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Abstract

Background and aims—Hypercholesterolemia confers susceptibility to cardiovascular disease 

(CVD). Both serum total cholesterol (TC) and LDL-cholesterol (LDL-C) exhibit a strong genetic 

component (heritability estimates 0.41–0.50). However, a large part of this heritability cannot be 

explained by the variants identified in recent extensive genome-wide association studies (GWAS) 
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on lipids. Our aim was to find genetic causes leading to high LDL-C levels and ultimately CVD in 

a large Austrian family presenting with what appears to be autosomal dominant inheritance for 

familial hypercholesterolemia (FH).

Methods—We utilized linkage analysis followed by whole-exome sequencing and genetic risk 

score analysis using an Austrian multi-generational family with various dyslipidemias, including 

elevated TC and LDL-C, and one family branch with elevated lipoprotein (a) (Lp(a)).

Results—We did not find evidence for genome-wide significant linkage for LDL-C or apparent 

causative variants in the known FH genes rather, we discovered a particular family-specific 

combination of nine GWAS LDL-C SNPs (p=0.02 by permutation), and putative less severe 

familial hypercholesterolemia mutations in the LDLR and APOB genes in a subset of the affected 

family members. Separately, high Lp(a) levels observed in one branch of the family were 

explained primarily by the LPA locus, including short (<23) Kringle IV repeats and rs3798220.

Conclusions—Taken together, some forms of FH may be explained by family-specific 

combinations of LDL-C GWAS SNPs.

Keywords

Familial hypercholesterolemia (FH); LDL cholesterol; Genetic risk score (GRS); Lipoprotein (a)

Introduction

High levels of serum total cholesterol (TC) and especially low-density lipoprotein 

cholesterol (LDL-C) predispose to cardiovascular disease (CVD), the major cause of death 

worldwide (1). Genetics plays a major role in CVD (heritability estimates 0.38–0.57) (2,3). 

However, variants identified in extensive genome-wide association studies (GWAS) explain 

only 6–20% of the variance in lipid traits and even less of CVD (4). This missing heritability 

may partially be explained by rare and private variants, and thus large families with several 

affected individuals without risk variants in the known familial hypercholesterolemia (FH) 

genes may help identify new genes causing Mendelian forms of dyslipidemia or other 

inherited mechanisms contributing to high LDL-C.

FH affects 1 in 200–600 people (5). To date there are only a handful of genes known to 

cause FH, including LDLR, APOB, PCSK9 and LDLRAP1 (6). However, it is estimated that 

only approximately 20–60% of FH subjects exhibit a causal variant within these four genes 

(7–9), suggesting that variants in these genes do not explain all cases of FH.

To find mutations leading to high LDL-cholesterol and ultimately CVD, we systematically 

screened both rare coding and common genomic variants in a large Austrian dyslipidemic 

family exhibiting elevated TC and LDL-C levels, in addition to elevated lipoprotein a 

(Lp(a)) levels in one branch of the family. All affected elderly family members had suffered 

a cardiovascular event in the past, and the index case did not have known FH variants in 

LDLR or APOB.

Combining linkage analysis with whole-exome sequencing has become a common approach 

to pinpoint candidate chromosomal regions and specific variants for Mendelian diseases 
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(10,11). We first genotyped the family members using a genome-wide SNP array to cover 

the common variants, and then exome-sequenced the family members to capture their coding 

variants. We screened for mutations in the known FH genes, performed a genome-wide 

linkage analysis, and assessed the coding variants present predominantly in the affected 

individuals for functional predictions. Since no genome-wide significant linkage peaks or 

mutations in the known FH genes were found, we estimated genetic risk scores using all 

common GWAS SNPs previously associated with LDL-C (12) and identified a family-

specific combination of nine LDL-C GWAS variants, contributing to the high LDL-C levels 

in this family.

Materials and methods

Overview

We first searched for a possible monogenic cause for FH in a large Austrian pedigree using a 

linkage analysis, followed by an exome sequencing analysis and subsequent variant 

screening in existing European cohorts. We also comprehensively analyzed all variants 

identified in the known FH genes (6). We then searched for a potential polygenic association 

with FH in this family by performing a genetic risk score analysis of the known LDL-C 

GWAS variants (12).

