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aCenter for Microbial Ecology, Michigan State University, East Lansing, Michigan, USA
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cDepartment of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa, USA
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ABSTRACT Several studies monitoring alterations in the community structure upon
resistant starch (RS) interventions are available, although comprehensive function-
based analyses are lacking. Recently, a multiomics approach based on 16S rRNA
gene sequencing, metaproteomics, and metabolomics on fecal samples from individ-
uals subjected to high and low doses of type 2 RS (RS2; 48 g and 3 g/2,500 kcal, re-
spectively, daily for 2 weeks) in a crossover intervention experiment was performed.
In the present study, we did pathway-based metagenomic analyses on samples from
a subset of individuals (n � 12) from that study to obtain additional detailed in-
sights into the functional structure at high resolution during RS2 intervention. A
mechanistic framework based on obtained results is proposed where primary degra-
dation was governed by Firmicutes, with Ruminococcus bromii as a major taxon in-
volved, providing fermentation substrates and increased acetate concentrations for
the growth of various major butyrate producers exhibiting the enzyme butyryl-
coenzyme A (CoA):acetate CoA-transferase. H2-scavenging sulfite reducers and aceto-
gens concurrently increased. Individual responses of gut microbiota were noted,
where seven of the 12 participants displayed all features of the outlined pattern,
whereas four individuals showed mixed behavior and one subject was unresponsive.
Intervention order did not affect the outcome, emphasizing a constant substrate
supply for maintaining specific functional communities.

IMPORTANCE Manipulation of gut microbiota is increasingly recognized as a prom-
ising approach to reduce various noncommunicable diseases, such as obesity and
type 2 diabetes. Specific dietary supplements, including resistant starches (RS), are
often a focus, yet comprehensive insights into functional responses of microbiota
are largely lacking. Furthermore, unresponsiveness in certain individuals is poorly un-
derstood. Our data indicate that distinct parts of microbiota work jointly to degrade
RS and successively form health-promoting fermentation end products. It highlights
the need to consider both primary degraders and specific more-downstream-acting
bacterial groups in order to achieve desired intervention outcomes. The gained in-
sights will assist the design of personalized treatment strategies based on an indi-
vidual’s microbiota.

KEYWORDS butyrate, diet, gut microbiota, metagenomics, resistant starch,
short-chain fatty acids

Imbalances in gut microbiota are linked to various noncommunicable diseases, such
as obesity and type 2 diabetes, that are particularly emerging in industrialized

nations. The so-called “Western lifestyle” and specifically its associated diets are sug-
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gested to govern observed dysbiosis, as they are high in fat content and lack sufficient
complex polysaccharides that escape digestion in the upper gastrointestinal tract and
reach the large intestine (1, 2). Consequently, the colonic microbiota is depleted of
growth substrates, limiting the production of microbe-derived fermentation products,
such as short-chain fatty acids, that are essential for host health (3, 4). There are large
collective efforts to reveal the specific mechanisms by which diet controls our gut
microbiota. Manipulating its structure through personalized nutrition and specific
prebiotic supplements is a promising approach to promote host health (5, 6).

Beneficial features of resistant starches (RS) are well documented (7), and several
studies investigating the microbiome structure upon RS interventions have been
conducted (8–12). Various bacterial taxa are able to degrade starch, but only a few are
known to act on its resistant forms, where in particular, Ruminococcus bromii and
Bifidobacterium adolescentis have been exposed as key primary degraders (13). Intake of
resistant starch had various impacts on gut microbiota in previous studies where 15%
to 30% of individuals were unresponsive during interventions, highlighting the indi-
viduality of gut communities. Those observations support the concept of “permissive”
versus “restrictive” microbiota, where the restrictive microbiota lacks certain key de-
graders, leading to unresponsiveness during intervention (11, 14). Degradation prod-
ucts of RS stimulate the growth of additional taxa that are not supposed to be involved
in its primary degradation, leading to an increase in specific fermentation end products,
in particular butyrate, which is proposed to be primarily responsible for observed
health benefits of RS, promoting epithelial integrity and immune homeostasis (15, 16).
Flourishing of major butyrate producers, specifically of Eubacterium rectale, during diets
rich in RS has been repeatedly reported (9, 10, 12). Importantly, community alterations
occurred rapidly and were reversed after dietary changes in RS, implying that a
constant RS supply is needed to maintain certain community structures (9, 11).

