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Abstract

The ability to selectively focus attention on stimulus di-
mensions appears to play an important role in human cat-
egory learning. This insight is embodied by learned di-
mensional attention weights in the ALCOVE model (Kr-
uschke, 1992). The success of this psychological model
suggests its use as a foundation for efforts to under-
stand the neural basis of category learning. One obsta-
cle to such an effort is ALCOVE’s use of the biologi-
cally implausible backpropagation of error algorithm to
adapt dimensional attention weights. This obstacle may
be overcome by replacing this attention mechanism with
one grounded in the reinforcement learning processes
of the brain’s dopamine system. In this paper, such a
biologically-based mechanism for dimensional attention
is proposed, and the fit of this mechanism to human per-
formance is shown to be comparable to that of ALCOVE.

Introduction
Human category learning performance cannot be easily
explained without recourse to a mechanism for selec-
tive dimensional attention (Shepard et al., 1961). Di-
mensional attention is the cognitive process which em-
phasizes task relevant stimulus dimensions while deem-
phasizing others. Thus, contemporary formal models of
categorization, such as the Generalized Context Model
(GCM) (Nosofsky, 1984), have incorporated adaptable
dimensional attention parameters. By adjusting these pa-
rameters in a category-specific fashion, the GCM has re-
peatedly provided excellent fits to human data reflecting
the frequency (or probability) with which each stimulus
is recognized as an instance of a target category. When
the GCM is applied to experimental results, dimensional
attention parameters are freely varied to optimize the
model fit. This means that, while the GCM provides a
powerful account of learned categorization performance,
it offers no explanation for how dimensional attention is
adjusted over the course of learning.

This shortcoming of the GCM has been addressed by a
connectionist model called ALCOVE (Kruschke, 1992).
ALCOVE incorporates the GCM’s formalization of cat-
egory knowledge, but it also provides a precise algo-
rithm for modifying the attentional “weight” assigned to
each stimulus dimension, based on feedback provided
to learners on their categorization judgments. In a typ-
ical category learning experiment, learners are presented
with stimulus objects, one at a time, and are asked to

make classification judgments for each. Immediately fol-
lowing each judgment, feedback is provided, typically
informing the learner of the correct category label for the
preceding stimulus. Once learning is complete, catego-
rization judgments on transfer stimuli, for which no feed-
back is provided, can provide a window into the structure
of the learned category knowledge. The ALCOVE model
uses the feedback provided during training to calculate
an “error signal”, which is simply the difference between
the category assignment made by the model and the spec-
ified “true” category. A variant of the backpropagation
of error learning algorithm (Rumelhart et al., 1986) is
used to communicate this error signal to an early stage
of stimulus encoding, and this backpropagated error sig-
nal is used to adjust ALCOVE’s dimensional attention
weights. Like the GCM, ALCOVE provides good fits to
human performance data on learned categories. Unlike
the GCM, ALCOVE provides a detailed account of how
dimensional attention is shaped by experience.

ALCOVE has been proposed as a model of psycho-
logical processes, with virtually no aspiration to explain
the neural basis of human category learning. Despite this
fact, the empirical successes of ALCOVE and its con-
nectionist formalization make the model a tempting can-
didate for a coarse characterization of associated brain
mechanisms. Perhaps ALCOVE can be refined, with
each of its proposed psychological mechanisms mapped
onto a corresponding detailed account of the underlying
neural machinery. One feature of ALCOVE that stands
in the way of such a theoretical reduction is its use of
the backpropagation of error algorithm in order to learn
dimensional attention weights. This powerful learning
algorithm has long been criticized for its lack of biolog-
ical plausibility (Crick, 1989), suggesting that the brain
cannot be adapting dimensional attention based on such
a gradient-based technique (c.f., O’Reilly (1996)).

