
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Preventive Strategies to Reduce Malaria Burden: Epidemiological Surveillance and Modeling 
for New Control and Elimination Methodologies

Permalink
https://escholarship.org/uc/item/04r8z8hq

Author
Dixit, Amruta

Publication Date
2016
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/04r8z8hq
https://escholarship.org
http://www.cdlib.org/


 
 

 
UNIVERSITY OF CALIFORNIA, 

IRVINE 
 
 
 

Preventive Strategies to Reduce Malaria Burden: Epidemiological Surveillance and 
Modeling for New Control and Elimination Methodologies 

 
DISSERTATION 

 
 

submitted in partial satisfaction of the requirements 
for the degree of 

 
 

DOCTOR OF PHILOSOPHY 
 

in Social Ecology 
 
 

by 
 
 

Amruta Dixit 
 
 
 
 
 
 
 
 

                                                               
 
 

         Dissertation Committee: 
                               Professor Oladele Ogunseitan, Chair 

Professor Guiyun Yan 
                                     Associate Professor Veronica Vieira 

                                                                                   Associate Professor Scott Bartell 
 
 
 

2016 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

© 2016 Amruta Dixit 
 



ii 
 

DEDICATION 
 
 

 
To 

 
My family and friends for listening, supporting, and indulging me 

My sister for continuing to inspire me every day 
 My Bubbles for being mine 

 
 
 
 

  



iii 
 

TABLE OF CONTENTS 
 

                               Page 
 
LIST OF FIGURES                                 v 
 
LIST OF TABLES                                 vi 
 
ACKNOWLEDGMENTS                                 vii 
 
CURRICULUM VITAE                                 viii 
 
ABSTRACT OF THE DISSERTATION                                  x 
 
INTRODUCTION                                  1 
 
CHAPTER 1:  Discovering the cost of care: consumer, provider, and retailer 
   surveys shed light on the determinants of malaria health-seeking  
   behaviors.                                                                 6 
   Abstract                                                                                                                             7 
   Introduction                                   9 
   Methods                                   11 
   Results   15  
   Discussion    19 
   References                                                                                                                        23            
 
CHAPTER 2:  Exploring the effects of human movement on malaria  
                          epidemiology: modeling the impact on elimination strategies                       37   
                          Abstract                                                                                                                            38 
   Introduction                                   39 
   Methods                                   40 
   Results   45  
   Discussion    48 
   References                                                                                                                        53            
 
 
CHAPTER 3: Modeling the added benefits of long-lasting microbial larviciding  
                         on malaria transmission in endemic settings in sub-Saharan Africa              66 
   Abstract                                                                                                                             67 
   Introduction                                   68 
   Methods                                   69 
   Results   74  
   Discussion    76 
   References                                                                                                                        79     
 



iv 
 

CONCLUSIONS                                                        92 
 
APPENDIX A: Summary of the estimated average travelling speed 
    and cost-weighted factor for potential terrain conditions in  
                          western Kenya                                   94                          
                          
 
APPENDIX B: Comparison between values measured by ELISA and HPLC 
                           in the commercial artemisinin-based drugs.                                            98 
 
APPENDIX C: Fisher test to determine correlation between malaria and travel                 99 
 
APPENDIX D: Demographic and migration characteristics of study  

participants across sentinel sites in China, Thailand, and Myanmar           100 
 
 
 
 
 
 
  



v 
 

LIST OF FIGURES 
 
                                Page 
 
Figure 1.1 Geospatial distribution of study area and population          26                       
 
Figure 2.1 Study sites in Thailand and Myanmar                         56 
 
Figure 2.2 Conceptual model of the EMOD simulations           57 
 
Figure 2.3 Simulated disease prevalence in northern Thai villages          58 
 
Figure 2.4 Simulated disease prevalence in southern Thai villages          59 
 
Figure 2.5 Simulated disease prevalence in Thai hospital region                       60 
 
Figure 3.1 LLIN campaign scenarios                           83 
 
Figure 3.2 IRS campaign scenarios                           84 
 
Figure 3.3 LLML campaign scenarios                           85 
 
Figure 3.4 Seasonal application of LLML                          86 
 
Figure 3.5 Additional benefits of LLML with LLIN & IRS under current 
  levels of indoor feeding                           87 
 
Figure 3.6 Additional benefits of LLML with LLIN & IRS under reduced 
  levels of indoor feeding                           88 
 
Figure 3.7 Cumulative number of additional infections prevented with  

the use of a supplemental LLML intervention                                            89 
 
 
 
 
 
 
 
 
 
 
 
 
  



vi 
 

LIST OF TABLES 
 

                                          Page 
 
Table 1.1 Socioeconomic and demographic characteristics of  

study participants in western Kenya highlands            27 
 
Table 1.2 Summary of health care facility (hospitals, clinics, and  

dispensaries) surveyed.                                                 31 
 
Table 1.3 Bivariate analyses of risk factors for odds of delaying  

treatment >24 hours by study site.                                   33 
 
Table 1.4 Multivariate (adjusted) model of relevant risk factors  

for odds of delaying treatment > 24 hours by study site.           35 
 

Table 2.1 Population size and legend of study sites used in the model          61 
 

Table 2.2 Local and regional migration rates used in each study site  
in the model                 62 
 

Table 2.3 Demographic and migratory characteristics of participants  
across sentinel sites in Thailand.              63 
 

Table 2.4 Absolute difference in simulated disease prevalence            65 
 

Table 3.1 Larval density counts by habitat type in the model            90 
 

Table 3.2 Lifespan and durability settings for intervention campaign           91 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



vii 
 

ACKNOWLEDGMENTS 

 
 
I would like to thank the members of my committee for their support, advice, and 
encouragement throughout my graduate career. My thanks to Professor Guiyun Yan for 
enabling and supporting my field work, thus allowing me to gain valuable international 
experience. Professor Oladele Ogunseitan has been a mentor and a source of support since 
my first days at UC Irvine. Dr. Vieira and Dr. Bartell have my immeasurable gratitude for 
being my mentors, friends, and teachers. 
I will always be grateful to Dr. Ming-Chieh Lee for providing help and advice throughout my 
graduate career and working with me to make this dissertation research successful. The 
work would not have been possible without the gracious help of collaborators and 
colleagues at the Kenya Medical Research Institute in Kisumu, Kenya, Mahidol University in 
Bangkok, Thailand, and the Institute for Disease Modeling in Seattle, Washington.  
Financial support was provided by the Program in Public Health and the School of Social 
Ecology at the University of California Irvine, the Women in Science Equity fellowship, and 
grants from the National Institutes of Health (R01 A1050243, U19 AI089672, and D43 
TW001505). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



viii 
 

CURRICULUM VITAE 

 
Amruta Dixit 

 
2008  B.S. in Biochemistry and Cell Biology, University of California, San Diego 
  
2010  M.P.H. in Epidemiology, University of California, Irvine 
 
2016  Fellow, Emerging Leaders in Science and Society 
 
2016 Ph.D. in Social Ecology: Epidemiology and Public Health, 

University of California, Irvine 
 

 
 

FIELD OF STUDY 
 

Malaria Epidemiology 
 
 

PUBLICATIONS 
 
Dixit A, Lee MC, Goettsch B, Afrane Y, Githeko AK, Yan G. Discovering the cost of care: 
consumer, provider, and retailer surveys shed light on the determinants of malaria health-
seeking behaviours. Malaria journal. 2016 Mar 22;15(1):1. 
 
Zhou G, Afrane YA, Dixit A, Atieli HE, Lee MC, Wanjala CL, Beilhe LB, Githeko AK, Yan G. 
Modest additive effects of integrated vector control measures on malaria prevalence and 
transmission in western Kenya. Malaria journal. 2013 Jul 19;12(1):1. 
 
Kweka EJ, Owino EA, Lee M, Dixit A, Himeidan YE, Mahande AM. Efficacy of resting boxes 
baited with Carbon dioxide versus CDC light trap for sampling mosquito vectors: A 
comparative study. Glob. Heal. Perspect. 2013;1:11-8. 
 
Kweka EJ, Zhou G, Beilhe LB, Dixit A, Afrane Y, Gilbreath TM, Munga S, Nyindo M, Githeko 
AK, Yan G. Effects of co-habitation between Anopheles gambiae ss and Culex 
quinquefasciatus aquatic stages on life history traits. Parasites & vectors. 2012 Feb 
9;5(1):1. 
 
Yamaguchi R, Lartigue L, Perkins G, Scott RT, Dixit A, Ellisman MH, Kuwana T, Newmeyer 
DD. Proapoptotic BH3-only proteins induce Bax/Bak-dependent mitochondrial cristae 
remodeling independent of cytochrome c release and Bak oligomerization. Mol. Cell. 
2008;31:557-69.  



ix 
 

 
Niikura Y, Dixit A, Scott R, Perkins G, Kitagawa K. BUB1 mediation of caspase-independent 
mitotic death determines cell fate. The Journal of cell biology. 2007 Jul 16;178(2):283-96. 
 
Fox DA, Perkins GA, Johnson JE, Chaney S, Brown JM, Lahsaei P, Ghassemzadeh S, Dixit A, 
Ellisman MH. Differential Susceptibility of Rod Photoreceptor Synaptic and Non-Synaptic 
Mitochondria (Mt) to Postnatal Lead Exposure and Protection by Bcl-xL. Investigative 
Ophthalmology & Visual Science. 2007 May 10;48(13):2502. 
 
 
 
 
 
 
 
 
 
 



x 
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Malaria epidemiology around the world is changing at a rapid pace due to intensive malaria 

control campaigns in the past decade. In spite of major progress in malaria control, new 

strategies are needed to reduce the malaria disease burden and reach global eradication 

goals. Within the framework of translational medicine, this interdisciplinary dissertation 

used a multilevel approach to describe and evaluate strategies seen as imperative to 

achieving the goal of malaria elimination set forth by the World Health Organization. We 

used a combination of field surveys and mathematical modeling methodologies to examine 

malaria epidemiology from the individual, the community, and the bench-side perspectives 

in countries aiming at control (Kenya) and elimination (Thailand). In Kenya, the 

combination of consumer, healthcare provider, and pharmaceutical retailer surveys 

revealed that the high cost of diagnosis and treatment at a healthcare facility may be 

inhibiting positive health-seeking behavior and may be incongruent with the goals of 
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current subsidization policies. In Thailand, field surveys identified cross-border human 

movement patterns and important migration parameters between Thailand and Myanmar. 

The multi-node model simulations found an indirect impact of interventions on the side of 

the border that did not receive the intervention. Sensitivity analyses showed that the 

indirect impact of vector control was stronger with increased migration rates. Therefore, in 

this border region that harbors a constant and unmonitored flow of people, the regional 

malaria elimination strategies need to be accommodative of highly mobile populations. 

Lastly, we used a combination of field survey data from Kenya and the mathematical model 

to explore potential added benefits of including a long-lasting microbial larvicide as a 

supplemental vector control strategy in endemic regions of sub-Saharan Africa where 

insecticide resistance and changes in vector behavior present significant challenges to 

control. The model results indicated that larviciding has the potential to provide significant 

added benefits to malaria control in the context of prevailing pyrethroid resistance and 

outdoor transmission. In conclusion, parameterizing mathematical models with field-

derived entomological and epidemiological data framed within individual, community, and 

bench-side perspectives, can represent a valuable approach to assist malaria control and 

elimination efforts. 

 
 

 

 

 

 



1 
 

INTRODUCTION 

In 2015, there were approximately 214 million reported cases of malaria around the 

world, causing more than 438,000 deaths, mostly in children in the World Health 

Organization (WHO) African Region1. Currently, the disease is largely prevalent in the 

tropical and sub-tropical regions of the world where the climate and other environmental 

factors are conducive to mosquito breeding and survival; certain countries in those regions 

have successfully controlled the spread of malaria and are aiming for disease elimination 

while others remain in the control stage2.  

Ongoing WHO programs to combat malaria include widespread bed-net distribution 

and vector control, improvement of surveillance and testing methods by encouraging use of 

rapid diagnostic tests and microscopy where possible, and increasing access to quality-

assured anti-malarials3. Vector control measures which include bed-net distribution, 

larviciding, and indoor residual sprays, have been derived from an understanding of known 

vector behavior patterns. Currently, however, factors such as climate change, political and 

economic turmoil, and mosquito and parasite evolution are serving to reduce the efficacy of 

these strategies, consequently slowing down global efforts to eliminate malaria by 20302. 

In spite of the resources and efforts invested in the control and elimination efforts 

against malaria, gaps in translation remain and are ever-widening, driven by the acute lack 

of knowledge of malaria epidemiology in areas of low and unstable transmission. Thus, in 

my efforts to contribute to bridging the gap between science and policy, I utilize a 

multidisciplinary approach to acquire critical knowledge of malaria epidemiology in the era 

of intensive malaria control campaigns. Modeled upon the framework provided by the field 
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of translational science, my dissertation uses a multilevel approach to describe and 

evaluate strategies seen as imperative to achieving the goal of malaria elimination set forth 

by the WHO.  

The first chapter considers the individual and how current Kenyan malaria 

treatment policies, designed to alleviate the financial burden on the patient, may be 

incongruent with an individual’s experience during a malaria episode given that cost is an 

important component of an individual’s decision to seek care; delays associated with 

seeking treatment for malaria contribute to disease morbidity and mortality4. It also seeks 

to demonstrate how geography can affect an individual’s healthcare choices and the 

implications that may have on malaria transmission in that region. This chapter uses 

primary data collected from surveys of individuals, hospitals, and local retailers to develop 

a more comprehensive understanding of the cost of malaria treatment in this area than was 

previously available.  

The second chapter delves into how human movement between communities across 

the border from each other influences and is influenced by the control and treatment 

policies that are in place on one side of the border5,6. This chapter makes use of field data as 

well as mathematical modeling to demonstrate the effects of the movement on malaria 

transmission and presents hypothetical scenarios of what the disease transmission might 

look like after a shock to the system. The chapter focuses on the movement along the 

border region of Myanmar and western Thailand, an area that has been particularly prone 

to political and economic turmoil7. While Thailand has achieved control of malaria and is 

working towards the goal of eliminating from within its borders, Myanmar has high and 
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uncontrolled malaria transmission8. For this reason, this work is especially valuable for it 

presents some theoretical transmission scenarios that can potentially help Thailand 

develop policies to mitigate the effects of new infection potential along its borders.  

Lastly, the third chapter is based upon the benchside aspect of translational 

medicine within public health. It employs the same mathematical modeling system used 

previously to evaluate a new and innovative vector control method in hopes of elucidating 

the best practices for its use in the field. This chapter combines available field data on 

climate and mosquitoes with the model to demonstrate how long-lasting microbial 

larvicides can be best utilized in endemic settings in sub-Saharan Africa. This evaluation is 

timely because the region is faced with growing threats of insecticide resistance in the 

mosquitoes and increased outdoor biting and transmission from the mosquitoes9-11. Both 

of these factors mean that the efficacy of the bed-nets and indoor residual sprays is reduced 

and that humans experience greater exposure to potentially infectious bites despite the 

presence of these interventions12. 

