
UC Santa Barbara
UC Santa Barbara Previously Published Works

Title
Designing a Language for Spatial Computing

Permalink
https://escholarship.org/uc/item/04q9q6wm

ISBN
978-3-319-16787-9

Authors
Kuhn, Werner
Ballatore, Andrea

Publication Date
2015

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/04q9q6wm
https://escholarship.org
http://www.cdlib.org/

Designing a Language for Spatial Computing
 “One of the main reasons why software projects fail is the lack of communica-

tion between the business users, who actually know the problem domain, and the
developers who design and implement the software model.” (Ghosh, 2011)

Abstract. We present the design rationale underlying a language for spatial com-
puting and sketch a prototypical implementation in Python. The goal of this work
is to provide a high-level language for spatial computing that is executable on ex-
isting commercial and open source spatial computing platforms, particularly Geo-
graphic Information Systems (GIS). The key idea of the approach is to target an
abstraction level higher than that of GIS commands and data formats, yet mean-
ingful within and across application domains. The paper describes the underlying
theory of spatial information and shows its evolving formal specification. An em-
bedding in Python exemplifies access to commonly available implementations of
spatial computations.

Introduction

If spatial computing is to realize its often-proclaimed potential across disciplines,
geographic information science needs to convey a clearer picture of what GIS and
related technologies are good for. This picture must focus on information contents
and user questions, rather than on data formats (e.g., raster and vector) and system
commands, which dominate the current image of GIS. It should be a value propo-
sition that is meaningful across application domains, while avoiding overgenerali-
zations (such as reducing all spatial information to a single form) or obscure ter-
minology (such as abstract ontological terms).

Existing abstractions like the geo-atom (Goodchild, Yuan, & Cova, 2007) and
the notion of generalized fields (Camara et al., 2014) are helpful in generating
such a picture, but they attempt to squeeze all spatial information into a single
form, avoiding content distinctions. Similarly, spatial analysis reduces spatial in-
formation essentially to products of random point processes. In the absence of a
clear but nuanced picture of spatial information and computing, many potential
users continue to believe that GIS is primarily used to make and store maps.

The problem of software requiring users to speak a language they may not be
familiar with is as old as computing itself. In the early 1980s, computer scientists
and psychologists started to describe and address it systematically. Don Norman
coined the terms “Gulf of Execution” and “Gulf of Evaluation” (D. A. Norman,
1986) to describe the gap between how users think and how computers require
them to talk (execution) as well as how they talk back to users (evaluation). By the
early 1990s, usability engineering had become a much-researched part of system

Author copy
Kuhn, W., & Ballatore, A. (2015). Designing a Language for Spatial
Computing. AGILE 2015, Lecture Notes in Geoinformation and
Cartography. Bacao, F. et al. (Eds.) (pp. 309-326).

2

design and implementation, generally and in the GIS area (Egenhofer & Kuhn,
1999). The user interfaces of GIS rapidly changed from command line to direct
manipulation interfaces, including visual programming languages (VPL).1

Yet, this re-organization of GIS languages has largely remained syntactic. The
semantic questions, concerning what contents users want to talk about at a GIS in-
terface, have hardly been addressed. Consequently, there is still no commonly ac-
cepted classification of the types of spatial or geographic information (as opposed
to the data types) that are handled by GIS. Organizing GIS commands bottom-up
turned out to be too hard (Albrecht, 1998), and ontologists have not yet come up
with a top-down structure capturing what is special about spatial information. Ge-
ospatial ontologies, on the other hand, specify application domains like hydrology
or land cover, without attempting the generalization sought here. The prolonged
absence of an answer to what spatial or geographic information is about is further
aggravated by pride in complexity: researchers and practitioners mastering GIS all
too often believe that what they have spent so much effort (and money) on learn-
ing is inherently complex and needs to stay that way.

Standardization, meanwhile, has quietly abandoned its original aspiration of de-
fining service interfaces for spatial computing at the content level. In the absence
of theories to inform the design of such interfaces, OGC and ISO had to pursue a
modern (service-oriented) form of data exchange, based on GML. The idea of a
software-independent essential model of geospatial computing fell by the wayside,
and the language of geographic information standards became one of software
technologies, rather than of information contents. Sadly, this is mainly a result of
researchers keeping themselves busy developing and testing industrial software
specifications, rather than developing theories of spatial information and compu-
ting.

Thus, a quarter century into GIScience research and standardization, our field
still fails to communicate what GI and GIS are about. Evidence for this can be
found in the heterogeneous organization of textbooks and curricula. As a result,
teaching GIS tends to default to software training, and attempts to explain the po-
tential of GIS to, say, an epidemiologist, an economist, or a historian, tend to leave
these colleagues with an impression that they better leave GIS to specialists.

Contrast this situation with that in statistics. The two fields play similar cross-
disciplinary roles, but statistics has had time and intellectual aspiration to achieve
a mature self-image and understanding of its tools. Simplifying somewhat (as one
needs to, for this purpose), the field of statistics comes with a set of core concepts,
ranging from random variables through distributions and correlations to statistical
tests. If one wants to do statistics, these concepts provide access to and transfer be-
tween a large and growing variety of statistical computing tools, all of them more
or less understanding and speaking these terms.

