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The swimming behavior of a flexible sheet which moves by propagating deformation
waves along its body was first studied by G. I. Taylor in 1951. In addition to being of
theoretical interest, this problem serves as a useful model of the locomotion of gastropods
and various micro-organisms. Although the mechanics of swimming via wave propagation
has been studied extensively, relatively little work has been done to define or describe
optimal swimming by this mechanism. We carry out this objective for a sheet that is sepa-
rated from a rigid substrate by a thin film of viscous Newtonian fluid. Using a lubrication
approximation to model the dynamics, we derive the relevant Euler-Lagrange equations
to optimize swimming speed and efficiency. The optimization equations are solved nu-
merically using two different schemes: a limited memory BFGS method that uses cubic
splines to represent the wave profile, and a multi-shooting Runge-Kutta approach that
uses the Levenberg-Marquardt method to vary the parameters of the equations until the
constraints are satisfied. The former approach is less efficient but generalizes nicely to
the non-lubrication setting. For each optimization problem we obtain a one parameter
family of solutions that becomes singular in a self-similar fashion as the parameter ap-
proaches a critical value. We explore the validity of the lubrication approximation near
this singular limit by monitoring higher order corrections to the zeroth order theory and
by comparing the results with finite element solutions of the full Stokes equations.

1. Introduction
Swimming at low Reynolds numbers has long been a topic of interest, particularly in

the context of mechanical locomotive strategies of mircoorganisms such as spermatozoa
and nematodes. The first study to investigate such swimmers from a hydrodynamical
point of view was presented by G. I. Taylor on the motion of a two-dimensional swim-
ming flapping sheet (Taylor 1951), in which Taylor analyzes the swimming speed of such
an organism in the limit of low amplitude flapping oscillations. Shortly after Taylor’s
pioneering work, Hancock (Hancock 1953) proposed an alternate approach, calculating
swimming speeds by modeling the swimmer’s tail with a distribution of Stokeslets and
doublets. As Hancock’s approach is more general than Taylor’s, he was able to inves-
tigate a variety of geometries including both finite and infinite length tails as well as
a variety of steady shape disturbances including helical motions and both transverse
and longitudinal waves. These theoretical predictions were then successfully compared
with experimentally measured swimming velocities of nematodes. Numerous subsequent
studies are further discussed in two comprehensive review articles, Lighthill (1976) and
Pedley & Kessler (1992). While the mechanics of free low Reynolds number swimmers
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has been analyzed extensively, far fewer studies exist in which the optimization of such
systems has been investigated. These optimization questions will be the focus of the
present study.

Motivated by gastropod locomotion (e.g. Vlès 1907; Denny 1980) and recent studies
of self-propelled liquid-crystal elastomers (Camacho-Lopez et al. 2004), we consider a
variation on Taylor’s swimming sheet, namely a flexible membrane swimming on top of a
viscous fluid (see Figure 1). In this geometry the membrane sits at a free surface and fluid
is present on only one side of the sheet. This configuration is similar to that adopted by
crawling gastropods that propel themselves via an unusual mechanism known as adhesive
locomotion. As a snail or slug crawls, the organism secretes a thin film of fluid between
the flexible foot and the substrate (Figure 1a). The animal propels itself by generating
waves along the bottom of the foot which in turn generate stresses within the thin film.
In real snails, the rheological properties of this film are highly nonlinear; however, we
will begin by considering the simplest case of a periodically deforming membrane on top
of a Newtonian fluid†.

The second phenomenon that motivated the current study is the recently observed
“swimming” motion of liquid-crystal elastomers (LCEs). When a small LCE disk at an
air/water interface is triggered with a laser, the elastomer will “swim into the dark” by
generating a wave along the flexible body. Again, the geometrical configuration is similar
to that shown in Figure 1. In both of these examples, we are particularly interested in
organisms that swim or crawl on a thin film of fluid near a rigid boundary. It has been well-
documented that the presence of such a boundary can dramatically affect the behaviour
of low Reynold number swimmers; e.g. bacteria swimming near a rigid boundary tend to
swim in circles (rather that in a random walk) due to hydrodynamic interactions with
the wall (Lauga et al. 2006; DiLuzio et al. 2005). It has been argued that the interaction
of rigid boundaries with low Reynolds number propulsion systems, may be relevant to
the early stages of biofilm formation and of pathogenic infection (DiLuzio et al. 2005).

In the current study we will consider “optimal” geometries for low Reynolds number
swimmers near a rigid boundary. In section 2 we define the mathematical model, calcu-
late swimming velocities in the lubrication limit, and compare the accuracy of the full
Stokes’ flow solution to the lubrication results. In section 3, we define three optimization
questions and formulate the relevant Euler-Lagrange equations. In section 4, we present
two numerical methods to solve the optimization problems posed in section 3, and end
with a brief discussion in section 5.

2. Mathematical Model
Our swimming “organism” can be roughly modeled as a flexible sheet waving in a

viscous fluid near a rigid boundary. In the simplest case, we can assume that the foot
shape is periodic and completely determined by the muscular input; thus we assume that
the snail can select a foot deformation that is most effective for a given environment.
Consider a one dimensional sheet swimming over a two dimensional Stokesian fluid as
shown in Figure 1(b). The wave profile and the fluid velocity are assumed to be periodic
in the x-direction with period W . The fluid is bounded on the bottom by a flat wall
which is stationary in the lab frame. The system is assumed to have reached its steady
state so that there is a reference frame (the wave frame) in which the wave envelope

† While this model is not ideal for real gastropods, it is directly relevant to the design of
mechanical crawlers in which the mucus simulant may be chosen to be Newtonian (Chan et al.
2005).
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Figure 1. (a) Schematic of gastropod locomotion showing a thin viscous fluid sandwiched
between a periodically deforming flexible foot and a rigid substrate. (b) Idealized model depicting
steady state swimming of a sheet via wave propagation. This system is conveniently studied in
the reference frame in which the wave profile Γ1 remains stationary. In this frame, material
points on the sheet move tangent to Γ1 with constant speed c1 and the wall moves with contant
speed c2.

Γ1 = {(x, h(x))} (i.e. the shape of the foot) remains stationary in time. In this frame,
the wall moves with constant velocity c2 in the x-direction while the sheet moves tangent
to Γ1 with constant speed c1; thus, the sheet remains inextensible as it swims. Our goal
is to study the effect of the curve shape on the swimming speed and the power required
to swim, and to find optimal shapes that maximize speed or efficiency subject to given
constraints (e.g. holding fixed the membrane length L =

∫W

0

√
1 + h′(x)2 dx and fluid

volume A =
∫W

0
h(x) dx, where h(x) is the local film thickness and subscripts denote

partial derivatives). Since the optimal shapes turn out not to exhibit infinite slopes or
singularities, it does not appear necessary to pose the problem more generally to allow
the wave profile to overturn.

2.1. Swimming Speed and Power Dissipation
In the following sections, we will restrict our analysis to the long wavelength limit. How-
ever, before we consider this limit, it is useful to derive certain quantities and constraints
that are generally true for Stokes flow, independent of geometry. If c1, c2 ∈ R and h(x) is
a sufficiently smooth periodic function, there is a unique solution to the Stokes’ equations

∇p = µ∇2u ∇ · u = 0 (2.1)

subject to the boundary conditions shown in Figure 1. Here p denotes pressure, µ is the
dynamic viscosity and u is the velocity field within the thin film. Given this solution, we
can calculate the relevant forces and powers required for steady state swimming in terms
of the stress tensor σ = (∇u +∇uT ), namely

P (c1, c2) =
∫

Γ1

t · σn ds, F (c1, c2) = −
∫

Γ1

e1 · σn ds =
∫

Γ2

t · σn ds (2.2)

where e1 is the unit vector in the direction of motion and t and n denote respectively
unit tangent and normal vectors to the membrane/fluid interface. Physically, c1P is the
power required to maintain the steady motion of the sheet, F is the x-component of the
net force exerted by the fluid on the sheet (which is the same as that exerted by the
bottom wall on the fluid), and c2F is the power required to maintain the steady motion
of the bottom wall (in the wave frame). Assuming the forces exerted by the sheet on the
fluid are internally generated (e.g. by the muscles in the snail or by an internal motor in
a mechanical crawler), we require F = 0 in steady state. Since the Stokes equations are
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linear, F (c1, c2) = c1F (1, 0) + c2F (0, 1) and we obtain the relationship

c2 = −F1

F2
c1, (2.3)

where F1 = F (1, 0) and F2 = F (0, 1). We note that c1 is directly controlled by the
swimmer: (W/L)c1 is the speed at which the sheet propagates waves to the left (relative
to its material points) in order to swim to the right. Hence, the swimming speed in the
lab frame is given by

c =
W

L
c1 − c2 =

(
W

L
+

F1

F2

)
c1. (2.4)

It is useful to derive expressions for P and F in terms of the velocity field u = (u, v).
To this end, we substitute ds