It is the overall goal of this dissertation to use an interdisciplinary approach to 

acquire critical knowledge of malaria epidemiology in the era of intensive malaria control 

campaigns, and to evaluate alternative and innovative strategies for effective malaria 

control and eventual elimination. I built upon an existing platform of information by 

incorporating novel modeling techniques to develop and evaluate theoretical predictions of 

malaria control and elimination efforts in areas of low and unstable transmission.  
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CHAPTER 1 

Discovering the cost of care: consumer, provider, and retailer surveys shed light on 

the determinants of malaria health-seeking behaviours 

 

 

Originally published in Malaria Journal 

Malar J. 2016 Mar 22;15:179. doi: 10.1186/s12936-016-1232-7.
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Abstract 

The growing threat of insecticide resistance in mosquitoes and drug resistance in the 

Plasmodium parasites increases the importance of ensuring appropriate malaria case 

management and enabling positive health-seeking behaviour. Treatment-seeking 

behaviours are poorly characterized in malaria-endemic regions that have been the focus 

of intensive control and elimination campaigns. This study uses a comprehensive approach 

to shed light on the determinants of malaria treatment-seeking behaviours from different 

perspectives. 

We conducted cross-sectional surveys from 832 households, fifteen health centers, and 135 

retailers across three sites in the Emuhaya and Kakamega districts of the western Kenyan 

highlands. Participants were recruited via random sampling and data were collected with 

the use of a structured questionnaire about malaria treatment-seeking behaviour. All 

households, healthcare facilities, and retailers were mapped using a handheld GPS and a 

GIS algorithm was used to calculate “walk distance” based on the Tobler rule; an estimate 

of this distance was used to calculate the travel time used in the analyses. 

Across the three sites, 47.5% - 78.9% of the residents sought diagnosis and treatment at 

hospitals, clinics, or dispensaries; 6.3%- 26.1% of the residents sought malaria care only at 

pharmaceutical retailers. Overall, 40.3% to 59.4% of residents reported delaying seeking 

care for more than 24 hours after fever onset. After adjustment, residents who chose to 

visit a pharmaceutical retail facility rather than a hospital were 121% and 307% more 

likely to delay seeking medical care after fever onset than those who reported choosing a 

healthcare facility for treatment. No significant association was found between travel time 

and delay in seeking care. The surveys of the healthcare facilities indicated an average total 
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cost per patient per visit was 112 KES ($1.40 US) for public facilities and 165 KES ($2.06 

US) for private facilities. 

Understanding the local health behaviours that perpetuate transmission of malaria will 

help develop targeted preventive measures and educational interventions that can 

empower the residents with the knowledge needed to combat malaria in a safe and 

effective manner. Ensuring patient access to health care facilities in countries with high 

disease burdens has broader implications on measures of equity and on public health 

prevention methodologies. 
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Introduction 

In spite of intensified malaria control efforts, malaria is a major public health problem, 

particularly in Africa. Globally, malaria is estimated to affect 200 million people and kill 

more than 500,000 people per year, mostly children under the age of five1. In the past 

decade, Africa has seen a vast increase in coverage with vector control interventions, with 

almost half of the susceptible population receiving access to insecticide-treated bed nets1. 

Additionally, indoor residual spraying in Africa protected over 55 million people from 

malaria1. However, with the growing threat of insecticide resistance in mosquitoes2,3 and 

drug resistance in the parasites4,5, ensuring appropriate malaria case management and 

enabling positive health-seeking behaviour grows in importance.  

 

The health behaviours of the local populace are intrinsically linked to case management 

policies. Sensitive and accurate diagnosis and timely treatment with effective drugs are key 

components of the World Health Organization (WHO) malaria treatment guidelines6. 

However, without an understanding of the treatment-seeking behaviours of the susceptible 

population as well as a careful evaluation of the determining factors of those behaviours, 

malaria control and elimination programmes may be fragmented from the reality seen in 

the field, and consequently intervention strategies may not be effective or sustainable. 

 

An important variable in the determination of health-seeking behaviour is access to health 

care services. According to the WHO, people living within one hour of travel time of a 

health care facility are generally considered to have access to health care7. The inverse 

relationship between distance to facility and use of health care services has been well 
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established8-10. However, it has largely been based on measures of Euclidean distance7 even 

when the topography and transport infrastructure in the area rarely allow for a direct path 

to the facility. In addition to travel impedances, other factors that can affect health-seeking 

behaviour include affordability and availability of medicines and medical care11. Previous 

studies have shown that in the absence of access to trained medical personnel, people will 

choose to receive information from untrained sources such as the local chemist or 

pharmaceutical retailer12,13. Self-medication or home treatment of malaria has generally 

been shown to have a lower cure rate than treatment in an institutional setting14 and the 

tendency to self-diagnose malaria and subsequently self-medicate, has been growing in 

regions of Africa with limited healthcare access15,16. These various factors all have an 

impact on the perpetuation of regional malaria transmission.  

 

In Kenya, 76% of the population is at risk for malaria; in 2013, there were over 2.3 million 

confirmed cases of malaria in the country1. It is crucial to ensure that people are seeking 

appropriate diagnosis and anti-malarial treatment in a timely manner to reduce malaria 

mortality, morbidity, and transmission. As treatment-seeking behaviour and healthcare 

utilization has been shown to be affected by the multitude of factors listed above, we 

attempted to exact a more comprehensive measure by integrating opinions and habitudes 

from consumers, health providers, and retailers. The holistic nature of the study is 

especially appropriate at a time where malaria control efforts such as mass distributions of 

bed nets and subsidy of artemisinin-based combination therapy (ACT) have intensified, but 

without a suitable adjustment for health-seeking behaviour patterns of the study 

population.  
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The objective of this study was to determine the malaria treatment-seeking behaviour 

patterns in the western Kenya highlands, and to elucidate some of the major perceived 

hindrances to healthcare access in that region. The residents’ perceptions regarding 

barriers may impinge upon their ability to seek diagnoses and treatment at a healthcare 

facility in a timely manner. This discordance between perceptions and reality may serve as 

a critical target point in an effective malaria control or elimination programme. 

 

Ethical considerations 

The project was approved by the Institutional Review Board of UC-Irvine and Ethical 

Review Committee of Kenya Medical Research Institute. 

 

Methods 

Study area and study population 

We conducted cross-sectional surveys in three study sites, and collected data from 832 

households, fifteen health centres, and 135 retailers in the Emuhaya and Kakamega 

districts in the western Kenyan highlands (Figure 1A). The study sites included three sub-

locations: Iguhu (34˚44΄ E, 0˚11΄ N, 1,430-1,580 m above sea level) in Kakamega district 

(Figure 1B); and Emakakha (34˚39΄ E, 0˚07΄ N, 1,460-1,520 m above sea level) (Figure 1C) 

and Emutete (34˚38΄ E, 0˚02΄ N, 1,480-1,640 m above sea level) (Figure 1D) in Emuhaya 

district. Each site was 3 X 6 km2 and each was composed of several villages. These sites 

were used for other vector ecology and malaria epidemiology research by other members 

of the research team17-19. The topography of the study area consists of hills, valleys, and 

plateaus and a variety of land use and land cover patterns exist. This region generally 
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experiences two rainy seasons (April–May and October–November) and two dry seasons 

(January–February and July–August)13 although during the year the survey was conducted, 

the rainy season started later than in previous years and lasted well into August 201114,6.  

 

Local resident survey 

In each of the three study sites, the questionnaire was administered to an adult member of 

the randomly selected households. Informed consent was obtained from every participant 

in the study. All households were mapped using handheld global positioning systems (GPS) 

(Garmin). The predominant tribe in the area is the Luhya tribe and thus, all surveys were 

translated from English and orally administered in the Luhya language. Survey questions 

were used to acquire demographic and socioeconomic information and to determine the 

participants’ treatment-seeking behaviour with regards to malaria. The survey also 

included questions pertaining to treatment facility choices and treatment affordability. All 

options were read out to the respondents before their answer was recorded. The surveys 

were conducted by local, trained technicians, over a period of several months, beginning in 

mid-July and ending in mid-December.  

 

Health facility survey 

To assess coverage and utilization of health facilities by local residents, all healthcare 

facilities within the three study areas were mapped and surveyed by field staff. The initial 

step was to acquire the complete list of health facilities from KEMRI (Kenya Medical 

Research Institute). The list contained records of more than 100 facilities in the Western 

Province with information on services offered, the approximate location, and the second to 
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fifth administrative level in which each facility was located. Second, each health facility on 

the topographic map from Kenya Geological Survey was located and health facilities that 

fell within a ten kilometer radius of the study area and were thus, most likely to serve 

potential study participants were selected; there were fifteen health facilities on the final 

list. The team visited each health facility on the final list, recorded the facility’s GPS 

coordinates, and administered the questionnaire to the medical staff member in charge. 

The information acquired included hours and days of operation, the number and type of 

medical staff, malaria diagnosis method, any facility-imposed charges associated with a 

suspected malaria visit, and the storage and supply of anti-malarials.  

 

Pharmaceutical retail facility survey 

Given that a considerable proportion of residents purchase anti-malarials from 

pharmaceutical retail facilities, it is necessary to include such facilities in the surveillance. 

The team searched for and interviewed all potential outlets along roads and markets where 

retail facilities are normally located. Pharmaceutical retail facility owners were asked to 

respond to questions regarding the presence of a licensed pharmacist on site, approximate 

number of customers served per day, types of anti-malarials in stock, cost for anti-malarials 

and their supplier for the medication. A total of 135 retailers were surveyed. A small, 

random sample of these outlets (eight in total) was chosen and one prescription of 

artemether-lumefantrine (AL, Coartem®) was purchased from each of the chosen outlets 

in the sample to test for the levels and presence of the pharmacologically relevant active 

compound by means of ELISA and HPLC20,21. The tests were performed according to the 

protocols described by Wang et al21. 
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Data analysis 

A total of 832 households, fifteen healthcare facilities, and 135 pharmaceutical retail 

facilities across three study sites participated in the study. All survey responses were 

entered into MS Excel and the coordinates from the GPS readings were transferred to 

ArcGIS 10.2 to generate the necessary maps (Figure 1). A GIS algorithm to calculate “walk 

distance” was created based on the Tobler rule22. The estimate of this distance was used to 

calculate the travel time used in the remaining analyses (Appendix A).  

One of the major purposes of the survey was to determine whether or not the participants 

sought diagnosis and treatment within 24 hours of fever onset. Logistic regression was 

performed on the survey data using the likelihood of delay as the binary outcome variable. 

The outcome of a delay in seeking diagnosis and treatment was regressed on key 

sociodemographic and health-seeking behaviour variables, both individually and in 

combination. The results of the bivariate analyses (Table 3) and an adjusted multivariate 

model (Table 4) are included below. When adjusting the multivariate model, both, 

variables that have been determined as important in the literature as well as variables that 

measured the participants’ perceived barriers were included in the model. Thus, 

socioeconomic and demographic variables were necessarily included regardless of their 

significance in the bivariate analyses. The other included variables served as indicators of 

accessibility, availability of drugs, and affordability.  

The missing data were imputed 100 times using the predictive mean matching method 

using the “mice” package in R 3.1.3. All the regression analyses presented below were 

performed on the imputed datasets separated by site, rather than as a complete case 

analysis. Statistical analyses were conducted in R 3.1.3 and MS Excel 2010. 
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Results  

Demographic and socioeconomic characteristics 

Among all sites, the majority of households were headed by men (Table 1). Overall, 63% of 

household heads had only a primary school education or less. At least 91% of the 

participants across all three sites live in mud homes and approximately 85% of residents in 

all sites own both furniture and livestock.  

 

Health-seeking behaviours 

Although at least 80% of all households surveyed had experienced a malaria infection in 

the family in the past year, about 10% of the participants indicated that they take no action 

upon malaria symptom onset (Table 1). In Iguhu and Emutete, approximately 77% of the 

residents sought diagnosis and treatment at hospitals, clinics, or dispensaries; fewer than 

10% of the residents sought malaria care only at pharmaceutical retailers. However, in 

Emakakha, fewer than 48% of residents sought diagnosis and treatment at a hospital or a 

clinic and more than 26% of them chose pharmaceutical retailers as their first choice of 

treatment facility. Overall, a sizeable proportion of residents (40.3% to 59.4%) reported 

delaying seeking care more than 24 hours after fever onset. The most common reason for 

the delay was a lack of funds, followed by an expectation of improvement in condition 

(Table 1).  

In spite of long-standing WHO guidelines recommending ACT as the first-line treatment for 

malaria, only 56% of all participants indicated that they used ACT to treat malaria. More 

than 29% of all respondents indicated multiple drugs, including quinine, chloroquine, and 

sulfadoxine-pyrimethamine (SP), as possible options for malaria treatment. This suggests 
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an overall propensity for choosing treatment based on availability of medication rather 

than on highest degree of efficacy.  

 

Health access measures 

Most participants (84% overall) chose to walk to the treatment facility of their choice 

(Table 1). All participants were found to be living less than one hour of travel time from a 

hospital or clinic (maximum calculated time across all sites: 50 minutes) based on our 

calculations in ArcGIS®. However, patients significantly overestimated the amount of time 

it would take to walk to the nearest facility (paired t-test, p<0.001). For those who reported 

that the nearest treatment facility was a hospital or clinic, the self-reported travel time to 

the hospital was overestimated by approximately 22 minutes in Emutete and Iguhu and by 

over 28 minutes in Emakakha. For those who indicated that the nearest facility was a 

pharmaceutical retailer, the overestimation of travel time varied by site (18 minutes in 

Iguhu, 40 minutes in Emutete, and 33 minutes in Emakakha). Of those who sought care 

exclusively from pharmaceutical retail facilities, 14% did so despite being further away 

from these facilities than from the nearest hospital or clinic.  

 

Risk factor analysis for delay in seeking care 

Overwhelmingly, participants who chose to delay seeking medical care for more than 24 

hours after fever onset were more likely to visit the pharmaceutical retailer to purchase 

medication rather than visit the hospital to seek diagnostic workup and treatment. This 

association was significant and strongly pronounced across all three sites (Table 3). It was 

reflected in the bivariate analyses and stayed significant even after adjustment for other 



17 
 
 
 

variables. When all other potentially influential variables were accounted for, residents 

who chose to visit a pharmaceutical retail facility rather than a hospital were more likely to 

delay seeking medical care after the onset of malaria by between 121% and 307% than 

those who reported choosing a healthcare facility for malaria treatment (Table 4).  

 

Healthcare facility characteristics 

There were fifteen healthcare facilities that served the study population. Of the fifteen, 

eleven were publicly administered by the Kenya Ministry of Health and four were privately 

owned and operated (Table 2). It was found that 40% of them exhausted their stores of 

artemisinin-based malaria treatment at least one or more times per month; six out of the 

fifteen encountered a shortage more frequently. Furthermore, the average cost to patients 

per visit for malaria treatment at a public facility was 72 KES (equivalent to $0.90 US at the 

time) and 125 KES ($1.56 US) at a private facility. The costs were reflective of the 

admission or registration fees, diagnosis fees, and other miscellaneous charges. These 

charges did not include the cost of the subsidized ACT drugs (40 KES, $0.50 US, to be paid 

for by the patient) bringing the average total cost per patient per visit up to 112 KES ($1.40 

US) for public facilities that did not have ACT in stock and 165 KES ($2.06 US) for private 

facilities. 