1 Industrial products include ModelBuilder in ArcGIS and the Workflow De-

signer in Autodesk Map 3D.

3

This paper presents a novel approach to the problem of describing spatial in-
formation and computations above the level of GIS data formats and commands. It
proposes to use the previously defined core concepts of spatial information (Kuhn,
2012) as a vocabulary for a language of spatial computing, supplying a high-level
view of operations on these concepts. We first discuss what domain the language
should be for (section 2), then recall the core concepts (section 3) and specify
them through their operations (section 4), preparing for a sketch of an ongoing
implementation in Python (section 5). Conclusions and a discussion of future work
wrap up the paper (section 6).

What Domain?

While it remains to be seen whether “geographic” or “spatial” is the better scope
for a language of spatial computing, our work rests on the assumption that most
computational techniques developed for geographic applications are applicable to
other spaces as well. For example, fields or networks are both useful structures
across many scales, dimensions, and applications. Therefore, we refrain from any
attempts to limit the application domains, and thus the scope of the domain-
specific language, to geographic or other spaces. Still, the spaces considered here
primarily are those of human experience in one to three dimensions. The applica-
tions are primarily geographic (dealing with neighborhoods or river catchments,
for example) or indoor environments (dealing with floors, rooms or hallways), but
other spaces remain in scope. We refer to this broad scope as our domain and to
areas like ecology or economics as applications. Figure 1 provides an overview of
the conceptual and technology layers involved in our proposal.

Figure 1: Overview of the spatial computing domain

Originally, we planned to map the core concepts to domain specializations (for
example, translating the core concept of network to the domain specialization of

GIS Data formats Spatial DBMS Technological layer

Core Concepts layer Field Object Network Location

Core Concepts Python implementations Mediation layer

Ecology Application layer Economics History

4

road network), but we found it beneficial to preserve the language's generality and
abstraction even within applications. A domain mapping remains a valid option
for any specialized domain language in which conceptualizations can be fixed.
However, it is a characteristic of spatial computing that different conceptualiza-
tions co-exist, for example, of roads as networks or complex objects. Thus, we en-
visage a scenario where domain practitioners express their spatial questions in the
proposed high-level language, specializing their entities when necessary, and op-
erating at a cross-domain conceptual level.

Core Concepts of Spatial Information

This section summarizes the core concepts of spatial information in their latest
form of seven concepts–see also (Kuhn, 2012). These connect spatial thinking to
computing and provide a high-level vocabulary with which to ask and answer
questions about phenomena in space and time. Spatial information is spatiotem-
poral by default in today’s practice, so that the concepts do not distinguish spatio-
temporal from spatial information.

A remark on the underlying notion of information is in order. Information an-
swers questions. It exists only in the minds of people and not in computers, nor in
the world outside of human minds or computers. Spatial information gets generat-
ed by humans observing the world with a reference to location and extent. Con-
cepts of spatial information are the elements from which humans build mental rep-
resentations of the world. Computers hold data about the world, recording human
or technical observations and used to answer questions. It is often convenient to
use one and the same term for these three aspects of information. For example, the
term object can be used to refer to something physical in the world (say, a house),
its mental representation (your idea of that house), and the data describing it (in a
cadastral database).

The seven core concepts of spatial information comprise five concepts of in-
formation content and two concepts of information quality. The latter can be con-
sidered meta-information concepts, as they apply to all content concepts. Table 1
shows an overview.

Core%Content%Concepts% Core%Quality%Concepts%

Location(Field(Object(Network(Event(
Granularity(

Accuracy(

Table 1: Overview of the core concepts of spatial information

This small set of core concepts of spatial information inevitably misses some ideas
or relegates them to sub-concepts or non-core status. Other views of what is

5

“core” can be found in (Golledge, 1995) or (Janelle & Goodchild, 2011). Picking
core concepts is mainly a terminological and granularity choice with which one
decides on how to talk about spatial information. Their suitability needs to be
judged through applications, for the purpose of which we are designing the do-
main language around them.

Location

The concept of location serves to ask and answer where questions. It is the most
fundamental concept of spatial information (Golledge, 1995). Location is neither
an attribute nor an object, but a relation. We locate something by relating it spa-
tially to something else (Donnelly, 2005). Thus, there is no absolute location of
anything, but there are infinitely many relative ones. When talking about a loca-
tion, one means either a place or a position (see below).

Location information relates figures (being located) to grounds (locating the
figures). What gets located plays the role of figure, what locates it plays the role of
ground (Talmy, 1983). When we say “Santa Barbara is in California,” Santa Bar-
bara is chosen as the figure and California as the ground. Location information is
always the result of a human judgment, assigning figure and ground roles to states
of entities and relating them spatially. The roles of figure and ground can be as-
signed to states of objects (e.g., streets) or network elements (e.g., intersections).

Places are commonly used grounds. They often carry names, such as Santa
Barbara, California, the Pacific Ocean, or North America. Like all grounds, they
are entities in space and time, as the examples demonstrate. A place may start and
cease to play its role as a ground—consider Yugoslavia, which was a place during
a part of the 20th century. Place-based location information is normal for human
communication and has become a key resource in spatial computing.