Study samples

The study sample consists of 16 individuals from a large Austrian dyslipidemic family (Fig. 

1; for clinical characteristics, see Table 1). The diagnostic criteria of heterozygous FH were 

based on the MedPED and world health organization (WHO) criteria (13,14). The index case 

was a 46-year old healthy man with TC level of 11.7 mmol/l and LDL-C level of 9.2 mmol/l 

measured on a routine check-up. His father has had premature coronary heart disease (CHD) 

before the age of 55 but had died accidentally. Thus, the index had a score >8 using the 

Dutch Lipid Clinic Network diagnostic criteria for FH. He had a low level of serum 

triglycerides and an elevated level of serum high-density lipoprotein cholesterol (HDL-C). 

These findings initiated the family screening, as two cousins from the paternal side also had 

early CHD events before the age of 55. Family members with LDL-C > 4.0 mmol/l with or 

without statin therapy were considered affected for FH. In addition, one family branch 

exhibited high Lp(a) levels (>50 mg/dl). DNA was extracted from blood, and clinical 

phenotypes were measured using standard protocols. Fasting serum samples from all 

available family members were ultracentrifuged to separate lipoprotein fractions (15), and 

cholesterol and triglyceride concentrations were measured by automated enzymatic methods 

in total serum and in VLDL, LDL and HDL fractions. The number of apolipoprotein (a) 

Kringle IV (apo(a) KIV) repeats was measured by SDS-agarose electrophoresis followed by 

immunoblotting, as described previously (16). Lp(a) concentrations were measured by 

ELISA, as recently described (17). Phenotypes included age, sex, status of statin medication, 

total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), Lp(a), and the number 

of apo(a) KIV repeats. All family members gave a written informed consent, and the study 

was approved by the local ethic committees.
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Validation cohorts

To validate our findings, we utilized genome-wide genotyping data from the METabolic 

Syndrome In Men (METSIM) cohort (n=10,197) (18) and the European exome sequencing 

database of type 2 diabetes consortium (n~13,000) for the association with LDL-C.

Genome-wide SNP genotyping and whole exome sequencing

We performed genotyping using a genome-wide SNP panel (Illumina 

HumanCoreExome-12v1-1), as well as exome sequencing of all available affected and 

unaffected family members, using the Agilent SureSelect All exon 50-Mb capture with the 

Illumina Hiseq2500 platform employing 75 bp paired-end reads, resulting in a mean 

coverage of 75X, and capturing ~91% of the targeted regions with ≥10X coverage. We 

aligned and called the variants using BWA (19) and GATK (20). We used the hg19 genomic 

reference sequence for the alignment and all analyses. We checked the data quality, 

including the call rate of the SNPs, gender check based on X chromosome SNPs, and 

heterozygosity rate using PLINK (21) as well as pedigree consistency using the Mendel 

software packages (22).

Linkage analysis

We first estimated the expected maximum LOD score (EMLOD) based on the pedigree 

structure and binary LDL-C affection status using fastSLINK package (23), employing the 

same penetrance model as in the linkage analysis. We performed a genome-wide parametric 

two-point linkage analysis for LDL-C and Lp(a) using Mendel (22) and utilizing ~95K high-

quality (genotyped in all family members) and informative (MAF>10% in the family (>3 

carriers)) SNPs, spaced ~25 kb apart throughout the genome. For LDL-C, we employed an 

autosomal dominant model with a penetrance of 0.95 and phenocopy rate of 0.001. For 

Lp(a), we used an autosomal dominant model with penetrance of 0.99 and a phenocopy rate 

0.0001 to test the variants at the LPA locus.

Variant filtering

We focused on the potentially functional variants (nonsynonymous and splice site variants) 

fulfilling the following criteria: minor allele frequency (MAF) ≥10%; location in the regions 

with an LOD score ≤1.0; and present predominantly in the affected individuals (high LDL-C 

or high Lp(a)).

