognitive performance as a 

proxy for an area impacted by depression (i.e., neurocognitive performance is 

measured methodologically differently from both self-report measures and physiological 

measures). We found that only self-reported sleep disturbances were significantly 

correlated with any measured aspect of neurocognitive performance. Finally, to 

determine how physiological measurements may enable the detection of changes in 

subjective sleep quality, physiological sleep quality is used to detect future self-reported 

sleep quality (controlling for self-reported sleep quality at the time of physiological sleep 

quality measurement). We find that physiological sleep can enable models to detect 

changes in self-reported sleep medication use and daytime dysfunction due to 

sleepiness. 

These findings underscore that self-reported and physiologically measured sleep 

quality do not measure the same construct. Self-reported sleep quality cannot be readily 

substituted with physiological measurements, as it remains significantly related to key 

constructs in depression research, such as neurocognitive performance. Furthermore, 
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the utilization of passive physiological sleep monitoring provides a valuable tool for 

bridging gaps between self-reported assessments, facilitating the detection of notable 

changes in self-reported sleep quality. This integrative approach holds promise for 

advancing our understanding of sleep-related processes in depression and enhancing 

the precision of future studies. 

4.2 Results 

The data used in this analysis are from the Operationalizing Digital PhenoTyping in the 

Measurement of Anhedonia (OPTIMA) study, which collected data between October 

2022 and April 2024. OPTIMA aims to measure behaviors related to anhedonia in the 

context of depression, relating observations to neural markers of anhedonia. This 

analysis uses data from 249 participants comparing their physiologically measured 

sleep quality to self-reported measures of sleep quality, depression, and TestMyBrain-

based105 neurocognitive performance. Participant demographics are outlined in Table 

4.1. 
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Table 4.1 Participant demographics and treatment history. There were 249 participants used in the 
analysis; however, one participant was missing baseline assessments, including demographic data. 

   
Demographics and Treatment History Yes No 
Sex - Female 160 (64.5%) 88 (35.5%) 
Family Income <100k 125 (50.4%) 123 (49.6%) 
Non-Hispanic White 120 (48.4%) 128 (51.6%) 
History of Psychotherapy 201 (81.0%) 47 (19.0%) 
Depression diagnosis 172 (69.4%) 76 (30.6%) 
Psychotherapy (in past 4 weeks) 112 (45.2%) 136 (54.8%) 
Currently using medication for mental health 116 (46.8%) 132 (53.2%) 

   
 Mean Std 

Age 33.78 11.86 
      

 

In the study population, 83.5% (207) of 249 participants had moderate to severe 

depression at baseline, per PHQ-14 total score greater than or equal to 10. Note that 

the PHQ-14 is a self-report questionnaire adapted from the Patient Health 

Questionnaire (PHQ)86 by Cohen, Cohen, & Fried (see Depression Symptom Response 

Project OSF site: https://osf.io/j6r3q/) that disentangles confounded items from the 

PHQ-9 (e.g., “Trouble falling or staying asleep, or sleeping too much” is split into two 

items: “Trouble falling or staying asleep” and “sleeping too much”) and adds two 

symptoms (libido and irritability). 

4.2.1 Physiological Sleep Quality Correlation with Self-reported Sleep 

Quality 

Physiological sleep parameters measured over 28 days were correlated with six self-

reported items or domains from the PSQI that had direct correspondences from 224 

participants with 369 total responses. Differences in the number of self-reported 
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responses used are due to insufficient sleep annotation data prior to self-reports for 

some assessments. The mean of physiological and self-reported sleep quality was 

taken for those with multiple responses. Among the six self-reported sleep quality items, 

three were significantly correlated with physiological sleep parameters after Bonferroni 

correction, with family-wise error rate of 0.05 (Fig. 4.1. A-C): sleep duration 

(Spearman’s r=0.37, p=1.21e-07), bedtime (Spearman’s r=-0.35, p=4.23e-07), and 

wakeup time (Spearman’s r=0.78, p=1.36e-45). Habitual sleep efficiency, time to fall 

asleep, and nightly awakenings were not significantly correlated with their physiological 

sleep counterparts (Fig. 4.1. D-F). The correlation between self-reported and 

physiological sleep duration of 0.37 is lower than that reported by Matthews et al. in 

their full population (r=0.40) but greater than that reported in the highest quartile of 

depression symptoms (r=0.23)54. 
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4.2.2 Detecting Depression Symptoms with Self-reported or Physiological 

Sleep Quality 

Machine learning models were trained to detect symptoms of depression from the PHQ-

14 (Fig. 4.2.A) using either self-reported sleep quality (all individual items, domains, and 

total score) from the PSQI taken on the same day as the PHQ-14 (performance in Fig. 

 

Figure 4.1 Correlation between physiological sleep parameters (Y-axes) and self-reported sleep quality 
items or domains (X-axes). Comparisons are of A) of median sleep duration to self-reported hours of 
sleep, B) median bedrest onset to self-reported bed-time, C) median sleep onset to self-reported 
wakeup time, D) median sleep efficiency to self-reported habitual sleep efficiency, E) median sleep 
onset latency to self-reported time to fall asleep, and F) number of recorded night time awakenings to 
self-reported nightly awakenings where response is defined as: 0, Not during the past month; 1, Less 
than once a week; 2, Once or twice a week; 3, Three or more times a week. 



 47 

4.2.B) or using physiological sleep parameters taken from the 8 days prior to PHQ-14 

administration (performance in Fig. 4.2.C). The models were trained to detect the 

presence (or absence) of each PHQ-14-measured symptom (item response >0). 

Tenfold cross-validation was used to generate a distribution of model performance via 

the area under the receiver operator curve (AUROC). In cross-validation, no data from 

individuals in the test set are present in the training set. The performance of the models 

in the prediction of PHQ-14 symptoms was tested to determine which symptoms could 

be detected more accurately than random chance (AUROC>0.5). Correction for multiple 

comparisons was performed via the Benjamini–Hochberg method, with a false 

discovery rate (FDR) of 0.05. The design and validation of these models are described 

further in the Methods. 



 48 

 

Of the 14 self-reported depression symptoms assessed on the PHQ-14, all were 

detectable above random chance via item-level responses to the PSQI. In contrast, only 

the symptoms “sleeping too much” (median AUROC=0.568, Wilcoxon signed rank test 

FDR-adjusted p=0.029) and “little interest in sex” (median AUROC=0.568, Wilcoxon 

signed rank test FDR-adjusted p=0.041) were detectable above random chance using 

physiological sleep quality. Model performance is further described in Table 4.2. 

  

 

Figure 4.2 A) Symptoms of depression listed by order of relevance to self-reported sleep quality. 
Symptoms within yellow box are detectable with self-reported sleep quality. Dark blue colored symptoms 
are detectable with physiological sleep data beyond random chance. B) Performance of machine 
learning models to classify presence or absence of PHQ-14 symptoms using item-level PSQI 
responses. C) Performance of machine learning models to classify presence of PHQ-14 symptoms 
using physiological sleep features. If AUROC is greater than 0.50 with a p-value < 0.05 after correcting 
for FDR < 0.05 a star (*) is annotated and the associated box is colored dark gold or dark blue. 
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Table 4.2 Model performance for predicting PHQ-14 item responses with either self-reported sleep quality 
or physiological sleep quality. LR = logistic regression, RF = random forest, GB = gradient boosting, D = 
dummy, underline = FDR adjusted p-value < 0.05 for model AUROC > 0.5. 

  
PSQI (n=249 users, 705 

responses) 
Physiological Sleep (n=247 users, 

1565 responses) 

PHQ-14 Item Model 
Median 
AUROC 

Adjusted 
P-value Model 

Median 
AUROC 

Adjusted P-
value 

Trouble falling asleep or 
staying asleep RF 0.867 0.015 GB 0.523 0.686 
Feeling tired or having 
little energy GB 0.798 0.015 LR 0.526 1.000 
Little interest or pleasure 
in doing things RF 0.758 0.015 RF 0.530 1.000 
Sleeping too much LR 0.751 0.015 RF 0.568 0.029 
Feeling down, depressed LR 0.743 0.015 RF 0.574 1.000 
Feeling irritable LR 0.685 0.015 D 0.500 1.000 
Little interest in sex LR 0.665 0.015 LR 0.568 0.041 
Feeling hopeless LR 0.652 0.015 GB 0.506 1.000 
Trouble concentrating on 
things RF 0.651 0.015 LR 0.490 1.000 
Moving or speaking slowly LR 0.631 0.015 GB 0.534 0.961 
Feeling bad about yourself LR 0.629 0.015 D 0.500 1.000 
Poor appetite LR 0.616 0.015 LR 0.521 1.000 
Being fidgety or restless LR 0.588 0.015 GB 0.525 1.000 
Overeating LR 0.556 0.015 D 0.500 1.000 

 

For models that use physiological sleep, whose AUROC is significantly greater 

than 0.5 (FDR <0.05), feature importance is examined to investigate which features are 

important for model performance and how they are related to model decision making. 

Feature importance was analyzed via SHapley Additive exPlanation (SHAP) scores94. 

SHAP feature importance scores help explain each individual prediction from a model, 

allowing researchers to understand how different feature values impact model decisions 

in the testing set. We find that higher sleep offset and bedrest offset times with longer 

bedrest durations and quieter bedtime environments are used by the model to detect 

“sleeping too much.” While maximum sleep duration is also a highly ranked feature by 

the model, its association with self-reported sleeping too much does not appear linear 
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(i.e., higher max sleep duration is not consistently used by models to detect sleeping too 

much; Fig. 4.3.A). The model for “little interest in sex” revealed that low sleep efficiency, 

less variable sleep onset, and longer duration of bedrest were associated with the 

depression symptom (Fig. 4.3.B). 

 

For models using physiological sleep to detect PHQ-14 item responses that had 

performance greater than random chance, performance was compared across baseline 

depression severity (PHQ-14 total score ≥10), baseline anhedonia (PVSS total score 

<5), family income (≥100k USD), race (non-Hispanic white vs. all), and sex at birth. No 

significant differences in AUROC were found in performance between groups. 

4.2.3 Physiological and Self-reported Sleep Correlation to Neurocognitive 

Performance 

Neurocognitive performance was measured via TestMyBrain: a series of computer-

based tasks or games. Measures from TestMyBrain were correlated with self-reported 

A       B 

 

Figure 4.3 Feature importance via SHAP value for models predicting PHQ-14 items A) “Sleeping too 
much” and B) “Little interest in sex”. Each dot represents a prediction within the test set of a cross-
validation fold. Color indicates relative feature value (e.g, higher mean heart rate is red, lower mean 
heart rates is blue). SHAP value indicates how influential a feature was to a single prediction. The sign 
(positive or negative) of the SHAP value denote whether importance was for classifying as negative or 
positive class (low vs high class). Magnitude of the SHAP value indicates its importance to the model 
for a prediction. 
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sleep quality domains from the PSQI taken at the same day and physiological sleep 

parameters aggregated over the prior 8 days (Fig. 4.4). Only the sleep disturbances 

domain was found to correlate with a neurocognitive performance measure of 

processing speed, the Digit Symbol Coding (DSC) test rate correct score (Spearman’s 

r=-0.29, FDR adjusted p-value=0.009).  

 

In contrast to Gualtieri et al.101, we did not find a significant correlation between 

depression severity (PHQ-14 total score) and the tested measures of neurocognitive 

performance (FDR-adjusted p-values all > 0.05). This finding may be driven in part by 

the small number of participants with low depression severity in the OPTIMA study. 

4.2.4 Detecting Changes in Self-reported Sleep Quality with Physiological 

Sleep Data 

Several domains of self-reported sleep quality can be detected with physiological sleep 

alone. These domains are daytime dysfunction due to sleepiness (median 

 

Figure 4.4 Spearman correlation of watch-derived median features over a 28-day period and PSQI 
domains and total score with TestMyBrain neurocognitive performance metrics. Correlations with a p-
value < 0.05 after multiple testing correction (FDR < 0.05) have a box drawn around them. 
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AUROC=0.602, FDR-adjusted p=0.008) and sleep duration (median AUROC=0.632, 

FDR-adjusted p=0.021). 