Figures get related to grounds through spatial relations. Locating Santa Barba-
ra in California or by the Pacific Ocean uses prepositions to express the qualitative
relations of containment and contact; locating it by geographic coordinates uses
relations expressed as angular distances from the equator and a meridian.

Positions express spatial relations quantitatively, through distances from the
grounds established by coordinate systems. For example, Wikipedia2 says that
Santa Barbara has the coordinates 34°25'33"N 119°42'51"W, stating angular distanc-
es from the equator and prime meridian of the WGS’84 coordinate system. In the
vertical dimension, heights use an ellipsoid or geoid as ground and distances from
it as positions. With the grounds conventionalized through coordinate systems, po-
sitions appear to be independent entities, but they remain relations, referring to de-
fault grounds.

2 http://en.wikipedia.org/wiki/Santa_Barbara,_California

6

Field

Field information answers questions about the value of an attribute anywhere
in a space of interest. The field concept is an elegant mathematical idea, originally
developed in physics to explain gravity and widely adopted for spatial information
models in geography, biomedicine, and other areas. It is, of course, the first of two
fundamental views of spatial information, the second being the concept of an ob-
ject (Couclelis, 1992; Galton, 2004). Fields capture phenomena that can be de-
scribed by a property with a single value at any position in a space of interest. Ge-
ographic examples include temperature and wind fields.

Mathematically, every field is characterized by a continuous function from po-
sitions to values, meaning that small changes in positions map to small changes in
values. The domain of the field function captures the space of interest. Positions
can be spatio-temporal, although time often gets separated from space and mod-
eled as snapshots. The positions as well as the values can be discrete, still allowing
for continuous functions between them (Rosenfeld, 1986).

In practice, the continuity condition on the function is sometimes ignored, re-
taining only the functional relationship between positions and values. Land cover
or land ownership are examples of phenomena requiring this broader definition, as
their values do not change smoothly. Such a generalized “field” concept has been
captured in the geo-atom of (Goodchild et al., 2007)and standardized in the cover-
age specification of the Open Geospatial Consortium as “digital spatial infor-
mation representing space-time varying phenomena” (Baumann, 2010).

Object

Object information answers questions about properties and relations of objects.
Objects provide the second fundamental way, after fields, of understanding spatial
information. They capture individual things extended in space that can be identi-
fied and described by properties and relations. Typical geographic examples are
buildings and lakes.

The only defining characteristic of all kinds of objects is that they have an iden-
tity. This allows for tracking their properties and relations over time. Changes can
occur in all properties and relations, including spatial relations in the case of mo-
bile objects.

Objects are bounded, i.e., they have finite sizes, although their boundaries are
not always known or even knowable. Many natural objects do not have crisp
boundaries and are better characterized by transition zones between what clearly
belongs to them and what does not (Burrough & Frank, 1996). Consider moun-
tains, forests, beaches, or ash clouds; while some positions clearly lie within these

7

objects, others clearly lie outside, and the transition zones are often vast. Bounda-
ries, crisp or vague, may or may not be necessary for analysis.

The properties of objects are attributed to them as a whole and relations be-
tween objects hold for them as wholes. All properties and relations are either spa-
tial or thematic; temporal aspects of objects (such as their creation) are captured
by events in which objects participate. The values of an object's properties and the
relations it participates in define its state at any time.

Parts of objects can themselves be treated as objects, and complex objects get
aggregated from simpler ones. Features are parts of the surfaces of objects and
can be considered special cases of objects. For example, while lakes may be seen
as three-dimensional objects, they are also often treated as two-dimensional parts
of the earth's surface.

The large variety of objects in any domain suggests a need to classify them.
Object types are typically defined based on shared properties and relations. For
example, water bodies may be classified into those with standing or flowing water,
with lakes as a further subclass of standing water bodies.

Network

Networks hold information on connections between objects. They are used to an-
swer a broad range of questions about connectivity, such as whether an object is
reachable from another object, what the shortest path is between them, how central
an object is in a network, where the sources and sinks are of something flowing
through the network, or how fast something will spread and where it will spread
to. Network applications benefit from modeling networks as graphs and from the
vast choice of algorithms and implementations coming with this. As a conse-
quence, the concept of networks is most broadly applied across disciplines.

The objects connected through a network are called its nodes. The variety of
objects that can play the role of nodes is unlimited. They include physical objects
(such as people or places), as well as mental and social ones (such as concepts,
web pages, or companies).

Nodes get connected by any binary relation of interest, forming a network's
edges. Every pair of nodes participating in the relation is connected by an edge.
Edges may have physical realizations, as do roads, or they may be modeled as ab-
stract connections only, as in the case of social relations. Edges, and with them
whole networks, can be directed. For example, a road segment may be seen as a
directed connection from one place to another. Applications often use a single at-
tribute to characterize a relevant property of edges. A numeric attribute is called
the weight or impedance of the edge, a nominal attribute its color. For example,
travel distance (measured by length or time) can serve as weight, with longer con-
nections having greater weights; colors can express different types of edges, such
as travel modalities (walking, driving).