∣∣
Γ1

=
√

1 + h2
x dx and a Newtonian stress tensor,

σ = −pI + µ

(
2ux uy + vx

uy + vx 2vy

)
, t

∣∣
Γ1

=
(1, hx)√
1 + h2

x

, n
∣∣
Γ1

=
(−hx, 1)√

1 + h2
x

(2.5)

into (2.2) and use continuity 2.1 to obtain

P (c1, c2) =
∫

Γ1

µ
−4uxhx + (uy + vx)(1− h2

x)√
1 + h2

x

dx, (2.6)

F (c1, c2) =
∫

Γ1

−phx + µ [2uxhx − (uy + vx)] dx =
∫

Γ2

−µ(uy + vx) dx. (2.7)

Here x and y subscripts denote partial derivatives. We then use the boundary conditions
u(x, h(x)) = c1(1 + h2

x)−1/2 and v(x, h(x)) = c1hx(1 + h2
x)−1/2 (no slip at, and no

flux through the membrane) to conclude that, on Γ1, ux = −(uy + κc1)hx and vx =
κc1−vyhx = κc1+uxhx = κc1(1−h2

x)−uyh2
x, where κ = hxx(1+h2

x)−3/2 is the curvature
of the interface. Substituting these into (2.6) and (2.7) gives P (c1, c2) =

∫
Γ1

µ(uy +
κc1)(1+h2

x)3/2 dx and F (c1, c2) =
∫
Γ1
−phx−µ(uy +κc1)(1+h2

x) dx =
∫
Γ2
−µuy dx. The

terms involving κ are derivatives of periodic functions and vanish when integrated, thus

P (c1, c2) =
∫

Γ1

µuy(1 + h2
x)3/2 dx, (2.8)

F (c1, c2) =
∫

Γ1

−phx − µuy(1 + h2
x) dx =

∫
Γ2

−µuy dx. (2.9)

We note that because F2 = F (0, 1) is numerically equal to the power required to
maintain a unit speed of the bottom wall while holding the top sheet fixed, it is necessarily
positive. Likewise, the power P (1, 0) required to push the top sheet along the curve
h(x) while holding the bottom wall fixed is also positive. One might expect that the x-
component of the net force −F (1, 0) applied during this process would also be positive.
Surprisingly, this turns out not to be true. The pressure term in (2.9) can dominate the
viscous drag term so that F1 > 0, c2 < 0 and c > c1, i.e. the organism can move faster
than the wave speed. This was first observed in the lubrication limit by Chan et al. (2005)
in their study of snail locomotion.

2.2. The Lubrication Approximation
We now briefly review the work of Chan et al. (2005) in which the authors compute the
swimming speed of the sheet in the lubrication (i.e. small amplitude) limit (Reynolds
1886). To study the small amplitude limit, h � W , we non-dimensionalize the problem,
choosing different scales for the x- and y-coordinates to keep the rescaled aspect ratio of
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the domain of order unity. Specifically, we choose a characteristic height H (e.g. average
gap thickness) and velocity V (e.g. wave speed) and set x̂ = Wx, ŷ = Hy, ĥ(x̂) = Hh(x),
ĉi = V ci, û = V u, and p̂ = µV W

H2 p, where, hence forward, the carat distinguishes a
physical variable from its dimensionless counterpart. (Note that in the previous section,
all variables are dimensional variables). Dropping terms of order H/W , the momentum
equations (2.1) become px = uyy and py = 0. To first order in H/W , the boundary
conditions on u are u(x, h(x)) = c1, u(x, 0) = c2; hence, the fluid velocity is given by

u(x, y) =
y

2
(y − h) px +

y

h
c1 +

(
1− y

h

)
c2. (2.10)

Integrating from 0 to h and solving for px, we obtain

px =
6
h2

(c1 + c2)−
12
h3

Q, (2.11)

where Q =
∫ h

0
u dy = constant is the volume flux through any cross section of the fluid.

Since px is periodic,
∫ 1

0
px dx = 0 and we find that

Q =
c1 + c2

2
I2

I3
, where Ik =

∫ 1

0

h(x)−k dx. (2.12)

The terms involving hx in (2.8) and (2.9) vanish in the lubrication limit. Explicitly, if we
set P̂ = µV W

H P , F̂ = µV W
H F and drop lower order terms, we obtain

P =
∫

Γ1

uy dx, F =
∫

Γ1

pxh− uy dx =
∫

Γ2

−uy dx. (2.13)

Substituting uy = 6(c1 + c2)(y − h/2)(1/h2 − I2/(I3h
3)) + (c1 − c2)/h from above and

integrating, we obtain power and force functions in the lubrication limit

P =
(

4I1 − 3
I2
2

I3

)
c1 +

(
2I1 − 3

I2
2

I3

)
c2 (2.14)

F =
(

2I1 − 3
I2
2

I3

)
c1 +

(
4I1 − 3

I2
2

I3

)
c2. (2.15)

It follows from (2.3) and (2.4) that

c2 = −2− 3ζ

4− 3ζ
c1, c =

6(1− ζ)
4− 3ζ

c1 (2.16)

where the shape parameter, ζ, is defined as

ζ =
I2
2

I1I3
. (2.17)

Finally, we use (2.16) and (2.14) to obtain the power that must be generated by the sheet
in order to swim at steady state:

power = c1P = 2I1c1c. (2.18)

A natural choice for the characteristic speed V is the wave speed, in which case c1 = 1.
We remark that the Cauchy-Schwartz inequality gives

I2
2 =

(∫
h−1/2h−3/2 dx

)2

≤
∫

h−1 dx

∫
h−3 dx = I1I3, (2.19)

hence 0 < ζ ≤ 1 and 0 ≤ c < 3/2. There are many families of curves for which the
swimming speed c approaches its maximal value of 3/2. Generally speaking, this requires
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Figure 2. Contour plots of swimming speed c and power P as functions of gap thickness b and

ripple width w for the wave profile h(x) = b + a[1 − (sin2(πx))
4 log 2
π2w2 ]. If w > 0 is held fixed,

c → 1 and P →∞ as b → 0. If b > 0 is held fixed, c → 0 and P → 0 as w → 0. If the ratio b/w
is held fixed, c → 3/2 and P remains bounded as b, w → 0.

that, locally, the wave profile nearly touches the wall and becomes sharp as it does so
(see Figure 2). Physically, when the wave profile has a minimum close to the wall, a large
pressure jump across the constricted fluid gap develops which pushes the sheet forward
against the viscous drag forces. Hence, we expect the fastest profiles to be those that:
(1) nearly touch down (so the pressure jump is large); (2) have wave profiles that are
nearly vertical in the neighborhood of the touchdown (so the pressures act on surfaces
that are oriented perpendicular to the direction of motion); and (3) the touchdown region
is small to minimize drag. However, in the limit as the gap thickness approaches zero, if
the curvature of the profile at the touchdown point remains finite, it is not difficult to
show (Chan et al. 2005) that the shape parameter ζ will approach 2/3 and the speed c
will approach 1. Therefore, to achieve speeds greater than the wave speed, the curvature
must become singular as the gap thickness goes to zero in order to approach the maximal
speed c = 3/2. For the family of wave profiles shown in Figure 2, the curvature κ at the
minimum is given by κ = 8a log 2

w2 . One may show that, as b → 0, holding b/w fixed, the
speed approaches 3/2 and the power remains bounded; however, it is worth remembering
that the lubrication approximation eventually breaks down when the ripple becomes too
sharp.

2.3. Validity and Limitations of the Lubrication Approximation
In this section we compare the swimming speed and power predicted by the lubrication
approximation to a finite element computation of the full Stokes’ equations for a family
of test cases. This validation in particularly important in our case as the most interesting
profiles, namely those that become sharp near touchdown, are precisely those in which we
expect the lubrication approximation to fail. Hence limits on the validity of lubrication in
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these geometries need to be established. The lubrication approximation gives the zeroth
order terms in an expansion of the solution in powers of ε = H/W . In Appendix A, we
derive formulas for the second and fourth order terms in this expansion as well; the terms
with odd powers of ε are zero. Taking c1 = 1 and writing

c = c(0) + ε2c(2) + ε4c(4) + · · · , P = P (0) + ε2P (2) + ε4P (4) + · · · , (2.20)

we obtain

c(0) =
6(1− ζ)
4− 3ζ

, (2.21)

c(2) =
1

10(4− 3ζ)2

[
(8 + 10ζ)

E1

I1
+ 48ζ

E3

I3
− (44ζ + 15ζ2)

E2

I2

]
− E0

2I0
, (2.22)

P (0) = 2I1c, (2.23)

P (2) =
6I1

5(4− 3ζ)2

[
(8− 10ζ + 5ζ2)

E1

I1
− (4ζ + 5ζ2)

E2

I2
+ 8ζ

E3

I3

]
, (2.24)

with similar expressions for c(4) and P (4) where superscript numbers in parentheses
indicate the order of the expansion; see (A 23)–(A 26) and (A 31)–(A 33) for details. Here

Ek ≡
∫ 1

0

h2
x

hk
dx. (2.25)

Note that the terms Ek/Ik are weighted averages of h2
x with weight function h−k. The

formulas for c(4) and P (4) also involve ζ and various weighted averages of the form
Ek/Ik, Jk/Ik, Gk/Ik, (k = 0, 1, 2, 3), where Jk =

∫ 1

0
h4

x

hk dx and Gk =
∫ 1

0
h2h2

xx

hk dx (see
Appendix A).