 To assess whether physiological sleep quality can enable the detection of 

changes in self-reported sleep quality, models were trained using only physiological 

sleep quality, physiological and 6-week prior self-reported answers, and only prior self-

reported answers. For two domains, i.e., daytime dysfunction due to sleepiness and 

sleep medication, performance improved when passive data were added (Fig. 4.5), with 

median AUPRC differences with and without passive data = 0.046 (FDR-adjusted 

p=0.008) and 0.064 (FDR-adjusted p=0.039), respectively, indicating that physiological 

data can help models better detect the positive class without sacrificing overall 

performance. No significant difference was observed in performance, as measured via 

the AUROC. 
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4.3 Discussion 

The finding that all 14 symptoms of depression from the PHQ-14 are detectable via self-

reported sleep quality highlights the interconnections among different self-reported 

measures related to depression. While sleep quality-related items are part of the PHQ-

14 (e.g., sleeping too much), many other items, such as “little interest or pleasure in 

doing things,” are not directly related to sleep and yet are detectable from self-reported 

sleep quality with good performance (AUROC values above 0.75). In comparison, 

physiological sleep was only able to detect the PHQ items of “sleeping too much” and 

“little interest in sex.” This observation suggests that physiological sleep is not a 

sufficient detector for most depressive symptoms that may require other social behavior 

 
Figure 4.5 Performance of predictive models at detecting domains and total scores of the Pittsburgh 
Sleep Quality Index (PSQI) with different input feature sets. Top plot shows AUROC score value; if p-
value for passive-only detection greater than random chance is < 0.05 after controlling FDR < 0.05, a 
star is annotated. Bottom plot shows average precision performance; if passive data with prior response 
improves performance over just prior response, with a p <0.05, it is annotated with a star (*) or two stars 
if p <0.01 (**). 
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features measurable from phones and watches, as illustrated in prior work20,21,26,74,106–

108. 

The model detecting “little interest in sex” is associated with low sleep efficiency but 

high bedrest duration with the endorsement of symptoms. Prior studies have revealed 

associations between self-reported sleep duration and libido109,110. However, the 

modeling work performed here suggests that in cohorts with depression, the relationship 

between libido and sleep quality may be driven more by sleep efficiency and bedrest 

duration than by sleep duration. The detection of “sleeping too much” as opposed to 

“trouble falling or staying asleep” also shows the benefit of separating traditionally 

combined symptoms on self-report scales. “Trouble falling or staying asleep” may be 

associated with rumination or bouts of wakefulness during sleep, whereas “sleeping too 

much” is more likely to be reflected in later sleep and bedrest offset times that can be 

objectively measured, a finding reflected in the top features used by the model to detect 

“sleeping too much.” 

As a validation of consumer wearable-based sleep assessment, we also confirmed 

the expected ability to detect self-reported sleep duration as measured by the PSQI. 

Prior work has established this correlation54, which is also observed in the OPTIMA 

dataset. 

4.3.1 Relationship with Neurocognitive Test Performance (TestMyBrain) 

Zavecz et al. reported no relationship between overall subjective sleep quality and 

working memory111. We did not find any significant correlations between either overall 

subjective sleep quality (PSQI total score) or physiological measures of sleep duration, 

efficiency or latency and neurocognitive performance. However, we did find that higher 



 55 

levels of self-reported sleep disturbances were correlated with decreased processing 

speed. 

4.3.2 Combining Self-Reported and Physiological Data to Detect Sleep 

Quality Domains 

In traditional mental healthcare, patient interactions with clinical professionals or the 

completion of self-reports occur infrequently. By employing continuous passive 

monitoring, we can detect changes in self-reported sleep medication use and sleep 

latency, allowing for the identification of significant variations in these areas. These 

findings illustrate how integrating self-reported and objectively measured sleep quality 

parameters can enhance patient care. 

In the analysis presented in Fig. 4.5, increases in model performance as 

measured by AUPRC occur when adding passive sensing data to self-reported sleep 

quality, although the same does not occur for the AUROC. An improvement in AUPRC 

without a significant change in AUROC suggests that the model improvement is 

centered on better identifying the positive class. For example, it can be important to 

detect endorsement of sleep medication use, as it serves as an objective index of 

having experienced sleep problems; incorporating passive sensing data can 

significantly enhance the detection of sleep medication usage. 

4.3.3 Overall Clinical Utility 

The data reported here suggest that physiological sleep from consumer devices could 

augment how self-reported sleep quality measures are interpreted and enable 

continuous passive sensing of sleep quality-relevant symptomology over time. 
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Ultimately, passive data could one day be used to recommend that users with specific 

digital phenotype profiles seek a mental healthcare professional for further evaluation 

(e.g., to complete self-report questionnaires, obtain diagnostic evaluations, or receive 

treatment). This approach could greatly increase the user’s awareness of their own 

functioning, increase the number of people who receive treatment, and reduce the delay 

between symptom onset and treatment initiation. The data could also be used by the 

user and healthcare professional to monitor treatment progress and mechanisms, as 

well as inform when treatment termination is advised or if lapses/relapses occur. 

4.3.4 Limitations 

Sleep stage annotation (rapid-eye movement, deep, etc.) data are available for 

participants, but throughout the duration of the study, it is uncertain how changes in 

operating system versions and updates to annotation algorithms from Apple HealthKit 

may have influenced the comparability of these annotations. For that reason, this work 

centers on measures such as sleep efficiency, duration, latency and others that rely 

only on a differentiation of sleep vs. bed rest. Similarly, of the 342 participants in the 

study, only 249 had any sleep annotation data available from Apple HealthKit, limiting 

the sample size used in this work. This missing data was caused by a dependency on 

setting up approximate bedtime and intended wakeup times within iOS, which were not 

known at the onset of the study but were included within onboarding instructions once 

discovered. 

It is important to contextualize these results in the population represented by the 

parent study, which recruited participants with medium to severe depression and across 

the full spectrum of anhedonia severity, resulting in a symptomatically distinct 
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population with the goal of understanding anhedonic depression. The models trained 

and tested here perform differently on a sample that is more representative of the 

American population or even a population of participants with depression. Additionally, 

there is a heavy skew in the socioeconomic characteristics of this population, with 

50.4% of participants having annual family incomes >$100K USD. 

As shown in Table 4.3, several PHQ-14 items like “feeling tired or having little 

energy” have class imbalances (97% positive class) when converted to binary outcomes 

in this study population. This imbalance likely contributes to being unable to predict 

presence or absence of the symptom greater than random chance. One potential 

remedy for future analyses would be useful to identify what a meaningful difference in 

item response is per participant. 
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Table 4.3 Distribution of self-reported survey responses within OPTIMA study, including baseline 
assessments. 

Survey Question Mean Std Threshold % True # Responses 
PHQ-14 Total Score 12.78 4.92 10 73% 2162 

 
Little interest or pleasure in 
doing things 1.53 0.84 1 91% 2162 

 
Trouble concentrating on 
things 1.66 0.96 1 87% 2162 

 Moving or speaking slowly 0.34 0.69 1 24% 2162 

 Being fidgety or restless 0.83 0.96 1 52% 2162 

 Feeling irritable 1.5 0.9 1 88% 2162 

 Little interest in sex 1.6 1.12 1 78% 2080 

 Feeling down, depressed 1.57 0.86 1 92% 2162 

 Feeling hopeless 1.19 0.95 1 74% 2162 

 
Trouble falling asleep or 
staying asleep 1.64 1.06 1 83% 2162 

 Sleeping too much 0.96 1.03 1 56% 2162 

 
Feeling tired or having little 
energy 2.13 0.86 1 97% 2162 

 Poor appetite 0.87 0.95 1 56% 2162 

 Overeating 1.01 1.01 1 60% 2162 

 Feeling bad about yourself 1.51 1 1 83% 2162 
PSQI Total Score 8.89 3.46 5 90% 705 

 Daytime Dysfunction 1.7 0.71 2 61% 705 

 Disturbance 1.58 0.63 2 54% 705 

 Duration 0.7 0.85 1 50% 705 

 Efficiency 0.69 0.97 1 41% 705 

 Latency 1.67 1.02 2 57% 705 

 Sleep Medication 0.9 1.22 1 41% 705 
  Sleep Quality 1.64 0.72 2 57% 705 

 

4.3.5 Conclusion 

With improvements to consumer phone and wearable device measurements, the field of 

digital sensing in mental health is positioned to leverage these devices for larger 

longitudinal assessments of physiological sleep quality. This work shows that 

physiological sleep parameters can augment self-reported sleep quality to more 

thoroughly characterize how sleep quality is related to depression severity. 
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Furthermore, our work highlights that in populations with higher levels of depression, 

there is larger discordance between self-reported sleep quality measures and 

objectively monitored sleep and physiology, emphasizing the need to investigate both in 

research studies aiming to use sleep to characterize depression.  

4.4 Methods 

4.4.1 Dataset and Study Description 

The parent study recruited participants with high or medium depression severity and 

high, medium, and low levels of anhedonia. As part of the study, there is extensive 

digital phenotyping data collected from participants using their own iPhone and a study-

provided Apple Watch series 7 or higher over the course of 13 weeks. All collected data 

until February 6th, 2024, are used in this analysis; as such, individual participants are 

contributing between 2-13 weeks of data. Participant characteristics of those enrolled in 

the study are shown in Table 4.1. The UCLA Depression Grand Challenge Study App 

(DGC Study App) built by Avicenna Research is installed on participant iPhones and 

used to collect digital health data. The DGC Study App uses HealthKit and SensorKit 

APIs for passive measures and deploys ecological momentary assessments (EMAs). 

4.4.2 Self-report measures 

For this analysis, responses from two self-report questionnaires are investigated to 

compare digital health sensor data to depression and sleep quality. 

1. A modified version of the Patient Health Questionnaire Depression Scale 9 (PHQ-9) 

is used that has 14 total items, referred to as the PHQ-14. The PHQ-9 has high 

internal reliability (Cronbach’s alpha = 0.89)86. Modifications include splitting 
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compound symptoms (i.e., appetite decrease vs. overeating, sleep increase vs. 

decrease, psychomotor agitation vs. retardation, feeling down or depressed vs. 

feeling hopeless), adding two items to assess irritability and libido (i.e., “little interest 

in sex”), and removing the suicidality item. A recent individual participant data meta-

analysis (IPD-MA) demonstrated the equivalence of the PHQ-8 and PHQ-9 for 

screening/diagnosis87. For this study, a total score representing the PHQ-8 was 

created by taking the max score of each pair of separated compound symptoms and 

excluding the two added items, where higher scores indicate greater depression. 

The PHQ-14 is administered 9 total times at Weeks 0, 1, 2, 4, 6, 7, 8, 10, and 12. 

2. The Pittsburgh Sleep Quality Index (PSQI) asks participants to rate their prior 1-

month of sleep and assesses sleep quality and disturbances89. The PSQI asks 19 

questions which are used to calculate 7 subscales: subjective sleep quality, sleep 

latency, sleep duration, habitual sleep efficiency, sleep disturbances, use of sleeping 

medication, and daytime dysfunction. The subscales are added to form a global 

score, where higher scores indicate worse sleep. The 7 subscales and total score 

are used as detection targets. The PSQI has a high internal reliability (Cronbach’s 

alpha = 0.8)90. The PSQI is completed at Weeks 0, 6, and 12. 

For the PHQ-14 there are two versions used across the study, one which asks 

participants to rate their past single week (7/9 administrations), and another that asks 

about the past two weeks (2/9 administrations). For all questionnaires, item level 

responses, subscales (also referred to as domains), and total scores are converted to 

binary outcomes enabling binary classification machine learning models to be trained. 