8

A path in a network is a sequence of nodes where each consecutive pair of
nodes is connected by an edge. A node is reachable from another node, if there is a
path connecting the two. A path returning to its origin is a cycle. Sometimes it is
useful to think of a path as the sequence of edges connecting the nodes. A network
is connected if it has a path between every pair of nodes.

A network can be embedded in a surface or a three-dimensional space, so that
its nodes have positions and its edges shapes. Embeddings on the earth's surface or
in a building are typical geographic examples. Many more network properties are
defined in the literature (see, for example, (Newman, 2010)).

Event

Event information answers questions about what has happened, is happening, or
may happen. For example, one might want to know where two people first met,
how long it takes to get through a traffic jam, or whether it will rain tomorrow.
While static maps show snapshots of unfolding events, computer models and their
visualizations can now represent events and relationships between them. Events
are rapidly becoming an important subject of spatial information, reflecting the
fact that information about changes in our dynamic world is increasingly availa-
ble, even in real time.

Events are individual portions of processes. For example, considering weather
and traffic as processes, a rainstorm is an individual weather occurrence and a traf-
fic jam is a single, limited occurrence of heavy traffic. All events are temporally
bounded, i.e., of finite duration. Their beginnings and endings are not always
known, just like for the spatial boundedness of objects.

Events have an identity and are described by temporal and thematic properties
and relations. For example, a rainstorm may be named and characterized by its du-
ration and the accumulated rainfall. Commonly used temporal properties of events
are their duration or temporal bounds. The main temporal relations between
events are precedence, co-occurrence, and posteriority. For example, a rainstorm
can precede a traffic jam, co-occur with an electricity blackout, and follow (be
posterior to) gusts of wind.

The key relation between events and the other core concepts is that of partici-
pation. Events involve fields, objects, and networks as participants, which often
get changed through their participation. For example, rainstorms change tempera-
ture and humidity in their area, and traffic jams affect the choice of routes through
road networks.

Parts of events can themselves be treated as events, and complex events can be
aggregated from simpler ones. Part-whole relations are as central to event models
as they are to object models. For example, a particular rainstorm may be part of a
storm system sweeping a region and there may be questions about rainfalls or
damages in individual storms as well as about their overall accumulation.

9

Granularity

Granularity information answers questions about the amount of detail in spatial in-
formation. For example, one may want to know how precisely a smart phone can
locate itself, what cell size underlies a global climate model, what the smallest
recorded buildings are on a map, whether gravel roads are included in a road net-
work, or how long a snow storm must last to be recorded as a blizzard. Granularity
characterizes all content concepts of spatial information.

Granularity is a concept of information quality, used to describe information it-
self rather than things in the world. Every piece of spatial information comes with
some granularity, implicitly or explicitly, i.e., with a level of detail it captures.
While the term granularity is sometimes used in a narrower sense to describe the
level of detail in conceptualizations (but not in representations external to the
mind), it is used here to mean the level of detail affecting any stage of producing
or using spatial information—starting with conceptualization, and going through
observation, representation, integration, and analysis, to visualization.

Commonly used alternative terms for granularity, in addition to level of detail,
are resolution and precision. The term scale has so many different and often con-
flicting meanings that it is best used as an informal notion only, but it refers pri-
marily to granularity. Other related terms, for instance discrimination or precision
(in its second sense of repeatability of measurement), refer to measuring instru-
ments, not to information, but they impose lower limits on granularity. Finally, the
terms spacing and support have more specific technical meanings in measurement
processes.

Spatial and temporal granularity are extents in space and time and therefore, in
principle, measurable quantities. Yet, variations throughout the observation-to-
visualization life cycle of information make it hard to come up with a generally
applicable measure for granularity. Given that all information is rooted in observa-
tion, granularity is best understood starting from observations and then defining
measures for derived information, for example for field or object information.
When talking about observations, granularity is usually referred to as resolution
(Degbelo & Kuhn, 2012). It results from the fact that the change observed through
observation necessarily has a minimum below which it cannot be detected. The-
matic granularity is considerably harder to formalize. There is not always a clear
ordering of thematic classes, nor is there always a numeric measure for thematic
granularity.

Accuracy

Information is accurate if it describes something correctly. Accuracy can only be
determined for a given granularity and with respect to some reference information

10

that is considered (more) accurate. Accuracy has been a long-standing concern for
the theory and practice of spatial information (Burrough & McDonnell, 1998).
While the emphasis has often been on locational accuracy, the concept of accuracy
applies to all information about fields, objects, networks, and events. Accuracy
and granularity together are the main indicators of the quality (or certainty) of spa-
tial information.

The degree of accuracy is measured by the difference between the reference in-
formation and the information in question, either statistically or for individual val-
ues. For example, one may determine the accuracy of a building footprint obtained
from aerial photography by comparing it to ground survey data. Inaccuracy in in-
formation results from errors in observation or analysis. Accuracy is limited by
observation procedures and gets propagated through analysis.

The difference between the mean of repeated observations and a hypothetical
true value is called bias. With adequate measuring equipment, the results of re-
peated measurements or calculations distribute regularly around the true value.
This property is a consequence of understanding measurement as a random pro-
cess.