The above-mentioned studies are primarily based on phylogenetic marker gene
analyses, and comprehensive functional investigations disentangling the complex net-
work of primary degradation of resistant starch to final fermentation end products are
lacking. Given the vast functional redundancies of gut microbes, functional investiga-
tions are key to extract universal patterns during degradation that are possibly blind to
phylogenetic-based studies due to highly subject-specific taxonomic compositions of
gut communities (17). To this end, a multiomics approach based on 16S rRNA gene
sequencing, metaproteomics, and metabolomics on fecal samples from individuals
subjected to high and low doses of type 2 RS (RS2) in a crossover intervention
experiment was recently performed (18, 19). Here, we performed pathway-based
metagenomic analyses on samples from a subset of randomly chosen individuals (n �

12) from that study to obtain additional detailed insights into the functional structure
at high resolution.

RESULTS

An outline of the crossover design of this study is presented in Fig. 1. Fecal samples
were taken from 12 individuals subjected to a defined low-carbohydrate “maintenance

FIG 1 Schematic representation of the crossover intervention design. Participants were subjected to
diets low (3 g/2,500 kcal daily) and high (48 g/2,500 kcal daily) in RS2 for 2 weeks (2w), separated by a
2-week period; six individuals (1 to 6) received the high-RS2 diet, followed by the low-RS2 diet, whereas
the other half (participants 7 to 12) consumed the diets in the alternate order. Samples were taken at the
end of each intervention (indicated by an arrow).
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diet” supplemented with low doses of RS type 2 (3 g/2,500 kcal daily for 2 weeks)
compared with high doses of RS2 (48 g/2,500 kcal daily for 2 weeks), separated by a
2-week washout period on their usual diets for 7 days, followed by the maintenance
diet for an additional 7 days; six individuals (referred to as 1 to 6) received the high dose
followed by the low dose, whereas the other half (referred to as 7 to 12) were subjected
to the inverted order. Details of the dietary intervention have been described earlier
(18).

Diets high in RS2 changed the fecal community structure within subjects.
Community structures maintained high subject specificities during interventions, and
no significant global differences between the two dietary groups were obtained (Fig. 2A).
Firmicutes and Bacteroidetes dominated in all samples (see Fig. S1 in the supplemental
material). The resistant starch degrader R. bromii was detected in six subjects at high
abundances, whereas B. adolescentis displayed abundances of �1% in only two indi-
viduals. All subjects exhibited several taxa associated with butyrate production at high
abundances (Fig. S1). Within-subject comparisons revealed a strong shift in the com-

FIG 2 Community structure changes upon RS2 intake. (A) Nonmetric multidimensional scaling analysis
based on species data of communities from individual participants (type of intervention, i.e., high- and
low-RS2 diet, is indicated by the color code). (B and C) Abundance changes in the dominant phyla
Firmicutes and Bacteroidetes comparing results from samples derived from high-RS2 diets with those from
low-RS2 diets (B), with the respective results at the species level (only results from species with mean
abundances �0.5% are shown) (C). In panel B, median changes are indicated by white bars. Results
exceeding values from the color bar (shown in panel C) were scaled to �10%. Subjects 1 to 6 received
the high-RS2 diet, followed by the low-RS2 diet, whereas individuals 7 to 12 consumed the diets in the
alternate order.
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munity structure in 11 individuals upon intake of the high-RS2 diet with increasing
Gram-positive Firmicutes (mean � standard deviation, �10.7% � 10.6%) at the expense
of the Gram-negative Bacteroidetes (�10.4% � 10.8%) (Fig. 2B). At the species level, we
did not detect any significant differences after false-discovery rate (FDR) correction,
although changes in R. bromii (�7.8% � 9.9%, only considering the six subjects
exhibiting this bacterium) and the butyrate producer Faecalibacterium prausnitzii
(�2.1% � 2.6%) were most responsive to RS2 intake and displayed raw P values of
�0.05 (Fig. 2C). Some additional butyrate producers, namely, E. rectale and Roseburia
spp., were highly elevated in several samples derived from high RS2 doses. Members of
Bacteroides showed discordant behavior and, overall, the abundance of the genus
declined in eight individuals upon high RS2 intake. No significant differences between
intervention orders were obtained.