To study the range of validity of these formulas, we compare them to finite element
calculations of the full Stokes’ equations for a family of test cases. The wave profiles
considered are of the form

ĥ(x) = Hh(x), h(x) = b + a[1− (sin2 πx)k], (a = t, b = 1− t). (2.26)

Here H varies between 0.015 and 0.15, t varies between 0 and 1, and k = 10 is held
fixed. Note that when t = 0, h(x) ≡ 1 and when t → 1, h(x) touches down with a
locally parabolic profile. In the finite element calculations, we use a logically rectangular
grid with nodes xij = (xi, ĥ(xi)j/N), 0 ≤ i ≤ M , 0 ≤ j ≤ N (see Figure 3). The
mesh is triangulated by cutting quadrilaterals along their shortest diagonal. The xi are
spaced to keep the aspect ratios of the triangles as close to 1 as possible, which requires
xi+1 − xi ≈ ĥ(xi)/N . This is easily done by choosing M to be the nearest integer to
NÎ1 = N

∫ 1

0
ĥ(x)−1 dx, solving the ODE x′(s) = Î1ĥ(x(s)), and setting xi = x(i/M).

We used a variant of the First Order System Least Squares finite element method (Cai
et al. 1997) to solve the Stokes’ equations (2.1) using quadratic elements (with curved
boundaries on the top wall) for all six variables w = (u, v, p, ω, γ, τ); here ω is the vorticity,
and γ and τ are shear stresses. We solved the equations using a multigrid preconditioned
conjugate gradient method; this method is extremely fast, i.e. the equations can be
solved in a few minutes for problem sizes all the way up to the point where we run out of
computer memory (8 GB) storing the variables and multigrid data structures. For each
geometry, we solve the Stokes equations twice: once with boundary conditions c1 = 1,
c2 = 0, and once with boundary conditions c1 = 0, c2 = 1. Using formulas (2.8) and
(2.9), these computations give F (1, 0), P (1, 0), F (0, 1), P (0, 1), which are sufficient to
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Figure 3. Top: two of the mesh geometries (coarsened for visibility) used to compute the
dependence of speed and power on t and H. Bottom: comparison of the finite element results
(denoted by dots) with the lubrication theory (solid curve under the ε = 0.02 results) and the
4th order, ε = 0.12 correction. Note, the zeroth order solution has no dependence on ε. Hence
the solid line (under ε = 0.02) represents the zeroth order approximation for both the ε = 0.02
and the ε = 0.12 cases. Also shown are the exapansion coefficients used to compute the 4th
order correction.

compute the swimming speed and power

c =
W

L
+

F (1, 0)
F (0, 1)

, power = P (1, 0)− F (1, 0)
F (0, 1)

P (0, 1). (2.27)

We normalize these solutions by multiplying the power by H/µ. Recall that the actual
power is related to the non-dimensionalized power via ĉ1P̂ = µV 2 W

H c1P ; the finite ele-
ment solutions have already been partially non-dimensionalized by setting V = 1, c1 = 1,
W = 1.

In Figure 3, we show the results of two sequences of finite element computations in
which t varies from 0 to 1, one with H = 0.02 and one with H = 0.12. The meshes at
the top have parameters t = 0.9, N = 4, M0.02 = 344, M0.12 = 60. The computations at
the bottom were performed with N = 48; to maintain proper spacing in the x-direction,
M0.02 ranged from 2400 (t = 0) to 13152 (t = 0.996) while M0.12 ranged from 432 (t = 0)
to 7920 (t = 0.99972). The H = 0.02 computation agrees nicely with the lubrication
prediction (shown with a solid line) even for parameter ranges in which the crawling
speed exceeds the wave speed. The H = 0.12 computation deviates visibly from the
lubrication prediction, but agrees well with the 4th order correction, which is also shown
with a solid line. Note that the zeroth order solution does not depend on ε and hence
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Figure 4. Comparison of the lubrication theory and its corrections to the finite element
results as H ranges from 0.015 to 0.15 with t = 0.9 held fixed.

predicts the same velocities for both the H = 0.02 and the H = 0.12 case. The final two
curves in each graph show the coefficients c(2), c(4), P (2), P (4) used to compute the 4th
order correction, using formulas (A 24), (A 25), (A 32), and (A 33). In Figure 4, we hold
t = 0.9 fixed and vary H from 0.015 to 0.15 using N = 64, M0.015 = 7360, M0.15 = 768.
We also used a finer mesh, letting H vary from 0.025 to 0.15 with N = 96, M0.025 = 6624,
M0.15 = 1152. As expected, we see that the error term associated with using the zeroth
order lubrication theory is O(ε2); using the second and 4th order corrections to the
lubrication theory lead to errors which are O(ε4) and O(ε6), respectively. Numerical
error in the finite element computation is responsibly for the scatter in the computed
error of the 4th order correction when ε is small; in this regime, it is clearly more accurate
to use the expansion solutions instead of finite elements.

It is quite remarkable that the lubrication theory works so well as the geometries we
tested against the finite element simulations deviate substantially from the flat profiles
envisioned in the derivation of the theory. This can be roughly explained by arguing that
the largest boost from the pressure gradient occurs in the vicinity of the touchdown which
is precisely where we expect lubrication to do well; the details of the outer flow where
lubrication fails, are unimportant in calculating crawling velocities. Therefore, it seems
worthwhile to study the shape optimization problem within the context of lubrication
theory and check the sizes of the correction terms c

(k)
2 , P (k) afterwards to determine how

small ε = H/W must be chosen for the results to be valid. It is noteworthy that the
correction terms may be expressed in terms of weighted averages (Ek/Ik, Jk/Ik, etc.) of
the slopes and higher derivatives of h with respect to inverse powers of h. This gives
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us some intuition about the features of a solution which affect its validity beyond the
lubrication approximation, i.e. if Ek/Ik is small for k = 1, 2, 3 . . . then c

(
22) and P (2)

are also small. Thus the validity of the lubrication approximation is determined by the
magnitude of h2

x is near touchdown, where h is small.

3. Optimization: Euler-Lagrange Equations
In this section we describe three natural optimization problems in the context of swim-

ming sheets namely, for a sheet of fixed length swimming on top of a fixed volume of
fluid:

(a) Maximize the swimming speed
(b) Maximize the efficiency
(c) Maximize the efficiency for a given swimming velocity.

We work out the associated Euler-Lagrange equations for each of these optimization
questions in the lubrication limit. Although this approximation is zeroth order, the ar-
clength L̂ =

∫W

0
(1 + ĥ2

x̂)1/2 dx̂ must be treated at second order to obtain zeroth order

results for swimming speed and power. Therefore, we expand L̂ ≈ W
(
1 + H2

W 2 `2
)

and

drop higher order terms, where `2 = 1
2

∫ 1

0
h2

x dx. A scaling argument (presented below)
provides further justification. In all of these cases we will consider a given `0 > 0 and
A0 > 0 defined by

`0 ≡
1
2

∫ 1

0

h2
x dx, A0 ≡

∫ 1

0

h dx. (3.1)

Problem 1 (maximize speed). In the first case, we wish to find the function h(x)
that maximizes the speed c in (2.16) subject to the constraints (3.1) given above . Since
c(ζ) = 6(1−ζ)

4−3ζ is a monotonically decreasing function of ζ on the unit interval, this problem

is equivalent to minimizing ζ = I2
2

I1I3
. For a general functional f [h], let us denote its first

variation by a prime (when it exists) so that

Df [h]g ≡
∫ 1

0

f ′[h](x)g(x) dx. (3.2)

In particular,

I ′k = −kh−k−1, ζ ′ =
(

1
I1h2

− 4
I2h3

+
3

I3h4

)
ζ, (`2)′ = −hxx, A′ = 1. (3.3)

Assuming an optimal solution exists which is at least C2, it must satisfy the equation
ζ ′ + λ1(`2)′ + λ2A

′ = 0 for some Lagrange multipliers, λ1, λ2. For this problem, it is
possible to compute these Lagrange multipliers analytically. To this end, consider the
new objective function

F [h] = ζ[αh + β] + (α− 1)2/2 + β2/2, (3.4)

where α = `0( 1
2

∫
h2

x dx)−1/2 and β = A0−α
∫

h dx are chosen so that αh+β satisfies the
constraints. Any global minimizer of F will be a constrained minimizer of ζ and satisfy
α = 1, β = 0. Note that

d

dε
F [h + εg] =

∫
ζ ′[αh + β]

[
αg + h

∫
α′g dx +

∫
β′g dx

]
+ (α− 1)α′g + ββ′g dx,
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hence

F ′[h] = αζ ′ +
(∫

ζ ′h dx

)
α′ +

(∫
ζ ′ dx

)
β′ + (α− 1)α′ + ββ′, (3.5)

where ζ ′ is evaluated at αh + β in each of the integrals. One readily checks that α′ =
α3

2`20
hxx and β′ = −

∫
h dx α′ − α. Setting α = 1, β = 0, F ′[h] = 0 we obtain ζ ′ −(∫

ζ ′ dx
) (

A0
2`20

hxx + 1
)

= 0, which leads to the integro-differential equation,

hxx =
(

2`20
A0

)(
h−2/I1 − 4h−3/I2 + 3h−4/I3

I2/I1 − 4I3/I2 + 3I4/I3
− 1
)

. (3.6)

In Section 4 we will present a robust numerical method based on (3.4) and (3.5) for to
find solutions to this problem. We will also present a fast, highly accurate method of
solving the IDE (3.6) once an initial guess is known for each Ik and h(0).