For the PHQ-14, questions are binarized to endorsing or not endorsing a symptom, and 
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total score is converted to binary based on a score ≥10 to match depression screening 

guidelines23. The PSQI domains and total scores are converted to binary as follows: 

• Daytime Dysfunction: Requires a cause of daytime dysfunction weekly 

• Disturbances: Requires at least 3 causes of sleep disturbance >=3 times a week 

• Duration: Requires <7 hours of sleep on average. Picked because recommendations 

for adults is 7-9 hours 

• Efficiency (HSE): Requires sleep efficiency <85%. Picked because 

recommendations for adults is >80% 

• Latency: Requires >=30 minutes to fall asleep less than once a week AND average 

time to sleep >=15 minutes 

• Sleep Medication: Any vs no sleep medication 

• Sleep Quality: Good vs bad distinction (scores of 3 and 2 correspond to very bad 

and fairly bad) 

• PSQI total score ≥ 5 is used for sleep disorder screening89.  

Class balance for PHQ-14 and PSQI items is shown in Table 4.3. 

4.4.3 TestMyBrain Measures 

TestMyBrain includes a set of standardized computer-based tasks used to assess 

neurocognitive performance in several domains105,112. OPTIMA’s protocol utilizes a 

subset of these assessments, the digit symbol coding (DSC) test, choice reaction time 

(CRT) test, multiple object tracking (MOT) test, emotional recognition test (ERT), 

vocabulary accuracy test (VAT), gradual onset continuous performance test (GradCPT), 

and verbal paired association (VPT) test. From each of these tests the output metrics 

suggested for use by TestMyBrain are calculated: 
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1. Accuracy (for VAT and ERT) is the proportion of correct responses per test in a trial 

2. Rate correct score (for DSC and CRT) is a combined metric of speed and accuracy. 

It is calculated as 1000 ∗ 	 !""#$%"&
'()*%+	-(%".*/+	0*'(

 

3. D-prime (𝑑1; for GradCPT) is a measure of user’s sensitivity and is reported from 

TestMyBrain 

4. Crit (for GradCPT) is a measure user bias reported from TestMyBrain 

5. Correct (for MOT) is the proportion of correctly identified targets during the task 

4.4.4 Physiological Sleep Feature Generation 

Digital health sensor features were generated by aggregating sensor data prior to self-

report administration. For the PSQI, participants are asked about their last month, so 28 

days of digital health sensor data prior to the timestamp of administration are collected 

per participant response. For the PHQ-14 participants are asked about 7 or 14 days 

prior to the timestamp of administration, however, to make input features comparable 8 

days of sensor data are aggregated prior to assessment both when participants are 

asked about the last week or 2 weeks. A timespan of 8-days has been shown by Sun et 

al., to be a useful minimum span when using smartphone data to predict the PHQ-8113. 

All sensor data is collected utilizing Apple’s HealthKit application programming interface 

(API). A total of 27 physiological sleep features are generated. Distributions of features 

after aggregation prior to PHQ-14 and PSQI assessments in the supplementary 

materials.  

Annotations of bedtime and sleep times from Apple Health annotations are used to 

calculate bedrest duration (time in bed), sleep duration, sleep efficiency, sleep onset 

latency, and night awake time each day between 3pm the day prior to 3pm the day of 
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metric reporting. These values are aggregated over the 28- or 8-day period prior to 

PSQI or PHQ-14 administration. Sleep duration, bedrest duration, sleep efficiency, and 

sleep onset latency are aggregated by taking the minimum, maximum, median, and 

standard deviation per day. Nightly awakenings are aggregated as the mean hours and 

count of awakenings. Sleep onset, sleep offset, bedrest onset, and bedrest offset are 

aggregated by taking the median and standard deviation. Noise during sleep is 

aggregated as the mean noise during bedrest periods over the aggregation time 

window. 

Watch wear hours are determined by the number of hours that participants have at 

least one heart rate log. Percentage of watch wear hours is calculated for the relevant 

span of data prior to a given self-report. Watch wear is not included as a predictive 

feature, but rather used for quality control. Self-reports with less than 80% of watch 

wear hours during the relevant timespan prior to assessment are removed from 

analysis. If participants did not set their sleep schedules via the phone operating 

system, automatic sleep detection would not occur and there would be no sleep 

annotations for a participant even if the watch was worn during sleep. For the purposes 

of this analysis which centers on sleep quality measurements, records without sleep 

annotation data are removed. Missing data is described in Table 4.4. 
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Table 4.4 Availability of physiological sleep parameters aggregated prior to self-report administration of the 
PSQI and PHQ-14. 

  PSQI (28-day) PHQ-14 (8-day) 
Passive Sensing Feature Count Missing % Missing Count Missing % Missing 
Min. Sleep Duration 364 0 0% 1565 0 0% 
Max Sleep Duration 364 0 0% 1565 0 0% 
Median Sleep Duration 364 0 0% 1565 0 0% 
Std. Sleep Duration 355 9 3% 1503 62 4% 
Min. Sleep Efficiency 364 0 0% 1565 0 0% 
Max Sleep Efficiency 364 0 0% 1565 0 0% 
Median Sleep Efficiency 364 0 0% 1565 0 0% 
Std. Sleep Efficiency 355 9 3% 1503 62 4% 
Mean Awake Time 364 0 0% 1565 0 0% 
Awake Count 364 0 0% 1565 0 0% 
Min. Sleep Onset Latency 364 0 0% 1565 0 0% 
Max Sleep Onset Latency 364 0 0% 1565 0 0% 
Median Sleep Onset Latency 364 0 0% 1565 0 0% 
Std. Sleep Onset Latency 355 9 3% 1503 62 4% 
Std. Sleep Onset 355 9 3% 1503 62 4% 
Median Sleep Onset 364 0 0% 1565 0 0% 
Std. Sleep Offset 355 9 3% 1503 62 4% 
Median Sleep Offset 364 0 0% 1565 0 0% 
Std. Bedrest Offset 362 2 1% 1551 14 1% 
Median Bedrest Offset 364 0 0% 1565 0 0% 
Std. Bedrest Onset 362 2 1% 1551 14 1% 
Median Bedrest Onset 364 0 0% 1565 0 0% 
Median Bedrest Duration 364 0 0% 1565 0 0% 
Min. Bedrest Duration 364 0 0% 1565 0 0% 
Max Bedrest Duration 364 0 0% 1565 0 0% 
Std. Bedrest Duration 362 2 1% 1551 14 1% 
Mean Bedrest Ambient Noise 301 63 21% 1298 267 21% 

 

4.4.5 Correlation Analysis 

To compare watch-derived sleep and self-reported sleep with neurocognitive 

performance, watch features were aggregated from 28-days prior starting from the 
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timestamp of the PSQI administration taken the day participants performed the 

TestMyBrain assessment. In this way features from the watch are representing the 

same timespan that the self-report is intended to measure. Each watch feature and 

PSQI domain is correlated with each of the TestMyBrain performance measures using a 

Spearman correlation and p-values are adjusted using the Benjamini–Hochberg 

method, controlling the false discovery rate correction (FDR; at a=0.05). 

4.4.6 Machine Learning Pipeline 

 

Classification models are trained to use the passive sensor features, prior survey 

response, or both to classify survey item and total score responses; an overview of the 

machine learning methods is shown in Fig. 4.6. All sensor data collected eight days (for 

PHQ-14) or 28 days (for PSQI) prior to the timestamp of a self-report administration is 

used to classify self-report response. Although the PHQ-14 asks participants about 

 
Figure 4.6 Machine learning pipeline for using physiological sleep data to detect self-report items and 
summary scores. 
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either their prior week or two weeks, eight days of aggregation is chosen based on 

findings from Sun et al. predicting PHQ-8113. Models are trained in a way that splits 

participants used in training from those used to evaluate a model. Given how uniquely 

identifiable individuals are from their vitals taken by mobile health devices73, if the 

participant level split is not done, models may simply learn to predict a participant 

training set score.  

Of the 342 OPTIMA participants who completed the study, 249 have sleep 

annotation data from the Apple watch and are included in this analysis. All 249 

participants with any sleep annotation data have PHQ responses totaling 1850 

assessments (excluding baseline assessment). After quality control for watch wear 

covering at least 80% of hours for 8 days prior, 1565 PHQ-14 responses from 247 

participants are used in analysis. There are 242 participants with PSQI responses 

totaling 457 PSQI assessments. After quality control (80% of hours for 28 days prior) 

there are 365 PSQI responses from 221 participants are used in analysis. The above 

numbers do not include baseline or intake assessments as they were at the beginning 

of the study and do not have associated physiological sleep data. Participants have up 

to 8 responses to the PHQ-14 with associated sensor data, and up to 2 responses to 

the PSQI. When using PSQI item level responses to predict PHQ-14 symptoms, 

baseline assessments are included allowing for 705 responses from 249 participants 

used in the machine learning modeling.  

The 249-participant subset was selected for presence of sleep annotation data, 

other missing data elements in the physiological sleep data are filled in using median 
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imputation within cross-validation folds as described below. No imputation is done of 

self-reported measures.  

For each classification task k-fold nested cross-validation was done to select the 

best model and hyperparameter combination using a random search cross-validation 

approach. Internal cross-validation folds were created using a standard 5-fold cross-

validation. The outer fold was a stratified group 10-fold cross-validation keeping 

participants split across train and test sets. The pipeline for model training comprised 

median imputation, variance thresholding (features must have >0 variance in train set), 

feature selection, and robust scaling (5 to 95th percentile) before features reached the 

classification model. All implementation comes from standard functions in scikit-learn 

1.2.291. 

Models used were the gradient boosting classifier (XGBoost), random forest (RF) 

classifier, logistic regression, and a dummy classifier (predicts mean of train data 

responses) to act as a baseline. For RF and XGBoost classifiers, hyperparameters were 

the number of estimators (100, 200, or 500), max depth (5, 10, or 20), minimum 

samples per leaf (2, 5, 10), max features (none, square root of total, log base 2 of total). 

All models other than the dummy classifier also had parameters for select-K-best 

feature selection. These were number of feature (10 or all), and feature selection 

scoring function (mutual information based or F-score based). 

4.4.7 Statistical Analysis 

The metrics of area under the precision recall curve (known as AUPRC or average 

precision) and receiver operator characteristic area under the curve (AUROC) are 

calculated for each fold of a cross-validation. AUROC is used as the primary 
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performance metric, with AUPRC used to distinguish model performance where there 

may be heavy class imbalance. To account for differing number of repeated 

measurements in the test set per individual, one test set sample per individual is drawn 

100 times per fold. For each test set fold AUROC and AUPRC are calculated.  

To confirm if models using passive data only are performing greater than by 

random chance, a 1-sided Wilcoxon signed rank test was conducted on the AUROC 

value across the 10-folds to determine if median AUROC was greater than 0.5. As we 

are investigating performance of 22 models (one per item response, domain score, or 

total score), Benjamini–Hochberg method is applied per survey to control for the false 

discovery rate (FDR; a=0.05), and models with a p-value less than 0.05 after correction 

are examined further. For the PSQI to determine if passive data can enable detection of 

changed response with data on a participant’s prior response, a paired t-test comparing 

if models with the feature “prior response only” perform worse than “prior response with 

passive data” was performed for each PSQI domain and total score on both AUPRC 

and AUROC. Multiple testing correction is applied to results with a FDR of 0.05. 

Performance of models with the addition of passive data was considered significantly 

better than prior response only if the adjusted p-value was less than 0.05.  

The performance for items and subscales where models had statistically 

significant aggregate performance are examined for discrepancies in performance 

across subgroups. Subgroup evaluation is done across baseline depression severity 

(PHQ-14 total score ≥ 10) and anhedonia (PVSS total score < 5), family income (≥ 100k 

USD), race (non-Hispanic white vs all), and sex at birth. No correction is done for 

multiple testing for investigating difference in performance across subgroups. To assess 
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performance differences across groups, each test set fold is separated based on 

participants belonging to one of the groups. To account for repeated samples per 

participant, 1 sample is taken per participant 100 time before calculating AUROC per 

fold. Mann-Whitney U-test is performed to determine if median AUROC is different 

across groups. All statistical testing is done using the Pingouin package version 0.5.393 

in Python version 3.11.6. 