High doses of RS2 enriched potential functions involved in its degradation,
along with downstream fermentation pathways. Ordination analysis based on abun-
dances of potential functions (KEGG modules) revealed two major groups, where seven
patients clustered together at low-RS2 diets and displayed similar shifts at diets high in
RS2 (Fig. 3A). Four individuals formed a distinct group, whereas data from subject 7
clustered apart from other individuals. Those seven individuals also displayed signifi-
cantly higher responses (Bray-Curtis dissimilarity [BC] between diets, 0.12 � 0.05) than
other subjects (BC, 0.06 � 0.01). Detailed analyses based on within-subject comparisons
including all individuals showed several signatures for Gram-positive bacteria elevated
in abundance with high-RS2 doses, such as map00561 (glycerolipid metabolism) and
M00251 (teichoic acid transport system) (Fig. 3B), supporting major phylogenetic-based
community shifts shown in Fig. 2B. Furthermore, genes linked to the KEGG pathway
map0500 (starch and sucrose metabolism) increased by 21.0% � 15.0%, together with
two associated KEGG models, namely, M00565 (trehalose biosynthesis, �41.8% �

33.2%) and M00266 (phosphotransferase system [PTS], maltose/glucose-specific II com-
ponent, �55.6% � 52.6%) that encompass amylose-degrading pathways and uptake
mechanisms of the respective degradation products. Individual KEGG Orthology (KO)
terms representing starch-degrading enzymes were increased in most individuals
(K01176, �114.7% � 156.9%; K01208, �108.4% � 108.4%; K05343, �135.4% � 173.1%;
K00700, �28.9% � 26.9%), except for subject 9, who consistently lacked functional
responses for starch degradation. Several sugar uptake systems specific for the degra-
dation products glucose and maltose increased with high-RS2 diets (an overview of all
KEGG features significantly changing with high-RS2 diets is given in Data Sets S1 to S3).
Analyses based on genes encoding carbohydrate-active enzymes (CAZymes) supported
the results obtained from KEGG, in that glycoside hydrolases (GH) associated with
families 13 and 77 encompassing starch-degrading amylases, as well as GH13 exhibit-
ing specific polysaccharide binding modules, were elevated at high-RS2 concentrations
(�30.0% � 22.9%, �32.8% � 34.8%, and �34.1% � 32.9%, respectively; Fig. 3B).

Genes encoding KEGG pathways for major fermentative routes of butyrate
(map00650) and propionate (map00640), as well as M00579, representing the main
acetate synthesis pathway via acetate kinase were elevated (�13.9% � 11.9%) in
samples derived from high-RS2 intake (Fig. 3B). However, the major propionate-forming
succinate pathway that is primarily used by Bacteroides did not change, and K13922,
representing propionaldehyde dehydrogenase (PduP), a signature enzyme for the
propanediol pathway, trended in a decreasing manner (KOs associated with the
acrylate pathway were not detected). Manual selected KOs of the main butyrate-
producing pathway (from acetyl coenzyme A [acetyl-CoA] to crotonoyl-CoA; K00626,
K00074, and K01715) behaved discordantly in many individuals, and only crotonase
(K01715) was significantly increased. However, the combined results indicated in-
creased butyrate production potential with high RS2 doses (�26.2% � 24.3%) (Fig. 3B).

H2-scavanging bacteria, specifically sulfite reducers represented by M00596 and
acetogens using the Wood-Ljungdahl pathway (M00377), were increased by 49.7% �

53.8% and 21.2% � 23.7% (FDR corrected P � 0.09), respectively, in samples derived
from high RS2 consumption. The module for methanogenesis from acetate (M00357)
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was elevated as well, although this increase was governed by acetate kinase (K00925)
and phosphate acetyltransferase (K00625), whereas KOs encoding methanogenic sig-
nature enzymes, such as acetyl-CoA decarbonylase/synthase and methyl-coenzyme M
reductase, were not elevated (methyl-coenzyme M reductase was only found in two
individuals). Recently, serum levels of the atherosclerotic compound trimethylamine-
N-oxide (TMAO), which is formed from microbe-derived trimethylamine (TMA), were
reported to increase with high doses of RS2 (18). In this study, we detected the
TMA-forming pathway via choline in all subjects; however, the abundances did not
differ between diets (0.16% � 0.13% and 0.11% � 0.11% of total bacteria exhibited the