As a first step toward a biological model of category
learning, we replaced the backpropagation-based dimen-
sional attention mechanism used by ALCOVE with a re-
inforcement learning mechanism intended to reflect the
role of the brain’s dopamine (DA) system in learning.
This role for dopamine has been formalized by other re-
searchers in terms of an algorithm called temporal dif-
ference (TD) learning (Sutton, 1988; Montague et al.,
1996). Versions of ALCOVE which adapt dimensional
attention weights using the biologically supported TD
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learning method, instead of the more computationally
powerful but biologically implausible backpropagation
method, were found to fit human performance data about
as well as the original ALCOVE. Thus, this work offers
a more biologically realistic model of the adaptation of
dimensional attention without sacrificing accuracy in ac-
counting for human categorization behavior. Also, the
ability to capture human performance with the highly
stochastic TD learning method suggests that cognitive
mechanisms for adapting dimensional attention may not
need to be particularly precise.

Background
ALCOVE Architecture
The ALCOVE (Kruschke, 1992) model of category
learning is a feedforward connectionist model that in-
volves three layers of processing units (see Figure 1(a)).
The input layer consists of a set of units that each cor-
respond to a single dimension in the stimulus psycho-
logical space. Explaining the structure of this perceptual
representation is outside of ALCOVE’s scope. When fit-
ting ALCOVE to human data, multidimensional scaling
(MDS) techniques are typically applied to collected stim-
ulus similarity ratings in order to discern the psychologi-
cal space used by human learners (Shepard, 1962a; Shep-
ard, 1962b). Each input unit has its own dimensional at-
tention weight, αi. These weights are non-negative scalar
values that modulate the amount of attention paid to
the corresponding stimulus dimension. Higher αi values
magnify the differences between stimuli along the given
dimension, making them easier to discriminate based on
that dimension. As learning progresses, these weights
are adjusted via the backpropagation of error algorithm.

The hidden layer in ALCOVE contains a set of units
that are arranged in psychological space, one for each
training exemplar. The activation level of each hidden
unit is determined by the following equation:

ahid
j � exp

����
c � ∑

i

αi �� h ji

�
ain

i �� r � r � q 	

where ahid

j is the activation of hidden unit j, c is the
specificity of the hidden units, αi is the attention weight
for input unit i, h ji is the preferred stimulus input for hid-
den unit j along stimulus dimension i, ain

i is the activa-
tion value of input unit i, r is the psychological distance
metric, and q is the similarity gradient. Hidden unit activ-
ity is at a maximum when the inputs match the preferred
stimulus of the unit (i.e., ain

i matches h ji). This activation
fades exponentially as the stimulus becomes more distant
from the preferred exemplar in psychological space, with
the c, r, and q parameters controlling exactly how activa-
tion decreases with psychological distance.

Finally the output layer contains a set of units re-
ceiving activation from the hidden layer via association
weights. Each output unit corresponds to a category la-
bel that might be assigned to a stimulus. These units

are standard linear units, with their activation levels, aout
k ,

computed as the sum of exemplar unit activation levels,
ahid

j , weighted by the corresponding association weights,
wk j . Output unit activations are mapped onto response
probabilities using an exponential Luce choice rule:

P � K � � exp 
 φaout
K ��� ∑

k

exp 
 φaout
k �

where P � K � is the probability of selecting category K for
the current stimulus, and φ is a gain term. These response
probabilities may be used to compare network responses
with human performance data.

After the presentation of each stimulus and the conse-
quent outputs are produced, the output unit correspond-
ing to the correct response is presented with a target acti-
vation level of � 1, and other units are presented with tar-
gets of

�
1. An error signal consisting of the difference

between aout
k and these targets is used to adjust weight

values (though output units that “overshoot” their target
values are assigned zero error). The association weights
are then adjusted using this error signal directly (i.e., us-
ing the delta rule), but the selective attention weights are
adjusted based on a backpropagated error signal. The re-
sulting weight update equations are:

∆wout
k j � λw 
 tk � aout

k � ahid
j

∆αi � λα ∑
j � ∑k


 tk � aout
k � wk j � ahid

j c �� h ji

�
ain

i ��
where ∆wout

k j is the adjustment value for the association
weight from hidden unit j to output unit k, ∆αi is the ad-
justment value for the attention weight for input unit i,
λw and λα are the learning rate parameters for the associ-
ation weights and attention weights, respectively, and tk
is the target value for output unit k.