Accuracy is often associated with the absence of systematic errors, such that
measurement is affected only by random errors. Systematic errors get minimized
or eliminated by calibration, which should reduce systematic errors to a level be-
low the granularity of the information. As a consequence, best practice of report-
ing information requires stating only as many digits after the decimal as the com-
bined effect of granularity and (in)accuracy permit.

Core Spatial Computations

The ambition behind defining core concepts was to reduce the complexity of spa-
tial information to a few powerful notions that are meaningful across applications.
The practical impact of this idea, however, comes from reducing the complexity of
computations to a similarly low number. For this purpose, simply reorganizing ex-
isting GIS commands around the core concepts would not be sufficient. Instead,
the approach taken in this work is to define core computations for each core con-
cept. These operators constitute the semantic primitives of our language of spatial
computing, which can then be combined to express more complex computations.
For example, questions about the location of objects get answered by combining
the operators for Location and Object. The operators can take many syntactic
forms, depending on the chosen embedding of the language. This section presents
a simplified algebraic specification derived from a Haskell embedding; the next
section presents a Python embedding.

The length of this paper does not allow for a detailed discussion of the opera-
tors, but they should be largely self-explanatory for GIScience researchers. For a
better understanding, readers should consult the concept descriptions in the previ-

11

ous section. We present the operator signatures in the form of a table, omitting the
Haskell axioms specifying their semantics. The signatures are written following a
standard practice in software engineering: the name for the operator followed by
parameters for the input types (combined as a cross product) and for the output
type (after the arrow). Note that the type parameters are further constrained in the
full specifications. For example, the figure(and ground(parameters can be instantiat-
ed by objects, nodes, or edges.

% Operators% Comments%

Location% isAt:(figure(x(ground(?>(Bool((

isIn:(figure(x(ground(?>(Bool((

position:(figure(?>(point((

bounds:(figure(?>(shape(

the(contact(relation(

the(containment(relation(

a(point(positioning(the(figure(

a(shape(bounding(the(figure(

Field% new:([(pos,val)](x(([(posxval)](x(pos(?>(val)(?>(field(

bounds:(field(?>(shape(

getValue:(field(x(pos(?>(val(

local:(field(x((val(?>(val’)(?>(field(

focal:(field(x((pos(?>(val’)(?>(field(

zonal:(field(x((pos(?>(val’)(?>(field(

interpolating(a(field(from(a(list(of(values(

the(domain(of(the(field(

the(value(at(a(position(

computing(new(values(at(all(positions(

computing(new(values(from(neighborhoods(

computing(new(values(from(zones(

Object% get:(object(x((object(?>(value)(?>(value(

is:(object(x(object(x((objectxobject(?>(Bool)(?>(Bool(

same:(object(x(object(?>(Bool(

get(the(value(of(a(property(of(the(object(

are(the(two(objects(in(the(given(relation?(

are(the(two(objects(the(same?(

Network% nodes:(network(?>([node](

edges:(network(?>([edge](

addNode:(network(x(node(?>(network(

addEdge:(network(x(edge(?>(network((

degree:(network(?>(node(?>(Int((

connected:(network(x(node(x(node(?>(Bool((

shortestPath:(network(x(node(x(node(?>([node]((

distance:(network(x(node(x(node(?>(Int((

breadthFirst(::(network(x(node(x(Int(?>([node](((

all(nodes(in(a(network(

all(edges(in(a(network(

add(a(node(to(a(network(

add(an(edge(to(a(network(

degree(of(a(node(in(the(network(

are(two(nodes(connected?(

the(shortest(path(between(two(nodes(

the(network(distance((as(number(of(nodes)(

all(nodes(at(distance(from(a(node(

Event% when:(event(?>(Date((

within:(event(?>(Period((

same:(event(x(event(?>(Bool(

during:(event(x(event(?>(Bool((

before:(event(x(event(?>(Bool((

after:(event(x(event(?>(Bool((

overlap:(event(x(event(?>(Bool(

the(time(of(an(event(as(a(date(

the(time(of(an(event(as(a(period(

are(the(two(events(the(same?(

is(the(first(event(happening(during(the(second?(

is(the(first(event(happening(before(the(second?(

is(the(first(event(happening(after(the(second?(

does(the(first(event(overlap(the(second?(

Table 2: Overview of core computations on spatial information

The choice and development of the operators is the subject of ongoing research.
Specifications for the quality concepts (granularity and accuracy) are still being
developed. The main goal of producing embeddings like those in Haskell and Py-

12

thon is in fact to test the operators for completeness, consistency, and adequacy in
practical GIS projects.

A Python Embedding

To demonstrate applicability in the current technological context, we outline a Py-
thon implementation of the proposed language for spatial computing. Python, cre-
ated in the 1990s in response to the verbosity and complexity of object-oriented
languages such as C++, is a mature general-purpose, multi-paradigm program-
ming language used in industry and academia in domains ranging from Web de-
velopment to high-performance scientific computing. Libraries such as SciPy and
PySAL3 include spatial computing tools, and well-known spatial libraries such as
GDAL provide Python bindings.4 Current GIS display a high degree of interoper-
ability with Python, providing APIs and bindings at multiple levels. Notably,
ArcGIS5 and QGIS6 have adopted Python as their principal scripting language,
making it a suitable testing ground for the proposed approach to core concepts.
More generally, the popularity of Python among researchers and practitioners in
many domains lowers the adoption barrier of the proposed approach.