FIG 3 Alterations of potential functions during RS2 intervention. (A) Nonmetric multidimensional scaling
analysis of the overall functional potential of communities (based on abundances of KEGG modules) from
individual participants is shown (type of intervention, i.e., high- and low-RS2 diets, is indicated by the
color code). (B) Relative changes of selected major functions comparing results from samples derived
from high-RS2 diets with those from low-RS2 diets. Results are based on KEGG and CAZy (GH13,
GH13_CBM, and GH77), where an asterisk illustrates significant differences (P � 0.05) and the plus sign
indicates trending differences (P � 0.1) based on FDR-corrected Wilcoxon signed-rank tests (for KOs,
q-value statistics were applied). sel. KOs, combined result of manually selected KOs (K00626, K00074, and
K01715). Results exceeding values from the color bar were scaled to 100%. Subjects 1 to 6 received the
high-RS2 diet, followed by the low-RS2 diet, whereas individuals 7 to 12 consumed the diets in the
alternate order. GH, glycoside hydrolase; CBM, carbohydrate binding module; TS, transport system; amyl.,
amylase; neopull., neopullulanase; Glucosyltransf., glucosyltransferase; incl., including.
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pathway at diets low and high RS2, respectively [P � 0.44]), whereas genes encoding
carnitinase that produce TMA from carnitine were only detected in three individuals at
an abundance of 0.14% � 0.14%) (Fig. S2). No major differences between intervention
orders were obtained.

Taxonomic affiliations of genes encoding RS2-degrading key enzymes. R. bro-
mii constituted major fractions of genes encoding amylases and a glucan-branching
enzyme associated with RS2 degradation (K00176, 74.4%; K01208, absent; K05343,
79.0%; K00700, 88.6%; and GH13, 12.2% [including all samples]) and showed the
highest increase in abundance with high doses of RS2 in individuals exhibiting genes
affiliated with that taxon (i.e., R. bromii) (Fig. 4). Additionally, genes linked to selected
butyrate producers, such as E. rectale, F. prausnitzii, and Roseburia spp., did increase,
whereas those associated with Bacteroides spp. showed varied patterns (Fig. 4). Genes
previously described in B. adolescentis played a minor role. Interestingly, both KEGG and
CAZy suggest that genes linked to R. bromii were present in subjects 2 and 7 and
increased with high doses of RS2, despite phylogenetic results that suggested that
those individuals were devoid of this taxon (Fig. 2C). KEGG indicates lower mean
abundances (�15% of mean abundance compared with other six R. bromii-rich sub-
jects), whereas CAZy-based analyses suggest similar abundances in all eight individuals
(Fig. S3A). Four subjects were consistently lacking this taxon in all analyses. Closer
investigations suggest that a bacterium related to R. bromii is present in subjects 2 and
7, as coverage of the R. bromii genome was highly variable, and the housekeeping gene
rplB shows substantial phylogenetic distance from the reference in these individuals
(Fig. S3B and C).

A specific group of butyrate producers responded to RS2 intervention. Since
the production of butyrate is attributed a key role in the health benefits of RS (15) and
was further revealed to be a key response to RS2 intervention in previous studies, we
took a detailed look on all major pathways and the associated taxonomy of this
functional group of bacteria (Fig. 5). In the colon, butyrate is primarily formed by the
carbohydrate-fueled acetyl-CoA pathway, with butyryl-coenzyme A (CoA):acetate CoA-
transferase (butyrate transferase [but]) and butyrate kinase (buk) as terminal enzymes;
other terminal enzymes are usually low in abundance and play a minor role (20, 21).
Production routes based on proteins are described as well, although their abundances
are comparatively low (20). In this study, genes encoding the main acetyl-CoA pathway
were elevated in 10 individuals upon RS2 intervention (�6.2% � 3.5%; participant 9
[P9] �4.3% and participant 12 [P12], �0.05%), which was governed by bacteria
exhibiting but (�5.4% � 3.6% [excluding P9]) associated with the Ruminococcaceae
bacterium F. prausnitzii (raw P � 0.05) and E. rectale (raw P � 0.1), a member of the
Lachnospiraceae (Fig. 5). Additional abundant but-containing Lachnospiraceae, specifi-
cally Roseburia spp., did increase in several individuals as well, and, overall, the
abundance of pathway genes linked to this family significantly increased by �3.0% �

4.4% (Data Set S4). Taxa associated with buk and other terminal enzymes of the
acetyl-CoA pathway did not respond to RS2. Genes linked to the lysine pathway
declined with high RS2 doses (�1.4% � 1.7%), mainly due to a decrease in Alistipes and
Flavonifractor spp.; other protein-fed pathways (4-aminobuytrate and glutarate) were
only detected at low concentrations and did not change during the intervention (Data
Set S4). The results are in accordance with phylogenetics-based data presented in Fig.
2, and no significant differences between intervention orders were obtained.

DISCUSSION

In this study, we provide detailed insights into the functional structure of gut
microbiota during dietary resistant starch intervention using metagenomic analyses.
The overall results are largely in accordance with previously published multiomics data
(19), which indicated an increase in Firmicutes at the expense of Bacteroidetes and
elevated levels of proteins catalyzing the production of the short-chain fatty acids
(SCFAs) acetate and butyrate at diets high in RS2 (see Data Set S5). Additional detailed
insights into potential functions involved and associated key taxa were revealed,
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complementing the understanding of gut microbiota functional responses to RS2
intake. We set the obtained results in a mechanistic framework outlined in Fig. 6A
proposing that primary degradation was governed by Firmicutes, primarily R. bromii,
which led to increased concentrations of the SCFAs acetate and butyrate and promoted
the growth of H2-scavenging bacteria. Previous studies support specific parts of the
proposed model, such as increases in acetate and butyrate concentrations after the
administration of RS2 (12, 22), enrichment for certain butyrate-producing taxa (9, 12),
and R. bromii as a principal RS2 primary degrader (10, 13). Metagenomics only targets

FIG 4 Taxonomic affiliations of genes encoding major starch-degrading enzymes based on KEGG and
CAZy. Abundance changes (number of counts) of taxa comparing results from samples derived from
high-RS2 diets with those from low-RS2 diets are displayed, where the asterisks illustrate significant
differences (P � 0.05) based on FDR-corrected Wilcoxon signed-rank tests. Results exceeding values from
the color bar were scaled to �100 counts. Subjects 1 to 6 received the high-RS2 diet, followed by the
low-RS2 diet, whereas individuals 7 to 12 consumed the diets in the alternate order.
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the functional potential; however, certain key elements, such as butyrate production
and H2 scavenging pathways, represent core metabolic routes, and gene abundance
can serve as a proxy for function (23); metaproteomics supported those findings (Data
Set S5). Although R. bromii and its associated genes encoding starch-degrading en-
zymes were, overall, not significantly elevated in diets high in RS2, we included those
features in the model, as our data support its proposed role in governing RS2 degra-
dation. The taxon constituted major fractions of key genes for RS2 degradation and
displayed the most increases with high-RS2 diets in respective subjects (Fig. 4). A
decline in pH is documented to influence gut bacteria, specifically reducing the growth
of Gram negatives (24), and we postulate that increased fermentation and formation of
SCFAs during RS2 degradation lowered the pH, further affecting community compo-
sition, where pH-sensitive Gram-negative Bacteroidetes declined, whereas the growth of
Gram positives, including butyrate producers, increased. Community alterations did not
rely on intervention order, demonstrating that the gained features for microbiota at
high doses of RS2 are quickly reversed after reducing the supply, which is in accordance
with previous dietary intervention studies (9, 11). Thus, a constant source of RS2 is
required to sustain its microbe-derived health benefits.