Code availability 

The code that supports the findings of this study is available online at https:// 

github.com/akre96/OPTIMA_sleep_quality  
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Chapter 5: Reconstruction error-based anomaly 

detection to detect changes in depressive symptoms 

Major depressive disorder (MDD) is not fully understood using existing clinical tools and 

standards. Mobile health (mHealth) data, such as those from smartphones and 

wearable devices, may help fill the gap in our understanding of MDD. However, these 

devices generate large, dense amounts of data with high variance across users and 

with myriad reasons for periods of missingness. Anomaly detection (AD) algorithms can 

help filter and highlight data points worth investigating further to understand how 

mHealth data can generate insights into mental health. Here, we characterize how AD 

algorithms work on a simulated dataset and apply them to the GLOBEM and OPTIMA 

datasets. We find that in some settings, detected anomalies are slightly correlated (ρ < 

0.4) with measures of interest related to mental health trajectories. However, we do not 

find a relationship between detected anomalies and symptoms of depression in either 

dataset. 

5.1 Introduction 

Changes in health-related behaviors are known to correspond to changes in mental 

health and depression114. Wearable devices and smartphones can track health-related 

behaviors such as physical activity and sleep but generate many health-related metrics, 

and when consumer devices are used, events such as software version updates or 

device differences can limit our ability to interpret a given metric across individuals and 

over time115. 
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Anomaly detection (AD) algorithms show promise for finding valuable and 

personalized insights from an individual’s mHealth data by discovering deviations from 

expected behaviors without making strong assumptions on which metrics are input and 

what they truly represent. For example, such algorithms have been demonstrated to 

detect anomalies more frequently prior to schizophrenia relapse76. However, it is 

unclear how to interpret the results of AD algorithms for mHealth datasets, what types of 

anomalous behavior they detect, and how they perform relative to one another. 

Additional work is needed in understanding how these algorithms perform on data with 

varying underlying generation patterns to confirm that these methods work in surfacing 

data points worthy of further investigation. 

Building on these earlier efforts, this work hypothesizes that the number of anomalies 

detected in a period is correlated with changes in one’s mental health; the hypothesis is 

based on the premise that deviation from one’s normal behavioral patterns may indicate 

changes in mental health. To verify this premise, we investigate how anomaly detection 

algorithms perform under a variety of situations with simulated data given different data 

generating processes (number of features, relationship between features, frequency of 

anomalous days, and autocorrelation of features). The AD methods are then applied to 

two different observational datasets with mHealth data and depression measures. The 

GLOBEM mHealth dataset is used to compare the number of anomalies detected to 

measurements of depression and anxiety (PHQ-4, BDI-II), and the OPTIMA dataset is 

used in comparison to measures of depression and anhedonia (PHQ-14 and PVSS, 

respectively). To validate that anomaly detectors appear to emphasize features 

expected to be relevant, we find that the wake time after sleep onset (WASO) is 
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prioritized in the detection of sleep disturbance from the Pittsburgh Sleep Quality Index 

(PSQI). We find that in the simulation, the anomaly detectors tested work best when the 

input features are uncorrelated, and the anomaly is represented simultaneously in a 

higher percentage of the features. The simulation findings suggest curating health-

relevant metrics to those related to behaviors of interest. Notably, on the GLOBEM 

dataset, social support-related measures correlated most strongly with the detected 

anomalies. However, in the OPTIMA, we find no significant relationship between 

anomalies and self-reported depression or anhedonia severity and symptoms. These 

findings are in line with recent evidence that behavioral anomalies from the passive 

sensing of phone and watch data are related to schizophrenic relapse but not 

depression or anxiety78. 

5.2 Methods 

5.2.1 Data Simulation 

Mobile health data can be gathered at varying frequencies but are often aggregated into 

daily features (e.g., average resting heart rate for a day), which is how consumer 

wearables such as the Fitbit often report metrics. To understand the impact of different 

temporal representations of data, we created several simulated datasets with varying 

numbers of daily features (5, 10, 24, 100, 200), autocorrelation timespan (features all 

autocorrelated for 28 days, or between 0 and 28 days), and feature correlation. 

Correlations between features are simulated to be either independent, linearly 

correlated with one another, or nonlinear functions of one another. When simulating 

data with feature correlations, for each independent feature, there are two correlated 
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features. Linear correlation is modeled by setting one feature equal to another and 

adding Gaussian noise scaled to 10% of that feature’s mean value. Nonlinear 

dependencies are modeled by making one feature equal to another while that feature is 

greater than its mean value. Below the mean value, the nonlinearly related variable is 

set to 0. Given these degrees of variation, seven different datasets were created, each 

with 100 “subjects” and each with 120 days of continuous data, to sufficiently power the 

analyses. For one subject and one feature, a given day was simulated as a pull from a 

normal distribution in the following manner: 

 

In this simulation, a feature has parameters for its standard deviation (s) and 

length of autocorrelation, (length of history variable), and if a determined value is above 

or below the feature’s range, it is capped to the feature specified range. During data 

generation, an anomaly is simulated at a specified periodicity per feature (e.g., every 

seven days). Data for an anomalous day are simulated as a pull from a uniform 

distribution (uncorrelated to previous days of data).  

function generateDailyFeature(history: ArrayLike, std: float, max: float, 
min: float, initial_value: float) -> float: 
    if history is not empty: 
        center = mean(history) 
    else: 
        center = initial_value 
 
    feature_value = random.normal(loc=center, scale=std) 
 
    if feature_value > max: 
        return max 
    elif feature_value < min: 
        return min 
    else: 
        return feature_value 
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5.2.2 Anomaly Detection 

We applied anomaly detection methods to each simulated individual’s data 

independently. Anomaly detection was performed via models based on nonnegative 

matrix factorization (NMF), principal component analysis (PCA), one-class support 

vector machines (SVMs), and isolation forests (IFs). Notably, PCA and NMF are 

methods for dimensionality reduction but can also be used for AD by assessing the 

representations’ reduced fidelity in reconstructing an unobserved data point. A baseline 

model (RollingMean) that reconstructed data as the mean value in the training data was 

assessed for comparison. In contrast to other methods, the baseline model does not 

consider multivariate relations when labeling anomalous days. Days are labeled 

anomalous if the error in reconstruction is two standard deviations above the mean 

reconstruction error in the training data. For the SVM-based models, the radial basis 

function (RBF), 5th-degree polynomial, and sigmoid kernels were tested. The isolation 

forest algorithms were run with 100 estimators (trees). In simulation settings with five 

features, three components were set for PCA and NMF; in all other simulation 

conditions, five components were used. 

Anomaly detection methods were implemented via a rolling window. Each 

subject, an anomaly detector was trained on n days of data, and an anomalous day was 

labeled if the n+1 day was labeled anomalous by the detector, as illustrated in Fig. 5.1. 

We used this approach so that multiple anomaly detection models could be run with 

varying window sizes. Notably, different sizes of rolling windows should be able to 

detect anomalies relevant at different temporal scales. For example, a 7-day rolling 
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window detector may find that weekends are anomalous days, whereas a 28-day rolling 

window detector may find a sudden sick day in a month as anomalous. 

 

5.2.3 Simulation Performance 

In mHealth datasets there are often hundreds of derived daily features that are highly 

correlated, including potential nonlinear interactions. In our simulation, the number of 

features, their autocorrelation, and relationship to one another were varied to isolate 

and investigate the effect of common data relations in mHealth studies. Data simulation 

conditions are summarized in Table 5.1. Each day of data per subject is classified as 

anomalous by an AD algorithm and compared to its true label (i.e., whether an anomaly 

was simulated on that day). Due to the class imbalance (more normal days than 

anomalous days) average precision (a method to calculate area under the precision-

recall curve) was used as the primary performance metric. F1 score, sensitivity, and 

specificity are also reported to further characterize predictions. 

 

 

    

Figure 5.1 Training schema for anomaly detection models, showing four example features simulated over 
60 days with anomalous days every 7 days highlighted by gray vertical bars. 
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 Table 5.1 Data simulation conditions. Anomaly period refers to how often an anomaly is simulated (every 
n-days). Window size is the length of the rolling window used for training anomaly detection algorithms. 

# Features Anomaly period  Window size  Feature Autocorrelation Feature 
Relation 

5 2, 7, 14, 28 days 7, 14, 28 days 28 days all features, 
different/feature (0-28 days) 

Independent 

5, 10, 25, 50, 
100 

28 days 14 days 28 days all features Independent 

24 28 days 14 days 28 days all features Independent, 
linear, nonlinear 

5, 10, 25, 50, 
100 

28 days 
(anomalies only in 

first 5 features) 

14 days 28 days all features Independent 

5.2.4 Performance on Real-world Data  

GLOBEM Dataset 

To understand how these anomaly detection methods may relate to trajectories in 

mental health, the same AD algorithms were run on the GLOBEM dataset116. The 

GLOBEM dataset contains four years of data with three months of data collected per 

year from 497 unique participants. Smartphones were used to collect self-reported data 

(e.g., PHQ-4, BDI-II, etc.) as well as location, call logs, screen state, and Bluetooth 

connections. Participants were given Fitbit devices to assess steps and sleep. The 

Patient Health Questionnaire-4 (PHQ-4) is a validated four-item questionnaire used to 

quickly screen for depression and anxiety with a total score ranging from 0 to 12117 and 

was administered weekly in the GLOBEM study. The Beck Depression Inventory-II 

(BDI-II) is a well-established survey to detect depressive symptoms118 and is 

administered at the beginning and end of a 10-week period in the GLOBEM study. 

Features were filtered to those that are present at the daily level (357 features) as well 

as missingness indicators for each of the categories of features (GPS, calls, sleep, 

activity), thus resulting in a total of 361 features. AD was also assessed using a 
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representative subset of 12 features across feature types, establishing 16 features after 

including missingness indicators (Table 5.2). Participants were filtered to those with 

greater than 4 days containing call, location, sleep, and step data before imputation. For 

the Year 2 dataset, this resulted in 192 of the 218 participants being analyzed (26 

removed); and for Year 3, this resulted in using 128 of 137 participants (9 removed). 

Data was imputed using the scikit-learn iterative imputer119 in a manner that avoids 

temporal data leakage. To do this, the imputer was trained on all prior data for a 

participant before a given day. The first seven days of data per participant are not 

imputed. 

Table 5.2 Variables that are part of a reduced 16-feature set in analysis of anomaly detector performance. 

Type Variable Name 

Location f_loc:phone_locations_doryab_locationentropy:allday 
f_loc:phone_locations_barnett_circdnrtn:allday 

Activity f_steps:fitbit_steps_intraday_rapids_sumsteps:allday 
f_steps:fitbit_steps_intraday_rapids_sumdurationactivebout:allday 

Sleep f_slp:fitbit_sleep_intraday_rapids_sumdurationasleepunifiedmain:allday 
f_slp:fitbit_sleep_intraday_rapids_countepisodeasleepunifiedmain:allday 
f_slp:fitbit_sleep_summary_rapids_firstbedtimemain:allday 
f_slp:fitbit_sleep_summary_rapids_avgefficiencymain:allday 

Calls f_call:phone_calls_rapids_missed_count:allday 
f_call:phone_calls_rapids_incoming_count:allday 
f_call:phone_calls_rapids_outgoing_count:allday 
f_call:phone_calls_rapids_outgoing_sumduration:allday 

Missingness sleep_missing 
steps_missing 
location_missing 
call_missing 

 

The AD methods are evaluated first on Year 2, and the results are confirmed on 

Year 3 of the GLOBEM dataset. The anomaly detection algorithms were run with 

varying rolling window sizes, model hyperparameters, and input feature sets, as 

summarized in Fig. 5.2. Fine tuning of these parameter choices was performed via the 

year 2 dataset, with model performance validated on Years 3 and 4. The number of 
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detected anomalies is compared with the PHQ-4 score (at the end of the period) over a 

1-week period via Spearman correlation. Performance was also calculated by assessing 

the correlation of anomalies detected to change in self-reported assessment scores per 

participant over the course of the full 10 weeks. 

 

OPTIMA Dataset 

The OPTIMA dataset used for anomaly detection included 343 participants monitored 

for up to 13 weeks. The dataset is not preprocessed like the GLOBEM study to have 

day-level features, so data from different frequencies of measurement are aggregated 

down to the daily level. A total of 59 features are generated and summarized in Table 

5.3. 