The first building block for our domain-specific language consists of its ab-
stract data types (ADT). Starting from the Haskell specifications of core concepts,
we defined a set of Python classes, bearing in mind the semantic differences be-
tween these two languages. Python is strongly dynamically typed, favors proce-
dural and object-oriented programming, and does not provide a mechanism for
type parameterization. By contrast, Haskell is a functional language and strongly
statically typed, i.e. all types are known and checked at compile-time. In Python,
ADTs are not definable directly, and have to be embedded in concrete classes,
while Haskell type classes are abstract interfaces, providing powerful support for
type parameterization.

The proposed Python classes are a lower level of abstraction, between the
Haskell specifications and the concrete software components that perform the spa-
tial computation. This way, existing software resources can be harnessed and de-
ployed in the computational workflow, without locking the user into a software-
driven conceptualization of their domain knowledge. To provide an illustration of
the approach, the Python class that defines the field concept is structured as fol-
lows (the "Cc" prefix stands for "core concepts"):

3 https://pysal.readthedocs.org, http://www.scipy.org
4 http://gdal.org/python
5 http://resources.arcgis.com/en/communities/python
6 http://pyqgis.org

13

class%CcField(object):%
%

%%%%def%getValue(%self,%position%):%
%%%%%%%%"""%%
% %%@param%position%a%position%in%the%field%
%%%%%%%%@return%the%value%of%field%at%position%
%%%%%%%%"""%
%%%%%%%%raise%NotImplementedError("getValue")%
%%%%%
%%%%def%local(%self,%fun%):%
%%%%%%%%"""%
%%%%%%%%Map%algebra's%local%operations,%with%a%%
% % function%to%compute%the%new%values%
%%%%%%%%@param%fun%a%function%to%be%locally%applied%on%the%field%
%%%%%%%%@return%a%new%CcField%field%
%%%%%%%%"""%
%%%%%%%%raise%NotImplementedError("local")%
%%%%%
%%%%def%focal(%self,%fun%):%
%%%%%%%%"""%
%%%%%%%%Map%algebra's%focal%operations,%with%a%kernel%function%to%%
% % compute%the%new%values%based%on%the%neighborhood%of%the%position%
%%%%%%%%@param%fun%a%Kernel%function%to%be%applied%on%the%field%
%%%%%%%%@return%new%CcField%field%
%%%%%%%%"""%
%%%%%%%%raise%NotImplementedError("focal")%
%%%%%
%%%%def%zonal(%self,%fun%):%
%%%%%%%%"""%
%%%%%%%%Map%algebra's%zonal%operations,%with%a%%
% % function%to%compute%the%new%values%%
% % based%on%zones%containing%the%positions.%
%%%%%%%%@param%fun%a%function%to%be%zonally%applied%on%the%field%
%%%%%%%%@return%new%CcField%field%
%%%%%%%%"""%
%%%%%%%%raise%NotImplementedError("zonal")%
%%%%...%

This class includes a getter (getValue), and standard Map Algebra operations. As
Python does not provide an explicit mechanism to define abstract classes, we sim-
ulate the abstract nature of the class by raising exceptions at run-time (i.e. NotIm-
plementedError), highlighting the fact that the class should not be instantiated di-
rectly. This class can be implemented to interface with the technological layer, in
this case by handling the popular GeoTiff raster format,7 reusing the logic defined
in the software package GDAL:8

import%gdal%#%import%implementation%library%
%
class%GeoTiffGdalField(CcField):%#%subclass%of%CcField%
%%%%def%__init__(self,%file_path):%
% %%#%load%GeoTiff%from%file%using%GDAL%
%%%%%%%%self.gdalHandler%=%gdal.Open(file_path,%GA_Update)%
%%%%%

7 http://trac.osgeo.org/geotiff
8 Created by the Open Source Geospatial Foundation, the Geospatial Data Ab-

straction Library (GDAL, http://www.gdal.org) is a software package that pro-
vides an interoperability layer between a variety of raster and vector data formats.

14

%%%%def%getValue(self,%position):%
%%%%%%%%#%use%GDAL%to%retrieve%field%value%for%position%
%%%%%%%%return%self.gdalHandler.ReadAsArray(%position.x,%position.y,%...%)%
%
%%%%...%

Similarly, ArcMap libraries can be harnessed through Python in an appropriate
subclass:

%
import%arcpy%#%import%implementation%libraries%
from%arcpy%import%sa%
%
class%GeoTiffArcMapField(CcField):%#%subclass%of%CcField%
%%%%def%__init__(self,%file_path):%