Temporal Difference Learning
Electrophysiological studies of the dopamine neurons
of the basal ganglia have suggested that the firing rates
of these cells code for changes in expected future re-
ward (Shultz et al., 1997). This is particularly interesting
because a measure of change in expected reward is the
key variable of a reinforcement learning method called
temporal difference (TD) learning (Sutton, 1988). This
has led a number of researchers to develop TD learning
models of the role played by the midbrain dopamine sys-
tem in learning (Barto, 1994; Montague et al., 1996).

In the TD framework, a continuous reward value (r) is
delivered on each time step (t), with positive reward be-
ing desirable. A neural system called the adaptive critic
learns to predict expected future reward (V ), given fea-
tures of the current situation. When future rewards are
exponentially discounted by a factor, γ (between 0 and 1),
with immediate rewards being valued more than tempo-
rally distant ones, the change in expected future reward
between two consecutive time steps is given by:

δ � t � � r � t ��� γV � t � � V � t � 1 �
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This δ value is called the temporal difference (TD) error.
The global TD error value can be used to drive learn-
ing in the adaptive critic, improving predictions of fu-
ture reward, and it can also be used to adapt connection
weights in neural networks which select actions, push-
ing those choices toward actions that regularly lead to
reward. Models of this kind have been used to explain
motor sequence learning in the striatum (Barto, 1994) as
well as other forms of learning. We propose that this
form of reinforcement learning may also be used to learn
dimensional attention weights that lead to correct cate-
gorization responses and, thus, reward.

Modeling Approach
Applications of TD learning typically focus on choosing
an action from a discrete set. There is currently no clear
understanding of how to apply these methods to domains
in which a continuous output is needed. Dimensional at-
tention weights are continuous parameters, however, so
some modification to standard TD learning is needed to
apply this technique to the adaptation of dimensional at-
tention. We have devised two novel connectionist archi-
tectures to accomplish this. Our strategy encodes atten-
tional weight vectors (with one αi weight per dimension)
across a single layer of standard connectionist process-
ing units, called the attention map layer. Each unit in
this layer possesses a fixed preferred attentional weight
vector, and activation of a unit encourages the use of that
unit’s preferred dimensional attention weights. The acti-
vation level of each unit is largely determined by its indi-
vidual bias weight, and the TD learning method is used
to adapt these bias weights so as to optimize reward.

At the start of each trial, each of these attention map
units is activated, to some degree, by its bias weight.
The units then compete to determine the set of dimen-
sional attention parameters to be used by ALCOVE, and
the result of this competition is a set of such attention
weights. ALCOVE then processes the current stimulus
in its usual fashion, producing a categorization judgment.
ALCOVE’s association weights are then modified in the
usual way, using the delta rule, but the dimensional atten-
tion weights are handled differently. If ALCOVE confi-
dently chooses the correct category, it is rewarded. Oth-
erwise, it is not. The TD error, δ, is calculated based on
this reward signal, and this error is used to modify the
bias weights of all active attention map units.