  

 

Figure 5.2 Analysis procedure for the GLOBEM dataset using Years 2 and 3 of data. 
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Table 5.3 Summary of daily features generated from the OPTIMA study 

Feature Type Context Aggregations # Features 
Heart Rate daily, sleep mean, median, std, min, max 10 
Heart Rate Variability (SDNN) daily, sleep mean, median, std, min, max 10 
Oxygen Saturation daily, sleep mean, median, std, min, max 10 
Respiratory Rate daily, sleep mean, median, std, min, max 10 
Ambient Noise daily, sleep mean, duration 4 
Active Energy Expenditure daily mean, duration 2 
Sleep Stage (light, REM, deep, 
awake) 

 
duration 4 

Sleep Quality   Sleep onset, sleep offset, 
bedrest onset, bedrest offset, 
sleep efficiency, sleep latency, 
wake after sleep onset, sleep 
duration, bedrest duration 

9 

 

To validate that the models highlighted the expected important features, reconstruction 

error for the feature wake time after sleep onset (WASO) was correlated with self-

reported sleep disruption from the Pittsburgh Sleep Quality Index (PSQI) subscale for 

sleep disruption. A one-sided Wilcoxon rank sum test was applied to compare the 

correlation of the feature importance (reconstruction error) between WASO and PSQI 

sleep disruption with the correlation between all other features and PSQI sleep 

disruption. The same procedure was used for the PSQI total score to confirm that 

WASO is specifically important for sleep disruption as opposed to general sleep. Data 

are available for 62 participants, comprising 95 PSQI responses that have 28 days of 

digital sensing data prior to assessment. 

5.3 Results 

5.3.1 Simulation Performance 

Under most conditions (Figs. 5.3-5.4), the PCA-based anomaly detector outperforms 

the other models and is closely followed by NMF. Conversely, SVM models with 
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polynomial and sigmoid kernels overpredict anomalous days, as indicated by their 

higher sensitivity and lower specificity. The polynomial kernel appears to perform better 

than the other kernels and is closer to the baseline RollingMean model and PCA-based 

methods. The isolation forest performed similarly to the RBF kernel SVM model but was 

not analyzed in subsequent tests (Fig. 5.4) because of its longer computational time. 

All the models performed best when the features were independent (Fig. 5.4a), 

with comparable performance between linear and nonlinear feature correlation. When 

anomalies are present in all the features, more features improve the predictive 

performance of all the models except the SVM with an RBF kernel (Fig. 5.4b). When 

anomalies are present in only five features, increasing the number of features without 

anomalies decreases the performance of all models (Fig. 5.4c). 

 

Figure 5.3 Performance of anomaly detectors across simulation conditions. Models are trained on a rolling 
window of 7, 14, and 28 days, with anomalies at a periodicity of every 2, 7, 14, or 28 days: (a) shows a bar 
plot of each detector’s overall performance across all four calculated metrics; (b) shows the average 
precision of models on data simulated to have 5 features all with 28 days of autocorrelation (history_all_28) 
or between 0 and 28 days of autocorrelation (history_0_to_28); (c) depicts difference in model performance 
as period of anomalies increases from every 2 days to every 28 days.  

 

   
(a) (b) (c) 
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Figure 5.4 Performance of anomaly detectors across simulation conditions. Anomalies are at a 28-day 
period and a 14-day rolling window is used for training: (a) shows model performance when features are 
independent, linearly correlated, or nonlinearly correlated; (b) and (c) shows performance of anomaly 
detectors as more features are added. In (c) anomalies are only present in the first five features, showing 
the effect of signal dilution on detector performance. 

 

5.3.2 Feature Importance Validation on OPTIMA 

Feature importance for wake time after sleep onset was significantly more correlated 

with sleep disruption than importance of other features (p=2.37x10-4). WASO feature 

importance was not significantly more correlated to PSQI total score (p=0.57)) as seen 

in Fig. 5.5. 

 

   

(a) (b) (c) 

 

 

Figure 5.5 Magnitude of the correlation between feature importance to anomaly detectors to self-
reported sleep disturbance (PSQI Disturbance) and overall sleep quality (PSQI Total). Wake after sleep 
onset (WASO) feature importance correlation to each metric is seperated from all other feature 
importance correlations.  
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5.3.3 GLOBEM Data Performance 

RollingMean, PCA-, NMF-, and SVM-based anomaly detectors were run on the 

GLOBEM Year 2 and Year 3 datasets with varying hyperparameters such as the 

number of components and the kernel type. Varying the models and hyperparameters 

influenced the overall performance of the AD methods measured by correlating the 

number of detected anomalies with weekly PHQ-4 measures, as shown in Fig. 5.6. The 

16-feature dataset was used in the following analyses to limit the influence of noise on 

the anomaly detection performance, as it appears that the methods were sensitive to 

such noise in the simulation study. These 16 features comprise 12 selected features 

around location, sleep, physical activity, and calls with one missing data indicator per 

feature type. PCA with three components performed best, with the highest median 

squared correlations of number anomalies to the end PHQ-4 score in a 1-week period 

(R2 = 0.114), and the rolling mean baseline model performed second best, with a 

median R2 of 0.111. 
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Figure 5.6 Box plot overlaid with a strip plot of Spearman rho values correlating the number of detected 
anomalies in a week to the PHQ-4 score at the end of the week, with one correlation calculated per 
participant. A shows the raw correlation, and B shows the R squared value. The gray dots on the strip plot 
indicate insignificant correlations (p > 0.05), and the box plot indicates the distribution of all the correlations 
for a given anomaly detector. 

At the full 10-week study period level as seen in Fig. 5.7, the NMF anomaly 

detector with 10 components had the largest magnitude of correlation with the “2-way 

social support scale giving instrumental support section” at Year 2 (ρ = -0.39; -log10 p-

value = 3.4). In Year 3 of the GLOBEM study, the NMF 3-component model had 

significant positive correlation with the 2-way social support receiving emotional support, 

but no model had a significant correlation with other social support elements.  

  

(a) (b) 
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Figure 5.7 Study length correlation of counted anomalies to changes in survey scores. Surveys from the 
GLOBEM study on the vertical axis correlated with the number of anomalies from the detectors listed on 
the horizontal axis. Squares annotated with correlations have a p-value < 0.05. (a) shows the correlation 
for year 2 of the GLOBEM study, and (b) shows the same analysis performed for year 3. PHQ4_std 
represents the standard deviation of participants’ PHQ-4 replies over the 10-week study. 

To investigate how anomaly detection works on participants, Fig. 5.8 shows a 

subset of participant data with high positive, zero, and negative correlations between 

detected anomalies and PHQ-4 score. These are participants from Year 2 of the 

GLOBEM study. 

  Year 2     Year 3 

  

(a) (b) 
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Figure 5.8 (a) An example participant with a ρ=0.90 between the detected anomalies and the end-of-week 
PHQ-4 score with anomalous days labeled via a 3-component PCA. (b) shows a participant with ρ=0 using 
a rolling mean-based anomaly detector. (c) shows a participant with ρ=-0.91 using a 10-component PCA-
based anomaly detector. The light red bars correspond to a 7-day rolling window, the maroon bars 
correspond to a 14-day window, and the dark gray bars correspond to a 28-day rolling window. 

5.3.4 OPTIMA Dataset Performance 

There was no significant correlation between the number of detected anomalies in the 

OPTIMA dataset relative to PVSS total score, PVSS subscales, PVSS individual items, 

or PHQ-14 total score and individual item responses. These results are shown in Fig. 

5.9-5.10. 

 

   

(a) (b) (c) 
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Figure 5.9 Spearman correlation of counted anomalies for the week prior to survey scores. Items and total 
scores from the PHQ-14 in the OPTIMA study on the vertical axis correlated with the number of anomalies 
from the detectors listed on the horizontal axis. 
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Figure 5.10 Spearman correlation of counted anomalies for the week prior to survey scores. Items and 
total scores from the PVSS in the OPTIMA study on the vertical axis correlated with the number of 
anomalies from the detectors listed on the horizontal axis. 
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5.4 Discussion 

This work characterizes anomaly detectors in a variety of simulated conditions before 

applying them to a real mHealth dataset. Our goal in using anomaly detection methods 

with mHealth data is to filter out and highlight specific days and behaviors that may be 

important for further exploration, including providing potential areas for understanding 

one’s general and mental health. This analysis is especially relevant as the digital health 

research community continues to assess the key mHealth features that serve as proxies 

for mental health and related behaviors and as the underlying technologies (sensors 

and devices) continue to evolve. Through this simulation work, we find that anomaly 

detectors vary dramatically in how they perform both relative to one another and relative 

to which conditions underlie data generation. Assessing these algorithms first on a 

simulated (i.e., controlled) dataset is a prerequisite to understand if methods are robust 

to specific data generation patterns and assumptions that we may be making of 

mHealth data. A key observation from the simulation experiments is that all algorithms 

tested performed much better when anomalies were present concurrently across most 

of the features. This finding suggests the need for testing more AD methods that work 

well in a low signal-to-noise environment as well as conducting feature selection when 

they are applied to real mHealth datasets, which can have thousands of features. 

However, we find that anomaly detectors prioritize the expected features in relation to 

sleep disturbances, confirming that anomaly detectors appear to work as expected in 

real datasets. Furthermore, different AD-based techniques may be required depending 

on the underlying nature of the data stream and behavior—there is no “one-size-fits-all” 

strategy. Feature selection was initially not performed before applying AD methods to 
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the GLOBEM dataset, but improved performance of AD methods was found by 

restricting analysis to a subset of 16 out of 361 features. 

In the GLOBEM data, we do not find large correlations between detected 

anomalies and self-reported scores; however, modest signals are detected, with 

correlations between 0.2 and 0.3. Notably, the highest correlations found in the paper 

describing the dataset are on the order of 0.1 when comparing a passively sensed 

feature to a change in self-reported score116. Similarly, in the OPTIMA dataset, we do 

not observe a significant correlation between detected anomalies and individual items or 

total scores from the PHQ-14 and PVSS. 

Little to no correlation between anomalies and self-reported depression severity 

may be expected. Recent work by Cohen et al. in a study with 132 participants (76 with 

schizophrenia, 50 controls) revealed that anomalies in mHealth data were predictive of 

relapse. However, they found that using a separate technique, offline changepoint 

detection did significantly correlate with depression and anxiety measures. Given this 

finding with changepoint detection, it may be of use to investigate how the rate of 

change of reconstruction error rather than the count anomalies detected relates to 

depression. The work by Cohen et al. and confirmation in this dataset suggest that 

unlike schizophrenia, depression may not be a condition in which the count of 

behavioral anomalies are related to a consistent change in symptomology. The 

anomalies detected only indicate changes, not whether those changes are beneficial or 

detrimental to an individual. Additionally, all studies investigated only have at most 13 

weeks of data, it is possible that with longer datasets, anomalies detected with training 
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windows of over 6-months or more may be able to detect anomalous behavior of 

relevance to depression. 

However, although the number of anomalies does not correlate with a change in 

depression severity, the days highlighted provide a starting point to discuss and 

evaluate key moments in their trajectory. For example, the first anomaly detected in Fig. 

5.8b appears to coincide with a large change in phone call behavior and a 

commensurate increase in physical activity. Nevertheless, this work does not suggest 

that detected anomalies can be used as a clinical diagnostic. We believe that AD can 

instead be useful in identifying initial points where wearable device and smartphone 

data can be looked at in relation to different behavioral trajectories, identifying changes, 

and that significant deviation from past behaviors may prove a useful means to 

contextualize a change in mood. By way of illustration, some of the most significant self-

report correlations with anomalies in Fig. 5.7a were related to social support; similarly, 

many of the anomalies detected via manual inspection appeared to fluctuate around 

phone call behavior, which might be linked to changes in social support. Notably, the 

PHQ-4117 and even the DSM-V diagnostic criteria120 for MDD do not have items asking 

specifically about social support. This represents one potential area of future 

investigation around feature curation and evaluation to use mHealth data to improve 

how we understand and define MDD. 