Genetic risk score analysis

We calculated weighted genetic risk scores of the 65 known common GWAS LDL-C 

variants (12) in the METSIM cohort (n=10,064) and family members. For each LDL-C 

associated locus (>1Mb apart), we selected the SNP with the lowest p-value and weighed 

each risk allele with the beta effect size established by Willer et al. from ~180,000 

individuals (12). The selected SNPs, including their risk alleles and weights, are listed in 

Supplementary Table 1. We first calculated the risk scores for each individual in the 

METSIM cohort, and then compared the risk scores of the affected family members with the 

estimated population percentiles obtained in the METSIM cohort.
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Permutation analyses

To assess the significance of the difference in average number of risk alleles we observed 

between the affected and non-affected family members with the nine family-specific GWAS 

SNPs, we performed a permutation analysis for the nine SNPs by randomly selecting 20 

individuals with LDL-C >75th percentile (the LDL-C cut off ≥3.9 mmol/l) and 20 

individuals with LDL-C <50th percentile (the LDL-C cut off ≤3.5 mmol/l) from the 

METSIM cohort. We calculated how many times the difference in average number of risk 

alleles is larger for all nine SNPs between the METSIM individuals with high LDL-C and 

normal LDL-C than the 20% difference observed for all nine SNPs in the family.

To assess the significance of the observed risk SNP combination, we performed an 

additional permutation of the risk scores by randomly selecting 100 times a 9-SNP set from 

the 65 LDL-C increasing SNPs (12). We constructed new risk scores weighted by beta and 

estimated the percentiles in the METSIM population for each of the 9-SNP sets. We then 

calculated how many times the average risk score of the affected individuals would be in the 

≥90th percentile.

Evaluation of the known FH variants and genes

We screened all individuals for variants in the four previously known FH genes, LDLR, 
APOB, PSCK9, and LDLRAP1 (6).

Results

In this study, we aimed to identify the variant(s) for an autosomal dominant type of 

inheritance of high LDL-C levels in a large Austrian dyslipidemic family. The affected 

family members had an average pre-statin LDL-C level of 5.56 mmol/l (range 4.20–9.20 

mmol/l), and four siblings from the first generation had suffered a cardiovascular event (Fig. 

1). One branch of the family also exhibited 4 individuals with extremely high Lp(a) levels 

(66 mg/dl-113 mg/dl, i.e. all above the 90th percentile), a known independent risk factor for 

CVD (24,25). We first performed a linkage study followed by exome-sequencing analysis to 

find novel variants co-segregating with the high LDL-C status in the family. Lp(a) levels 

were investigated for variants at the LPA locus. We evaluated our identified LDL-C variants 

for association in existing large European cohorts, and calculated the weighted genetic risk 

scores for LDL-C using genome-wide significant LDL-C variants from the Willer et al. 
meta-GWAS study (12), utilizing the METSIM cohort as a reference panel. Lastly, we 

systematically screened all variants we identified in the known FH genes, LDLR, APOB, 
PSCK9, and LDLRAP1, for co-segregation with high LDL-C status among the family 

members.

Linkage analysis followed by a variant screening did not pinpoint a locus for high LDL-C

The estimated maximum LOD score for this family was 3.3 using fastSLINK. We observed 

22 loci with an LOD score >1.0, with the highest maximum LOD score of 2.1 on 

chromosome 5. The fine-mapping of the chromosome 5 region, did not result in LOD scores 

>2.1. Within the 22 loci, we identified 6 potential functional variants (Fig. 2A and 

Supplementary Table 2). Even though separately none of these variants were robustly 
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associated with quantitative LDL-C in the large European cohorts (p-values>0.008), four of 

the 11 affected had all six risk alleles and two of the four were on statin therapy.