% %%#%load%GeoTiff%from%file%using%ArcMap%

%%%%%%%%self.arcRaster%=%sa.Raster(file_path)%

%%%%def%getValue(self,%position):%

%%%%%%%%#%use%ArcMap%to%retrieve%field%value%for%position%

%%%%%%%%result%=%arcpy.GetCellValue_management(%...%position.x,%position.y%)%

%%%%%%%%return%result.getValue(0)%

%%%%...%

These concrete classes act as wrappers, encapsulating the implementation details.
This approach enables the user to define operations and queries on fields, only re-
lying on the CcField interface, hiding the technological and data layer from view.
Similarly, we define the concepts object and network as:

%
class%CcObject(object):%
%%%%def%bounds(%self%):%
%%%%%%%%"""%@return%geometric%bounds%of%the%object%"""%
%%%%%%%%raise%NotImplementedError("bounds")%
%%%%%
%%%%def%relation(%self,%obj,%relType%):%
%%%%%%%%"""%@return%Boolean%True%if%self%and%object%obj%are%in%%
%%%%%%%%%%%%%%%%%%%%a%relationship%of%type%relType%"""%
%%%%%%%%raise%NotImplementedError("relation")%
%%%%%
%%%%def%property(%self,%prop%):%
%%%%%%%%"""%@param%prop%the%property%name%
%%%%%%%%%%%%@return%value%of%property%in%object%"""%
%%%%%%%%raise%NotImplementedError("property")%
%%%%%
%%%%def%identity(%self,%obj%):%
%%%%%%%%"""%@param%obj%an%object%
%%%%%%%%%%%%@return%Boolean%True%if%self%and%obj%are%identical%"""%
%%%%%%%%raise%NotImplementedError("identity")%

%
class%CcNetwork(object):%
%%%%def%nodes(%self%):%
%%%%%%%%"""%@return%a%copy%of%the%graph%nodes%in%a%list%"""%
%%%%%%%%raise%NotImplementedError("nodes")%
%%%%%
%%%%def%edges(%self%):%
%%%%%%%%"""%@return%list%of%edges%"""%
%%%%%%%%raise%NotImplementedError("edges")%
%%%%%
%%%%def%addNode(%self,%n%):%

15

%%%%%%%%"""%Add%a%single%node%n%"""%
%%%%%%%%raise%NotImplementedError("addNode")%
%%%%%
%%%%def%addEdge(%self,%u,%v%):%
%%%%%%%%"""%Add%an%edge%between%u%and%v%"""%
%%%%%%%%raise%NotImplementedError("addEdge")%
%%%%%
%%%%...%
%

%

Existing efficient vector and network data manipulation libraries, such as GDAL
and NetworkX,9 can be tapped in the corresponding implementations. Once the set
of core concepts have been implemented and linked to the technological layer, the
user can perform spatial computations directly in terms of the concepts.

Selecting the analysis of solar energy collection potentials as a test domain of
spatial information, a typical resource consists of Shapefiles with detailed vector
data representing building roofs and other viable areas for the installation of solar
panels. Using the Python core concepts, the user can load these objects and per-
form spatial operations on them. In the following example, the user formulates the
question: is the roof of the Poultry building located in a viable area?

%%%%%
%import%shapefileToObjects%from%coreconcepts%
%%
%roofs%=%shapefileToObjects(%"data/Rooftops.shp"%)%#%load%objects%
%viableAreas%=%shapefileToObjects(%"data/Vareas.shp"%)%#%load%objects%
%polRoof%=%roofs[2]%#%get%the%roof%for%Poultry%Science%building%from%the%array%
%print%polRoof.property('name')%#%prints%"Poultry%Science"%
%#%find%answer%to%question%
%valid%=%any(map(lambda%area:%polRoof.relation(area,'within'),%viableAreas))%
%%

Because of their foundational nature, the core concepts can be deployed and as-
sembled to represent a wide variety of domain entities, enabling the user to flexi-
bly model their scenarios and even include multiple conceptualizations. Thus, the
energy analyst can define a roof type as a field for some purposes (e.g., modeling
its topography) and as an object for others, formulating spatial questions that in-
volve both perspectives:

%%
class%Roof(CcField,CcObject):%
%%%%...%
%
roofA%=%Roof(%'some_data_source'%)%#%load%a%roof%
roofB%=%Roof(%'some_data_source'%)%#%load%another%roof%
%
#%does%roofA%have%a%smaller%area%than%roofB?%
answer%=%roofA.property('area')%<%roofB.property('area')%
#%is%value%of%field%position%(3,5)%in%roofA%higher%than%%
#%half%of%the%same%position%in%roofB?%
answer%=%roofA.getValue([3,5])%>%roofB.getValue([3,5])/2%
%%%%%%%%%%
%

As we have shown in this section, the embedding of core concepts in Python can
provide a widely usable and modular conceptual layer to organize domain-specific

9 https://networkx.github.io

16

spatial knowledge. The advantages of this approach will be particularly evident in
the context of information integration from different domains, providing a model-
ing framework as well as a computing toolkit to facilitate communication between
GIS practitioners and domain experts.

Conclusions and Outlook

We have outlined the design rationale and an early implementation of a language
for the “domain” of spatial computing. Our ultimate goal is a high-level language
executable on existing commercial and open source spatial computing platforms,
in particular Geographic Information Systems (GIS). So far, we have specified a
set of core concepts and, for each of them, a set of core computations. These spec-
ifications are now being translated (by hand) into Python scripts, as well as into
Haskell data types and foreign function calls, in both cases allowing for calls to
commercial or open source GIS platforms.