In addition to filtering data for human use, AD methods may also help in the 

development of additional machine learning tools for the prediction of mental health 

trajectories. Training models on individual participant data has been shown to be more 

effective at tasks such as mood prediction121; however, this approach also reduces the 
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amount of data available for a model to be trained on. Improving the effectiveness of 

these remaining data for model training may help filter out anomalous days. By 

removing these anomalous days from training data, we may be better able to determine 

the relationships between metrics from mHealth devices and mental health trajectories. 

Similarly, the label of an anomalous day may itself be a useful predictive feature for 

models. 

5.4.1 Limitations 

Anomaly detection methods need further development to be truly useful at 

filtering user data to find the days that are worth further investigation for mental health 

trajectories: there are many improvements to be made in future work. The performance 

of AD algorithms on even the simulated data is suboptimal, leaving room for 

improvement without necessarily overfitting to the simulated conditions. Potential 

venues to improve the tested AD algorithms include removing anomalous days from the 

training of detectors on future days, as done in Ren et al.122, and the use of more 

complex models, such as autoencoder-based methods123. 

As the signal-to-noise ratio appears to be an important indicator of performance, 

feature selection processes should also be explored. In this study, imputation was 

performed via one type of iterative imputer; however, the imputation technique may 

dramatically change the performance of an anomaly detector. Investigating how 

imputation and missingness patterns affect anomaly detectors is of critical interest, as 

mHealth data suffer from high degrees of missingness. 
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5.4.2 Conclusion 

This work characterizes reconstruction error-based anomaly detection 

techniques on simulated data and then uses them to detect changes in depression 

severity and symptoms. The anomaly detectors appear to highlight days that deviate 

from a participant’s usual behavior; however, those deviations do not consistently 

correlate with an increase or decrease in depressive symptoms. As such, while the 

detectors investigated in this work cannot detect depression, anomaly detectors may 

present a useful first pass for filtering and investigating data points of interest when 

presented with large digital health datasets. 
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Chapter 6: Detecting momentary reward and affect 

with real-time passive sensor data 

This study explores the capability of mobile health (mHealth) data from smartphones 

and smartwatches to predict self-reported momentary affect and anhedonia/reward 

system functioning through ecological momentary assessment (EMA). Utilizing data 

from 245 participants generating 23,812 EMA sessions, we evaluated whether 

behaviors and physiological factors measured by passive mHealth data can detect 

subjective states. Despite generally low performance (AUROC <0.6), the models 

exceeded random chance, suggesting detectable signals between passive measures 

and subjective states. The optimal aggregation periods for sensor data ranged from 15 

minutes to 3 hours, with no single window consistently outperforming others across all 

affect and reward items. Subgroup analyses revealed variations in model performance 

on the basis of demographics, depression severity, and anhedonia severity, with 

notable performance improvements when sleep data were incorporated for some EMA 

items. The findings highlight the influence of individual characteristics on model 

performance and the potential for passive digital sensing to monitor mental health on a 

large scale, although further refinement and personalized modeling approaches are 

necessary for improved accuracy. 

6.1 Introduction 

Digital sensing is frequently compared to self-report surveys in the context of monitoring 

mental health. However, digital sensing provides the ability to examine much more 
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granular time series data than does the broader, retrospective scope of weeks and 

months typically covered by self-reports. Experience sampling or ecological momentary 

assessment (EMA) methods enable the collection of ecologically valid, moment-to-

moment self-reported mental state data from participants at a much finer temporal 

resolution124,125. The use of the EMA as an outcome measure to evaluate digital sensing 

aligns more closely with the inherent time scale of these technologies. 

In this study, we investigate whether digital sensing data can inform us about 

self-reports of momentary affect and anhedonia/reward system functioning from EMAs. 

Here, we specifically focus on this task in the context of a population with depression 

and a spectrum of anhedonia severity. Paired with EMA, mobile health (mHealth) data 

from smartphones and smartwatches allow us to observe whether an individual’s 

behavior and physiology measurably relate to their subjective state. This approach can 

provide an understanding of the behaviors and physiological factors associated with 

specific changes in affect and reward functioning, which, when chronic and extreme, 

become disordered. There are two key considerations when creating features from 

digital sensor data. First, we investigate performance differences based on aggregation 

period for sensor data prior to an EMA response, ranging from 15 minutes to 3 hours. 

Second, we assess whether incorporating information about the previous night’s sleep 

enhances model performance. Our analysis utilizes data from 245 participants who 

generated 23,812 EMA sessions. 

Prior work on using passively sensed data at the time of EMA has looked at 

phone accelerometers and gyroscopes at the time of the EMA session126 or GPS and 

weather data from the hour prior to EMA127. A recent preprint (posted July 3rd 2024) by 
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Siepe et al. investigated associations between aggregation windows as short as 15 

minutes with EMA prompts related to stress, tiredness, and sleep128. The analysis from 

Siepe et al. relies on heavily processed metrics such as the “body battery” or “stress 

sensor” reported by the Garmin smart watch, and they do not find associations between 

self-reported tiredness or stress and the “body battery” or “stress sensor”, respectively. 

An informal review of the literature failed to identify published prior work reporting on the 

use of less than one hour of data to predict response to EMA data from consumer 

wearable devices using features such as vital signs (heart rate, heart rate variability 

(HRV), respiratory rate) and ambient noise. 

Our findings indicate that nomothetic (as opposed to personalized or idiographic) 

models using passive mHealth data can predict responses to both affect- and reward-

related EMA items in a cohort with depression. While performance is generally low 

(often AUROC <0.6), it exceeds random chance, demonstrating that the models can 

detect signals between passive measures and subjective momentary states. For 

analytic purposes, it would significantly reduce analytic complexity of investigating the 

relationship of EMA to mHealth data if a single time window prior to EMA response 

consistently predicted EMA item response. However, in alignment with previous findings 

for depression self-report prediction20,29, we do not find a single time window prior to an 

EMA response that consistently outperforms any other to predict all affect and reward 

items, suggesting that analyses utilizing passive sensor data to predict EMA items will 

need to explore time aggregation windows on which sensor features are used and what 

the predicted EMA outcome is. 
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To understand how the performance of models varies as a function of cohort 

characteristics, performance is stratified by subgroups of demographics, depression 

severity, and anhedonia severity. Subgroup analyses revealed that for certain 

populations and specific EMA-related outcomes, performance can be as high as 0.68 

(e.g., the inactive enjoy EMA response in males using two hours of sensor data and the 

past night’s sleep as features). The significant performance differences across 

demographic, anhedonia, and depression severity subgroups suggest that our ability to 

passively detect EMAs may benefit from incorporating additional data sources to 

account for population variance. 

6.2 Methods 

The data for this analysis were obtained from 342 participants who were monitored via 

passive sensing and self-reported measures over 13 weeks as part of the 

Operationalizing Digital PhenoTyping in the Measurement of Anhedonia (OPTIMA) 

study investigating features of anhedonic depression, which collected data between 

October 2022 and April 2024. Self-reported depression severity is taken from responses 

to the Patient Health Questionnaire-14 (PHQ-14) (see Depression Symptom Response 

Project OSF site: https://osf.io/j6r3q/), and anhedonia is assessed via the Positive 

Valence Systems Scale (PVSS)88. 

The OPTIMA study is part of the Wellcome Leap Multi-Channel Psych Program, 

a consortium of studies focused on anhedonic depression. A subset of 245 participants 

was used in this analysis. This subset was selected on the basis of having greater than 

30% of expected days with EMAs containing at least 2 of 5 responses, more than 30% 

of the first 90 days in the study with at least 1 log of heart rate, and greater than 0 

https://osf.io/j6r3q/
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variability in the individual’s EMA responses (at least one EMA item has greater than 0 

variability per participant). The participants were screened to all be right-handed, but no 

instructions were given as to whether watches would be worn on the nondominant hand 

or not. The participants were given the Apple watch series 7 or higher and used their 

own iPhone. This analysis is exploratory and was not preregistered, but its reporting 

incorporates relevant expected information described in the “Template for studies using 

passive smartphone measures” by Langener et al129. 

6.2.1 Ecological Momentary Assessment Processing 

EMAs were administered to participants via the UCLA Depression Grand Challenge 

Study App (DGC Study App) for three separate 8-day bursts (5 times per day) during 

the study (at baseline, week 6, and week 12). The 15 EMA items used in this analysis 

correspond to either affect or reward functioning. The EMA begins by instructing 

participants: “The following questions will ask you to describe your feelings and 

experiences right now. "Right now" means right before you began this survey. 

 Affect-related EMA items are of the form “How ___ do you feel right now?” where 

the blank is one of 9 items: 

1. Sad 

2. Stressed 

3. Anxious 

4. Annoyed/Irritated 

5. Energetic 

6. Happy 

7. Motivated 
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8. Engaged 

9. Lonely 

The participants responded on a 5-point Likert scale with the following mapping: 

1. Not at all 

2. Slightly 

3. Moderately 

4. Very 

5. Extremely 

All affect-related items are converted to binary responses if their answer is greater 

than 1 (not at all). This results in affect-related EMA items being converted to the 

classification of any endorsement or none. Reward-related items are binary (true or 

false) responses. The questions are in the format “Right now, I…” and end with 

(underlines represent the term used in figures and tables to describe the EMA item): 

1. am looking forward to an upcoming activity (anticipatory) 

2. am feeling good after doing something (consummatory) 

3. am putting effort into planning something 

4. could be doing something positive but am not because I don’t think I’d enjoy it 

(inactive enjoy) 

5. could be doing something positive but am not because it feels like too much 

effort (inactive effort) 

6. am feeling a sense of meaning and purpose. 

The presentation order was randomized within the affect and reward item blocks. An 

EMA session is an event associated with administering the full set of EMA questions. 
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The participants were instructed that they had 30 minutes from the time the EMA was 

sent to submit their responses. EMA sessions that lasted shorter than 10 seconds or 

longer than 5 minutes were not used in the analysis. This filtering results in the removal 

of 461 (1.9%) sessions, with 23,812 remaining. 

6.2.2 Contextualizing Population 

The OPTIMA study recruits a population enriched with individuals with depression and 

high or low levels of anhedonia. To understand the psychometrics of the PVSS in the 

general population (especially the distribution of anhedonia across the spectrum 

depression, age, and sex-at-birth) and help establish the study’s inclusion criteria and 

recruitment strategy, a dataset comprising self-reported PHQ, PVSS, and EMA 

responses was collected in the planning phase of OPTIMA via Amazon’s Mechanical 

Turk (MTurk) service (Cohen, Forbes, Khazanov, & Fried, in prep; see 

https://osf.io/6xnv2/). Target recruitment was N=500, stratified to be equally distributed 

across five age buckets (18 to 25, 26 to 35, 36 to 45, 46 to 55, 56 to 65) and sex-at-birth 

(50% Male, 50% Female). Of 520 response, 512 have PHQ-8 and PHQ-14 responses, 

520 have PVSS responses, and 510 having EMA responses. The distributions of age, 

sex at birth, PVSS score, PHQ-8 total score (comparable to the PHQ-8 score calculated 

from the PHQ-14), EMA affect, and reward item responses were compared between 

this more general sample and the OPTIMA cohort. As the MTurk collected dataset has 

only 1 EMA session response, when comparing distributions, the median EMA 

response is taken per participant per EMA item from the OPTIMA dataset, and the 

PVSS and PHQ-14 scores are taken from the end of the study. 
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A Wilcoxon rank-sum test was used to compare distributions for affect-related 

EMA items, age, PVSS total score, and PHQ-8 total score. Chi-square independence 

tests are used to compare distributions for the binary responses to reward-related EMA 

items and sex at birth. P-values are corrected via Bonferroni adjustment with a 

familywise error rate (FWER) < 0.05. 