Most of the facilities (twelve) used microscopy in combination with other diagnosing 

methods to determine infection status as recommended by the WHO; however, three of the 

health facilities treated patients based on clinical presentation only. Of the fifteen clinics 

and hospitals, eleven (ten public and one private) received their drug supply directly from 

Kenya Medical Supplies Authority, the medical logistics provider for all Ministry of Medical 
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Services/Public Health supported healthcare facilities in the country. Two private facilities 

purchased directly from the manufacturer and two others (one private and one public) 

purchased their ACT stock from local retailers.  

 

Pharmaceutical retail facility characteristics 

Of the 135 pharmaceutical retail facilities interviewed for the study, only nineteen were 

operated by a licensed chemist or pharmacist. The remaining facilities were operated by 

small business owners who ran shops in the local markets or along the roadsides. All 

nineteen licensed chemists or pharmacists had anti-malarials available for sale in their 

facility on the day of the interview. However, only 49 of the 116 non-licensed retailers were 

found to sell any kind of anti-malarial therapy. Of those 49, only sixteen reported the 

presence of ACT in stock. The remainder sold SP drugs, amodiaquine, quinine, and pain 

medications. The most commonly stocked antimalarial among the non-licensed retailers 

were SP drugs; twenty-two shops carried a variety of SP brands. Nine sold amodiaquine 

and five stocked quinine, either individually or in combination with other therapies. Of all 

135 retailers, 38% served 100 or more customers per day. 

The surveys of retailers also served as an opportunity to test for the presence of counterfeit 

or substandard artemisinin-based anti-malarial drugs in the study sites. Survey staff 

purchased and tested samples of AL-Coartem® from a random selection of eight retailers 

and pharmacies associated with healthcare facilities and further testing found that all 

samples contained the manufacturer-labelled amount of the artemisinin-derived active 

compound (Appendix B), suggesting the quality of ACT being sold met the standard 

requirements. 
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Discussion  

Timely and appropriate case management of malaria is integral to the reduction of disease-

associated morbidity and mortality. An improvement in the understanding of treatment-

seeking behaviours in the susceptible populations can enable the development of targeted 

interventions that are designed in a manner that is feasible and sustainable within 

individual communities. However, in spite of intensive interventions in the area, the 

determinants of treatment-seeking behaviours in our study population have been poorly 

described. 

The results of the current study concur with existing literature to show that medical 

facilities are largely the primary source of malaria care after fever onset13. However, the 

pharmaceutical retailers are a dominant player in the system and need to be considered as 

an important variable in any future interventions. Furthermore, the subsidies for ACT 

provided by the government may be masking the high cost of care imposed by medical 

facilities, thus driving patients towards cheaper alternatives or to delay seeking care 

altogether. 

The results show a strong association between treatment-seeking delay and choosing to 

seek treatment at a pharmaceutical retailer rather than visiting a health care facility. This 

association is significant and present in all sites and holds even after adjustment for other 

variables. This may be reflective of a reduced perception of severity of malaria that has 

been shown to occur in areas of medium to high malaria endemicity23. Combined with 

other barriers such as availability of drugs and costs associated with a hospital visit, the 

low level of perceived severity may be a strong contributor to delaying care.  
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It was expected that travel time would be a strong barrier of access to medical care in the 

study population. However, among the participants who responded to the survey regarding 

their reasons for delaying treatment, a lack of funds stood out as the primary response. Yet, 

the regression analyses did not show a clear association between delaying treatment and 

self-reported affordability across the three sites. This may be due to a discrepancy in the 

participants’ interpretation of affordability based on our survey and the intention of the 

survey question. Participants may have delayed seeking care at the time of malaria 

symptom onset because they did not have sufficient funds. However, at the time when they 

chose to seek treatment, they may have procured the necessary funds and thus, their 

perception of affordability would have shifted.  

Furthermore, the travel time derived for this study, though an improvement upon 

measures using Euclidean distance, cannot account for the variety of factors that may 

influence a person’s estimation of the travel time from their home to the nearest healthcare 

facility. These factors may include road conditions (which vary with the seasons), the 

ability to gather sufficient funds, preparing oneself or child for travel, and procuring 

transportation. These estimates, along with other self-reported variables were also 

susceptible to recall bias, as is the case with many survey-based studies. However, a 

diligent attempt was made to glean a representative sample of the area by using an 

appropriate sample size in each site and by randomizing the selection of participants from 

within the pre-defined areas.  

Since surveys of the healthcare facilities indicated that the average cost of a malaria-related 

visit is between 112 and 165 KES (including the cost of medication), it is clear that is there 

is discordance in the original intention of the subsidization policy and its implementation. 
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While ACT at government-run facilities was meant to be provided for free to the patient, 

the frequent stock-outs led the facilities surveyed to refer patients elsewhere, including to 

private retailers, where the patients may face a greater likelihood of receiving a less 

effective anti-malarial. Private retailers are not always bound by the subsidization policy 

and charge for ACT at a higher rate than 40 KES[24]. The ubiquity of various anti-malarial 

drugs in the market combined with the high charges associated with a hospital or clinic 

visit may also serve to reduce a patient’s perceived need for a full diagnostic workup. 

Accessibility is an important determinant of treatment-seeking behaviour and has 

implications for the continued transmission of malaria. Some of the variation in health-

seeking behaviours between the three study sites may be attributed to the lack of paved 

roads in the area and the hilly terrain, neither of which are conducive to motor access (see 

Figure 1). Most of the participants did not live along major roads. The perceived benefits of 

receiving a proper malaria diagnosis from a healthcare facility may not be sufficient to 

outweigh the perceived cost of travel, in terms of both time and effort. Finally, there is a 

stark difference between the low number of healthcare facilities located in Emakakha and 

how many more are located in the other two study sites; there is one dispensary and one 

health centre located within the boundaries of Emakakha and another health centre that 

lies between the boundaries of Emakakha and Emutete. However, there are several 

retailers lining the major road that bisects the Emakakha study area, which may help 

explain why more than one third of the residents in the site reported a retailer as the 

nearest treatment facility. 

 As was observed in the study by Sumba et al, the participants’ decision to seek treatment 

at a healthcare facility within 24 hours of fever onset was not significantly correlated with 
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their socioeconomic status, education level, or proximity to the facility13. The strongest 

determining factor of delay was the decision to choose to seek treatment at a 

pharmaceutical retailer rather than a medical facility. As such, the observed propensity of 

the pharmaceutical retailers as seen in other studies to sell medication without appropriate 

anti-malarial properties has serious negative implications for malaria control and the 

potential for the spread of artemisinin resistance11,25. A previous experience of being 

referred to a pharmaceutical retailer when the healthcare facility had depleted its ACT 

stock may also deter patients from making future visits to the healthcare facility; they may 

choose to go directly to the retailer, seeing it as a cheaper, faster, and quicker alternative. 

Future interventions must recognize and include retailers as key players in any control or 

elimination programme that is to be implemented. 
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Figure 1A.  Overview of all study sites. Location of study sites within Kenya. Figure 1B, IC, ID. Iguhu, Emakakha, and 
Emutete study areas. Each map focuses on the individual study area and shows the distribution of residents’ healthcare 
seeking patterns. The individual study area’s healthcare facilities and retail outlets are also shown along with its roads and 
access paths.
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Table 1. Socioeconomic and demographic characteristics of study participants in western Kenya highlands 
 
 
 

Variable Emakakha  
(N= 303) 

Emutete  
(N= 256) 

Iguhu  
(N= 273) 

Total 
(N= 832) 

Demographic variables 
Primary income earner education  

Did not finish primary 42 (13.9%) 62 (24.2%) 75 (27.5%) 179 (21.5%) 
Primary school 137 (45.2%) 114 (44.5%) 97 (35.5%) 348 (41.8%) 
Secondary school and beyond 123 (40.6%) 79 (30.9%) 101 (37.0%) 303 (36.4%) 
Missing 1 (0.3%) 1 (0.4%) 0 2 (0.2%) 

Sex of primary income earner  
Male 236 (77.89%) 144 (55.9%) 196 (71.8%) 576 (69.2%) 
Female 66 (21.8%) 107 (41.8%) 75 (27.5%) 248 (29.8%) 
Both sexes 0 2 (0.8%) 2 (0.7%) 4 (0.5%) 
Missing 1 (0.3%) 5 (3.5%) 0 6 (0.7%) 

 
Socioeconomic indicators 
Possessions  

Ownership of both furniture and livestock 268 (88.4%) 238 (93.0%) 204 (74.7%) 710 (85.3%) 
Ownership of furniture only 29 (9.5%) 15 (5.8%) 48 (17.5%) 92 (11.1%) 
Ownership of livestock only 2 (0.7%) 3 (1.2%) 19 (7.0%) 24 (2.9%) 
None 2 (0.7%) 0 0 2 (0.2%) 
Missing 2 (0.7%) 0 2 (0.8%) 4 (0.5%) 

Home construction 
Mud 276 (91.0%) 235 (91.8%) 253 (92.7%) 764 (91.8%) 
Cement/Brick 22 (7.3%) 17 (6.6%) 17 (6.2%) 56 (6.7%) 
Missing 5 (1.7%) 4 (1.6%) 3 (1.1%) 12 (1.4%) 
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Malaria status  
No malaria infection in family in past year 3 (1.0%) 0 4 (1.5%) 7 (0.8%) 
At least one victim in family in past year 291 (96.0%) 205 (80.1%) 242(88.6%) 738 (88.7%) 
Missing 9 (3.0%) 51 (19.9%) 27 (9.9%) 87 (10.5%) 

 
Health-seeking behaviours  
Action taken upon suspicion of malaria 

Treatment sought at hospitals, clinics, and 
dispensaries exclusively 144 (47.5%) 202 (78.9%) 204 (74.7%) 550 (66.1%) 

Treatment sought at  pharmaceutical retail 
facilities exclusively 79 (26.1%) 16 (6.3%) 25 (9.2%) 120 (14.4%) 

Treatment sought at traditional healers 
exclusively 

1 (0.3%) 0  0 
1 (0.1%) 

No treatment facility preference indicated 42 (13.9%) 9 (3.5%) 25 (9.2%) 76 (9.1%) 
No action taken 37 (12.2%) 24 (9.4%) 18 (6.6%) 79 (9.5%) 
Missing 0 5 (1.9%) 1 (0.3%) 6 (0.7%) 

Treatment seeking timeline 
Delay treatment for > 24 hours after fever 
onset 

180 (59.4%) 117 (45.7%) 110 (40.3%) 
407 (48.9%) 

Seek treatment within 24 hours after fever 
onset 

119 (39.3%) 135 (52.7%) 160 (58.6%) 
414 (49.8%) 

Missing 4 (1.3%) 4 (1.6%) 3 (1.1%) 11 (1.3%) 
Medicine  

Artemisinin combination therapy (ACT) 
exclusively 

172 (56.8%) 149 (58.2%) 147 (53.9%) 
468 (56.3%) 

Non- ACT exclusively: quinine, SP, Fansidar 46 (15.2%) 16 (6.3%) 25 (9.2%) 87 (10.5%) 
Painkillers exclusively 10 (3.3%) 6 (2.3%) 2 (0.7%) 18 (2.2%) 
Combination of ACTs, non-ACT, and 
painkillers  

71 (23.4%) 80 (31.3%) 94 (34.4%) 
245 (29.4%) 

Missing 4 (1.3%) 5 (1.9%) 5 (1.8%) 14 (1.7%) 
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Facility where pharmaceutical treatment  is purchased 
Hospitals, clinics, and dispensaries 

exclusively 
153 (50.5%) 188 (73.4%) 174 (63.7%) 

515 (61.9%) 
Shopkeepers and chemists exclusively 110 (36.3%) 24 (9.4%) 56 (20.5%) 190 (22.8%) 
No preference indicated 37 (12.2%) 41 (16.0%) 43 (15.8%) 121 (14.5%) 
Missing 3 (1.0%) 3 (1.2%) 0 6 (0.7%) 

 
Health access measures 
Self-reported nearest facility 

Hospitals, clinics, and dispensaries 
exclusively 

180 (59.4%) 227 (88.7%) 243 (89.0%) 
650 (78.1%) 

Shopkeepers and chemists exclusively 109 (36.0%) 16 (6.2%) 25 (9.1%) 150 (18.0%) 
Comparable distance to 
hospitals/clinics/dispensaries and 
pharmaceutical retail facilities 

12 (3.9%) 12 (4.7%) 4 (1.5%) 28 (3.4%) 

Missing 2 (0.7%) 1 (0.4%) 1 (0.4%) 4 (0.5%) 
GIS-calculated nearest facility 

Health care center exclusively 93 (30.7%) 158 (61.7%) 248 (90.8%) 499 (60.0%) 
Pharmaceutical retailer exclusively 209 (69.0%) 95 (37.1%) 17 (6.2%) 321 (38.6%) 
Equidistant 1 (0.3%) 3 (1.2%) 8 (3.0%) 12 (1.4%) 

Travel time 
Mean self-reported travel time to nearest 
facility 

54.9 mins 
(95.4%) 

55.1 mins 
(98.0%) 

47.1 mins 
(96.0%) 

52.4 mins 
(96.5%) 

Missing 14 (4.6%) 5 (2.0%) 11 (4.0%) 30 (3.6%) 
Average GIS-calculated travel time 

Health care center  32.5 mins 25.5 mins 27.6 mins 85.6 (28.5%) 
Retailer 21.9 mins 27.0 mins 57.6 mins 106.5 (35.5%) 

Method of travel 
Walk exclusively 260 (85.8%) 200 (78.1%) 240 (87.9%) 700 (84.1%) 
Bicycle 30 (9.9%) 16 (6.2%) 10 (3.7%) 56 (6.7%) 
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Car or other motorized transport 8 (2.6%) 25 (9.8%) 10 (3.7%) 43 (5.2%) 
Mix of walking, biking, and motorized 
transport 

3 (1.0%) 12 (4.7%) 11 (4.0%) 
26 (3.1%) 

Missing 2 (0.7%) 3 (1.2%) 2 (0.7%) 7 (0.8%) 
Reason for delay (if any) 

Do not delay 2 (0.7%) 0 1 (0.4%) 3 (0.4%) 
Money 182 (60.0%) 98 (38.3%) 89 (32.6%) 369 (44.4%) 
Distance 2 (0.7%) 2 (0.8%) 1 (0.4%) 5 (0.6%) 
Expect improvement of condition 46 (15.2%) 50 (19.5%) 33 (12.1%) 129 (15.5%) 
Transportation 1 (0.3%) 0 1 (0.4%) 2 (0.2%) 
Mix 15 (4.9%) 1 (0.4%) 5 (2.1%) 21 (2.5%) 
Other 0 0 1 (0.4%) 1 (0.1%) 
Missing 55 (18.2%) 105 (41.0%) 142 (52.0%) 302 (36.3%) 

Affordability of treament 
Found treatment unaffordable 43 (14.2%) 85 (33.2%) 99 (36.3%) 227 (27.3%) 
Found treatment affordable 245 (80.8%) 169 (66.0%) 174 (63.7%) 588 (70.7%) 
Missing 15 (5.0%) 2 (7.8%) 0 17 (2.0%) 
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Table 2. Summary of health care facility (hospitals, clinics, and dispensaries) surveyed. 
 