Although there are two parameters (`0 and A0) in the problem statement, if we scale
both by the same factor θ, the optimal solution h merely scales by θ as well, and the
optimal speed remains the same. This is clear from the Euler-Lagrange equation (3.6)
and the formula ζ = I2

2/(I1I3), noting that when h → θh, Ik → θ−kIk. This is to
be expected from the formulation in the lubrication limit since the analysis is intended
to hold independently of the small parameter H/W , and the physical problem remains
unchanged if we replace h by θh and H by θ−1H. Therefore, there is only a one relevant
parameter and we seek a family of optimal solutions depending on the ratio A0/`0.

This problem becomes singular as the (dimensionless) area becomes small relative to
the linearized arclength as the curve touches down. Consider the extreme limit in which
the curve has touched down. Choosing the location of touchdown to be at the edges of our
periodic interval, h(0) = h(1) = 0, and 1

2

∫ 1

0
h2

x dx = `20; then, the maximal area under h

is achieved by the function h(x) =
√

6`0(x− x2), which has (dimensionless) area Acrit =
`0/
√

6. Therefore, if A0 > Acrit, any periodic function h(x) which satisfies the constraints
(3.1) is strictly positive. In Section 4.2 we will study the asymptotics of the solution as
A0 approaches this critical value. They appear to be self-similar in the neighborhood of
the touchdown point and approach the parabola h(x) =

√
6`0(x− x2) elsewhere, where

the complicated term involving Ik’s on the RHS in (3.6) becomes negligible. They also
approach the optimal speed c = 1.5, but require an infinite amount of power in this limit.

Problem 2 (maximize efficiency). In this second case, we wish to find the shape
function h which maximizes the ratio of speed to power (i.e. the “efficiency”) subject
to the constraints (3.1). From (2.18), we see that c/P = 1/(2I1), thus to maximize this
ratio, we must minimize I1. Taking the same approach as before, we set

F [h] = I1[αh + β] + (α− 1)2/2 + β2/2 (3.7)

and compute

F ′[h] = αI ′1 +
(∫

I ′1h dx

)
α′ +

(∫
I ′1 dx

)
β′ + (α− 1)α′ + ββ′, (3.8)

where I ′1 is evaluated at αh + β in each of the integrals. Setting α = 1, β = 0, F ′[h] = 0
we obtain I ′1 − I1α

′ + I2(A0α
′ + 1) = 0, i.e.

hxx = 2`20
h−2 − I2

I2A0 − I1
. (3.9)

Interestingly, in Section 4 we will see that solutions to this equation maximize I1 rather
than minimize it. There are well behaved functions h which are optimally inefficient, but
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one cannot achieve the optimal efficiency c/P = A0/2. Moreover, in order to approach
this efficiency, the swimming speed must go to zero; therefore, it seems more useful to
reformulate the problem as follows.

Problem 3 (maximize efficiency for a given swimming speed). Given an attain-
able speed c, we wish to find the shape function h which minimizes the power required to
swim at this speed. Because the speed constraint is non-trivial, we cannot obtain analytic
expressions for the Lagrange multipliers, and must be satisfied leaving the Euler-Lagrange
equation P ′ + λ1(`2)′ + λ2c

′ + λ3A
′ = 0 in the form

hxx = −λ1

h2
− 4λ2

I2h3
+

3λ2

I3h4
+ λ3, (3.10)

where we have used c′ = −6
(4−3ζ)2 ζ ′, P ′ = 2(I ′1c + I1c

′), and redefined the Lagrange
multipliers to simplify the equation.

4. Numerical Methods and Results
In this section we describe two numerical methods for solving the optimization prob-

lems posed in the previous section and analyze the results. In the first approach, we
represent the shape function h using periodic cubic splines and use a limited memory
BFGS method (Nocedal & Wright 1999) to descend to the optimal shape. In the sec-
ond approach, we solve the Euler-Lagrange equations using a quadratically convergent
Levenberg-Marquardt method to vary the parameters of the ODE until the constraints
are satisfied. The first approach is fast and robust unless the solution is very singular.
It also gives useful information in cases where the optimization problem has no solution.
The second approach requires a good starting guess, but is otherwise fast and highly
accurate even when the solution is nearly singular.

We use the first approach to study Problems 1 and 2 of the previous section, but
not Problem 3 — the additional velocity constraint requires a significant modification
of the algorithm. We use the second approach to study Problems 1 and 3; it can be
used for Problem 2 as well, however, as the solution minimizes efficiency instead of
maximizing it, the result is less interesting and we omit the details. Finally, we compute
the second and fourth order corrections to the lubrication theory to conclude that the
lubrication approximation remains uniformly valid for Problem 1 even in the critical
limit A0 → `0/

√
6, but breaks down for Problem 3 in the critical limit ζ0 → 0 due to the

formation of a cusp in the optimal shape.

4.1. Direct Minimization using Periodic Cubic Splines

Problem 1 (maximize speed). The basic strategy in this section is to represent the
function h using periodic cubic splines (Carl de Boor 2001) and use a gradient-based
minimization algorithm (limited memory BFGS (Nocedal & Wright 1999)) to modify
the degrees of freedom in the spline space in order to minimize the functional F [h] in
(3.4). We start with relatively few knots in the spline space (typically 32 or 64) and
find the optimal shape in this space. We then repeatedly double the number of knots
using the previous solution as the starting guess until the variational derivative F ′[h] is
sufficiently small.

The key to this algorithm is finding an efficient way to compute the gradient of the
discretized system. Let us denote the spline basis functions by ϕi. Each ϕi is a periodic
piecewise cubic C2 function satisfying ϕi(xj) = δij at the knots xj . Each q ∈ Rn is
associated with a unique spline function hq(x) =

∑n
i=1 qiϕi(x), which satisfies hq(xi) =
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qi. Our goal is to minimize the function

f(q) = F [hq], (4.1)

where F [h] was given in (3.4). The gradient g = ∇f is given by

gi =
∫

F ′[hq]
∂hq

∂qi
dx =

∫
F ′[hq]ϕi dx. (4.2)

Because the ϕi are supported on the entire unit interval, it is more efficient to compute g
using B-splines, which have compact support. We use standard spline formulas (Carl de
Boor 2001) to find the coefficients ai, bi, ci to express Bi(x) = aiϕi−1(x) + biϕi(x) +
ciϕi+1(x), taking care to wrap around the endpoints of the unit interval as necessary to
handle periodicity. Instead of computing gi in (4.2) directly, we first compute

g̃i =
∫

F ′[hq]Bi dx = aigi−1 + bigi + cigi+1 (4.3)

by integrating against the compactly supported B-splines, and then solve the equation
Tg = g̃, where T is almost tridiagonal: Ti,i−1 = ai, Tii = bi, Ti,i+1 = ci; except for the
two entries that fall out of bounds and are wrapped around: T1n = a1, Tn1 = cn. This
reduces the cost of computing g from O(n2) to O(n). To compute F ′[hq] in (4.3), we
simply evaluate the formulas

α[h] = `0(
1
2

∫
h2

x dx)−1/2, β[h] = A0 − α[h]
∫

h dx, (4.4)

α′[h] =
α3

2`20
hxx, β′[h] = −α′

∫
h dx− α, Ik[h] =

∫
h−k dx, (4.5)

ζ[h] = I2
2/(I1I3), ζ ′[h] =

(
1

I1h2
− 4

I2h3
+

3
I3h4

)
ζ, (4.6)

F [h] = ζ[h∗] + (α− 1)2/2 + β2/2, h∗ = αh + β (4.7)

F ′[h] = αζ ′[h∗] +
(∫

ζ ′[h∗]h dx

)
α′ +

(∫
ζ ′[h∗] dx

)
β′ + (α− 1)α′ + ββ′ (4.8)

using a 30 point Gaussian quadrature rule on each spline segment to compute the integrals
to machine precision. We use Nocedal’s limited memory BFGS package (freely available
from NetLib) to minimize f(q), which is a quasi-Newton line search method which builds
an approximate Hessian incrementally from the history of gradients g(q) it has evaluated
(Nocedal & Wright 1999). For n up to 256, we don’t use the limited memory feature of
the algorithm; for n > 256, we limit the number of Hessian update columns to 256. In
practice, we actually define hq = 1/