6.2.3 Dataset Split  

To ensure an even distribution of important participant-level characteristics between the 

training data sample and the test set, the participants were split to ensure approximately 

equal distributions across 10 variables, with an approximately 80–20 split of participants 

(195 train, 50 test). This split leads to 19,016 EMA responses in the training data and 

4796 in the testing data. The full list of variables used to split the data into training and 

test sets were: 

1. Age: distribution of integer years 

2. Sex at birth: male or female 

3. race and ethnicity: operationalized as identifying as non-Hispanic white or not 

4. Study participation: Number of study timepoints with self-reported data available 

5. PHQ-14 total score at the end of the study 

6. PVSS total score at the end of the study 

7. Availability of EMA responses: percentage of expected days (24) within the first 

90 days of the study with at least two EMA responses 

8. Availability of watch data: percentage of days with at least one heart rate entry 

within the first 90 days of the study 
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9. Availability of sleep annotation data: percentage of days with sleep duration 

calculatable within the first 90 days of the study 

10. Variance of EMA responses: average standard deviation of EMA responses 

across all 15 items used as prediction targets 

Assignment to training or test splits was performed via the automated randomization 

of multiple traits for study design (ARTS) package130. The distributions of the variables 

between the training and test splits are shown in Figure 6.1.  

 

6.2.4 Passive Sensor Features 

Passive sensor features are created relative to each timestamp when each EMA 

session starts. A total of 29 momentary features from vital signs, activity, and ambient 

noise are generated during the time window prior to the start of the EMA session, and 

an additional 11 features related to sleep quality from the previous night are generated. 

Details of heart rate monitoring from consumer devices are reported where possible in 

accordance with guidelines from Nelson et al.131. These features are as follows: 

 

Figure 6.1 Histograms of train and test set user characteristics. 
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1. Vital signs (13 features): Prior to aggregation, vital signs are resampled as the 

median at 5-minute intervals to account for dynamic sampling. Heart rate is the 

most frequently sampled vital sign (the median sampling time is every 2 

minutes), so more aggregations are run for it than others. The mean, standard 

deviation, minimum, maximum, number of entries, slope, and intercept (from 

linear model fit) are used as features. For respiratory rate, heart rate variability 

(measured as the standard deviation of the N-to-N interval), and oxygen 

saturation, mean and number of entries are captured. 

2. Activity (12 features): Active energy expenditure, basal energy expenditure, 

exercise time, and step count, are aggregated by taking the sum value, count of 

entries, and sum duration of entries. 

3. Ambient noise (4 features): Audio exposure events from Apple HealthKit are 

aggregated by taking the total number of entries, the number of 5-minute 

intervals with entries, the mean decibel level, and the sum duration of entries. 

Ambient noise is sampled at a median rate of once every 30 minutes. 

4. Sleep (11 features): Sleep features are calculated on the basis of HealthKit sleep 

annotations from 3pm the prior day until 3pm of the day of EMA assessment. We 

generate sleep duration, bedrest duration, sleep efficiency, sleep onset latency, 

sleep onset, sleep offset, bedrest onset, bedrest offset, number of nighttime 

awakenings, duration of awakenings, and average noise during bedrest. 

The median time difference between samples for vitals, activity, and ambient noise 

is shown in Figure 6.2 to provide context for what data may be missing on shorter time 

aggregation windows. 
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Entries where calculation of mean heart rate was not possible (no heart rate 

entry was found) were excluded from the analysis. Reporting of a heart rate 

measurement from the watch is used as a proxy for watch wear. Other missing features 

are imputed as the median value per feature in the training set. The percentage of 

missing features per aggregation period is shown in Figure 6.3 after the removal of 

EMA sessions, as described in the Ecological Momentary Assessment Processing 

section. 

 

 

Figure 6.2 Median time between samples of a feature per user. Boxen plot shows distribution across 
participants. X-axis is logarithmically scaled. 
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6.2.5 Machine Learning Modeling 

Machine learning was applied to characterize whether passive sensor-derived 

features can detect responses to EMA items. Automated machine learning (AutoML) 

was used on the training data to select the best model for the prediction of EMA binary 

response via 5-fold stratified grouped cross validation. Prior to model training, the data 

were scaled via a standard scaler and imputed via simple median imputation. Grouping 

was performed to ensure that the participants used to train the models were not in the 

validation set for hyperparameter tuning and model selection. The models evaluated 

were the gradient boosting classifier (XGBoost), random forest (RF), light gradient 

boosting classifier (LGBM), logistic regression with L1 loss (LRL1), also known as 

LASSO, and logistic regression with L2 loss (LRL2), also known as Ridge. Automated 

machine learning was performed via the fast and lightweight AutoML library (FLAML) 

2.1.2132, with a time budget set to 200 seconds and early stopping and scikit-learn 

1.2.291. 

 

Figure 6.3 Missing passive sensor features based on availability of data prior to EMA session start. 
Note Sleep features refer to availability of the prior night’s sleep data. 

 

 

 



 105 

6.2.6 Model Evaluation 

Models were evaluated for performance on the test dataset of 50 participants and 4,796 

EMA responses via the metric of area under the receiver operating characteristic curve 

(AUROC). To account for the unequal number of EMA responses per participant and to 

generate confidence intervals, a bootstrapped sampling approach was taken. Each 

bootstrapped sample consisted of 50 EMA responses per individual in the test set 

sampled randomly with replacement, and for each bootstrapped sample, the AUROC 

was calculated. Bonferroni adjustment is used when calculating confidence intervals 

with a false discovery rate set to 0.05 and 150 comparisons (15 outcomes, 5 

aggregation window sizes, 2 feature sets). 

The best performing model per outcome with respect to aggregation duration (15 

minutes, 30 minutes, 1 hour, 2 hours, or 3 hours) and feature set (momentary features, 

or momentary and sleep features) was selected per detected outcome. For these 

models, performance was evaluated stratified by the following user characteristics: age, 

race and ethnicity, sex at birth, anhedonia, and depression. Each characteristic was 

converted to a binary variable. Age, anhedonia severity, and depression severity were 

split on the basis of whether the participants were above or below the median value in 

the test set. Anhedonia was assessed as participants with end-of-study PVSS scores 

less than the median (5.95), and depression was assessed as end-of-study PHQ-14 

scores greater than the median (13.5). Racial-ethnic background is converted into a 

binary by determining whether an individual self-identifies as non-Hispanic white. A 

comparison of the AUROC between each group was performed via the Wilcoxon 
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signed-rank test. The feature importance for the best performing model is assessed via 

SHapley Additive exPlanation (SHAP) scores94. 

To assess the sensitivity of the models to missing data, the test set performance 

was evaluated on the full test set as well as a subset of EMA sessions missing fewer 

than 10 of 29 features (n=2716, 56.6% of EMA sessions in the test set). Differences 

between the AUROC on the full test set relative to the high data availability test set are 

compared per outcome via a Wilcoxon rank-sum test corrected for multiple testing via 

the Bonferroni adjustment with the FWER set to 0.05. 

6.3 Results 

6.3.1 Distribution of EMA Responses 

Participants in the OPTIMA study were significantly different from the population 

sampled using MTurk in terms of sex at birth (chi-squared 57.24; Bonferonni adjusted p-

value = 1.5e-13), age (mean difference = 3.49 years, Bonferonni adjusted p-value = 

1.12e-06), PHQ-8 total score (mean difference 5.68, Bonferonni adjusted p-value = 

6.11e-30), and PVSS total score (mean difference = 0.89, Bonferonni adjusted p-value 

= 2.12e-16). This finding demonstrated that, compared with the population in the MTurk 

dataset, the OPTIMA study population included participants who were significantly 

younger, more depressed, more anhedonic, and more female (Fig. 6.4A). 

  Additionally, we see significant differences in the distributions for responses to 7 

of 9 affect EMA items and 4 of 6 reward EMA items. These differences are shown in 

Fig. 6.4.B-C and Table 6.1. 
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Table 6.1 EMA response means in the OPTIMA study versus the population sample from Amazon MTurk. 
P-values from Wilcoxon rank-sum test between OPTIMA and general means adjusted with Bonferroni 
method FWER < 0.05. 

EMA item OPTIMA mean General mean Mean difference Adjusted p-value 
Reward (1-5)    
sad 1.784 1.837 -0.054 1.00E+00 
stressed 2.427 2.078 0.348 2.01E-08 
anxious 2.335 1.951 0.384 6.09E-10 
annoyed 1.827 1.731 0.095 4.42E-03 
energetic 2.114 2.839 -0.725 3.57E-18 
happy 2.127 3.010 -0.883 1.00E-23 
motivated 2.198 3.310 -1.112 7.28E-40 
engaged 2.382 3.575 -1.193 2.39E-44 
lonely 1.776 2.010 -0.234 1.00E+00 
Affect (0-1)     
anticipatory 0.480 0.735 -0.255 4.11E-11 
consummatory 0.427 0.715 -0.289 2.07E-14 
effort 0.302 0.639 -0.336 8.55E-17 
inactive enjoy 0.169 0.265 -0.096 6.89E-02 
inactive effort 0.253 0.346 -0.093 1.55E-01 
meaning 0.359 0.715 -0.356 2.25E-19 
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6.3.2 Model Performance 

We find that models can detect EMA responses greater than random chance (AUROC > 

0.5 via the Mann‒Whitney U test; Bonferroni correction at FDR = 0.05) for 11 out of 15 

EMA item outcomes (sad, stressed, anxious, annoyed, energetic, motivated, 

anticipatory, consummatory, inactive enjoy, inactive effort, and meaning). The 

performance details are outlined in Figure 6.5. The performance stratified by either the 

window of aggregation or feature set is depicted in Figure 6.6. 

 

Figure 6.4 Distribution of demographics, depression severity, anhedonia, and EMA responses between 
OPTIMA and a population sample collected on Amazon MTurk. A) Sex at birth, age, PHQ-8 score 
(depression severity, directly comparable to PHQ-14 total score), PVSS (anhedonia; lower means more 
anhedonia). All measures significantly difference at p < 0.001 between groups. B) Bar plot comparing 
affect EMA item response and C) reward EMA responses.  Significant differences between items in B 
and C annotated if p < 0.05 after Bonferroni adjustment with FWER < 0.05. Annotation legend: * < 0.05, 
** < 0.01, *** < 0.001. 
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Figure 6.5 Model performance (median AUROC ± 95% Bonferroni-adjusted bootstrapped confidence 
interval) on the held-out test set of 50 users for each feature set (rows) and each outcome (columns). 
Bold values indicate model AUROC performance for an outcome where p<0.05 for testing that 
AUROC > 0.5 after Bonferroni adjustment of Mann Whitney U-test. Blue outline indicates best 
significantly performing model for a given outcome column. 

 

 A    B   

 

Figure 6.6 Performance of EMA detection models across A) passive data aggregation window with 
momentary features only and B) inclusion or exclusion of sleep data from the prior night based on peak 
aggregation window per outcome shown in A. 
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For the best performing model per outcome, performance is assessed stratified 

by age, race and ethnicity, sex at birth, depression severity, and reward functioning. 

Model performance split by these characteristics is shown in Figure 6.7. Performance is 

notably higher in males for 7 of 9 affect related EMA items (sad, anxious, annoyed, 

energetic, happy, motivated, and engaged) and 2 of 6 reward related EMA items 

(inactive enjoy and inactive effort) while only higher in females for the meaning EMA 

item. Stressed, anxious, engaged, and inactive effort EMA items are better detected in 

older participants. The highest performing item is inactive enjoy for males with an 

AUROC of 0.684. 
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To determine how models work SHAP analysis was performed on the 11 

outcomes whose performance was greater than an AUROC of 0.5. Magnitudes of 

SHAP values are shown in Figure 6.8 across models to determine which features 

appear to be consistently important to different models. Notably, basal energy 

expenditure, step count, and environmental audio features rank near the top features 

used by most models. 

 

 

 

Figure 6.7 Performance of EMA detection models split by clinical and demographic parameters. * 
Indicates median difference between low (False) and high (True) group are >0.05 AUROC and 
Wilcoxon rank sum test Bonferroni adjusted p<0.05. 
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To further investigate what basal energy expenditure may represent, Figure 6.9 

illustrates the median value of basal energy expenditure across a 24-hour period split by 

users’ sex at birth.  