Variable Public Private 
Number of facilities surveyed 

# of hospitals 
# of health centres 
# of dispensaries/clinics 

11 (73.3%) 
3 (20.0%) 
5 (33.3%) 
3 (20.0%) 

4 (26.7%) 
1 (6.7%) 

2 (13.3%) 
1 (6.7%) 

Hours of operation: 
9 hours or fewer 
24 hours 

 
7 (46.6%) 
4 (26.7%) 

 
4 (26.7%) 

0 
Days of operation: 

5 days/ week 
7 days/week 

 
5 (33.3%) 
6 (40.0%) 

 
1 (7.0%) 

3 (20.0%) 
Median population served [range] 13,885 [1,310-164,951] 11,189 [2,683-20,000] 
Staffing 

# of facilities with doctors  [range] 
Median number of clinical officers [range] 
Median number of nurses [range] 
Median number of microscopists [range] 

 
2 (13.3%) [0-8] 

2 [0-18] 
8 [2-53] 
2 [0-4] 

 
1 (7.0%) [0-3] 

1.5 [0-4] 
7 [2-20] 
2 [2-4] 

Malaria 
Median # of microscopy confirmed cases in 3 mos. preceding 
survey [range] 
Diagnostic method: Microscopy exclusively 
Diagnostic method: Microscopy + RDT 
Diagnostic method: Symptoms exclusively 

 
222 

 
5 (33.3%) 
3 (20.0%) 
3 (20.0%) 

 
189 

 
2 (13.3%) 
2 (13.3%) 

0 
ACT stocking 

Facilities stocked with ACT at time of survey 
Experienced shortage of ACT in 3 months preceding survey 
[range] 
# of facilities that had to wait >24 hours before ACT was 
restocked 
# of facilities that either substitute another anti-malarial or 

 
11 (73.3%) 
4 (26.7%) 

 
4 (26.7%) 

 
5 (33.3%) 

 
4 (26.7%) 
2 (13.3%) 

 
2 (13.3%) 

 
2 (13.3%) 
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refer patient to nearest retailer 
Charges [in Kenyan shillings] 

# of facilities that charged registration fees [average fee] 
# of facilities that charged diagnosis fees [average fee] 
# of facilities that charged other miscellaneous fees per patient 
per visit [average fee] 
# of facilities that charged for medication [average fee] 
Overall average costs per patient of health care facility visit (not 
including cost of medication) [range] 

 
11 (73.3%) [19 KSH] 
8 (53.3%) [46 KSH] 
8 (53.3%) [26 KSH] 

 
1 (6.7%) [40 KSH] 

72 KSH 
 [30 KSH- 90 KSH] 

 
3 (20.0%) [55 KSH] 
4 (26.6%) [70 KSH] 

0 
 

3 (20.0%) [73 KSH] 
125 KSH  

[50 KSH-250 KSH] 
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Table 3: Bivariate analyses of risk factors for odds of delaying treatment >24 hours by study site. 
 
 

 Variable Emakakha OR [95% CI] Emutete OR [95% CI] Iguhu OR [95% CI] 
Lived in mud home  4.21 [1.60, 11.04] 3.02 [0.96, 9.52] 3.42 [0.95, 12.2] 
Ref: Lives in cement/brick home 1 1 1 
Owned either  furniture or livestock or 
neither 0.77 [0.37, 1.60] 0.81 [0.30, 2.21] 0.79 [0.45, 1.41] 

Ref: Owns both furniture and livestock 1 1 1 
Wage head has a primary school 
education 0.98 [0.59, 1.63] 1.89 [1.04, 3.42] 1.03 [0.58, 1.83] 

Wage head did not finish primary 
school 0.63 [0.31, 1.27] 1.65 [0.83, 3.26] 1.45 [0.79, 2.67] 

Ref: Wage head finished secondary 
school or beyond 1 1 1 

Female wage head of household 1.34 [0.76, 2.36] 1.63 [0.98, 2.72] 3.41 [1.96, 5.94] 
Ref: Male wage head of household 1 1 1 
Chose pharmaceutical retailers for 
treatment 3.86 [2.36, 6.30] 2.79 [1.42, 5.50] 1.86 [1.06, 3.28] 

Ref: Chose healthcare facility for 
treatment 1 1 1 

Self-reported nearest facility was a 
pharmaceutical retailer 2.12 [1.30, 3.45] 5.05 [1.97, 12.93] 0.20 [0.07, 0.59] 

Ref: Self-reported nearest facility was a 
healthcare facility 1 1 1 

Walked to facility when seeking 
treatment 1.11 [0.57, 2.18] 0.59 [0.32, 1.08] 2.24 [0.96, 5.21] 

Ref: Took a car or other motorized 
transport to facility when seeking 
treatment 

1 1 1 

Found treatment to be unaffordable 2.64 [1.31, 5.31] 1.28 [0.76, 2.16] 0.56 [0.33, 0.95] 
Did not find treatment to be 1 1 1 
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unaffordable 
 

(OR: odds ratio, CI: confidence interval; significant at α < 0.05)  
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Table 4: Multivariate (adjusted) model of relevant risk factors for odds of delaying treatment > 24 hours by study site. 

Variables 
Emakakha OR 

[95% CI] 
Emutete OR 

[95% CI] 
Iguhu OR [95% 

CI] 
Lived in mud home 8.32 [2.58, 26.90] 2.75 [0.78, 9.74] 2.39 [0.60, 

9.61] 
Ref: Lives in cement/brick home 1 1 1 

Owned either furniture or livestock or neither 0.98 [0.42, 2.27] 0.88 [0.31, 2.55] 0.65 [0.34, 
1.26] 

Ref: Owns both furniture and livestock 1 1 1 

Wage head has a primary school education 0.82 [0.46, 1.47] 1.60 [0.82, 3.14] 0.94 [0.49, 
1.79] 

Wage head did not finish primary school 0.45 [0.20, 1.03] 1.46 [0.67, 3.21] 0.99 [0.49, 
1.99] 

Ref: Wage head finished secondary school or 
beyond 1 1 1 

Female wage head of household 1.29 [0.68, 2.45] 1.69 [0.96, 3.0] 3.13 [1.72, 
5.69] 

Ref: Male wage head of household 1 1 1 
Chose pharmaceutical retailers for 
treatment 4.07 [2.31,7.21] 2.21 [1.07, 4.61] 2.60 [1.35, 

4.99] 
Ref: Chose healthcare facility for treatment 1 1 1 
Self-reported nearest treatment facility is 
pharmaceutical retailer 1.37 [0.76, 2.49] 4.23 [1.55, 

11.53] 
0.15 [0.04, 

0.48] 
Ref: Self-reported nearest facility was a 
healthcare facility 1 1 1 

Walked to facility when seeking treatment 1.10 [0.5, 2.42] 0.48 [0.24, 0.95] 1.91 [0.76, 
4.81] 

Ref: Took a car or other motorized transport to 
facility when seeking treatment 1 1 1 
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Found  treatment to be unaffordable 5.36 [2.24, 12.81] 1.15 [0.64, 2.06] 0.59 [0.33, 
1.06] 

Did not find treatment to be unaffordable 1 1 1 
 

(OR: odds ratio, CI: confidence interval; significant at α < 0.05)
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Exploring the effects of human movement on malaria epidemiology: modeling the 

impact on elimination strategies 
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Abstract 

Human movement across porous borders has been connected with perpetuating the 

transmission of malaria. It has been suggested that it is this type of movement along its 

shared border with Myanmar that has contributed to keeping Thailand from reaching its 

goal of eliminating malaria from the country. The objective of this study is to describe the 

patterns of movement and to use them to determine the impact of human movement 

between these areas of unequal malaria transmission on malaria epidemiology and 

elimination strategies.  

The study used an integrative approach that involved the incorporation of mathematical 

modelling strategies with empirical field data collected from 599 individuals across four 

villages and one hospital. The survey results show that in the villages along the border, the 

majority ethnic Karen peoples retain deep ties to their communities in Myanmar with 

between 48.7% and 89.9% of them frequently crossing the border for various reasons. The 

results suggest that the beneficial impact of a bednet intervention would be sensitive to the 

size of the population in which it is deployed as well as to the migration rates between 

countries. The model results also indicate that such an intervention can elicit an indirect 

beneficial effect of reducing prevalence in Myanmar even when it is only deployed in 

Thailand. This suggests that such an intervention could be highly cost-effective in terms of 

cases averted per dollar spent. Following more rigorous testing of these scenarios, it would 

be worth conducting a field test to validate the model results. 
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Introduction  

In order to improve our understanding of malaria dynamics in the Greater Mekong 

Subregion, a critical evaluation of the contribution of human movement to the perpetuation 

of the disease is warranted1. The phenomenon of human movement has long been 

suspected to affect the success of elimination strategies in malaria-endemic countries2-5. 

Efforts toward malaria elimination consist of intervention strategies that include, but are 

not limited to: vector control, early diagnosis and treatment, and bednet distribution6. Over 

the past several decades, Thailand has made significant strides towards achieving malaria 

elimination7-10. However, in spite of its concerted efforts, patches of transmission remain, 

lying predominantly along the border shared with Myanmar11. The objective of this study is 

to describe the patterns of migration and to determine the impact of human movement 

between these areas of unequal malaria transmission on malaria epidemiology and 

elimination strategies using an integrative approach, incorporating mathematical 

modelling strategies with empirical field data.  

It has been shown by Adams et al that hubs and reservoirs of infection can be places visited 

frequently and are highly dependent on the distribution of mosquito populations and 

variability in human travel patterns4. Emerging evidence points to the central role of 

movement in the perpetuation of resistant malaria and the undermining of successful 

interruption of transmission12. The number of infected travelers entering an area in a given 

time period indicates the vulnerability borne by an area and the high vulnerability 

exhibited by labor migrants, suggests that a “transborder” approach to elimination would 

have higher efficacy2,13. The border regions between Thailand and Myanmar were chosen 

because these are usually the regions of countries where policies, currencies, and 
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capabilities become more fluid, leading to situations where the needs of the citizens can fall 

through the cracks, creating the ideal environment for disease transmission14. 

The largely unmonitored flow of humans between Myanmar, which is still in the control 

stage, into Thailand, which has reached the pre-elimination stage, can be understood to 

have deleterious effects on Thailand’s progress towards elimination15. However, the effect 

of this flow on Thai elimination strategies is as yet undetermined. This study will aim to 

shed light on the human movement patterns within a relatively understudied area and 

attempt to model potentially disruptive scenarios that can help guide policies focused on 

malaria elimination.  

 

Ethical considerations 

The surveys were approved by the institutional review boards at UC Irvine in the US and 

Mahidol University in Thailand. 

 

Methods 

The study area containing the sentinel sites is based in Tak Province in western Thailand 

(Figure 1), which borders the Karen State in Myanmar. The border between Tak Province 

in Thailand and Myanmar is over 500 km long, encompassing several districts on the Thai 

side. The study area is situated in Tha Song Yang district, which experiences a tropical 

climate with a 6-mo rainy season spanning from May to early October16,17. Mean annual 

rainfall varies between 1,400 mm and 2,300 mm across the district; the mean annual 

temperature ranges between 20°C and 29°C. The population in the area consists of Thai 
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citizens, foreign nationals (including migrant workers), and refugees residing in camps as 

well as in certain villages17.  

Surveillance is conducted for both active and passive malaria cases in Thailand where a 

cross-sectional survey of households in the community is conducted twice a year during 

the high and low transmission seasons to detect asymptomatic infections. Bednets are 

widely distributed in the area and free treatment is available for those with confirmed 

malaria infections. The surveys were conducted between June and July of 2014 and during 

the course of that year, there were 1,193 confirmed malaria cases reported by the Thai 

sentinel sites. However, due to a lack of consistent and timely reporting by all affiliated 

institutions, it is expected that the reported numbers of malaria cases underrepresent the 

actual prevalence of the disease in the area.  

 

Survey Methodology 

Surveys to determine migration patterns were conducted in four border villages and a 

district hospital in Thailand. Each survey respondent gave their full consent before being 

questioned. The households and patients were surveyed using a weighted sample size 

approach with a randomized selection method. Each survey was orally administered in the 

language of the respondent’s preference (either in Karen or in Thai). The surveys were 

designed to gather data on a number of demographic and socioeconomic variables and 

solicited responses that would best elucidate the movement patterns that are most 

commonly used in the regions of interest. Participants were asked to recall details of their 

most recent malaria infection episode as well as the particulars of their most recent trip 

across the border, if applicable. The surveys included questions on: use of malaria 
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prophylaxis, frequency of travel, duration of trip, and the purpose of cross-border travel. 

Responses were initially separated by type of location in which the survey was 

administered (hospital or village). Responses from the villages were further pooled based 

on geographic, demographic, and socioeconomic similarity between adjacent villages. 

Hence, survey results have been presented in three categories: hospital, northern villages, 

and southern villages. 

 

Model Parameterization 

The data collected from the survey was used to inform the parameter settings for the 

Epidemiological MODeling (EMOD v. 2.8) provided by the Institute for Disease Modeling; 

EMOD is an agent-based mechanistic model of malaria transmission18. The specific 

equations, time-steps, parameter fits, and parameter estimates not specific to the current 

study are described elsewhere18-21. The climate data required for the model included 

precipitation, temperature, and relative humidity. These data were acquired from the IDM’s 

COMputational Platform Service (COMPS) database which provides the spatial 

interpolation of the historical meteorological observations of World Meteorological 

Organization identified weather stations from National Oceanic and Atmospheric 

Administration’s National Centers for Environmental Information22.  

With the use of this software, we have created a multi-node simulation to further examine 

the effect of migration between adjacent areas. The nodes were created using climate, 

vector, and geographical settings specific to the study sites in Thailand. The surveys 

administered in each of the sites, combined with previous work in the area, informed the 
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parameter settings that pertained to human populations and the migration parameters 

(Table 1 and 2).  

Two types of movement were set within the model: local and regional. Local migration 

rates were also included in the model settings to represent movement between adjacent 

villages on the same side of the border from each other; these rates were kept constant 

throughout all simulations (Table 2). The regional migration rates were determined by 

dividing the reported number of cross-border trips per day by the pooled sample 

populations of the villages or hospital surveyed. The survey-derived rate was set as the 

current regional migration rate for each set of nodes and is represented in the model as the 

proportion of the population who cross the border per day. It was multiplied by four to 

represent the possibility of more open borders between Myanmar and Thailand. A virtual 

closure of the border was also represented with the same regional migration rate being 

applied to all the nodes for all cross-border travel; in this scenario, the regional migration 

rate was reduced to 1 person per 1000 people. In addition, the model included within-

country regional migration rates between large population centers on the same side of the 

border that were outside of walking distance from each other.  