∑
qiϕi to prevent the BFGS algorithm from doing

an agressive line search which causes h to become negative.
We now describe our choice of spline knots and the starting guess we use on the first

pass of the algorithm (i.e. on the coarsest grid). The solution requires more resolution in
the region where h(x) is close to zero because this is where the curvature is highest, and
because the integrals Ik involve negative powers of h. We use the interval [−1/2, 1/2] as
the computational domain and choose a knot spacing which is clustered at the origin:

xi =

{
−3(i/n− 1/2)2 − 2(i/n− 1/2)3 i = 0, 1, . . . , n/2,

3(i/n− 1/2)2 − 2(i/n− 1/2)3 i = n/2, . . . , n.
(4.9)

Since the Euler-Lagrange equation (3.6) is invariant under translation x → x + a and
reflection x → −x, solutions will be translationally invariant and symmetric about their



14 Jon Wilkening and A. E. Hosoi

extrema. Our goal is to find the solution (among all translations) which has a minimum
at x = 0, where the resolution of the grid is highest. Suppose h is an even function.
Since F ′[h] in (4.8) depends on x only through its dependence on h and hxx, it will also
be an even function of x. Since the knots are symmetric about the origin, the same is
true at the discrete level: if qn/2+i = qn/2−i for 1 ≤ i < n/2, then the gradient g also
has this property. The BFGS Hessian update formula (Nocedal & Wright 1999) respects
this symmetry, hence by choosing a starting vector q such that hq is symmetric about
x = 0 and has a minimum there, we expect the final answer (and intermediate line
search results) to have this property as well. Numerical roundoff can cause a slight drift
in symmetry in the last few digits of the solution, but each time we refine the mesh, we
symmetrize the solution before using it as a starting guess; on the finest meshes (when
the starting guess is very good), the solution tends to be exactly symmetric in spite of
roundoff error. On the first iteration, we evaluate the function h̃(x) = A0 − `0/

√
6 +√

6`0(|x|−x2) at the knots and set h(x) =
∑

h̃(xi)Bi(x), i.e. we use B-splines to smooth
out a vertical translation of the critical parabola discussed in Section 3 and use it for the
initial guess.

Figure 5 shows an example of a solution computed as described in this section for
`0 = 0.32, A0 = 1.2`0/

√
6. Although the variational derivative F ′[h] is not identically

zero, this is the best possible solution in this spline space: the norm of the discrete gradient
g in (4.2) is approximately 10−9. As we refine the mesh, the true solution becomes better
approximated by spline functions and F ′[h] converges to zero. The relative error in the
computed swimming speed (using c = 1.03017842643553 obtained from the ODE method
of Section 4.2 as a benchmark) and the number of iterations the BFGS algorithm required
in order to converge is given in the following table:

n relative error function evaluations
64 4.2× 10−7 306

128 5.0× 10−9 178
256 7.3× 10−11 82
512 1.3× 10−12 50 2 2.5 3

−12

−10

−8

−6

log
10

(n)

lo
g 10

(e
rr

or
)

 
y = − 6.1*x + 4.6

The 6th order convergence rate is a result of quadratic clustering of nodes near the origin.
The entire computation took approximately 2 seconds on a 2.4 GHz desktop machine.
When A0 is closer to Acrit = `0/

√
6 and the solution is more sharply cusped at the origin,

the number of iterations required by the BFGS algorithm can increase into the tens of
thousands, causing the computation to take minutes to hours. By contrast, the method
in Section 4.2 continues to require only a few seconds to run, and is able to maintain
accuracy for A0 much closer to Acrit.

Problem 2 (maximize efficiency). We now turn our attention to optimizing effi-
ciency, defined the ratio of swimming speed to the power required to swim at that speed.
As described in Section 3, c/P = 1/(2I1); hence, we wish to minimize I1 (subject to area
and arclength constraints) in order to maximize efficiency. We seek the global minimizer
of the function

F [h] = I1[αh + β] + (α− 1)2/2 + β2/2, (4.10)

where α and β remain defined as in (4.4). Using the formula (3.8) for F ′[h] and proceeding
as in Problem 1, we discover that the optimal discrete solution (in the spline space) is
very nearly equal to the constant function h(x) = A0, with the exception of a few high
frequency oscillations to lengthen the curve and satisfy the arclength constraint (see
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Figure 5. Top: solution obtained by direct minimization using periodic splines with 64 knots
(`0 = 0.32, A0 = 1.2`0/

√
6). Bottom: the variational derivative of the optimal solution in the

spline space converges to zero as the grid is refined.
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Figure 6. Top: the most efficient shape function (`0 = 0.32, A0 = 1.2`0/
√

6) in the spline space
is as close to a constant as possible without violating the constraints. There is no solution in
the mesh refinement limit. Bottom: the least efficient wave profile is flatter near its minimum
than the fastest profile for the same `0, A0.

Figure 6). This can be understood as follows. By Jensen’s inequality,

I1 =
∫ 1

0

h(x)−1 dx ≥
(∫ 1

0

h(x) dx

)−1

= A−1
0 . (4.11)

It can be shown that any minimizing sequence hk (such that I1[hk] → A−1
0 ) which satisfies

the constraints (3.1) converges uniformly to the constant function h(x) = A−1
0 . Since we
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assume `0 > 0, this limiting function violates the arclength constraint and there is no
optimal solution. Moreover, in order to approach the optimal efficiency c/P = A0/2, the
swimming speed c must approach zero; this is because a function h which is uniformly
close to the constant function A0 will satisfy Ik ≈ A−k

0 , hence ζ = I2
2/(I1I3) ≈ 1 and

c = 6(1 − ζ)/(4 − 3ζ) ≈ 0. Interestingly, if we change the sign of I1 in (4.10), we find
there is a well defined “least efficient” swimmer; see Figure 6. Solutions to the Euler-
Lagrange equation (3.9) actually solve this problem rather than the problem we intended
to solve. We remark that Jensen’s inequality also implies that the denominator of (3.9)
is strictly positive for any non-constant positive function h; however, if h comes close to
maximizing efficiency by approaching the constant function h(x) = A0, the denominator
tends to zero.

4.2. Solving the Euler-Lagrange Equations via ODE Methods
Problem 1 (maximize speed). In this section we use a Levenberg-Marquardt method
(Nocedal & Wright 1999) to vary the parameters Ik and the initial condition h(0) = b in
the Euler-Lagrange equation

hxx = f(h, I) :=
(

2`20
A0

)(
h−2/I1 − 4h−3/I2 + 3h−4/I3

I2/I1 − 4I3/I2 + 3I4/I3
− 1
)

(4.12)

until the solution is periodic, the constraints are satisfied, and the integrals of the solution
match the parameters. More precisely, given the vector

q = (b, I1, I2, I3, I4) ∈ R5, (4.13)

we define the function hq(x) as the solution of the ordinary differential equation (4.12)
with initial conditions hq(0) = b, h′q(0) = 0. We then use Minpack (which is freely
available from Netlib and employs a Levenberg-Marquardt method) to solve the nonlinear
system of equations r(q) = 0, where

r{k=1,2,3} =
2
Ik

∫ 1
2

0

h−k
q dx− 1, r4 =

2
A0

∫ 1
2

0

hq dx− 1, r5 = h′q(1/2). (4.14)

Since (4.12) is invariant under translation x → x+a and reflection x → −x, its solutions
are symmetric about their extrema and all critical points are extrema; therefore, requiring
that h′(0) = 0 and r5 = h′(1/2) = 0 is equivalent to enforcing periodicity via h(1) = h(0)
and h′(1) = h′(0) = 0. The remaining two conditions 1

2

∫ 1

0
h2

x dx = `20 and
∫ 1

0
h−4 dx = I4

are satisfied automatically, which can be seen by integrating (4.12) and its product with
h from 0 to 1 and using periodicity.

To compute hq(x) and the integrals (4.14) numerically, we choose a coarse partition
0 = x̃0 < x̃1 < · · · < x̃M = 1/2 of the interval [0, 1/2] and set ∆j = x̃j+1 − x̃j for
j = 0, . . . ,M − 1. We choose the x̃j so that the distribution of nodes is densest near the
origin, as explained below. We then define {θk, w̃k}K

k=1 to be the abscissas and weights of
the K point Gaussian quadrature rule (Abramowitz & Stegun 1972) on the unit interval
and use them to construct a finer partition with integration weights:

x0 = 0, w0 = 0,

xjK+k = x̃j + θk∆j , wjK+k = w̃k∆j , (0 ≤ j < M, 1 ≤ k ≤ K)
xn = 1/2, wn = 0, (n = MK + 1).