 

Figure 6.8 Clustered heatmap of the average magnitude of SHAP feature importance for models 
using passive sensor features (x-axis) to detect EMA outcomes (y-axis). Higher values indicate more 
importance of a given feature to a model. SHAP values scaled to maximum value per outcome. Row 
colors indicate if item is related to affect or reward functioning. Column colors indicate type of sensor 
feature. 
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6.3.3 Sensitivity to Missing Data 

There are significant differences in performance on the basis of data availability. For two 

of the EMA items with performance greater than random chance (anxious and 

energetic), performance is significantly greater in the full sample than in the sample 

missing fewer data points, suggesting that the highly missing features are not useful to 

the models when present. In contrast, the performances of the models that detect EMA 

items for consummatory, sad, inactive enjoy, anticipatory, and meaning are all higher in 

the sample with less missing data. The full results of the sensitivity analysis are 

summarized in Table 6.2. This may be explained in part as models whose performance 

degrades, such as the sad EMA rely on features that are sampled less frequently (see 

Figure 6.2) and are more likely to be missing, such as HRV (see Figure 6.8). 

 

Figure 6.9 Median value per user of basal energy expenditure per hour of the day split by sex at birth. 
Error bounds represent 95% confidence intervals. 
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Table 6.2 Difference in performance of models detecting EMA item response in the test set on either the 
full test set, or a subset of responses with less than 10 of 29 features missing. Bold values indicate FWER 
adjusted p-value < 0.05 for difference and the full sample model performed greater than random chance 
(AUROC > 0.5 and adjusted p-value < 0.05). 

EMA Item Features Window Mean AUROC AUROC 
Difference 

Adjusted P-
value 

      
Full 

sample 
Missing < 10 

features     
anxious momentary 2h 0.545 0.510 0.035 1.59E-26 
consummatory with sleep 2h 0.543 0.559 -0.016 9.04E-17 
sad momentary 3h 0.572 0.584 -0.012 1.18E-11 
inactive enjoy with sleep 2h 0.551 0.563 -0.012 5.13E-10 
anticipatory momentary 2h 0.549 0.557 -0.008 1.68E-04 
meaning with sleep 2h 0.532 0.539 -0.007 2.88E-04 
energetic with sleep 3h 0.586 0.580 0.006 1.54E-02 
annoyed momentary 2h 0.540 0.536 0.005 5.13E-02 
motivated with sleep 3h 0.567 0.562 0.005 1.53E-01 
stressed with sleep 1h 0.554 0.556 -0.002 1.00E+00 
inactive effort with sleep 2h 0.550 0.551 -0.001 1.00E+00 

 

6.4 Discussion 

Our findings indicate that there is no single best approach to detect all 15 EMA items 

related to affect and reward functioning. Instead, each EMA item is best predicted by 

different feature sets and time windows for feature aggregation, and there does not 

appear to be a rule-of-thumb aggregation window or feature set. For most models, at 

least two hours of passive data aggregation are required for the best results; however, 

this may not apply if the sampling frequency of measures like HRV increase in future 

device or operating system versions. Many items that we might expect to be influenced 

by prior night’s sleep do indeed show improved performance with sleep quality data 

from the prior night included. For example, four of the top five features used by the 

model for detecting “energetic” are related to sleep measures. Similarly, as we may 

expect elevated heart rate to occur when an individual feels anxious, heart rate is a key 
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feature utilized by the models predicting the “anxious” EMA item, and specifically, a 

higher heart rate is associated with the endorsement of feeling anxious. 

Unexpectedly, basal energy burned emerged as a prominent feature in most 

models. The authors could not find documentation from Apple on how this HealthKit 

data type is calculated. The most common formula to calculate basal energy 

expenditure is the Harris–Benedict equation, which considers it a constant function of 

age, sex, body weight, and height133; however, in HealthKit, we observe that basal 

energy is not constant per individual, with circadian fluctuations in this value throughout 

a day. Models may perhaps be learning sex at birth from the basal energy burned 

feature as the baseline value is significantly different across males and females in 

Figure 6.9. 

The significant differences in model performance based on symptom severity and 

demographic characteristics have implications for future modeling efforts. Many models 

perform better for older and male participants. This is not an effect of imbalanced data, 

as only 32.7% of the participants used in the analysis (both training and test) are male, 

and the definition of older was based on the median age in the test set. There is 

additionally no significant difference in the item response distribution between males 

and females in the test set for items that have significantly different performance except 

for the inactive effort EMA item. Additionally, recent work from Adler et al. confirms that 

the relationship between smartphone sensed behavior and depression risk can even 

invert in different demographic groups75. These performance discrepancies suggest that 

(for these models), the measurable behaviors from digital health devices, as assessed 

in this study, are most informative for the older male population, potentially reflecting a 
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bias in device or sensor design. Other sensors and features may enable broader 

detection of these items. 

The items for which performance is better in the low depression severity group 

may represent models that can better generalize to a more general (less depressed) 

population, as shown in Figure 6.4. This includes items such as stress and effort. 

Notably, the sad EMA response distribution was not significantly different between the 

OPTIMA cohort and the MTurk-generated sample, but performance in detecting the 

item with mHealth data was better in those with depression, suggesting that the 

behaviors linked to the endorsement of momentary sadness are different in those with 

more severe depression than in a population sample even if the frequency of 

endorsement was similar. 

This work focuses on using nomothetic models to understand how passive 

sensor features are related to momentary affect and reward. Models in digital sensing 

for mental health are often trained in a personalized fashion (e.g., idiographic or n-of-1) 

because performance without personalization can be low or minimal due to sample size 

restrictions and the complexity of the detection task68,69,121. The use of nomothetic 

modeling demonstrates that these sensors provide metrics that are useful in detecting 

momentary states across individuals. By investigating performance differences by 

demographic characteristics, depression severity, and anhedonia, we find that these 

parameters significantly affect model performance and begin to explain some of the 

characteristics that drive the heterogeneity associated with linking behavior to mental 

health outcomes. This finding serves as a baseline for building future models that can 

leverage participant-specific information to further enhance model performance. 
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6.4.1 Limitations 

Missing sensor data are prevalent, especially for vital signs such as respiratory rate and 

heart rate variability during smaller aggregation windows. This is a limitation of the 

sampling frequency from the consumer wearable device, which occurs dynamically. 

Future work may look at what the relevant aggregation period is per sensor type. With 

the sample size available from EMA data, temporally aware deep learning models might 

be better suited to this task, as they can work with the raw time series data and implicitly 

select the most salient time span for a sensor relative to the specific EMA response. 

6.4.2 Conclusion 

We found that it is possible to detect responses to subjective momentary assessments 

of affect and reward functioning using only passive data and, importantly, without any 

prior information on a participant. As it precludes the need for the collection of 

burdensome person-specific training data, this finding represents an early step toward 

enabling scalable continuous passive mental health monitoring for the large existing 

user base of consumer wearable devices and smartphones. Another goal of this work 

was to determine the optimal time window across which to aggregate passive sensor 

data relative to EMA response items. Perhaps unsurprisingly, the optimal window varied 

across EMA items (with a general minimum of 2 hours) based on which sensor features 

were included. This finding highlights the limitations of one-size-fits-all analytic 

approaches when leveraging passive data from wearables to detect momentary affect 

and reward functioning. Ultimately, we find that there is signal in passively collected 

mHealth data to detect momentary affect and reward in those with depression and 

highlight key distinguishing participant characteristics influencing model performance.  
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Chapter 7: Conclusion 

7.1 Summary of Research 

The work of my dissertation begins by attempting to make few assumptions about the 

underlying passive data used and investigating in broad strokes what passive sensor 

data may tell us about depression. Chapter 3 leverages machine learning to find 

relationships between device-measured behaviors and retrospective self-reports on 

depression severity and related constructs. In Chapter 3, we find that several specific 

items are detectable with passive data and additionally note that although sleep quality 

is measured by the watch and phone, few items relevant to self-reported sleep quality 

are detectable. 

In Chapter 4, sleep quality, as measured physiologically by the phone and watch 

or via self-reports, is assessed in relation to depression severity. Chapter 4 

demonstrates that, particularly in the depressed population recruited in the OPTIMA 

study, physiologically measured sleep and self-reported sleep do not measure the same 

construct, emphasizing the need to measure both when studying the role of sleep in 

depression. 

In the analyses presented in Chapter 4, there are two key underutilized qualities 

of mHealth data for the study of depression: 1) the multidimensional nature of mHealth 

data, which comprises many data streams, and 2) the fine-grained temporality of 

mHealth data, which allows real-time monitoring. In Chapter 5, the anomaly detection 

methods explored were aimed at leveraging the multidimensional nature of mHealth 

data to identify whether the number of deviations an individual has from their normal 
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behavior (as measured by mHealth devices) is correlated with changes in depression 

severity and depression symptoms. Although no significant relationship was found, the 

AD methods appear able to detect multivariate anomalies in a manner that picks up 

expected signals and may have uses outside of depression. In the case of depression, 

being unable to label an anomaly as a positive or negative event limits how anomalies 

may be related to symptom progression. 

Finally, in Chapter 6, we investigate leveraging the real-time fine resolution of 

data that consumer wearable devices deliver to detect reward functioning and affect in 

the moment. We find that many machine learning models trained to detect these EMA 

items can do so above random chance, and performance varies drastically across 

different demographic, depressive, and anhedonic groups. This finding lays a 

foundation of considerations when building momentary predictive models for depression 

and key factors associated with heterogeneity in the presentation of depression. 

7.2 Key Findings 

Across my work in this dissertation, I find that while mHealth data hold potential 

for detecting symptoms of depression, considerable advancements are necessary to 

realize certain ambitious use cases, such as passive preventative monitoring. With 

consumer device data, we can identify meaningful signals between subjective internal 

states and passive mHealth data without requiring personalization. These signals are 

evident over both extended periods, such as weeks, and at momentary levels. 

Additionally, mHealth data assist in clarifying discrepancies between self-reported and 

actual behaviors, a critical issue in mental health studies. For example, significant 

differences between perceived and actual sleep quality can be independently assessed 
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via mHealth data, a principle that can be applied to other areas that often rely on 

retrospective self-reports due to the challenges of naturalistic measurement. While most 

data captured by these devices may not be directly related to mental health, their utility 

increases when they are combined with other data streams over time. 

However, several challenges remain. The performance of models across 

participants, though better than random chance, is not sufficiently reliable for 

deployment. The data predominantly come from watches, which, despite their growing 

use, are less widespread than smartphones alone. Additionally, the infrastructure and 

processing requirements for mHealth data present a complex, interdisciplinary task that 

is not yet standardized. This complexity introduces multiple layers of noise and 

inconsistency, limiting the replicability of findings. 

7.3 Future Directions 

The work of this dissertation is intended to lay a foundation of what depression 

symptoms we might be able to use modern consumer wearable device data to detect, 

specifically by leveraging sleep, vitals, physical activity, and ambient noise. There is 

significant work to be done to translate the findings presented into solutions that 

enhance patient care, as any application will be specific to the community it is aimed at 

helping. 

7.3.1 Standardization of digital sensing for mental health 

Consumer technology is subject to changing versions of software and hardware over 

time that meaningfully impact the features they generate115,134,135. Research in digital 

sensing for mental health that can meaningfully build off prior studies and replicate 
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findings will require a degree of standardization. Fortunately, this work is in progress 

with efforts such as open mHealth136 and discussions between involved stakeholders 

such as the “Workshop on Advancing the Utility of Digital Sensing Tools for Mental 

Health Research” held in March 2023. 

7.3.2 Leveraging Deep Learning 

The large datasets generated in digital mental health studies present an opportunity to 

leverage more advanced machine learning methods than those utilized in this 

dissertation. I focus on relatively simple methodologies such as random forest models 

as a first pass to understand the potentially high value targets to focus on. A more 

complex methodology leveraging temporally aware deep learning frameworks or 

transformer-based modeling approaches may be able to uncover associations between 

mHealth data and depression symptomology that are not possible with simpler 

approaches. These more computationally expensive approaches hold more promise as 

the digital mental health datasets being generated grow larger and explainability tools 

become more advanced, lowering the tradeoff between model complexity and 

interpretability. 
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