A conceptual model of the scenarios is outlined in Figure 2. The conceptual model also 

includes an additional pair of nodes (Tha Song Yang and Tha Song Yang_Myanmar) that are 

situated to the north of the villages of Suan Oi and Suan Oi_Myanmar. While Tha Song Yang 

was not surveyed during the study period, it and its Myanmese counterpart was utilized in 

the model to represent the reservoirs of infection that often reside in larger populations 

and thus, the results of the model output for Tha Song Yang are not included in every 

relevant set of figures.  
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For each modeling scenario, a burn-in period of three years was applied to ensure the 

steady-state dynamics could be observed within the simulation. Thus, the nodes on the 

Thai side of the border receive an intervention of a bednet at Day 1095 of the simulation. 

The killing rates per indoor resting post-feed encounter (KR) for the bednets were 

simulated at 70% KR and at 10% KR in order to mimic the current efficacy as well as 

potential effects of insecticide resistance. Demographic coverage of the bednets was set at 

50% so that usage, as well as ownership could be taken into account within the model. The 

change in disease prevalence is shown for the duration of 360 days, starting 105 days after 

the application of a bednet intervention. Since the same regional migration rate was 

applied to the two northern villages and their Myanmese counterparts, their model output 

is shown together in Figure 3. The two southern villages also shared migration rates and 

thus, their model results are shown together with their corresponding villages in Myanmar 

in Figure 4. Figure 5 shows the region containing the hospital in Thailand as well as the 

corresponding region across the border, in Myanmar. 

 

Data Analysis 

A total of 398 households in four villages and 201 hospital patients participated in the 

study. All survey responses were entered into MS Excel 2010 and the aggregated data on 

important variables are presented in Table 2. Statistical analyses were conducted in R 3.2.0 

while the model output was converted from a binary format to CSV files and subsequently 

transferred to MS Excel 2010 in order to generate the figures. 
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Results 

Survey Results 

In total, 599 surveys were administered between the four Thai villages and the hospital. 

The respondents were mostly ethnic Karen, female, had a primary school education or less, 

and tended to work outdoors (Table 2). More than 88% of all respondents reported owning 

bednets in their homes. The malaria rates varied between the sites with only 1.7% of the 

southern villagers versus 19.8% of the northern villagers reporting a malaria infection in 

the past year.  

Though the study participants shared similar demographic characteristics across all sites, 

the migration patterns from area to area varied. All of the sites had significantly different 

proportions of cross-border travelers (χ2 test, p-value <0.001). The highest proportion of 

cross-border travelers was seen in the southern villages (89.9%). The most common 

methods of crossing the border were walking and using a boat. The average duration of the 

visit across the border was used as an indicator of exposure to malaria infection. Between 

42.6% and 59.7% of all respondents returned home within 24 hours. Tourism and 

shopping were the most commonly listed reasons for crossing to Myanmar, followed by 

professional or family reasons. At the Thai hospital, 9.6% of the respondents who reported 

crossing the border to seek care at the hospital during the survey period were Myanmese 

patients who were surveyed in Thailand. More than 92% of all respondents stated that they 

crossed the border with their family or friends. 
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Model Results 

The model ran cross-sweeps on the migration parameters along with the intervention 

efficacy on all five pairs of nodes representing the study sites as well as the pair of nodes 

that represented a population reservoir in each country. The disease prevalence in each 

node pairing for three different migration rates (1X, 4X, and no migration) and two 

different bednet efficacies (10% KR and 70% KR) are shown in Figures 3-5. The absolute 

differences in disease prevalence for the time period shown in those figures are listed out 

in Table 4. 

Figure 3A and 4A are a representation of the current situation. With bednets at 70% KR 

distributed to the Thai nodes, the results show that under the current, survey-based 

regional migration rates, the prevalence on both sides of the border decreases 

approximately 50% on both sides, with the Myanmese side of the border showing slightly 

higher overall prevalence than the villages on the Thai side (Table 4). Figure 5A shows the 

current situation in the region of the Thai hospital which is located in the town of Mae Tan. 

Here, the difference in prevalence approximately 15 months after the bednet intervention 

is 58.4% on the Thai side and 24.1% on the Myanmese side. Figures 3B and 4B show that if 

bednet efficacies were to drop to 10% KR under current migration rates, the prevalence in 

Thailand would drop between 25.8% and 27.7% in the northern Thai villages and 

approximately 22% in their Myanmese counterparts. In Figure 5B, the reduction in 

prevalence on the Myanmese side is roughly half what is experienced on the Thai side 

(18.9% in MT_M versus 37.4% in MT).  

Figures 3, 4, and 5C & D show a situation in which there is four times as much cross-border 

movement than was determined from the survey. In Figure 3, 4, and 5C, all the villages on 
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both sides of the border experience, on average, a 51% decrease in disease prevalence, 

with the lowest reduction seen in MT_M (46.1%) and the highest seen in MSN_M (55.8%). 

In Figure 3D, the northern villages on both sides of the border see an approximately 30% 

reduction in prevalence over the course of one year. In Figure 4D, the southern villages 

experience a slightly higher reduction (an average of 36% across all four nodes). The 

hospital region indicated in Figure 5D experiences a reduction of 33.9% on the Thai side 

but only a reduction of 25.1% on the Myanmese side of the border. 

 In Figs 3, 4 and 5E, the virtual elimination of cross-border migration, combined with an 

efficacious bednet intervention in Thailand, brings the prevalence down 59% to 66% in the 

Thai regions. However, the largest reduction in prevalence on the Myanmese side of the 

border is seen in TO_M (38.5%) and the smallest is in SO_M (11.5%). Figure 3, 4, and 5F 

describe a situation in which there is virtually no cross-border migration and the bednet 

intervention is not very effective. The northern villages, seen in Figure 3F, indicate a vast 

discrepancy in how the intervention affects the prevalence over a year. MSN_M shows a 

difference of 30.7% in prevalence, with a last known prevalence rate of 39.6%. This is 

higher than the last known prevalence rate in MSN of 55.5%, reflecting a 23.3% difference 

since the start of the year. The village of SO, however, experienced a 51% decrease in 

prevalence whereas SO_M only saw a 6.4% decrease. In Figure 4F, while the absolute 

reduction in prevalence is very similar, if not identical, across both sets of villages in the 

south (27.4% in TO & TO_M, 29.1% in NB, and 29.7% in NB_M), the overall prevalence on 

the Thai side of the border is still higher than on the Myanmese side of the border.  
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Discussion 

In spite of the recent reduction in malaria transmission in regions with the highest disease 

burdens, Thailand has yet to reach the elimination stage of malaria control23. In the face of 

growing political and economic turmoil and the emergence of drug resistance in malaria 

parasites, an improvement in the understanding of human movement patterns in the 

Greater Mekong Subregion along porous borders is needed to inform intervention policy 

and generate change. The results of this study shed light on the movement patterns and 

their resulting impact on elimination strategies along the border region between Thailand 

and Myanmar.  

The survey indicated that most of the residents of these border regions were ethnic Karen 

who migrated to Thailand in previous years and have assumed permanent residences. The 

high proportion of cross-border travelers as well as the most common purposes listed for 

travel, suggest that in spite of now living in Thailand, the residents of these regions retain 

deep ties to their community across the border. The frequency with which they cross, their 

relatively short durations of stay, and the ease of crossing demonstrated by the availability 

of walking points and boats (especially in the southern villages), all confirm that this 

particular region of the border is highly susceptible to unofficial and unrecorded 

movement. This reiterates the need for a pragmatic approach to elimination strategies 

whose efficacies are not dependent on being administered to more stationary populations. 

One of the underlying objectives of this study was to determine malaria acquisition risk for 

travelers in this region. However, the low number of reported malaria cases in all the sites 

made it difficult to assert significant association between this type of movement and 

malaria infection in this region with any degree of significance (Appendix C). Baum et al 
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have shown that up to 92% of the infections seen in this area are submicroscopic and 

asymptomatic23. Recent studies have also highlighted the strength of the contribution of 

asymptomatic carriers as transmission reservoirs and of submicroscopic malaria on 

disease transmission24,25. In order to be able to determine association between travel and 

malaria infection with confidence, a more rigorous diagnostic approach would need to be 

deployed along with survey mechanisms. 

The survey results indicate that modelling the current scenario as well as potentially 

disruptive scenarios, is a valuable exercise in determining the best approach with regards 

to more efficacious elimination strategies. Though the situation in the field is inherently 

complex, the model is designed in a way that allows the user to simplify the situation and 

focus on certain parameters of interest. Since bednets are the most commonly deployed 

intervention, the model was used to display the trends in disease prevalence that could be 

expected if mosquitoes were to develop resistance to the insecticides commonly used to 

treat the nets. What we saw in the results for the northern and the southern villages was 

that reduced bednet efficacy seemed to have a noticeable impact when the cross-border 

migration rates were low. While panels A- E of Figures 3 and 4 all followed the general 

pattern of having higher prevalence on the non-intervention (Myanmar) side of the border, 

Figures 3F showed a higher prevalence in MSN rather than MSN_M. Figure 4F showed a 

higher prevalence in both NB and TO rather than in TO_M and NB_M.  

We believe that this is due to three different factors that should be considered when 

interpreting these results. One, the population of the village is crucial to the sensitivity of 

the impact of migration (Table 1). Two, the village’s proximity to a population center will 

contribute to and will be impacted by the within-country movement it experiences to and 
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from that population center during the simulation (Figure 2). Finally, the population ratio 

of the village on the intervention side as compared to its counterpart on the non-

intervention side will also dictate the extent of the decrease observed in the prevalence 

rate.  

It is also interesting to note that in the face of a 400% increase in migration between 

countries, the disease prevalence begins to converge between the Thai villages and their 

Myanmese counterparts. The intervention continues to decrease the prevalence on both 

sides, as it did under current migration rates. However, with many more people crossing 

the border every day, the impact of the intervention is felt more deeply even in the non-

intervention areas. The decrease in prevalence may be occurring because the bednet 

intervention is designed to kill mosquitoes at a specific but exponentially decaying rate 

after contact is made with the insect. This may result in fewer vectors being capable of 

transmitting malaria in the region and would also explain why the intervention has an 

indirect effect of at least marginally reducing prevalence in Myanmar regardless of the 

migration rate or bednet efficacy. More likely, however, the increased travel between 

countries may mean that more people are exposed to a protective intervention more 

frequently and this may reduce the transmission that could be occurring due to 

asymptomatic carriers or those who were infected with submicroscopic infections.  

Finally, we see that regardless of the scenario, the prevalence in the Thai region containing 

the hospital, MT, does not overlap the prevalence see in its Myanmese counterpart. We 

posit that part of this has to do with combination of the region’s relatively large population 

as compared to its relatively low current regional migration rate, which keeps the two 
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populations largely separated. However, it is a promising sign that the indirect effect of the 

intervention in Thailand can still be seen to a small extent on the Myanmese side. 

This work is exploratory in nature and thus has a number of limitations. The malaria 

dynamics within the model have been validated by previous work26-28. However, each new 

set of variables, including a new geography and a new climate, can introduce more 

uncertainty into the model output. The issue of uncertainty can and will be addressed in 

later work which will focus on running multiple simulations with different random seeds of 

the same scenario so that we can obtain simulation intervals and relay our results with a 

degree of confidence. Calibrating the model so as to reflect the situation in the field as 

accurately as possible has also proven to be a challenge. The surveys that were 

administered in Thailand were also administered in China and Myanmar along their shared 

border region (Appendix D). However, the difficulty of calibrating the vector population in 

those countries prevented us from successfully developing a reasonable model of 

transmission in that region in time. 

Barring calibration difficulties, employing a modelling approach to evaluate potential 

elimination strategies is very valuable in this region. Deploying effective intervention 

strategies in areas with border region embroiled in political or economic turmoil can be 

very labor intensive, especially along resource-deficient areas that harbor patches of 

transmission8,11. This exploratory analysis can help to guide the direction of development 

of new elimination strategies by informing stakeholders of the frequency of cross-border 

movement and the importance of continuing with interventions even when prevalence is 

low. Especially in regions with low and inconsistent malaria transmission, there are 
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generally insufficient resources to conduct the early diagnosis and treatment programs 

that can help target asymptomatic or submicroscopic malaria cases.  

The results of the model can help us determine the appropriate interventions that can help 

reduce transmission through other means. Furthermore, the exploration of modeling 

scenarios can help determine optimal intervention deployment strategies. In the case of 

this work, it appears that bednets appear to have indirect effects on the non-intervention 

area as well, suggesting that this intervention would be highly cost-effective in terms of 

cases averted per dollar spent. Following more rigorous testing of these scenarios, it would 

be worth conducting a field test to validate the model results. The current intervention 

strategy of bednet distribution may be one of the more potent strategies to deploy in this 

area because it can help kill the vectors that would freely cross the border even when 

humans are immobile. Additional vector control interventions such as indoor residual 

sprays and larviciding should also be considered if the interventions are to have a 

significant and longer-term effect.
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Figure 1: Modelling and survey sites in the border region between Thailand and Myanmar. 
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Figure 2: Conceptual rendering of the Thailand-Myanmar study sites within the EMOD model. 
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Figure 3: Disease prevalence for a year in the northern Thai villages and their 
Myanmese counterpart areas beginning 105 days post-bednet intervention 

applied on the Thai side of the border only. 
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Figure 4: Disease prevalence for a year in the southern Thai villages and their 
Myanmese counterparts areas beginning 105 days post-bednet intervention 

applied on the Thai side of the border only. 
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Figure 5: Disease prevalence for a year in the Thai hospital region and its 
Myanmese counterpart area beginning 105 days post-bednet intervention applied 

on the Thai side of the border only. 
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Table 1: Legend of study sites and corresponding population settings used in the model 
 

Node 
Name 

Village Name/Country Population 

TSY Tha Song Yang/Thailand 3000 
TSY_M Corresponding village/Myanmar 1500 
SO Suan Oi/Thailand 800 
SO_M Corresponding village /Myanmar 800 
MSN Mae Salid Noi/Thailand 1000 
MSN_M Corresponding village /Myanmar 1000 
TO Tala Oka/Thailand 1000 
TO_M Corresponding village/Myanmar 800 
NB Nong Bua/Thailand 2500 
NB_M Corresponding village/Myanmar 1000 
MT Mae Tan/Thailand 5000 
MT_M Corresponding village/Myanmar 1500 
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Table 2: Listing of all rates used in EMOD settings for the migration parameters (rate is 
shown as proportion of population travelling per day). 