(4.15)

We use fourth order Runge-Kutta (RK4) Hairer et al. (2000) to evaluate hq at each node
xi and compute the integrals in (4.14) discretely, e.g. r2 = 2

Ik

∑n
i=0 hq(xi)−2wi−1. Thus,

it is not difficult to evaluate the function r(q) on R5 numerically.
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In order to use the Levenberg-Marquardt method, we must also be able to compute
the Jacobian J = ∇r. Let us define the functions

g0(x) =
∂

∂b
hq(x), g{k=1,2,3,4} =

∂

∂Ik
hq(x). (4.16)

It is well known (Coddington & Levinson 1984) that since hq (denoted h from now on)
satisfies the equation h′′ = f(h, I), the gk satisfy the linear equations

g′′0 =
∂f

∂h
(h, I)g0, g0(0) = 1, g′0(0) = 0, (4.17)

g′′k =
∂f

∂h
(h, I)gk +

∂f

∂Ik
(h, I) gk(0) = 0, g′k(0) = 0. (4.18)

Numerically, we compute g0, gk at the nodes xi using RK4 to solve the equations (4.17),
(4.18). This actually requires values of h at the half nodes xi+1/2 = (xi + xi+1)/2, so we
include these nodes when computing h via RK4 (but ignore them when computing the
integrals in (4.14)). We then have

J =

 2
∫ 1/2

0


−1/I1h(x)2

−2/I2h(x)3

−3/I3h(x)4

1/A0

 [g0(x), . . . , g4(x)] dx

[g′0(1/2), g′1(1/2), g′2(1/2), g′3(1/2), g′4(1/2)]

+


0 a1 0 0 0
0 0 a2 0 0
0 0 0 a3 0
0 0 0 0 0
0 0 0 0 0


where ak = −(2/I2

k)
∫ 1/2

0
h−k dx and all integrals are carried out numerically using the

weights wi. Both r(q) and J(q) are inexpensive to compute, requiring only O(n) op-
erations to solve the relevant ODE’s and compute the integrals. Since the Levenberg-
Marquardt method is quadratically convergent when used to solve linear equations (as
opposed to overconstrained least squares problems), very few iterations (typically 8-30)
are required to converge to the solution as long as a good initial guess is known in ad-
vance. Therefore, when a guess is available (e.g. via extrapolation in a parameter study),
the method is extremely efficient, requiring only a second or two even in the most ill-
conditioned cases presented below.

We used this method to study the behavior of the swimming sheet as the area con-
straint A0 approaches the critical value (Acrit = `0/

√
6) at which the sheet can touch

the wall. We ran 201 trials with the constraints `0 = 0.32, A0 = (1 + δ)Acrit, where
δ ranged from δ0 = 0.2 to δ200 = 9.945 × 10−8 via the recursion δk+1 = 0.93δk. We
used K = 20 Gaussian quadrature points and M = 300 coarse gridpoints throughout
the computation (for a total of n + 1 = 6002 nodes xi). The spacing of the coarse grid
points was chosen to be appropriately dense near the origin to resolve the behavior of
the solution there. Originally we used x̃j = 3(j/2M)2 − 2(j/2M)3, but after the scal-
ing of the solution became clear, we switched to ∆j = Aejα, where α is chosen so that
∆n−1
∆0

= 50/(δ log(4.5/δ)) and A is chosen so that
∑M−1

j=0 ∆j = 0.5. Both choices for the
x̃j work well, but the latter gives a more gradual transition from the finest spacing to the
coarsest and does not require that we increase M over the range of δ studied here. On
the first and second iteration, we used the method of Section 4.1 to compute a starting
guess for q = (b, I{1,2,3,4}). After that, we used logarithmic extrapolation to obtain the
starting guess, e.g. bk+1 = exp[2 log(bk)− log(bk−1)].

The results of this study are summarized in Figure 7. The upper left plot shows that
the optimal curves hk(x) do indeed approach the parabola hcrit(x) =

√
6`0(|x| − x2)

as δk → 0 and (A0)k → Acrit. The plot on the right shows how the power P = 2I1c
and shape parameter ζ = I2

2/(I1I3) depend on δk. Recall that the swimming speed c is
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Figure 7. Upper left: the optimal curves hk(x) approach the periodic parabola
√

6`0(|x| − x2)
as δk → 0. Lower left: the curves appear to be self-similar when scaled as in (4.19). Right: as
δk → 0, the swimming speed c ≈ 3

2
− 3

8
ζ approaches 1.5 while the power required to swim at

that speed grows without bound.

related to ζ via c = 6(1 − ζ)/(4 − 3ζ), so for small ζ we have c ≈ 3
2 −

3
8ζ. This plot

shows that the power required to swim eventually grows linearly with ζ−1, and diverges
as the swimming speed approaches c = 1.5. We also find that solutions are self-similar
near touchdown when rescaled by

yk(ξ) =
1

δk log(2.75/δk)
hk

(
δk log(4.5/δk)ξ

)
. (4.19)

The profiles correspond to one another for 100 ≤ k ≤ 200 (or equivalently, for 1.4×10−4 ≥
δk ≥ 1.0 × 10−7) to within one percent over the range of ξ shown in Figure 7. Because
the x- and y-axes are both re-scaled via δ| log δ|, the weighted averages Ek/Ik, Jk/Ik,
etc. in (A 23)–(A 26) and (A 31)–(A 33) do not blow up as δ → 0. Hence, the lubrication
approximation remains valid in the sense that the higher order corrections can be made
arbitrarily small in comparison to the zeroth order terms (uniformly in δ) by a single
choice of H/W (see Figure 8). We note that P (0) and P (2) both diverge due to the factor
of I1 in (A 31) and (A 32), but the latter is dominated by the former.

Problem 3 (maximize efficiency for a given swimming speed). We now turn to
the problem of optimizing efficiency when both the arclength and speed are constrained.
We could also constrain the volume by a trivial modification of the method presented
below, but it seems more interesting to find the optimal volume as part of the solution
rather than imposing a sub-optimal volume as a constraint. Reasoning as in Section 3,
we arrive at the Euler-Lagrange equation

hxx = −λ1

h2
− λ2

h3
+

λ3

h4
(4.20)
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Figure 8. Plots of the expansion coefficients for speed c = c(0)+(H/W )2c(2)+(H/W )4c(4)+ · · ·
and power P = P (0)+(H/W )2P (2)+(H/W )4P (4)+· · · . Since the higher order coefficients remain

small in comparison to c(0) and P (0), the lubrication approximation appears to remain valid as
the constrained area A0 = (1 + δ)Acrit approaches Acrit = `0/

√
6.

with constraints

1
2

∫ 1

0

h2
x dx = `20,

I2
2

I1I3
= ζ0, 3λ2I2 = 4λ3I3. (4.21)

In contrast to the approach described for Problem 1 above, the Ik are now treated as
functionals of h rather than as parameters in the equation which must be varied until
the equality Ik =

∫
h−k dx holds. The parameters λk in (4.20) turn out to be positive

numbers. Given the vector

q = (b, λ1, λ2, λ3) ∈ R4 (4.22)

we define the function h(x) as the solution of the ODE (4.20) with initial conditions
h(0) = b, h′(0) = 0 and use Minpack to solve the nonlinear system of equations r(q) = 0,
where

r1 =
∫ 1

2

0

h2
x dx− `20, r2 =

I2
2

I1I3
− ζ0, r3 =

λ2I2

λ3I3
− 4

3
, r4 = h′(1/2) (4.23)

and Ik = 2
∫ 1/2

0
h−k dx. The Jacobian J = ∇r is given by

J =


2
∫ 1/2

0


hx

∂
∂x

I2
2

I1I3

[
1

I1h2 − 4
I2h3 + 3

I3h4

]
3λ2I2

λ3I2
3h4 − 2λ2

λ3I3h3

 [g0, . . . , g3] dx

[g′0(1/2), g′1(1/2), g′2(1/2), g′3(1/2)]

+


0 0 0 0
0 0 0 0
0 0 a b
0 0 0 0


where a = I2/λ3I3, b = −λ2I2/λ2

3I3, and the functions g0(x) = ∂
∂bh(x), g{k=1,2,3} =

∂
∂λk

h(x) satisfy equations analogous to (4.17), (4.18) above. We compute r(q) and J(q)
numerically just as before, using a fourth order Runge-Kutta scheme to evaluate h(x)
and gk(x) at nodes which are appropriately spaced to compute the integrals via gaussian
quadrature rules.

We used this method to study the behavior of the swimming sheet as the swimming
speed c approaches its maximal value 3/2. We ran 101 trials with the constraints `0 = 0.32
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Figure 9. Top left: the optimal curves hk(x) approach a limiting curve with a cusp at the
origin. Right: unlike the area constrained problem, the power P = 2I1c remains bounded as
the speed c ≈ 3

2
− 3

8
ζ0 → 3/2. Bottom left: the curves yk appear to be self-similar as δk → 0

when scaled as in (4.24). In the region shown, y100 differs from y50 by about 3% and from y95

by about 0.05%. If we zoom out, we find that y100 differs from y50 by less than 1% over the
range 0.05 ≤ |ξ| ≤ 200. The scaling of the x-axis in this plot varies from δ3

50 = 1.12 × 10−5 to
δ3
100 = 1.00× 10−9.

and ζ0 = δ, where δ ranged from δ0 = 0.5 to δ100 = 0.001 via the recursion δk+1 =
0.94δk. To fully resolve the solution near the origin without using an excessive number
of gridpoints, we used an exponentially graded coarse grid spacing ∆j = Aejα, where
α was chosen so that ∆n−1

∆0
= 10δ−3 and A was chosen so that

∑M−1
j=0 ∆j = 0.5. We

used K = 20 Gaussian quadrature points and M = 300 coarse gridpoints throughout the
computation (for a total of 6002 nodes xi). On the first iteration, we experimented with
q by hand until the curve h had a maximum near 1/2 and let Minpack run through a few
thousand trust region searches until it found the nearest solution satisfying r(q) = 0. On
the second iteration, we used the result of the first iteration as a starting guess. On all
further iterations, we used logarithmic extrapolation to obtain the new starting guess,
e.g. bk+1 = exp[2 log(bk)− log(bk−1)]. The number of trust region searches was typically
between 10 and 30, with a few exceptions in the hundreds. The running time of the entire
parameter study was around one minute on a 2.4 GHz desktop machine.