Two different architectures for the attention map layer
were investigated. The first of these used conjunctive
coding, resulting in a localist representation of dimen-
sional attention. Under this scheme, the preferred atten-
tional weight vectors of processing units were distributed
evenly throughout the weight vector space. Thus, each
unit corresponded to a position in attention weight vec-
tor space, and the positions of all of the units in the at-
tention map layer formed a uniform grid in this space.
On each trial, a simple winner-take-all competition deter-
mined the one unit whose preferred weight vector would
specify the distribution of attention for that trial. Learn-
ing occurred only for the winning unit, using the follow-

(a) (b)

Figure 1: (a) ALCOVE Network Architecture. (b) Tile
Coding Of The Attention Map Layer — A single unit is
centered in each tile.

ing weight update equation for its single bias weight:

∆wi � λr � r � ai � f � � neti �
where λr is the attention map learning rate, r is the re-
ward for the current trial, ai is the activation value of the
winning attention map unit, and f � � neti � is the derivative
of the unit’s activation function (which was the standard
logistic sigmoid). Note that this is the standard method
for updating weights based on TD error, under the con-
dition of absorbing reward (i.e., we don’t predict reward
past the end of the trial). In this case, ai acts as our reward
prediction (V � t � 1 � ), and we do not predict beyond this
trial, so V � t � � 0 and δ � r

�
ai. A reward value (r) of� 1 was delivered to the network on trials in which AL-

COVE selected the correct category label and produced
a confident response (i.e., all output units within 0 � 5 of
their targets). A reward of 0 was delivered, otherwise.1

Our second attention map architecture used tile cod-
ing, resulting in a distributed representation of dimen-
sional attention. In this case, the attention map layer
was partitioned into disjoint tilings, where each tiling
contained a set of units with preferred dimensional at-
tention weight vectors that uniformly spanned the full
weight space. The preferred weight vectors of the units
in the various tilings were not identical, however, be-
cause each tiling was “offset” from the others, as shown
in Figure 1(b). To precisely represent a position in the
attention weight space, one unit in each tiling is acti-
vated, with the overlap in the tiles surrounding the po-
sitions of these units determining the dimensional atten-
tion weights to be used. This kind of distributed rep-
resentation was originally used in the Cerebellar Model
Articulation Controller (CMAC) (Albus, 1975), and im-
proved generalization in TD learning systems has been

1An obvious alternative reward schedule involves stochas-
tically making category judgments based on P

�
K � and reward-

ing any correct judgment. While we are currently investigat-
ing this approach, it is likely that it will produce behavior that
deviates substantially from that of standard ALCOVE. Dimen-
sional attention weights do not change much in ALCOVE until
the network starts to make strong responses. This is part of
the “three-stage learning” profile that ALCOVE exhibits. Our
reward schedule encourages this pattern of learning.
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found to result from their use (Sutton, 1996). Previous
models have used such representational schemes to en-
code network inputs, but here they have been used in a
novel way to select dimensional attention weights. As in
the conjunctive coding architecture, each attention map
unit is activated by a bias weight, and a competition en-
sues between units. In the tile coding scheme, the most
active unit across all tilings restricts activity in the other
tilings to those that are close to the winning unit (i.e.,
units whose tiles overlap with that of the winning unit).
This competitive process is recursively applied to tilings
that do not contain the winning unit until one unit is ac-
tive in each tiling, and the tiles corresponding to these
units all overlap. The attention weight vector at the cen-
ter of this overlapping region is then used by ALCOVE
to process the current stimulus. Once feedback is pro-
vided, reward is calculated as in the conjunctive coding
case, and TD learning is used to adjust the bias weights
of all of the winning units in the attention map layer.

In standard ALCOVE, the initial attention weights are
often set to be all equal and to sum to one. This effec-
tively emphasizes all dimensions equally at the start of
training. We selected initial bias weights in the attention
map layer so as to form a similar initial bias in our mod-
els. The unit in the attention map whose preferred at-
tention weight vector matched ALCOVE’s standard ini-
tial attention weights was given a maximum bias weight
(0 � 05), and the bias weights assigned to other units fell
off in a Gaussian fashion as the distance from this peak
increased (in attention weight space), bottoming out at
�

0 � 05. A small amount of uniformly sampled noise was
then injected into each bias weight, and the result was
clipped to the �

�
0 � 05 � 0 � 05 � range. The variance of the

Gaussian and the range of the injected noise were free
parameters of the model.