Genetic risk score analysis of known LDL-C loci identified a family-specific combination of 
nine risk variants

Out of the 69 independent LDL-C associated GWAS risk loci identified by Willer et al. (12), 

65 SNPs (or their linkage disequilibrium (LD) proxies, r2 >0.95) were successfully 

genotyped or imputed for 10,064 METSIM individuals and 16 family members. If the 

GWAS lead SNP or its LD proxies were not available, we selected the second lowest p-value 

available within the GWAS locus. We constructed the overall genetic risk scores by 

calculating the sum of number of risk alleles, weighted by the beta established by Willer et 
al. of each of the 65 SNPs for every individual. The weighted LDL-C risk score observed in 

the METSIM cohort was correlated with serum LDL-C levels (Pearson’s correlation =0.22, 

p<2.2×10−16), after removing statin users (n=2,812). For the calculations of the population 

percentiles of the genetic risk scores, we included all METSIM participants (n=10,064). The 

50th percentile of the LDL-C genetic risk scores in the METSIM cohort was 3.52, whereas 

the average of the affected family members was 3.71 (~75th percentile), suggesting a 

stronger predisposition for high LDL-C in the family based on the common LDL-C GWAS 

variants.

To further investigate the LDL-C GWAS risk variants observed in this family, we 

investigated the nine variants with the highest difference in the average number of risk 

alleles (>0.40) between the affected and non-affected family members (Table 2) for family-

specific effects. To evaluate if this 9-SNP combination was indeed family-specific, we first 

performed a permutation analysis by randomly selecting 20 individuals with high LDL-C 

(>75th percentile) and 20 individuals with LDL-C <50th percentile from the METSIM 

cohort, and observed no similar difference in the average number of risk alleles between all 

of the 9 LDL-C GWAS SNPs among the subjects with low and high LDL-C levels, using 

100 permutations (p<0.01). This suggests that the distinct combination with a large 

difference in the average number of risk alleles with these 9 SNPs is specific for this family. 

Next, we derived the risk scores using the sum of the weighted betas of these 9 SNPs (Table 

2). The new 9-SNP-weighted LDL-C risk score of the METSIM participants was correlated 

with serum LDL-C levels (Pearson’s correlation=0.12, p<2.2×10−16), after removing statin 

users. As above, for calculation of the population percentiles of the genetic risk scores, we 

included all METSIM participants (n=10,064). The average risk score in the METSIM 

population sample was 0.34 (50th percentile), whereas the average risk score of the affected 

family members was 0.74 (>90th percentile) and of the unaffected family members 0.46 

(<25th percentile) (Table 1 and Fig.1), respectively, further suggesting that the combination 

of the 9 SNPs is contributing to the high LDL-C levels in this family. These nine SNPs did 

not have a significantly higher effect size when compared to the rest of the 56 SNPs 

(Wilcoxon–Mann–Whitney test p=0.22), demonstrating that their effect sizes do not differ 

from typical GWAS variants.

To determine whether this type of aggregation would appear by chance, selecting any set of 

LDL-C-raising GWAS SNPs, we first calculated the risk scores using the well-established 
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Global Lipid Genetic Consortium 12-SNP LDL-C gene score calculation (26). Indeed, the 

average risk score of the affected family members was in the 70th percentile and the average 

of the unaffected family members was in the 40th percentile when compared to the 

percentiles in the Whitehall II controls (26). When we estimated the 12- SNP GRS (26) in 

the METSIM study, it correlated with serum LDL-C levels (Pearson’s correlation =0.23, 

p<2.2×10–16), similarly to using all of the 65 LDL-C increasing genome-wide significant 

GWAS SNPs (Pearson’s correlation =0.22, p<2.2×10–16), indicating that both of these 

genetic risk scores can equally predict the LDL-C levels at the population level. However, 

the average 12-SNP risk score of the affected family members is in the 65th percentile, 

suggesting that the discovered family-specific risk score is more suitable and accurate in this 

particular family. Three of the SNPs overlap between the 12-SNP GRS and family specific 

risk scores. We further performed 100 permutations by randomly selecting 9-SNP 

combinations from the 65 LDL-C-increasing genome-wide GWAS SNPs and calculated how 

many times the average risk score of the affected family members is ≥90th percentile. We 

observed this phenomenon only with two sets (p=0.02). These additional risk score 

permutations suggest that randomly selecting other sets of LDL-C GWAS SNPs does not 

present as high a risk as the actual nine family-specific SNP combination.