 
 
 
 Origin Destination 

Local 
Migration 

Rate 

Regional 
Migration 
Rate: 1X 

Regional 
Migration 
Rate: 4X 

Regional 
Migration 

Rate: 
Negligible 
Migration 

 TSY SO 0.1 

            Regional migration from Thailand to          
Myanmar 
           Regional migration from Myanmar to 

Thailand 

          Regional migration within Myanmar 

          Regional migration within Thailand 

          Local migration within Thailand 

          Local migration within Myanmar 

 

TSY_M SO_M 0.1 
SO TSY 0.1 
SO MSN 0.02 

SO_M TSY_M 0.1 
SO_M MSN_M 0.02 

NB TO 0.1 
NB_M TO_M 0.1 

TO NB 0.1 
TO MT 0.05 

TO_M NB_M 0.1 
TO_M MT_M 0.05 

MT TO 0.05 
MT_M TO_M 0.05 

TSY TSY_M 

 

0.036 0.144 0.001 
TSY MT 0.02 0.02 0.02 

TSY_M TSY 0.072 0.288 0.001 
TSY_M MT_M 0.02 0.02 0.02 

SO SO_M 0.036 0.144 0.001 
SO_M SO 0.076 0.304 0.001 
MSN MSN_M 0.036 0.144 0.001 
MSN NB 0.05 0.05 0.05 

MSN_M MSN 0.076 0.304 0.001 
MSN_M NB_M 0.05 0.05 0.05 

NB NB_M 0.108 0.432 0.001 
NB MSN 0.05 0.05 0.05 

NB_M NB 0.216 0.864 0.001 
NB_M MSN_M 0.05 0.05 0.05 

TO TO_M 0.108 0.432 0.001 
TO_M TO 0.216 0.864 0.001 

MT MT_M 0.006 0.024 0.001 
MT TSY 0.02 0.02 0.02 

MT_M MT 0.012 0.048 0.001 
MT_M TSY_M 0.02 0.02 0.02 



 

63 
 

Table 3: Demographic and migration characteristics of study participants across sentinel 
sites in Thailand. 
 
 

 

Thailand 
northern 
villages 
(n=111) 

Thailand 
southern villages 

(n=287) 

Thailand Tha 
Song Yang 
Hospital 
(n=201) 

Demographic variables 
 

Ethnicity    
Thai 0 0 139 
Karen 111 287 57 
Missing 0 0 4 
Sex    
Male 43 (38.7%) 124 (43.2%) 89 (44.3%) 
Female 67 (60.4%) 162 (56.4%) 111 (55.2%) 
Missing 1 (0.9%) 1 (0.4%) 1 (0.5%) 

 
Occupation of respondent    
Outdoor worker (e.g., farmer, 
plantation worker, day laborer, 
etc.) 

59 (53.1%) 231 (80.5%) 139 (69.1%) 

Indoor worker (e.g., factory 
worker, teacher, housewife) 51 (46.0%) 56 (19.5%) 62 (30.9%) 

Unspecified or missing 1 (0.9%) 0 0 
 

Highest education level completed    
Did not finish primary 83 (74.8%) 190 (66.2%) 116 (57.7%) 
Primary school 21 (18.9%) 54 (18.8%) 39 (19.4%) 
Secondary school and beyond 7 (6.3%) 39 (13.6%) 44 (21.9%) 
Unspecified  or missing 0 4 (1.4%) 2 (1.0%) 

 
Type of mosquito control used in 
the past month    

None 6 (5.4%) 10 (3.4%) 17 (8.5%) 
Bednet 98 (88.3%) 272 (94.8%) 183 (91.0%) 
Repellent 0 1 (0.4%) 0 
Multiple methods 7 (6.3%) 2 (0.7%) 0 
Missing 0 2 (0.7%) 1 (0.5%) 

 
Did you have a malaria infection in 
the past year?    

Yes 22 (19.8%) 5 (1.7%) 34 (16.9%) 
No 84 (75.7%) 282 (98.3%) 153 (76.1%) 
Missing 5 (4.5%) 0 14 (7.0%) 
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Migration variables 
Have you ever crossed the border 
for any reason?    

Yes 54 (48.7%) 258 (89.9%) 52 (25.8%) 
No 57 (51.3%) 27 (9.4%) 144 (71.6%) 
Missing 0 2 (0.7%) 4 (2.0%) 

 
The following variables were 
recorded as a percentage of all 
travelers 

(N=54) (N=258) (N=52) 

Method of crossing the border    
Walk 2 (3.7%) 37 (14.3%) 5 (9.6%) 
Motorized public transport 2 (3.7%) 4 (1.6%) 4 (7.7%) 
Boat 5 (9.3%) 136 (52.7%) 7 (13.5%) 
Motorized private transport 0 1 (0.4%) 0 
Swim 0 2 (0.8%) 0 
Multiple 45 (83.3%) 78 (30.2%) 27 (51.9%) 
Missing 0 0 9 (17.3%) 

 
Average duration of visit    
≤24 hours 23 (42.6%) 154 (59.7%) 24 (46.2%) 
>24 hours 23 (42.6%) 50 (19.4%) 26 (50.0%) 
Missing 8 (14.8%) 54 (20.9%) 2 (3.8%) 

 
Purpose of visit    
Job 18 (33.4%) 91 (35.3%) 9 (17.3%) 
Visit family 11 (20.4%) 33 (12.8%) 11 (21.2%) 
To receive medical care 1 (1.8%) 0 5 (9.6%) 
For tourism or shopping 23 (42.6%) 134 (51.9%) 21 (40.4%) 
Multiple reasons 0 0 1 (1.9%) 
Unspecified or missing 1 (1.8%) 0 5 (9.6%) 

 
Do you cross the border with 
friends or family?    

Yes 50 (92.6%) 246 (95.4%) 49 (94.2%) 
No 4 (7.4%) 12 (4.6%) 3 (5.8%) 
Missing 0 0 0 
 
Total number of trips by season 
(per 4 months)    

Monsoon 624 4136 148 
Winter 512 3769 132 
Summer 380 3416.5 158 
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Table 4: Absolute difference in prevalence in each node over the course of 1 year, starting 105 days after the application of a 
bednet intervention. 
 

 
 
 
 

Scenario Suan Oi 
(M) Suan Oi 

Mae 
Salid 

Noi (M) 

Mae 
Salid 
Noi 

Tala 
Oka (M) 

Tala 
Oka 

Nong 
Bua (M) 

Nong 
Bua 

Mae Tan 
(M) Mae Tan 

1X mig, 
70%KR 49.2% 51.1% 49.8% 51.1% 47.0% 51.5% 50.6% 51.3% 27.1% 58.4% 

1X mig, 
10%KR 22.2% 25.8% 22.1% 27.7% 23.8% 26.3% 26.3% 27.3% 18.9% 37.4% 

4X mig, 
70%KR 47.6% 50.0% 55.8% 54.2% 49.2% 50.4% 54.3% 53.9% 46.1% 50.0% 

4X mig, 
10%KR 28.9% 30.9% 32.2% 30.8% 33.5% 36.0% 37.7% 36.5% 25.1% 33.9% 

No mig, 
70%KR 11.5% 64.1% 26.7% 60.1% 38.5% 62.6% 33.4% 66.0% 30.9% 59.0% 

No mig, 
10%KR 6.4% 51.0% 30.7% 23.3% 27.4% 27.4% 29.7% 29.1% 15.8% 42.5% 



 

66 
 

 

Chapter 3 

 

Modeling the Added Benefits of Long-lasting Microbial Larviciding on Malaria 

Transmission in Endemic Settings in Sub-Saharan Africa 
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Abstract 

Recent studies show that increases in insecticide resistance and in outdoor transmission 

hamper the efficacy of the first-line malaria intervention tools: long-lasting insecticidal nets 

(LLIN) and indoor residual spraying (IRS). Long-lasting microbial larvicides (LLML) may be 

a useful supplement to current intervention strategies. 

Using EMOD v1.8.1 developed by the Institute for Disease Modeling, we simulated malaria 

transmission under three scenarios using parameter estimates from study sites in western 

Kenya: 1) varied efficacy of LLML, 2) application of LLML during different seasons, and 3) 

modeled LLML as a supplemental tool under different levels of insecticide resistance and 

outdoor transmission.  

The results show that without supplemental interventions, the impact of LLINs and IRS on 

malaria transmission and prevalence gradually decline due to increasing insecticide 

resistance and outdoor transmission. The results indicate that supplementing a LLIN-only 

intervention with LLML in an area with high insecticide resistance and increased outdoor 

transmission could reduce the prevalence by 35.2%. Adding LLML to LLIN interventions in 

areas with little to medium levels of insecticide resistance and increased outdoor 

transmission could reduce prevalence to 28.5% and 32.5% respectively within 3 years of 

the initial LLML application. The optimal application time for the LLML intervention is at 

the start of the dry season when habitats are at their lowest capacity.  

These results suggest that LLML has the potential to provide significant added benefits to 

malaria control in the context of prevailing pyrethroid resistance and outdoor 

transmission. 
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Introduction 

Despite increased control efforts, malaria remains a major public health problem, 

especially in Africa. The World Health Organization estimates that the African region 

experiences over 188 million cases and approximately 394,200 deaths due to malaria 

annually1. In the past decade, vector control interventions in Africa have intensified and 

almost half of the susceptible population has been provided with access to insecticide-

treated bednets1. Malaria morbidity and mortality are particularly severe in epidemic-

prone regions such as highlands where human populations have little immunity to malaria 

2-4. 

Recently, a massive scale-up of long lasting insecticidal nets and indoor residual spraying, 

together with the introduction of artemisinin-combination treatments, have led to 

substantial reductions in malaria prevalence and incidence in Africa 1,5,6. However, 

increases in insecticide resistance in mosquitoes and drug resistance in malaria parasites 

have changed malaria epidemiology around the world and have necessitated a re-

evaluation of existing vector control methods 7-11. Emerging insecticide resistance in adult 

mosquitoes and an uptick in the levels of outdoor transmission further limit the efficacy of 

insecticide-treated nets and shift the burden of control to larval control methods that 

prevent the emergence of adult mosquitoes12-14. Therefore, new supplemental 

interventions that can tackle outdoor transmission and insecticide resistance are urgently 

needed. 

Microbial larvicides have a long history of efficacious use in vector control strategies 

implemented around the world7-9. They have been suggested as a supplemental 

intervention tool to tackle outdoor transmission and mitigate the effects of insecticide 
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resistance15-17. Currently available larval control methods are limited in their duration of 

efficacy and the frequency of reapplication required by these larvicides impose high 

material and operational costs on the consumer. Recently, slow-release microbial larvicide 

formulations that can provide long-lasting larviciding effect have become available18,19. 

These slow-release formulations use Bacillus  thuringiensis israelensis/Bacillus sphaericus 

that only kill mosquito larvae and are approved by the US Environmental Protection 

Agency. They can be effective over a period of several months and thus, do not require the 

weekly re-treatment of habitats that traditional larvicides require 18,19. These LLML 

formulations may be potentially cost-effective; however, their contribution to malaria 

reduction and the optimal application strategies are yet unknown.  

The objective of this study is to model the efficacy and the appropriate field application 

strategy of LLML in reducing malaria transmission and malaria incidence in Africa. The 

modeling results are needed to determine whether LLML are valuable as a supplemental 

malaria control tool to further reduce malaria and whether they can contribute to the 

design of highly efficacious intervention strategies. 

 

Methods 

Malaria Vector Transmission Model 

All simulations were conducted with the Epidemiological MODeling (EMOD) software 

v1.8.1, an agent-based mechanistic model of malaria transmission20. The vector 

transmission model of EMOD was used in this study as it has been used to successfully 

model malaria dynamics elsewhere21,22. The model included input parameters critical to 

malaria transmission such as vector species, habitat availability, rainfall, temperature, and 
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vector interventions. The specific equations, time-steps, and parameter estimates that are 

not specific to this study are described elsewhere23-25. The simulation used relevant 

parameter estimates from well-characterized field sites in the Kakamega region in western 

Kenya where malaria is epidemic26.   

 

Entomological survey  

The model was calibrated using data gathered from field sites in the Kenyan highlands. All 

the surveyed aquatic habitats were aggregated into three categories based on their size, 

shape, larval carrying capacity, and structural dependence on rainfall: permanent, semi-

permanent, and temporary, and the larval density was estimated based on the larval count 

per dip, number of dips, habitat dimensions, and survey radius by species and habitat type 

(Table 1). The larval counts for each habitat type and each vector species were then 

calculated and prepared for EMOD configurations. Table 2 lists the common life span and 

intervention durability parameters for this study.  

 

Climate Data 

EMOD climate input files required precipitation, temperature, and relative humidity data 

for simulating vector transmission. The data were acquired from the nearest World 

Meteorological Organization (WMO) station at Kakamega, Western Kenya. Daily mean 

temperature, dew point temperature, and precipitation were acquired from January 1st, 

1985 to December 31st, 2014 for a total of 10,950 data points. Relative humidity was then 

calculated from mean temperature and dew point temperature based on August-Roche-

Magnus approximation27. Missing data from original WMO records were filled by 
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calculating the 30 years daily average with 15 days simple moving average function 

available in MS Excel. 

 

Model Calibration 

The model was calibrated to the historical case data collected from the Iguhu District 

Hospital located in Iguhu, Kakamega County28. Clinical malaria infections were confirmed 

by microscopy and the parasite species specific to the patient’s infection was recorded. 

Historical malaria epidemic data also collected from literature reviews and previous work 

in Kakamega County29,30. The average pre- intervention malaria prevalence prior to 2004 

was around 600 cases per thousand person-years. The historical average clinical malaria 

prevalence after LLIN and IRS intervention was approximately 250 cases per thousand 

person-years29,30. Vector data gathered from the Kakamega area during the corresponding 

time periods served to parameterize the model’s vector settings31,32.  

 

Model Simulation 

Vector transmission dynamics were simulated with specific parameters and three major 

scenarios were created in order to answer the following questions: 

1. How does LLML, LLIN, and IRS efficacy affect the entomological inoculation rate 

(EIR)? 

2. What are the effects of varying seasonal application on the effective period of 

larviciding? 

3. How does LLML perform as a supplemental tool in the context of varying levels of 

insecticide resistance? 
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Each scenario that was designed to address the outlined questions was repeated 500 times 

with different random seeds and allowed for both climate and rainfall stochasticity 

(Appendix F). For each modeling scenario, a burn-in period of three years was applied to 

ensure the steady-state dynamics could be observed within the simulation. The first day 

after the end of the three year burn-in period was considered to be January 1, 1988 and all 

scenarios designated to receive an intervention, started the intervention campaign from 

January 1, 1989. All scenarios were set to continue the simulation for fifteen years. The 

outputs for each repetition of all designed scenarios included the daily EIR (infectious 

bites/day) and malaria infected ratio (total population infected fraction).  

We simulated multiple scenarios with intervention campaigns of both LLIN and IRS 

administered at different levels of insecticide resistance. The killing rates per indoor 

resting post-feed encounter (KR) for both LLIN and IRS were simulated from 0% to 50% in 

10% increments to mimic insecticide resistance. Demographic coverage for LLINs was set 

at 50% based on literature estimates of bednet usage from the area33. Based on field 

observations and existing literature, we selected three levels of killing rates to explore in 

greater detail34,35. Scenarios with 10% KR represented a high level of insecticide resistance, 

medium insecticide resistance level was represented at 30% KR, and those with 50% KR 

were set to represent an average of the current intervention efficacy of LLIN and IRS in the 

study site. The efficacy of LLML as an individual intervention in permanent habitats was 

also tested; we applied LLML at a 10%, 30%, and 50% KR with reapplications in the 

targeted habitats at 4 month intervals for 5 years. 
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Malaria transmission is significantly affected by spatial and temporal heterogeneity28. 