Results
In order to assess the ability of our reinforcement-based
dimensional attention mechanism to account for human
performance, we applied our models to several previ-
ously reported category learning studies. The perfor-
mance of our modified version of ALCOVE was com-
pared to that of the standard version of ALCOVE and to
the performance of the GCM. In all cases, the values of
dimensional attention weights were bound between zero
and one. (This was only a new upper bound for AL-
COVE, which standardly forces these weights to be non-
negative.) In all of the learning models, weights were
updated after every simulated trial.

Dimensional Attention & Learning Difficulty
Shepard et al. (1961) examined the effect of category
structure on the relative speed with which a category
is learned. Stimuli were composed of three easily sep-
arable binary dimensions, for a total of eight possible
stimuli. Six category structures were examined, ordered
approximately by increasing number of relevant dimen-
sions. Thus, the Type 1 category structure requires at-
tention to only one binary dimension to solve the task,

the Type 2 structure requires that only two of the di-
mensions be attended, while Types 3, 4, 5, and 6 all
require attention to all three, in order of increasing di-
mensional significance. The speed with which humans
learn these categories matches this ordering of tasks, but
models that lack a dimensional attention mechanism fail
to learn Type 2 categories faster than some of the more
difficult categories. Kruschke (1992) showed that AL-
COVE, with its adaptive dimensional attention mecha-
nism, learned Type 2 tasks at a relative rate comparable
to human learners. We have replicated these simulations
(using bounded attention weights and learning after ev-
ery trial), and the results are shown in Figure 2.

We applied our reinforcement learning version of AL-
COVE to these six categorization tasks. Since stimuli
had three dimensions, the attention weight space was
three-dimensional. The conjunctive coding model used
a 15 � 15 � 15 unit topology in its attention map layer
(3375 units total), while the tile coding model used five
tilings of 9 � 9 � 9 units each (3645 units total). The re-
sults of these simulations are shown in Figure 2. Note
that our models learn Type 2 categories faster than the
higher numbered types, just as ALCOVE does. Model
parameter values were manually selected to produce per-
formance that matched the category learning times ex-
hibited by ALCOVE. These results demonstrate that TD
learning can adapt dimensional attention weights so as to
speed category learning.

Categorization of Continuous Separable Stimuli
In order to demonstrate the ability of our models to quan-
titatively fit human performance on categorization tasks
involving stimuli with continuous and separable dimen-
sions, we applied these models to an experiment con-
ducted by Nosofsky (1986) . The stimuli in this experi-
ment consisted of semicircles that varied in size and con-
tained a radial line oriented at different angles. These
stimuli were to be categorized as members of one of two
categories, and four different category structures were
explored (see Figure 3). The frequency with which each
of the sixteen possible stimuli were placed in a target cat-
egory was measured after training, and the GCM was fit
to these response probabilities.

We fit both standard ALCOVE and our reinforcement
learning models to this data, as well. Since the stimu-
lus space was two-dimensional, our models used a two-
dimensional attention map layer. In the conjunctive cod-
ing case, a 15 � 15 unit topology was used (225 units
total), and the tile coding model used 9 tilings of 5 � 5
units each (225 units total). While both schemes used
the same number of units, the tile coding model dis-
cretized the space with a much greater resolution. Stim-
uli were presented to the models using the MDS code
found by Nosofsky. Free parameters of the models were
fit to Nosofsky’s Subject 1 data for each category struc-
ture separately. A simple hill-climbing optimization al-
gorithm on sum-squared error was used.

The quality of the resulting fits are summarized in Ta-
ble 1. While the original ALCOVE model provided the
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Figure 2: Model Learning Curves For Shepard’s 6 Tasks — One epoch involves one trial with each distinct stimulus.