High Lipoprotein (a) (Lp(a)) levels are likely explained by the known genetic variants in the 
LPA locus

Lp(a) is largely regulated by the number of Kringle (IV) repeats and two independent SNPs 

(rs3798220, c.5793A>G p.(I1891M) and rs10455872, NM_005577.2:c.3947+467T>C), 

which together explain 30–70% of the Lp(a) variation (25). In the family, the individuals 

with high Lp(a) also had low number of Kringle (IV) repeats (<23) (Table 1). Furthermore, 

we identified a well-known Lp(a) variant, rs3798220, in the LPA locus using linkage 

analysis (Fig. 2B). The intronic LPA variant rs10455872 did not segregate with the high 

Lp(a) levels. These data suggest that the high Lp(a) levels observed in a branch of the family 

are likely explained by rs3798220 and the low number of Kringle (IV) repeats.

Variants in the known FH genes may explain high LDL-C levels in one family branch

The index case had been previously screened negative for the known FH variants in FH 

genes (LDLR,APOB,PCSK9 and LDLRAP1) by DNA sequencing. We screened all family 

members for the known FH genes and identified a total of 87 variants, of which 19 were 

non-synonymous or splice site variants (Supplementary Table 3). None of the variants fully 

segregated with the high LDL-C status. However, we identified two splice site variants 

(rs72658867, NM_000527.4:c.2140+5G>A, MAF=0.011 and rs72658861, NM_000527.4:c.

1061-8T>C MAF=0.0085) and one non-synonymous LDLR variant rs45508991 (c.

2177C>T(p.(T726I), MAF=0.0095), predicted to be deleterious by SIFT in one family 

branch (Supplementary Table 3). This potentially deleterious variant rs45508991 is in full 

LD with the splice site variant rs72658861, both present in 3 of the 11 affected family 

members and in one of the 5 unaffected family members. All of these variants have been 

previously implicated in FH, but do not consistently co-segregate with hypercholesterolemia 

(27), suggesting that another variant must be present for these LDLR variants to be 

pathogenic, as previously proposed (28, 29).
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Similarly, we identified 3 potentially pathogenic non-synonymous variants (rs1801695, c.

13569G>A(p.(A4481T), MAF=0.033; rs61742247, c.4966 G>A p.(S1613T), MAF=0.0011; 

and rs1801701, c.11041G>A p.(R3638Q), MAF=0.090) (Supplementary Table 3) in APOB, 

of which rs1801701 has been implicated for LDL-C in a previous GWAS (12). Interestingly, 

these APOB variants appeared in the same branch as the LDLR variants described above, 

with 3 affected family members sharing a combination of these LDLR and APOB variants 

(Table 1, Supplementary Table 3 and Fig. 1). We postulate that in order to have an impact on 

the ApoB metabolism, and furthermore on TC and LDL-C levels, these LDLR and APOB 
variants may need to appear as a risk combination or require other GWAS LDL-C variants as 

a haplotypic background. For example, one of the APOB variants (p.R3638Q) resides in the 

C-terminus of apoB100, a region known to be regulating LDL receptor binding (30).

Discussion

Our comprehensive analysis of a large Austrian family with phenotypical familial 

hypercholesterolemia (FH) showed evidence of a specific polygenic contribution to high 

LDL-C. The linkage analysis did not pinpoint to a single genetic locus for high LDL-C; 

rather, we found 22 loci with an LOD score >1.0, implying that it is likely several loci 

contribute to the high LDL-C levels in this family. Consistent with that, our risk score 

analyses followed by a permutation analysis identified a combination of nine LDL-C GWAS 

SNPs specific for polygenic FH in this family. In addition, a systematic examination of the 

variants in the known FH genes resulted in the identification of possible less severe FH 

mutations in the LDLR and APOB genes in a subset of the affected family members, in line 

with the previous hypothesis (28, 29) that specific LDLR and APOB coding variants may 

only become pathogenic in the presence of an additional risk variant in these FH genes. 