Climatic and seasonal variability can greatly affect the efficacy of larviciding efforts. Four 

separate intervention scenarios were designed to evaluate the efficacy of the initial 

application of LLML during each season in the study area. Each simulation received LLIN 

campaigns every 5 years with 30% KR, 50% physical blocking rate, and 50% demographic 

coverage. Additionally, a LLML campaign with 50% KR was applied every 120 days with 

start days corresponding to approximate start days of the four different seasons 

experienced in this area. Although they had different start days in one calendar year, the 

outputs were aligned to show the impact since initial application.  

In order to simulate the efficacy of LLML as a supplemental tool under different levels of 

resistance, we used 10% KR to represent a high level of larvicidal resistance, 30% KR as the 

medium resistance, and 50% KR as the low level or no resistance. To simulate outdoor 

transmission, we ran scenarios that included a variety of indoor feeding fractions for the 

mosquito species included in our simulations. Simulations distributed LLINs with 50% 

blocking rate every five years to 50% of the population. One outdoor transmission scenario 

included the addition of an IRS intervention with 20% physical blocking rate to 80% of the 

population. A LLML campaign was added as a supplemental intervention tool in all 

scenarios. LLML was reapplied every 120 days with 50% KR on permanent habitats 

starting at the start of the dry season and the results were compared to the baseline. 

 

Data Analysis 

The daily EIR and malaria infected ratio of the 500 repetitions from each scenario were 

aggregated and the mean, along with other descriptive statistics were computed using 
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statistical software JMP 12 (SAS Corporate, Cary, NC, USA). For improved data visualization, 

the 15-day simple moving average filter was also applied onto the output dataset to smooth 

the curves. 

To compare the efficacy of the malaria intervention, we calculated either the normalized 

daily EIR difference (N-DEIR diff) or the reduction in percentage of infected population for 

all the scenarios. The N-DEIR diff was calculated using Equation 2 below. Here, the daily 

EIR of the treatment (T) scenario is subtracted from that of the baseline control (C) 

scenario and the difference is then divided by the daily EIR of the baseline control (C) 

scenario.  

N-DEIR diff =  
𝐷𝐷𝐷𝐷𝐶 − 𝐷𝐷𝐷𝐷𝑇

𝐷𝐷𝐷𝐷𝐶
× 100%           𝐸𝐸. 2 

We used the 95% simulation intervals to indicate significance in differences between 

treatments.   

 

Results 

Modeling Insecticide Resistance with Individual Interventions 

 Insecticide resistance demonstrated by the malaria vectors was found to have a significant 

negative impact on the efficacy of the LLIN and IRS interventions programs (Figs 1 & 2). 

Although the overall transmission of malaria was significantly reduced from the baseline 

by the presence of the LLIN and IRS interventions, the annual EIR halfway through the life 

of the bednet intervention was 1.387 at the lowest resistance level (50% KR), above the 

desired rate of <1 that would be needed to halt the spread of disease. Six months after the 

initial IRS campaign, the annual EIR was 2.482 when the IRS efficacy was set at the lowest 
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resistance level. Two months after the initial LLML application, the annual EIR was seen to 

be 4.38 with LLML functioning at 50% killing rate. 

 

Spatial & Temporal Effects of LLML 

Seasonality continues to play a role in the efficacy of all interventions used in the model. 

Peaks and valleys are seen in scenarios with frequent reapplications of interventions. 

Figure 4 demonstrates the efficacies of four different LLML intervention scenarios; the 

settings for all four are the same but for the start time of the initial application. Figure 4A 

shows that when the initial LLML application is made at the start of the dry season, it can 

help attain the greatest percentage reduction in prevalence as compared to the baseline 

prevalence. Figure 4B presents the same data but framed in relation to the start of the rainy 

season as the baseline, thus highlighting the strength of the impact that a dry season LLML 

intervention start would have on overall prevalence. 

 

Added benefits of LLML 

The added benefit of LLML is large only when resistance to pyrethroids is high, but not 

evident when resistance is low (Figure 5). For example, under low or no insecticide 

resistance conditions, the reduction in infection prevalence varied between 2.8% and 8.3% 

within approximately three years of the LLML application. In Figure 6, the lines represent 

the total reduction in the percentage of infected population in each treatment scenario as 

compared to the baseline scenario. These results demonstrate that the overall reduction in 

the infected fraction could reach 35.2% after interventions under high resistance situations 

with reduced indoor feeding conditions. In low or no insecticide resistance conditions and 
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fewer mosquitoes feeding indoors, the reduction in prevalence could reach between 28.5% 

and 32.5% within 3 years of the first LLML application. Figure 7 shows the total number of 

new malaria cases that can be averted with the application of LLML in two settings: where 

indoor feeding fractions are high (An. gambiae and An. funestus feeding indoors 95% of the 

time and An. arabiensis feeding indoors 30% of the time) and where outdoor transmission 

is high (An. gambiae and An. funestus feeding indoors 50% of the time, and An. arabiensis 

feeding indoors 15% of the time). The results show that under high resistance and high 

indoor feeding conditions, a total of 313 new infections are prevented over the course of 3 

years. Under high resistance and high outdoor feeding conditions, a total of 339 new 

infections are prevented over 3 years. 

 

Discussion 

Despite very high bednet coverage, malaria incidence in many African areas is increasing 

after a short-lived reduction that coincided with the LLIN and IRS scale-up. This resurgence 

is attributed to rising rates of insecticide resistance and outdoor transmission because the 

current first-line malaria vector control methods do not target outdoor transmission and 

do not work efficiently with insecticide resistant mosquitoes30. Therefore, new 

interventions that can both suppress outdoor transmission and are not contingent on the 

use of insecticides are urgently needed. LLML represent a highly promising and potentially 

cost-effective supplemental intervention19,36. 

The results indicate that in the presence of insecticide resistance, IRS and LLINs retain the 

ability to reduce transmission significantly below baseline levels, although they perform 

differently based on the level of resistance. Over the span of the 1081-day simulation, in 
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low and medium resistance settings, LLINs and IRS (Figure 1 and 2) individually reduce the 

population infected fraction lower than is achieved at equivalent levels of resistance by 

LLML alone (Figure 3). This indicates that while LLML could be a useful supplemental tool, 

it may not be a good stand-alone method, especially in areas with low to medium levels of 

insecticide resistance without significant outdoor transmission. However, Figure 3 shows 

us that the additive effect of LLML is not sensitive to potential emergence of resistance in 

the mosquito larvae. 

Our results shown in Figure 4 demonstrate that applying LLML in the dry season when 

larval habitats are limited is more beneficial than when it is applied during the rainy 

season. Stable weather conditions during the dry season could also contribute to keeping 

the LLML briquette in place. Applying LLML later in the wet season still results in 

significant reduction of the daily EIR but will not match the efficacy of the dry season 

application. Repeated applications of LLML on targeted habitats will cause the efficacy of 

the intervention to converge over time and eliminate the difference seen between seasonal 

applications. Logistically, a dry season start is also optimal in the field because improved 

weather and road conditions allow for greater access into areas that could harbor larval 

habitats. However, while the model enabled decay of the LLML briquette in the habitat, the 

decay rate was constant and free from climatic fluctuations. The decay of the briquette 

under field conditions is likely to differ between habitats depending on a variety of factors 

that could not be accommodated for in the model. 

Importantly for public health, adding LLML to the repertoire of LLIN interventions in areas 

with high insecticide resistance and high outdoor transmission, is seen to eliminate 389 

new malaria cases over 3 years as compared to using LLINs alone. Within the model 
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settings, that translates to a reduction of 35.2% in disease prevalence. If this precipitous 

reduction in new cases is seen in more densely populated or areas of higher transmission, 

it has the potential to save several hundred lives over the course of a year.  

 Outdoor malaria transmission and insecticide resistance are two of the most important 

challenges in malaria control in Africa. Long-lasting microbial larvicides represent a 

promising new tool that can target both indoor and outdoor transmission and help to 

mitigate the problem of insecticide resistance. Our modeling results show that using LLML 

as supplemental tool could provide 28.5% to 35.2% more reduction in infections. Based on 

our results, supplementing with LLML in areas with high insecticide resistance provides an 

opportunity to bridge the gap between malaria transmission and current interventions and 

increase their ability to regain control of transmission in a non-invasive and potentially 

more cost-effective manner.  

Under the simulated conditions, LLML has strong potential to revolutionize malaria vector 

control in Africa. However, comprehensive field evaluations of LLML will be needed to 

provide critical validation for whether LLML can be used as a supplemental malaria control 

tool for further reducing malaria incidence in Africa. 
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Figure 1: LLIN Campaign Scenarios   

 
 
 

 
 
 

Figure 1A shows the average daily EIRs (solid lines) and the 95% simulation intervals (shaded areas) from the simulations 
where LLINs were the only intervention administered. Figure 1B shows the average proportions of the simulated 
population with a malaria infection (solid lines) and their accompanying 95% simulation intervals (shaded areas) under 
the same conditions as 1a. It is clear that growing insecticide resistance poses a threat to the overall efficacy of the LLIN 
intervention though they remain a useful tool in reducing malaria transmission and decreasing prevalence. 
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Figure 2A shows the average daily EIRs (solid lines) and the 95% simulation intervals (shaded areas) from the simulations 
where IRS was the only intervention administered. Figure 2B shows the average proportions of the simulated population 
with a malaria infection (solid lines) and their accompanying 95% simulation intervals (shaded areas) under the same 
conditions as 2a. In general, IRS is seen to be a less effective intervention than LLIN, given that even under low resistance 
conditions (orange), the lowest population infected fraction is still 25% as compared to the population infected fraction of 
18% with a LLIN-only intervention. 

Figure 2: IRS Campaign Scenarios   
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Figure 3A shows the average daily EIRs (solid lines) and the 95% simulation intervals (shaded areas) from the simulations 
where LLML was the only intervention administered. Figure 3B shows the average proportions of the simulated 
population with a malaria infection (solid lines) and their accompanying 95% simulation intervals (shaded areas) under 
the same conditions as 3a. Although LLML is not as efficacious as a stand-alone intervention as either LLINs or IRS, it is 
important to note that its efficacy also does not seem to be as sensitive to resistance as the other interventions. Fig 3A 
shows that the variation in the daily EIR does not begin to differ significantly for a prolonged length of time between the 
various killing rates of LLML until Day 1061, almost 2 years after the initial application. 

 
 
 
 

 

Figure 3: LLML Campaign Scenarios  
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Figure 4: Seasonal Application of LLML 
 
 
 
 
  

Figure 4A shows the reduction in prevalence from the baseline (solid lines) and the 95% simulation intervals 
(shaded areas within dotted lines) as normalized from the baseline (not shown) in the simulations where 
LLML was administered in conjunction with LLINs. Figure 4B shows that the optimal season in which LLML 
distribution should begin is the long dry season (red line) because it has the greatest reduction in prevalence 
from baseline.  
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Figure 5: Additional Benefits of LLML with LLIN & IRS, Current Levels of Indoor Feeding 

Figure 5A shows the average daily EIRs (solid lines) and the 95% simulation intervals (shaded areas) from the simulations 
where LLML was first administered during the dry season in conjunction with LLINs and IRS. Figure 5B shows the 
reduction in the proportion of infected population (solid lines) and the 95% simulation intervals (shaded areas) as 
normalized from the baseline (not shown) in the simulations where LLML was first administered during the dry season in 
conjunction with LLINs and IRS. With both IRS and ITN interventions working at low resistance and high fractions of 
indoor feeding (95% for An. gambiae and An. funestus, 15% for An. arabiensis), LLML does not have a strong impact on 
transmission or on prevalence though it is still significantly greater than the baseline. 
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Figure 6A shows the average daily EIRs (solid lines) and the 95% simulation intervals (shaded areas) from the simulations 
where LLML was first administered during the dry season in conjunction with LLIN. Figure 6B shows the reduction in the 
proportion of infected population (solid lines) and the 95% simulation intervals (shaded areas) as normalized from the 
baseline (not shown) in the simulations where LLML was first administered during the dry season in conjunction with LLIN. 
In this scenario, the increased outdoor feeding (50% for An. gambiae and An. funestus, 30% for An. arabiensis), has improved 
the additional benefit conferred by a LLML intervention.  

Figure 6: Additional Benefits of LLML with LLIN, Reduced Levels of Indoor Feeding 
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Figure 7: Cumulative Number of Additional New Infections Prevented with LLML Supplemental 
Intervention Under Varied Outdoor Transmission Conditions 
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Table 1: Survey larval density and counts were aggregated by vector species and habitat type used in the EMOD 
configurations: (a) estimated larval density per square meter in study area; (b) estimated larval counts by habitat 
enumerations and vector species in 1 by 1 degree area. 
 

(a) Larval Density (larvae/m
2
) 

Habitat 
Type 

Modeling Habitat Est. Area 
Occupied in 

1x1 Deg  

An. gambiae 
s.l. 

An. funestus Other 
Anophelines 

Culicines 

Permanent CONSTANT 0.60% 0.174 0.035 0.031 0.568 
Semi-
Permanent 

WATER_VEGETATI
ON 

0.71% 0.042 0.012 0.005 0.432 

Temporary TEMPORARY_RAIN
FALL 

0.19% 6.836 0.319 0.138 6.721 

 

(b) EMOD Habitat Larval Counts in 1x1 Degree Area 
Habitat Type An. gambiae s.s. An. arabiensis An. funestus Other 

Anophelines 
Culicines 

Permanent 12.1 x 106 7.62 x 106 2.58 x 106 2.32 x 106 42.4 x 106 
Semi-Permanent 22.8 x 106 1.43 x 106 1.01 x 106 0.48 x 106 37.9 x 106 
Temporary 100.1 x 106 62.7 x 106 7.61 x 106 3.29 x 106 160 x 106 
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Table 2: General life span and durability settings for intervention campaigns.  
 

Model Parameter LLIN IRS LLML 
Durability_Time_Profile BOXDECAYDURABILITY DECAYDURABILITY BOXDECAYDURABILITY 
Start_Day January 1st January 1st April 1st 
Primary_Decay_Time_Constant 1 Year 3 Months 2 Months 
Secondary_Decay_Time_Constant 2 Years 0.5 Month 3 Months 
Timesteps_Between_Repetitions 5 Years 1 Year 4 Months 
Number_Repetitions 2 5 10 
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CONCLUSION 

 

This dissertation employed an interdisciplinary and multilevel approach to acquire critical 

knowledge of malaria epidemiology in the era of intensive malaria control campaigns, and 

to evaluate alternative and innovative strategies for effective malaria control and eventual 

elimination within the framework of translational science. Over the course of this research, 

I explored: a) how health policies regarding malaria treatment are not always well-

matched to an individual’s particular health-seeking behavior patterns, b) how human 

movement across porous borders can impact intervention strategies aimed at eliminating 

malaria, and c) how new vector control methods such as long-lasting microbial larvicides 

can be used to combat the growing threat of insecticide resistance and outdoor 

transmission in endemic areas. 