Category Structure
Model 1 2 3 4
GCM 99.93% 94.73% 84.52% 98.31%

ALCOVE 99.65% 96.45% 86.62% 98.61%
Conj. Code 99.51% 95.84% 86.01% 97.72%

Tile Code 99.54% 95.62% 83.55% 97.72%

Table 1: Model Fits To Nosofsky (1986) – Percent Vari-
ance Accounted For

Category Structure
Model 1 2 3 4 5 6
GCM 99.10% 98.30% 97.20% 99.80% 98.20% 99.20%

ALCOVE 98.56% 99.29% 93.53% 99.79% 98.34% 98.71%
Conj. Code 98.44% 98.16% 92.51% 99.57% 97.94% 98.53%

Tile Code 98.25% 97.27% 91.15% 99.15% 97.80% 97.30%

Table 2: Model Fits To Nosofsky (1987) – Percent Vari-
ance Accounted For

best overall fits, our models matched the data almost as
well, and all general trends in the ALCOVE and GCM
fits are present in our models. This suggests that our
mechanisms for learning dimensional attention can quan-
titatively capture human performance on learning tasks
that require selective attention to separable dimensions.

Categorization of Continuous Integral Stimuli

Integral stimulus dimensions often entail a difficulty in
focusing attention on individual dimensions. Despite
this fact, Nosofsky (1987) showed that models equipped
with a dimensional attention mechanism fit human cat-
egorization performance on such stimuli slightly better
than models that lacked such a mechanism. This study
involved 12 different color chips which varied in satu-
ration and brightness. Six different category structures
were used, and these are shown in Figure 3. The fre-
quency with which each of the 12 stimuli were placed in
a target category was measured after training, and, once
again, the GCM was fit to these response probabilities.

We applied both the original ALCOVE and our re-
inforcement learning versions to this human data. The
same attention map layer sizes as used in the previous
simulations were used here, and, as before, MDS repre-
sentations of the stimuli were presented to the models. A
summary of the model fits is shown in Table 2.

The GCM provides the best fits to the data in this
study. It seems that the ALCOVE model and our models
had trouble learning Category Structure 3. This is a dif-
ficult category structure which benefits little from selec-
tive attention to specific dimensions. Note, however, that
the fits of our reinforcement learning models are close to
the standard ALCOVE fits, and our models continue to
exhibit the same trends in learning as ALCOVE.

Discussion
Our results show that established computational models
of the brain’s dopamine system can provide an adequate
replacement for the biologically implausible backprop-
agation of error method for adapting dimensional atten-
tion during category learning. The new models were able
to learn useful dimensional attention weights from their
less-informative global reinforcement signal. This sug-
gests that cognitive mechanisms for allocating dimen-
sional attention may not be as precise as those posited
by the original ALCOVE model.

One noteworthy feature of our reinforcement learning
models was their tendency to exhibit fluctuations in per-
formance over training, rather than smooth and mono-
tonic learning as displayed by the original ALCOVE
model. If each network model is to mirror the perfor-
mance of an individual learner, these performance fluc-
tuations may reflect stochasticity commonly observed in
individual behavior. Also, if performance is averaged
across multiple “simulated individuals”, smooth learning
curves, like those generated by ALCOVE, are produced.

Our models encoded dimensional attention weights in
a fairly conjunctive fashion, with individual units in the
attention map layer specifying levels of attention for all
of the dimensions. This is needed because the appropri-
ateness of attention to one dimension depends on how
attention is allocated to the other dimensions. Such a
conjunctive encoding requires very large attention map
layers, however, and this may limit the scalability of this
approach. In order to address this issue, we are currently
exploring more compact distributed representations for
dimensional attention weight vectors.

Eventually we hope to modify ALCOVE to make use
of additional biologically plausible mechanisms of neu-
ral computation. This work represents the first step in
this process, identifying a biologically realistic method
for governing dimensional attention.
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Figure 3: Category Structures Used In Nosofsky (1986) and Nosofsky (1987)
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