The results of this study are summarized in Figure 9. Through trial and error, we
discovered that the solutions are self-similar near the origin in the sense that the re-
scaled functions

yk(ξ) =
1
δ2
k

hk

(
δ3
kξ
)

(4.24)

converge to a common curve as δk → 0. This suggests that the cusp in the limiting
curve in the upper left plot is asymptotically of the form α|x|2/3, which has a finite first
negative moment I1 in the power formula P = 2I1c. By contrast, I1 is infinite for the
limiting curve

√
6`0(|x| − x2) of Problem 1 above. Unfortunately, this cusp also causes



Shape Optimization of Swimming Sheets 21

−3 −2.5 −2 −1.5 −1 −0.5
−4

−2

0

2

4

6

8

log
10

(δ)

corrections to speed

−3 −2.5 −2 −1.5 −1 −0.5

0

2

4

6

8

log
10

(δ)

corrections to power

log
10

(1.5−c(0))

log
10

c(2)

log
10

(−c(4))
log

10
(1+P(4))

log
10

P(0)

log
10

P(2)

Figure 10. Plots of the expansion coefficients for speed and power. In contrast to Problem 1,
the higher order coefficients grow without bound as δ → 0 while the zeroth order coefficients
remain bounded; hence the lubrication approximation cannot be used to study the critical limit
δ → 0. Since c(2) is large and positive, it is an interesting question whether the speed c can
actually exceed 3/2. It turns out that −c(4) is large enough to prevent this at the 4th order
approximation, however the question remains open for the full Stokes equations.

the weighted averages Ek/Ik, Jk/Ik, etc. in the expansion coefficients (A 23)–(A 26),
(A 31)–(A 33) to diverge in the limit as δ = ζ0 → 0 (see Figure 10). This problem can be
superficially overcome by allowing H/W to depend on δ; for example, if we set H = H0δ
and expand in powers of H0/W instead of H/W , we find that the expansion coefficients
δ2c(2), δ2P (2), δ4c(4), δ4P (4) approach zero as δ → 0. Multiplying H0/W by δ flattens
out the optimal curves enough to prevent infinite slopes from developing in this limit.
The price we pay for this remedy is that the relationship between physical power and
dimensionless power depends on H/W . By decreasing H/W in order to stay within the
lubrication regime, we are destroying the key feature of the solution, namely that the
power remains bounded as δ → 0. Therefore we suggest, to properly study this limit, one
must go beyond the lubrication approximation by including higher order terms in the
objective function or working directly with the full Stokes equations.

5. Discussion
In this study, we have presented the first steps in optimizing low Reynolds number

swimmers activated at the surfaces of thin films. It is hoped that these results can be
used as guidelines in designing efficient mechanical swimmers and crawlers as well as
increase our understanding of biological systems. The latter, understanding optimization
in biology, is a much more ambitious goal as appropriate cost functions, which can often
be well-defined in engineering systems, are not at all obvious in biological counterparts.
Furthermore, in optimizing mechanical shapes, we have only scratched the surface of
the space of relevant parameters; equally relevant questions, such as optimizing material
properties of the fluid, remain largely unexplored.

It is also worth emphasizing the somewhat surprising success of the lubrication ap-
proximation even in the limit of fairly sharp profiles. In fact, the profiles resulting from
maximizing speed, a criteria that is likely to be relevant for some microorganisms in
environments where there is an abundance of energy at small scales, remain within the
limits of validity of the lubrication approximation.
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However, we have also demonstrated that some care must be taken as the success of
the lubrication analysis is tied to the optimal membrane shape which in turn depends
on the choice of the cost function. For certain cost functions (e.g. efficiency at a given
speed), one may need to solve full Stokes’ problem depending on the sharpness of the
optimal profiles near touchdown. While all of the analysis herein has been done in the
lubrication limit, we believe that direct minimization method using cubic splines can be
generalized to solve the shape optimization problem for the full Stokes’ equations in the
non-lubrication regime, but this is work in progress.
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Appendix A. Computing Expansion Solutions
We now describe our algorithm for computing higher order corrections to the lubri-

cation approximation. Recall that the dimensionless variables are related to the phys-
ical variables via x̂ = Wx, ŷ = Hy, ĥ(x) = Hh(x), ĉi = V ci, û = V u, p̂ = µV W

H2 p,
P̂ = µV W

H P , and F̂ = µV W
H F . We expand all variables in powers of H/W , e.g.

u(x, y) = u(0)(x, y) + H
W u(1)(x, y) +

(
H
W

)2
u(2)(x, y) + · · · , (A 1)
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and match like powers of H/W in the equations. The incompressibility condition vy =
−H

W ux gives

v(0)
y = 0, v(k)

y = −u(k−1)
x , (k ≥ 1), (A 2)

while the momentum equations py =
(

H
W

)3
vxx + H

W vyy and px =
(

H
W

)2
uxx + uyy yield

p(0)
y = 0, p(1)

y = v(0)
yy , p(2)

y = v(1)
yy , p(k)

y = v(k−3)
xx + v(k−1)

yy , (k ≥ 3), (A 3)

u(0)
yy = p(0)

x , u(1)
yy = p(1)

x , u(k)
yy = p(k)

x − u(k−2)
xx , (k ≥ 2). (A 4)

The boundary condition (u, v) = c1(1, H
W hx)[1 +

(
H
W

)2
h2

x]−1/2 on Γ1 becomes

u(0) = c1, u(2) = −c1

2
h2

x, u(4) =
3
8
c1h

4
x, u(2k) = c1

(
−1/2

k

)
h2k

x , (A 5)

v(1) = c1hx, v(3) = −c1

2
h3

x, v(5) =
3
8
c1h

5
x, v(2k+1) = c1

(
−1/2

k

)
h2k+1

x , (A 6)

with all other terms equal to zero. Similarly, on Γ2 we have

u(0) = c2, v(0) = 0, u(k) = 0, v(k) = 0, (k ≥ 1). (A 7)

The zeroth order terms were computed in Section 2.2 above. We note that (A 2) and the
boundary conditions (A 6), (A 7) imply that v(0) = 0. To compute v(1), we use (A 2) and
(A 7) to conclude that

v(1)(x, y) = −
∫ y

0

u(0)
x (x, η) dη. (A 8)

The boundary condition (A 6) is satisfied because Q(0) =
∫ h

0
u(0)(x, y) dy is a constant:

0 =
∂Q(0)

∂x
=
∫ h

0

u(0)
x (x, y) dy + u(0)(x, h(x))h′(x) = −v(1)(x, h(x)) + c1h

′(x). (A 9)

The variables p(1) and u(1) satisfy identical equations to p(0) and u(0), namely p
(1)
y = 0,

u
(1)
yy = p

(1)
x , except the boundary conditions on u(1) are now zero. We may therefore

repeat the zeroth order case with c1 = c2 = 0 to conclude that p(1) = const, u(1) = 0. An
easy induction argument shows that v(k) = 0 for k even and p(k) = const, u(k) = 0 for k

odd. Moreover, when k is odd, v(k) = −
∫ y

0
u

(k−1)
x (x, η) dη and the boundary condition on

the top wall may be checked by differentiating the constant Q(k−1) =
∫ h

0
u(k−1)(x, y)dy.