FIG 5 Detailed analysis of the butyrate-producing potential during RS2 intervention. (A) Abundance
changes in both the dominant acetyl-CoA pathway (Acet) and the lysine pathway (Lys) comparing results
from samples derived from high-RS2 diets with those from low-RS2 diets. Abundance changes of genes
encoding terminal enzymes of the acetyl-CoA pathway, namely butyrate transferase (but), butyrate
kinase (buk), and others are shown as well. Results for individual subjects as well as median changes (all
subjects; white bars) are displayed. (B) Taxonomic affiliations of the two pathways. Asterisks illustrate
significant differences (P � 0.05) based on FDR-corrected Wilcoxon signed-rank tests. Results exceeding
values from the color bar were scaled to �10%. Subjects 1 to 6 received the high-RS2 diet, followed by
the low-RS2 diet, whereas individuals 7 to 12 consumed the diets in the alternate order.
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Distinct individual responses were detected, where only seven of 12 participants
displayed at least 15 of the 16 total selected features, whereas four individuals showed
mixed behaviors, and one subject was considered unresponsive (Fig. 6B). Varied
responses between subjects are in accordance with previous studies (11, 12). Functional
community structures with diets low in RS2 from individuals who displayed the
complete response pattern formed a cluster in ordination analysis distinct from other
subjects and showed increased Bray-Curtis dissimilarities between diets (Fig. 3A),
suggesting that initial (referring to samples low in RS2) differences in the functional
potential governed behavior during RS2 intervention. Several features associated with
RS2 degradation were discriminating those subjects from non/mixed responders, such
as higher abundances of the maltose alpha-D-glucosyltransferase/alpha-amylase

FIG 6 A mechanistic model on functional responses of gut communities upon RS2 intervention. (A) Major
steps of the model, where thick colored lines represent results obtained in this study, whereas postulated
events based on observations from previous studies are given in black-lined boxes. Although R. bromii
and associated genes overall did not significantly differ between the two diets (dashed lines), those
features were included due to the proposed role of this taxon as a key primary degrader of RS2 (for
additional explanations, see the text). (B) Detailed responses of individual participants (participant
numbers are at the top) on major steps outlined in our model, where the color green refers to an increase
at high-RS2 diets within an individual. Seven participants displayed all features of the proposed response
pattern, whereas four individuals (3, 6, 7, and 12) showed mixed behaviors, and one subject (9) was
unresponsive. (C) Major potential functions discriminating non/mixed responders (excluding subject 7)
from responders at low doses of RS2. GH, glycoside hydrolase; CBM, carbohydrate-binding module;
Glucan branch. enz., glucan-branching enzyme; Wd-Lj, Wood-Ljungdahl.
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(K05343), cohesion, which is required for scaffolding of extracellular carbohydrate
active enzymes, and carbohydrate-binding molecule (CBM) containing GH13 (Fig. 6C;
subject 7 was excluded from analyses, as its functional community clustered uniquely
[Fig. 3A]). Concentrations of other alpha-amylases K00176 and K01208, the glycan-
branching enzyme K00700, and total GH13 did not significantly differ between the
groups; however, all respective genes affiliated with R. bromii were enriched in the
subjects who showed a full response (Fig. 6C). Additionally, several carbohydrate
transporters were elevated in those individuals. Neither the butyrate-producing poten-
tial nor abundances of H2-scavenging pathways differed between groups (an overview
of all significantly different features is given in Data Set S6).

Genes encoding key enzymes involved in starch degradation were increased with
high RS2 intake, specifically those associated with R. bromii and various butyrate
producers. Since dense clusters of many extracellular amylases termed “amylosomes”
rather than specifically adapted enzymes are proposed to act on resistant starch (25),
it is difficult to distinguish key primary degraders from the taxa involved in downstream
degradation steps. In vitro experiments highlight the inability of various starch degrad-
ers, including the butyrate producer E. rectale, to act on its resistant forms, whereas
partly degraded products provided by R. bromii promoted their growth (13). Roseburia
spp. were shown to act on more easily accessible amylopectin potato starch, whereas
F. prausnitzii failed to grow (26). Hence, it is likely that butyrate producers are not
directly involved in the primary degradation of RS2, supporting R. bromii as a keystone
degrader that showed little redundancy in this specific feature with other gut bacteria
in our study. In all seven responders, this bacterium increased to high concentrations
during RS2 intervention (including a close relative revealed in two subjects), and no
other candidates that perform similarly were observed; B. adolescentis did not play a
significant role. Although we detected an increase in the butyrate-producing potential
in three individuals lacking this taxon, the overall degradation signatures were weaker.