Because three of the affected family members carried both LDLR and APOB risk 

combinations, we postulate that small functional defects in both genes, whose biological 

functions are tightly bound, escalate the effects and contribute to the high LDL-C levels in 

these individuals.

Recent evidence suggests that FH is a heterogeneous disorder that can be caused by 

monogenic or polygenic mechanisms, including rare variants at the traditional FH genes or 

multiple common variants at the LDL-C GWAS loci and other genes (7,31). We did not 

identify FH-causing mutations in the known FH genes, and our linkage study combined with 

exome sequence analysis did not pinpoint a causative variant or gene. When we evaluated 

the effects of the weighted risk scores of 65 LDL-C GWAS SNPs collectively present in the 

family members, we observed that the affected members had a significantly higher average 

risk score than the reference population (p=0.001). However, the risk scores were not in the 

top 90th percentile, which has previously been used to distinguish polygenic from 

monogenic forms of FH (26). Interestingly, however, we found a combination of nine 

variants at the LDL-C GWAS loci among the affected members of this particular family 

(p<0.01 by permutation). The risk scores constructed using only these nine variants changed 

the average risk score of the affected individuals to >90th percentile of LDL-C. Based on our 

data, we propose that constructing family-specific risk scores may be helpful in some large 

families to explain high LDL-C levels.

Nikkola et al. Page 8

Atherosclerosis. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Among the nine family-specific GWAS variants (Table 2), there is one HMGCR variant, 

rs12916. HMGCR is a rate-limiting enzyme in cholesterol biosynthesis and the main target 

of statin therapy. Given the relatively large effect size of this GWAS variant (beta=0.07) for 

LDL-C (12) and the previous evidence that the rs12916 is a liver eQTL (32), it is likely that 

the elevation of serum LDL-C levels due to the C allele is caused by augmented HMGCR 
expression and the subsequent increased cholesterol synthesis in the liver. The increased 

cholesterol synthesis in turn activates a feedback mechanism that inhibits the uptake of 

LDL-C from blood via the LDL receptor. Interestingly, a recent longitudinal metabolomics 

study observed that the carriers of the protective T allele exhibit a similar lipidomics profile 

as observed in individuals who have started statin therapy (33).

Our study has several limitations. Analysis of only one family does not provide information 

that could be directly extrapolated to the entire Austrian population. However, our findings 

further demonstrate the genetic complexity of FH in individuals without the known FH 

mutations. This type of presentation can clearly complicate the diagnosis and identification 

of hypercholesterolemic individuals in early stages of disease, emphasizing the importance 

of family-based evaluation of FH. We showed a likely polygenic effect that included variants 

residing in regions with LOD scores >1.0 and a combination of nine LDL-C GWAS SNPs 

aggregating in the affected family members. We hypothesize that most of the FH families 

without a single known pathogenic mutation will exhibit a specific combination of the LDL-

C GWAS variants that can be distinguished if extensive family data are available. We 

recognize that it is possible that we missed the causal variant(s) since no whole genome 

sequencing was performed and the causal variant might reside outside the protein coding 

regions or be a large copy number variation, not studied here. This scenario is, however, less 

likely given our negative linkage screening that, based on our simulation, had adequate 

power to identify a single monogenic variant. Our design does not fully exclude potential 

low-frequency modifier variants residing outside of the coding regions, not captured either 

by the SNP array or exome sequencing utilized here.

The Finnish population may not be an optimal reference population for the Austrian family 

because the minor allele frequencies between the two European populations might differ 

slightly. However, the LDL-C associated SNPs from Willer et al. (12) are mostly common 

variants (MAF>5%), typically largely shared by the European populations (34). 

Furthermore, we also calculated separate risk scores using the Global Lipid Genetic 

Consortium 12-SNP LDL-C risk score, and compared the risk scores of the Austrian FH 

family with the published results of the Whitehall II controls (26). We obtained similar 

results as with METSIM, suggesting that the METSIM cohort provides a sufficient reference 

population.