We now show how to compute p(k), u(k) when k is even. The main difference from the
zeroth order case is that now p(k) depends on y as well as x. Integrating (A 3), we obtain

p(k)(x, y) = q(k)(x) +
∫ y

0

v(k−3)
xx (x, η) + v(k−1)

yy (x, η) dη (A 10)

with v
(k−3)
xx omitted when k = 2. The function q(k)(x) will be determined in the same

way p(0)(x) was found in the lubrication analysis. First we solve the two point boundary
value problem

u(k)
yy = p(k)

x − u(k−2)
xx , u(k)(x, 0) = 0, u(k)(x, h(x)) = c1

(
−1/2

k

)
h(2k)

x (A 11)

by integrating twice in the y direction: u
(k)
y (x, y) = a +

∫ y

0
u

(k)
yy (x, η) dη, u(k)(x, y) =∫ y

0
u

(k)
y (x, η) dη. The unknown constant a is chosen so that the boundary condition on
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the top wall is satisfied. Keeping track of the coefficient in front of q
(k)
x in this process,

we find that

u(k)(x, y) =
(

y2

2
− hy

2

)
q(k)
x (x) + w(k)(x, y), (A 12)

where w(k) depends on x only through h and its derivatives. This last fact follows from
the observation that higher order variables are obtained by differentiating and integrating
lower order variables, and

u(0)(x, y) = 6
(

y2

2
− hy

2

)(
c1 + c2

h2
− c1 + c2

h3

I2

I3

)
+

y

h
c1 +

(
1− y

h

)
c2 (A 13)

depends on x only through h(x). For example, when k = 2, six of the twenty-two terms
of w(k)(x, y) are

w(k)(x, y) = 6(c1 + c2)
I2y

4

I3h5
h2

x +
c1 + c2

3
yhxx + (c1 − 2c2)

2y3

3h2
hxx + · · · . (A 14)

Next we integrate (A 12) from 0 to h and solve for qx:

q(k)
x (x) =

12
h3

(∫ h

0

w(k)(x, y) dy −Q(k)

)
. (A 15)

Since the flux is a constant for any particular geometry in the full Stokes equations, each
term Q(k) in its expansion in H/W must also be independent of x. Since q(k) is periodic,
it’s integral from 0 to 1 vanishes and we obtain

Q(k) =
1
I3

∫ 1

0

1
h3

∫ h

0

w(k)(x, y) dy dx. (A 16)

The most difficult part of the computation occurs here: we must find a way to have the
computer algebra system (in our case Mathematica) convert all the integrals it encounters
into appropriate symbols, e.g.∫ 1

0

1
hk

dx → Ik,

∫ 1

0

h2
x

hk
dx → Ek,

∫ 1

0

h4
x

hk
dx → Jk,

∫ 1

0

h2h2
xx

hk
dx → Gk, (A 17)

and so on. (These are all the integrals which arise through 4th order). We must also
convert equivalent integrals into these symbols, e.g.

∫ h2
xhxx

hk dx → k
3Jk+1. We do this by

defining a list of conversion pairs {h[x]−1, I1, h
′[x]2/h[x], E1, . . . }, taking the coefficient

of 1
h3

∫ h

0
w(k)(x, y) dy with respect the first member of each pair, multiplying it by the

second member, and dividing by I3 in the new expression for Q(k). Finally, once Q(k) is
known, we obtain q

(k)
x (x), u(k)(x, y) and p(k)(x, y) from (A 15), (A 13) and (A 10).

We now show how the higher order velocity and pressure fields may be used to compute
corrections to the swimming speed and power. Non-dimensionalizing (2.9) and expanding
in powers of ε = H/W , we obtain

F
(0)
0 (c1, c2) =

∫
Γ1

p(0)
x h− u(0)

y dx =
∫

Γ2

−u(0)
y dx, (A 18)

F
(2)
0 (c1, c2) =

∫
Γ1

p(2)
x h− u(2)

y − h2
xu(0)

y dx =
∫

Γ2

−u(2)
y dx, (A 19)

F
(4)
0 (c1, c2) =

∫
Γ1

p(4)
x h− u(4)

y − h2
xu(2)

y dx =
∫

Γ2

−u(4)
y dx. (A 20)



Shape Optimization of Swimming Sheets 25

Here px stands for ∂
∂x [p(x, h(x))] rather than px(x, h(x)) and the zero subscript is used

to distinguish the expansion with c2 held fixed from the expansion

F (c1, c
(0)
2 + ε2c

(2)
2 + ε4c

(4)
2 + · · · ) = F (0) + ε2F (2) + ε4F (4) + · · · . (A 21)

The integrals in (A 18)–(A 20) are computed in the same way that Q(k) was computed,
namely by running through the list of conversion pairs and replacing expressions involving
the integrands in (A 17) by the corresponding symbols. To check for errors, we evaluate
both formulas for F

(k)
0 to be sure they are equal. (This is how we noticed that a distinction

must be made between ∂x[p(x, h(x))] and px(x, h(x)) when integrating by parts.) We now
set ak = F

(k)
0 (1, 0), bk = F

(k)
0 (0, 1) so that by (2.3), with ε = H/W , we have

c2

c1
= −F1

F2
= −a0 + ε2a2 + ε4a4 + · · ·

b0 + ε2b2 + ε4b4 + · · ·
=

c
(0)
2

c1
+

c
(2)
2

c1
ε2 +

c
(4)
2

c1
ε4 + · · ·

= −a0

b0
−
(

a2

b0
− a0b2

b2
0

)
ε2 −

(
a4

b0
− a2b2

b2
0

+
a0b

2
2

b3
0

− a0b4

b2
0

)
ε4 + · · · . (A 22)

These formulas for c
(k)
2 are equivalent to setting each term F (k) to zero in (A 21). In

terms of the integrals (A 17), we obtain

c
(0)
2 =− 2− 3ζ

4− 3ζ
c1, (A 23)

c
(2)
2 =

−c1

10(4− 3ζ)2

[
(8 + 10ζ)

E1

I1
+ 48ζ

E3

I3
− (44ζ + 15ζ2)

E2

I2

]
, (A 24)

c
(4)
2 =

−c1

12600(4− 3ζ)3
[
(−10752−13440ζ)

E2
1

I2
1
−193536ζ

E2
3

I2
3

+(−88704ζ−30240ζ2)
E1E3
I1I3

+

(−16896+26112ζ−10080ζ2)
G1
I1

+(2304ζ−1728ζ2)
G3
I3

+(−14304+1488ζ+6930ζ2)
J1
I1

+(91392ζ

+60480ζ2)
E1E2
I1I2

+(−82944ζ+62208ζ2)
J3
I3

+(177408ζ+254016ζ2)
E2E3
I2I3

+(−32256ζ−193536ζ2

−30240ζ3)
E2

2
I2
2

+(59344ζ−17208ζ2−20475ζ3)
J2
I2

+(23808ζ−38016ζ2+15120ζ3)
G2
I2

]
. (A 25)

Note that each term in these expansions is a weighted average; for example, J3
I3

is the
average value of h4

x with respect to the weight function h−3. Expanding the arclength
L = W

∫ 1

0
(1 + ε2h2

x)1/2 dx = W (1 + ε2

2 E0 − ε4

8 J0 + · · · ) and using (2.4), we find

c

c1
=

W

L
− c2

c1
= 1− c

(0)
2

c1
+

(
−E0

2
− c

(2)
2

c1

)
ε2 +

(
E2

0

4
+

J0

8
− c

(4)
2

c1

)
ε4 + · · · . (A 26)

The new terms E0, J0 which arise due to the arclength correction may also be thought
of as weighted averages with weight function 1; (note that I0 = 1).

To compute corrections to the power, we non-dimensionalize (2.8) and expand in pow-
ers of ε = H/W :

P
(0)
0 (c1, c2) =

∫
Γ1

u(0)
y dx, (A 27)

P
(2)
0 (c1, c2) =

∫
Γ1

(
u(2)

y +
3
2
h2

xu(0)
y

)
dx, (A 28)

P
(4)
0 (c1, c2) =

∫
Γ1

(
u(4)

y +
3
2
h2

xu(2)
y +

3
8
h4

xu(0)

)
dx. (A 29)

The subscript 0 is used to distinguish the expansion holding c2 fixed from the one that
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actually gives the corrections to the power required to swim:

P
(
c1, c

(0)
2 + ε2c

(2)
2 + ε4c

(4)
2 + · · ·

)
= P (0) + ε2P (2) + ε4P (4) + · · ·

= c1

(
α0 + ε2α2 + · · ·

)
+
(
c
(0)
2 + ε2c

(2)
2 + · · ·

) (
β0 + ε2β2 + · · ·

)
, (A 30)

where αk = P
(k)
0 (1, 0) and βk = P

(k)
0 (0, 1). The result of this computation is

P (0) =
12I1(1− ζ)

4− 3ζ
c1 = 2I1c, (A 31)

P (2) =
6I1c1

5(4− 3ζ)2

[
(8− 10ζ + 5ζ2)

E1

I1
− (4ζ + 5ζ2)

E2

I2
+ 8ζ

E3

I3

]
, (A 32)

P (4) =
I1c1

1050(4− 3ζ)3
[
(−8064ζ−10080ζ2)

E1E3
I1I3

+(−672−1680ζ−1050ζ2)
E2

1
I2
1

+(384ζ−288ζ2)
G3
I3

+

(−13824ζ+10368ζ2)
J3
I3

+(16128ζ+52416ζ2)
E2E3
I2I3

+(−2016ζ−23856ζ2−13230ζ3)
E2

2
I2
2

+(3824ζ+

6232ζ2−6825ζ3)
J2
I2

+(6144−18048ζ+16800ζ2−5040ζ3)
G1
I1

+(7392ζ+11760ζ2+3150ζ3)
E1E2
I1I2

+

(−8544+15648ζ−11550ζ2+3465ζ3)
J1
I1

+(8448ζ−13056ζ2+5040ζ3)
G2
I2

−32256ζ
E2

3
I2
3

]
. (A 33)

Again we find that each term in the expansion (except for the overall factor of I1) is a
weighted average such as J2/I2 or E2

3/I2
3 .