The increase in butyrate producers upon administration of high doses of RS2 was
governed by butyrate-transferase-containing bacteria that rely on acetate as a cosub-
strate for proliferation. Taxa exhibiting this enzyme are net-acetate consumers and
show high sensitivity to extracellular acetate concentrations during growth in vitro (27).
Our data suggest that RS2 is suspending limitations from two ends, providing both
fermentation substrates and an acetate-rich environment supporting the growth of
those taxa. Various butyrate producers associated with distinct genera/families re-
sponded to RS2 treatment, indicating a high functional redundancy and demonstrating
the importance of function-based analyses to obtain a comprehensive overview of
mechanisms underlying RS2 degradation. Next to an elevated acetate production
potential via the Wood-Ljungdahl pathway from H2 and CO2, an increase in genes
encoding the major reductive route via phosphate acetyltransferase and acetate kinase
was detected as well. Higher substrate fluxes via that route are indeed most likely
during high doses of RS2, which is supported by the proteomics results (Data Set S5);
however, increases in gene abundances are not determinative, as most gut bacteria are
equipped with that pathway (21). Pathways for propionate synthesis, namely, the
succinate pathway, primarily used by Bacteroides, and the propanediol route (found in
specific Firmicutes) (28), did not significantly change, which is supported by previous
work that revealed only acetate and butyrate to be elevated upon RS2 treatment
(12, 22).

We did not detect alterations in TMA synthesis pathways in metagenomes despite
increased TMAO plasma levels reported earlier (18). Expression-based analyses provid-
ing deep insights, such as metatranscriptomics, are needed in order to shed more light
on this issue and reveal the associated bacterial key players. However, our data suggest
elevated concentrations of H2S, a toxic gas associated with inflammatory conditions
(29, 30), with high RS2 doses, supporting the observation that RS2 promotes some
health-deteriorating metabolites of microbiota. More work is needed to develop pre-
cision interventions that uncouple the production of those metabolites from beneficial
features of gut microbiota stimulated by RS2 in order to obtain optimal outcomes.

Vital et al. Applied and Environmental Microbiology

December 2018 Volume 84 Issue 23 e01562-18 aem.asm.org 10

https://aem.asm.org


Conclusions. Our results suggest that the primary degradation of RS2 was largely
governed by features linked to Firmicutes, including R. bromii as a main taxon, that
initiated a cascade of reactions leading to profound community alterations with
increased levels of fermentation end products, specifically butyrate, to which health
benefits have been ascribed. Some subjects showed mixed/no responses, and synbi-
otics that aim to deliver both growth-promoting substrates and respective primary
degraders might be an appropriate approach to promote complete responsiveness in
those individuals.

MATERIALS AND METHODS
Intervention study outline. Fecal samples from 12 individuals were selected for metagenomic

analysis from a larger controlled randomized crossover dietary intervention study testing the metabolic
effects of diets high in RS2 (18, 19). Six participants (no. 1 to 6) consumed diets low in RS2 (3 g daily for
2 weeks), followed by diets high in RS2 (48 g daily for 2 weeks), separated by a 2-week washout period
that consisted of their usual diets (7 days) and a low-carbohydrate maintenance diet (7 days), whereas
the other half (participants 7 to 12) consumed these diets in the reverse order. Stool samples were
collected at the end of each intervention. For more details on the diets and subject characteristics, see
references 18 and 19). The study protocol was approved by the institutional review board of the
Children’s Hospital and Research Center of Oakland. All participants gave written informed consent to
take part in the study. The study protocols were approved by the Human Subjects Committee of both
Children’s Hospital Oakland Research Institute and the Lawrence Berkeley National Laboratory.