Our study focused mainly on the genetic architecture of LDL-C, one of the major risk 

factors for CHD. Hence, using genetic risk scores specific for CHD such as the ones recently 

established by Natajran et al. (35) might help understand the overall genetic risk for CHD in 

this family, and further identify individuals with a high risk for CHD, who potentially 

benefit most from the statin therapy (35).
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In summary, our linkage study followed by exome sequencing and a GWAS LDL-C risk 

score analysis supports a polygenic cause for hypercholesterolemia in this Austrian family. 

Potential cascade testing of identified variants in the third generation of this family might 

provide valuable information regarding who should be followed up for early treatment of 

hypercholesterolemia. Our study demonstrates the importance of using family-wide genetic 

data, when available, in future personalized medicine initiatives of complex diseases. For 

example, in other FH families without the known FH mutations, a similar approach could be 

used to establish a family-specific polygenic hypercholesterolemia diagnosis, when 

sufficient numbers of affected and unaffected family members are available for identification 

of a family-specific set of LDL-C increasing GWAS SNPs that exceed the 90th risk score 

percentile in the particular population. Subsequently, the family’s younger generations could 

be tested for these variants to provide an earlier personalized diagnosis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We systematically screened a large Austrian family for monogenic and 

polygenic causes of familial hypercholesterolemia (FH).

• Family-specific combinations of LDL-C genome-wide association study 

(GWAS) variants and an aggregate of milder mutations in the APOB and 

LDLR genes may explain some forms of FH.

• High lipoprotein (a) levels observed in one branch of the family were likely 

explained by short Kringle IV repeats and variant rs3798220 at the known 

LPA locus.
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Figure 1. The Austrian hypercholesterolemia family showing an autosomal dominant type of 
inheritance
The figure includes only those family members who gave an informed consent for blood 

sampling and DNA analyses. The DNA sample from the affected family member 7711 did 

not pass the quality requirements for the genomic analyses. The right bottom corner shows 

the explanations of the used signs: the circles indicate a female and the square a male; the 

filled circle or square indicates a person who has suffered from a previous cardiovascular 

event; the half-filled circle or square indicates an individual with high low-density 

lipoprotein cholesterol (LDL-C); yellow color indicates an individual with high lipoprotein 

(a) (Lp(a)); the red arrow shows individuals with DNA available; and the open squares or 

circles indicate unaffected subjects. The family-specific genetic risk score (GRS) and 

percentile are given under each individual. The individuals with specific APOB and LDLR 

variant combinations are circled in black (for the specific APOB and LDLR combinations, 

see Supplementary Table 3). The pedigree was drawn using CraneFoot (36).
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Fig. 2. Overview of the genetic results
(A) Overlap between the 22 LDL-C regions with an LOD score >1.0, exome variants (non-

synonymous or frameshift variants with a MAF<10%), and 9 family-specific LDL-C GWAS 

variants identified in the Austrian family members, as illustrated by rCircos (37). The outer 

most track indicates the chromosome number, followed by the cytoband; the scatter plot 

shows the LOD scores of the ~95K SNPs from the linkage analysis (red indicates a LOD 

score >1.0 using a scale of 0–2.25); next to the scatter plot are the exome variants 

predominantly present in the affected family members (Supplementary Table 2) that reside 

in the regions with LOD>1.0; the inner most track indicates the 9 family-specific GWAS 
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SNPs (Table 2), and the gene names (or the closest gene) of the variants are shown inside of 

the circle; the yellow highlight indicates that the variant was identified by exome 

sequencing. (B) Overlap between the Lp(a) regions with an LOD score >1.0 and exome 

variants (potentially functional and MAF<10%) identified in the Austrian family members, 

as illustrated by rCircos (37). The outer most track indicates the chromosome number, 

followed by the cytoband; the scatter plot shows the LOD scores of the ~95K SNPs from the 

linkage analysis (red indicates a LOD >1.0, using a scale of 0–1.5); and the inner most track 

indicates the exome variants present only in the family members with high Lp(a).
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