The paper first described the theory of core concepts of spatial information that
underpins the language, which includes five core content concepts (location, field,
object, network, and event), complemented by two core quality concepts (granu-
larity and accuracy). After providing a formal specification of a set of spatial
computations relying on these concepts, we outlined an ongoing embedding in Py-
thon, showing how this package can function as a mediation layer between the
core concepts and existing technological layers that encode the data and perform
the computations.

More interdisciplinary research is needed to achieve our vision. The Python
embedding will be stress-tested in more realistic scenarios, providing feedback to
revise both the formal specifications and the software embedding, but possibly al-
so the concept selection. Use cases set in different domains, ranging from ecology
to economics and history, will help demonstrate the cross-domain transferability
of the core concepts within and beyond the traditional scope of GIS applications.

A different route to take with this idea is to design and implement Application
Programming Interfaces (API) on top of spatial data repositories and spatial data-
base management systems. For example, popular open data like OpenStreetMap or
the US Census TIGER data would benefit from some generic computing layer
through which to query and analyze them from certain perspectives (for example,
seeing them as representing networks or sets of objects).

17

Acknowledgments

Contributions to the Python embedding and testing from Michel Zimmer, Marc
Tim Thiemann, and Eric Ahlgren as well as funding from the UCSB Center for
Spatial Studies are gratefully acknowledged.

References

Albrecht, J. (1998). Universal analytical GIS operations: A task-oriented systematization of data
structure-independent GIS functionality. In H. Onsrud & M. Craglia (Eds.), Geographic
information research: Transatlantic perspectives (pp. 577–591). Taylor and Francis.

Baumann, P. (2010). The OGC web coverage processing service (WCPS) standard. Geoinformatica,
14(4), 447–479.

Burrough, P. A., & Frank, A. U. (1996). Geographic objects with indeterminate boundaries. London:
Taylor&Francis.

Burrough, P. A., & McDonnell, R. (1998). Principles of geographical information systems. Oxford,
UK: Oxford University Press.

Camara, G., Egenhofer, M. J., Ferreira, K., Andrade, P., Queiroz, G., Sanchez, A., … Vinhas, L.
(2014). Fields as a Generic Data Type for Big Spatial Data. In Geographic Information Science
(pp. 159–172). Springer-Verlag.

Couclelis, H. (1992). People manipulate objects (but cultivate fields): Beyond the raster-vector debate
in GIS. In A. U. Frank, I. Campari, & U. Formentini (Eds.), Theories and methods of spatio-
temporal reasoning in geographic space (pp. 65–77). Berlin: Springer-Verlag.

Degbelo, A., & Kuhn, W. (2012). A Conceptual Analysis of Resolution. In GeoInfo - XIII Brazilian
Symposium on GeoInformatics, November 25-28 2012, Campos do Jordão, Brasil (pp. 11–22).

Donnelly, M. (2005). Relative Places. Applied Ontology, 1, 55–75.
Egenhofer, M. J., & Kuhn, W. (1999). Interacting with Geographic Information Systems. In M. F.

Goodchild, D. J. Maguire, D. W. Rhind, & P. Longley (Eds.), Geographical Information
Systems: Principles, Techniques, Applications, and Management (2nd ed., Vol. 1, pp. 401–
412). New York, NY: Wiley.

Galton, A. (2004). Fields and Objects in Space, Time, and Space-time. Spatial Cognition &
Computation, 4(1), 39–68.

Ghosh, D. (2011). DSL for the uninitiated. Communications of the ACM, 54(7), 44.
Golledge, R. G. (1995). Primitives of spatial knowledge. In T. L. Nyerges, D. M. Mark, R. Laurini, &

M. J. Egenhofer (Eds.), Cognitive aspects of human-computer interaction for geographic
information systems (pp. 29–44). Springer.

Goodchild, M. F., Yuan, M., & Cova, T. J. (2007). Towards a general theory of geographic
representation in GIS. International Journal of Geographical Information Science, 21(3), 239–
260.

Janelle, D. G., & Goodchild, M. F. (2011). Concepts, Principles, Tools, and Challenges in Spatially
Integrated Social Science. In The SAGE Handbook of GIS and Society. SAGE Publications.

Kuhn, W. (2012). Core concepts of spatial information for transdisciplinary research. International
Journal of Geographical Information Science, 26(12: Special Issue in honor of Michael
Goodchild), 2267–2276.

Newman, M. E. J. (2010). Networks. Oxford University Press.
Norman, D. A. (1986). Cognitive Engineering. In D. Norman & S. Draper (Eds.), User centered system

design (pp. 31–61). Hillsdale, NJ: Lawrence Erlbaum Associates.
Rosenfeld, A. (1986). “Continuous” functions on digital pictures. Pattern Recognition Letters, 4(3),

177–184.
Talmy, L. (1983). How Language Structures Space. In H. L. Pick & L. P. Acredolo (Eds.), Spatial

Orientation (pp. 225–282). New York and London: Plenum Press.