Understanding the local health behaviours, including the human movement patterns that 

perpetuate transmission of malaria will help develop targeted preventive measures, as well 

as to develop educational interventions that can empower the residents with the 

knowledge needed to combat malaria in a safe and effective manner. Ensuring patient 

access to health care facilities in countries with high disease burdens has broader 

implications on measures of equity and on public health prevention methodologies. 

Implementing interventions in the border regions with unstable transmission can have 

beneficial effects on both sides of the border and thus, potentially become more cost-

effective with regards to infections prevented. Finally, where insecticide resistance 

increases and outdoor feeding behavior is unpredictable, the application of novel vector 

control methods such as LLML can be an important supplemental tool. 
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It is hoped that the results of this study begin to fill in the gaps in knowledge that would be 

required to implement policy changes and improve access to appropriate health care 

facilities and can begin to direct the development of targeted intervention measures. 
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Appendix A-Chapter 1: Summary of the estimated average travelling speed and cost-

weighted factor for potential terrain conditions in western Kenya. 

 

Our surveys of area hospitals and clinics, local chemists, and neighborhood retail outlets 

were designed to shed light on the availability and supply of recommended anti-malarials 

in our study area of interest. Our field surveys of the residents of the area provided insight 

into local health-seeking behaviors. In order to best describe and evaluate our measures of 

accessibility, we employed certain GIS-based methodologies in our analyses. We collected 

and digitized the detailed spatial information on the population, health facilities, 

pharmacies, road network, and topographic features influencing the access-time. These 

were used to develop a geospatial accessibility model based on Tobler’s (1993) equation to 

estimate travel speeds and subsequent access-time to the nearest health facility and 

pharmaceutical retailer. The model took into account different topography and transport 

types and was calibrated using data from actual field survey and observation made by 

patients seeking treatment. 

We assembled all the geo-referenced data, including base map, health facilities, 

pharmacy, transport network (roads, tracks and barriers), and other topographic features 

into a geodatabase.  We then established our geospatial accessibility model by 

implementing Tobler’s (1993) equation with the “cost-weighted distance” algorithm within 

a geographical information system (GIS), ArcGIS Desktop 10.1 (ESRI Inc), to estimate 

access-time from every 30 x 30 meters grid square to the nearest health facility or 

pharmaceutical retailer.  Separate models were developed for mobilized versus non-

mobilized forms of transport and for scenarios with and without access barriers, such as 
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rivers; the likely proportion of residents using each transport type to access facilities in 

different locations was also estimated. To maximize the realistic estimation in our models, 

we carried out several calibrations in which survey data on actual access-time reported by 

survey cases were used to find the optimum model parameters in either mobilized versus 

non-mobilized forms of transport (Table 3).  By combining our estimations and 

topographic features, we generated several high resolution surfaces under several practical 

transportation or destination scenarios by 10 minutes access-time intervals. 

Walk distance is based on the “Path Distance” tool found in the software. It 

calculates, for each cell, the least accumulative cost distance to the nearest source, while 

accounting for surface distance and horizontal and vertical cost factors and weights the 

speed deduction with the slope change. 

𝑤 = 6 × 𝐸𝐸𝐸(−3.5 × |𝑆 + 0.05|) 

𝑤 = 6 × 𝐸𝐸𝐸 �−3.5 × �tan
𝑆𝑆𝑆

57.29578
+ 0.05�� 

--  Tobler (1993) 

Here, w is the walking velocity, S is dH/dX = tan (θ), the dimensionless slope; Slp is 

the degree of slope; the value 57.29578 shown here is a truncated version of the result 

from 180/π.  The unit of velocity w is given in km/hr. This algorithm was created to better 

estimate pedestrian travelling times. To estimate the travel speeds for crossing different 

flat terrain, we assumed adults in our study communities could walk at a speed of 5 km/h 

on field foot path; for off-path travel, we multiplied by a factor of 0.6 to get a walking speed 

of 3 km/h; for specific land-cover impediments, we used 2.5 km/h to estimate people 

walking through forested areas and assumed they could maintain a speed of 1 km/h to 
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cross a swampy area. We also assumed people could not cross rivers or water bodies 

unless there was a bridge.   

The traveling speeds for people with vehicle (mainly by car, minibus, or motorcycle) 

are estimated to be 50 km/h on primary roads (tarmac roads), 30 km/h on secondary 

roads (gravel roads), and 20 km/h on dry weather road (dirt roads).  When traveling on the 

small, narrow track with bicycle or tricycle, 10 km/h is held as the maximum speed17. This 

was applied to our data from households, retailers, and hospitals and walking times were 

calculated based on terrain maps used by others within the project. The application of this 

particular rule is prudent in this case given that a large majority of our participants in all 

surveyed areas used walking as their primary mode of transportation to reach the health 

facility (Table 2). 

Based on the estimation of travel speeds for each terrain condition, we calculated the cost-

weighted factors.  The cost-weighted factor represents the potential impedance or the 

“resistance” in the distance calculation while simulating the difficulty of passing through a 

specific terrain condition.  The higher the value of cost-weighted factor, the higher the 

impedance of movement on the ground, and the greater the amount of time that is needed 

to travel an equivalent distance as compared to a cell with lower impedance.  Low cost-

weighted factors (impedance values) could be assigned to high-speed terrain conditions 

such as bound surface road, with much larger values for loose surface road or rough 

terrain.  Barriers such as a wide river or a big water body were designated as an 

inaccessible area, and swamps or forests could be assigned very large impedance values.  

For instance, if the cost-weighted factor for traveling on a primary road (bound surface) at 

the speed of 50 km/hr is defined as 1, the factor for traveling on dry weather road (dirt 
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surface- which has lower traveling speeds of 20 km/hr), can be defined at 2.5. Table S1 

shows the summary of the estimated average traveling speed and cost-weighted factors for 

potential terrain conditions that might be observed in our study area. While the cost-

weighted factor represents the impedance which is inversely proportional to the average 

travel speed of each terrain type, a relative 'time-cost' surface or 'equivalent distance' 

surface can be produced for further modeling simulation.  

Table S1. Summary of the estimated average traveling speed and cost-weighted 

factor for potential terrain conditions in western Kenya  

Terrain Condition Average Traveling Speed 

(km/hr.) 

Cost-Weighted 

(Impedance) Factors  

Primary Road (Bound 
Surface) (motorized 
transport) 

50 1 

Secondary Road (Loose 
Surface) 
(motorized transport) 

30 1.667 

Dry Weather Road (earth 
surface) 
(motorized transport) 

20 2.5 

Main Track 
(motorized transport) 

10 5 

Footpath (by foot) 5 10 
Off Road/path (by foot) 3 16.667 
Forest (by foot) 2.5 20 
Swamp (by foot) 1 50 
River (inaccessible) 0 -1 
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Appendix B- Chapter 1: Comparison between values measured by ELISA and HPLC in the 
commercial artemisinin-based drugs. The labeled value of active ingredients (a.i.) was all 
2.0  
 

 
 
 

Drug names Lot No.  Site obtained Measured content a 

(mg/mL) 

ELISA HPLC 

Artefan 20/120 P0251C 
 

Kakamega, Kenya 2.16 ± 0.03 2.33 ± 0.18 

BNP0501D 
 

Emuhaya, Kenya 2.38 ± 0.11 2.21 ± 0.01 

BNP0031D 
 

Emuhaya, Kenya 2.21 ± 0.23 2.22 ± 0.01 

CO-FALCINUM B/NK 01885 
 

Vihiga, Kenya 2.23 ± 0.21 2.17 ± 0.04 

B/NK 0C32 
 

Vihiga, Kenya 2.16 ± 0.15 2.21 ± 0.01 

B/NK 01646 
 

Vihiga, Kenya 2.38 ± 0.11 2.22 ± 0.12 

N/A b Vihiga, Kenya 2.39 ± 0.33 2.11 ± 0.02 

 B/NK 10489 
 

Vihiga, Kenya 2.22 ± 0.10 2.28 ± 0.03 
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Appendix C- Chapter 2: Fisher test to determine correlation between malaria and travel 
 

Study Site Travel Status Reported malaria 
infection 

Did not report 
malaria infection Fishers Test Results 

Northern Thai 
villages 

Cross-border travelers 14 35 Odds ratio: 1.5 
p-value: 0.38 Did not cross the border 13 49 

Southern Thai 
villages 

Cross-border travelers 5 208 Odds ratio: NA 
p-value: 0.32 Did not cross the border 0 74 

Thai Hospital Cross-border travelers 12 45 Odds ratio: 1.48 
p-value: 0.40 Did not cross the border 22 122 

 
Northern villages: Suan Oi, Mae Salid Noi 
Southern villages: Tala Oka, Nong Bua 
Hospital: Tha Song Yang Hospital 
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Appendix D- Chapter 2: Demographic and migration characteristics of study participants across sentinel sites in China, 
Thailand, and Myanmar. 
 

 China 
(n= 278) 

Myanmar 
(n=367) 

Thailand 
northern 
villages 
(n=111) 

Thailand 
southern 

villages (n=287) 

Thailand Tha 
Song Yang 
Hospital 
(n=201) 

Demographic variables      
Sex      
Male 174 (62.6%) 148 (40.3%) 43 (38.7%) 124 (43.2%) 89 (44.3%) 
Female 102 (36.7%) 215 (58.6%) 67 (60.4%) 162 (56.4%) 111 (55.2%) 
Missing 2 (0.7%) 4 (1.1%) 1 (0.9%) 1 (0.4%) 1 (0.5%) 

 
Occupation of respondent      
Outdoor worker (e.g., farmer, 
plantation worker, day laborer, 
etc.) 

202 (72.7%) 198 (54.0%) 59 (53.1%) 231 (80.5%) 139 (69.1%) 

Indoor worker (e.g., factory 
worker, teacher, housewife) 67 (24.1%) 167 (45.5%) 51 (46.0%) 56 (19.5%) 62 (30.9%) 

Unspecified or missing 9 (3.2%) 2 (0.5%) 1 (0.9%) 0 0 
 

Highest education level completed      
Did not finish primary 32 (11.5%) 27 (7.4%) 83 (74.8%) 190 (66.2%) 116 (57.7%) 
Primary school 179 (64.4%) 267 (72.7%) 21 (18.9%) 54 (18.8%) 39 (19.4%) 
Secondary school and beyond 58 (20.9%) 58 (15.8%) 7 (6.3%) 39 (13.6%) 44 (21.9%) 
Unspecified  or missing 9 (3.2%) 15 (4.1%) 0 4 (1.4%) 2 (1.0%) 

 
Type of mosquito control used in 
the past month      

None 41 (14.7%) 14 (3.8%) 6 (5.4%) 10 (3.4%) 17 (8.5%) 
Bednet 190 (68.3%) 290 (79.0%) 98 (88.3%) 272 (94.8%) 183 (91.0%) 
Indoor residual spray 4 (1.4%) 34 (9.3%) 0 0 0 
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Repellent 25 (9.0%) 21 (5.7%) 0 1 (0.4%) 0 
Multiple methods 15 (5.4%) 5 (1.4%) 7 (6.3%) 2 (0.7%) 0 
Missing 3 (1.1%) 3 (0.8%) 0 2 (0.7%) 1 (0.5%) 

 
Did you have a malaria infection 
in the past year?      

Yes 22 (7.9%) 19 (5.2%) 22 (19.8%) 5 (1.7%) 34 (16.9%) 
No 253 (91.0%) 347 (94.5%) 84 (75.7%) 282 (98.3%) 153 (76.1%) 
Missing 3 (1.1%) 1 (0.3%) 5 (4.5%) 0 14 (7.0%) 

 
Migration variables      
Have you ever crossed the border 
for any reason?      

Yes 162 (58.3%) 182 (49.6%) 54 (48.7%) 258 (89.9%) 52 (25.8%) 
No 115 (41.4%) 182 (49.6%) 57 (51.3%) 27 (9.4%) 144 (71.6%) 
Missing 1 (0.3%) 3 (0.8%) 0 2 (0.7%) 4 (2.0%) 

 
The following variables were 
recorded as a percentage of all 
travelers 

(N=162) (N=182) (N=54) (N=258) (N=52) 

Method of crossing the border      
Walk 73 (45.1%) 33 (18.1%) 2 (3.7%) 37 (14.3%) 5 (9.6%) 
Motorized public transport 10 (6.2%) 16 (8.8%) 2 (3.7%) 4 (1.6%) 4 (7.7%) 
Boat 2 (1.2%) 1 (0.5%) 5 (9.3%) 136 (52.7%) 7 (13.5%) 
Motorized private transport 64 (39.5%) 81 (44.5%) 0 1 (0.4%) 0 
Swim 1 (0.6%) 0 0 2 (0.8%) 0 
Multiple 5 (3.1%) 26 (14.3%) 45 (83.3%) 78 (30.2%) 27 (51.9%) 
Missing 7 (3.1%) 25 (13.7%) 0 0 9 (17.3%) 

 
Average duration of visit      
≤24 hours 105 (64.8%) 113 (62.1%) 23 (42.6%) 154 (59.7%) 24 (46.2%) 
>24 hours 50 (30.9%) 54 (29.7%) 23 (42.6%) 50 (19.4%) 26 (50.0%) 



 

 
 

102 

Missing 7 (4.3%) 15 (8.2%) 8 (14.8%) 54 (20.9%) 2 (3.8%) 
 

Purpose of visit      
Job 56 (34.6%) 31 (17.0%) 18 (33.4%) 91 (35.3%) 9 (17.3%) 
Visit family 43 (26.5%) 46 (25.3%) 11 (20.4%) 33 (12.8%) 11 (21.2%) 
To claim IDP/refugee status 0 3 (1.6%) 0 0 0 
To receive medical care 0 21 (11.6%) 1 (1.8%) 0 5 (9.6%) 
For tourism or shopping 43 (26.5%) 50 (27.5%) 23 (42.6%) 134 (51.9%) 21 (40.4%) 
Multiple reasons 12 (7.4%) 3 (1.6%) 0 0 1 (1.9%) 
Unspecified or missing 8 (4.9%) 28 (15.4%) 1 (1.8%) 0 5 (9.6%) 

 
Do you cross the border with 
friends or family?      

Yes 102 (63.0%) 100 (55.0%) 50 (92.6%) 246 (95.4%) 49 (94.2%) 
No 55 (33.9%) 67 (36.8%) 4 (7.4%) 12 (4.6%) 3 (5.8%) 
Missing 5 (3.1%) 15 (8.2%) 0 0 0 
 
Total number of trips by season 
(per 4 months)      

Monsoon 2576 749 624 4136 148 
Winter 3254 777 512 3769 132 
Summer 2006 854 380 3416.5 158 