DNA extraction, sequencing, and metagenomic analysis. DNA from samples was extracted using
the Mo Bio PowerSoil DNA extraction kit, with additional heat lysis for 5 min at 60°C (Mo Bio Laboratories,
Carlsbad, CA), and sequenced on the Illumina HiSeq 2000 system (150-bp paired-end [PE] reads and
400-bp insert size). Raw reads (2.35 	 107 � 4.55 	 106) were filtered and adapters removed using
Trimmomatic (version 0.33) (31), with the following default parameters: removing adapters (2 maximum
seed mismatches, 30 score threshold for palindrome removal, and minimum score threshold of 10 for
removing adapter), removing leading low-quality or N bases below quality 3, removing trailing low-
quality bases below quality 3, scanning the read with a 4-base-wide sliding window, trimming when the
average quality per base drops below 15, and removing reads �36 bases in length. Filtered reads were
assembled using Megahit (version 1.0.6-3-gfb1e59b) (32), with the following parameters: – kmin-1pass
and –presents meta-large. The assembled contigs were uploaded to MG-RAST (33) for open reading
frame (ORF) calling and were subsequently annotated against the KEGG gene database (2017-02-20)
containing 21,480,820 genes and 20,634 KOs (34). On average, 73.1% � 4.7% of the reads mapped to
contigs using Bowtie2 (version 2.2.9) (35), and abundance of contigs was estimated by calculating the
median coverage (counts). Between-sample normalization by the sum of their counts was performed
before the analyses. Further, translated ORFs were subjected to dbCAN (version 5) to predict CAZymes
relevant for RS2 degradation, according to the developer’s instructions (36). Taxonomic analysis was
performed using MetaPhlAn version 2.0 (in default mode) (37).

Specific analyses of butyrate-producing communities were performed according to Vital et al. (20). In
brief, an updated reference database (38) that encompasses all genes of the four major butyrate
synthesis pathways, together with respective gene sequences from metagenomes obtained via gene-
targeted assemblies using RDP’s Xander (default mode) (39), was subjected to complete-linkage clus-
tering (95% nucleotide similarity) (40) to establish a butyrate-specific gene catalogue. The three house-
keeping genes rplB, recA, and pyrG were included in the procedures (20). Reads were mapped to this
catalogue using bowtie2, and pathway abundances were calculated from the mean abundances of
respective genes normalized to the three housekeeping genes. Individual taxa were merged on the
genus level except for abundant Roseburia and Lachnospiraceae incertae sedis, whose species displayed
high phylogenetic distances; for genera containing only one species, the species name is given. Taxon
abundances were calculated from median gene abundances, where all respective pathway genes had to
be detected (�90% of reads used for total pathway calculations were assigned a taxonomy).

Trimethylamine-producing pathways were analyzed by using blastn (BLAST 2.4.0� [41]) searching
reads against the reference database, according to Rath et al. (42).

Statistical analyses. Wilcoxon signed-rank tests (wilcox.test, paired � TRUE) with FDR correction
(fdrtools) were performed in R (version 3.3.3) to test for differences between the two diets, whereas
comparisons between responders and non/mixed responders with low-RS2 diets were done using QIIME
(bootstrap_mann_whitney_u) (43); for testing differences in Bray-Curtis dissimilarities between the two
groups, the Student t test was applied in R. An FDR-corrected P value of �0.05 was considered a
significant result (for KOs, a q-value of �0.05 was applied [fdrtools]). Before testing, data sets were filtered
for features detected in �25% of samples (� six samples; for comparisons of samples derived only from
low-RS2 diets, this cutoff was raised to 50%). The following additional cutoffs (average abundance) were
applied: KOs, 10 counts; KEGG modules, 50 counts; KEGG pathways, 100 counts; MetaPhlAn, 0.1% of total
community; butyrate taxa, 0.1% of total butyrate-producing community; taxonomic affiliations of genes
encoding key RS2-degrading enzymes (1% of all bacteria exhibiting the gene). Heatmaps (gplots) and
nonmetric multidimensional scaling analysis and construction of the dendrogram (vegan using Bray-
Curtis dissimilarity) were performed in R (version 3.3.3). For taxonomic (MetaPhlAn2) and butyrate-
specific analyses, abundance changes from low- to high-RS2 diets, i.e., results from the low-RS2 diet
subtracted from results of the high-RS2 diet, are given, whereas relative changes are given for KEGG- and
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CAZyme-based results (Fig. 3), as those analyses involved different levels (pathways, modules, and KOs),
which does not allow for meaningful comparisons based on abundance data.

Data availability. Raw sequences were submitted to the European Nucleotide Archive (ENA) under
accession number PRJEB25954.
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