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Measuring concurrency using a joint multistate and point 
process model for retrospective sexual history data

Hilary Aralisa,*, Pamina M. Gorbachb, and Ron Brookmeyera

aDepartment of Biostatistics, UCLA Fielding School of Public Health, University of California, Los 
Angeles, CA 90095, USA

bDepartment of Epidemiology, UCLA Fielding School of Public Health, University of California, 
Los Angeles, CA 90095, USA

Abstract

Understanding the impact of concurrency, defined as overlapping sexual partnerships, on the 

spread of HIV within various communities has been complicated by difficulties in measuring 

concurrency. Retrospective sexual history data consisting of first and last dates of sexual 

intercourse for each previous and ongoing partnership is often obtained through use of cross-

sectional surveys. Previous attempts to empirically estimate the magnitude and extent of 

concurrency among these surveyed populations have inadequately accounted for the dependence 

between partnerships and used only a snapshot of the available data. We introduce a joint 

multistate and point process model in which states are defined as the number of ongoing 

partnerships an individual is engaged in at a given time. Sexual partnerships starting and ending on 

the same date are referred to as one-offs and modeled as discrete events. The proposed method 

treats each individual’s continuation in and transition through various numbers of ongoing 

partnerships as a separate stochastic process and allows the occurrence of one-offs to impact 

subsequent rates of partnership formation and dissolution. Estimators for the concurrent 

partnership distribution and mean sojourn times during which a person has k ongoing partnerships 

are presented. We demonstrate this modeling approach using epidemiological data collected from 

a sample of men having sex with men and seeking HIV testing at a Los Angeles clinic. Among 

this sample, the estimated point prevalence of concurrency was higher among men later diagnosed 

HIV positive. One-offs were associated with increased rates of subsequent partnership dissolution.

Keywords

multistate; concurrency; HIV; sexual history; point process

1. Introduction

Sexual partnership dynamics known to impact HIV transmission include the number and 

duration of partnerships, the frequency and type of sexual intercourse engaged in, and the 
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length of time between partnerships [1, 2, 3]. However, the question of whether or not 

concurrency, defined as overlapping dates of sexual partnership, impacts HIV transmission 

independent of these other factors remains unanswered [4, 5].

In identifying concurrency, a frequently used operational definition involves classifying 

consecutive partnerships as having either a negative or a positive partnership gap [6]. For 

example, assume an individual is sampled from the population of interest and reports on his 

or her previous sexual partnerships by providing the number of days elapsed since the 

partnership started and stopped. For each set of consecutive partnerships, it is then possible 

to subtract the number of days corresponding to the beginning of the more recent partnership 

from the number of days corresponding to the end of the previous partnership. If the 

resulting difference is positive, we classify these partnerships as serially monogamous. If the 

difference is negative, we classify these partnerships as occurring concurrently. Thus, the 

question becomes whether or not concurrent partnership patterns result in increased rates of 

HIV transmission relative to serially monogamous patterns, when holding all other sexual 

partnership dynamics fixed.

A number of frequently cited studies have used mathematical models to demonstrate that the 

risk of HIV transmission is theoretically greater when partnerships are concurrent rather 

than serially monogamous [7, 8]. However, strong empirical evidence to support the effect of 

concurrency on HIV transmission has been difficult to obtain resulting in an ongoing debate 

among experts in the field of HIV transmission research [9, 10, 11].

The statistical analysis of sexual partnership dynamics, and concurrency in particular, is 

complicated because data is frequently obtained from cross-sectional surveys in which 

participants record recent sexual histories over a specified time interval. Furthermore, sexual 

histories may include both partnerships that last over a prolonged period of time as well as 

isolated sexual encounters that occur on a single day. The objective of this paper is to 

develop a statistical modeling approach for the analysis of retrospective sexual history data 

in order to identify and characterize covariates that impact concurrency and to provide 

estimates of the magnitude and extent of concurrency within a population. The present work 

was motivated by the MetroMates study in which men who have sex with men (MSM) who 

attended a clinic in Los Angeles and received HIV testing were asked to provide sexual 

history data. In section 2, we describe retrospective sexual history data and review some 

existing methods of analysis. In section 3, we propose a modeling approach based on a joint 

multistate model and point process allowing incorporation of explanatory variables. We 

derive estimators for two important concurrency metrics in section 4. The proposed methods 

are applied to the MetroMates study in section 5. We discuss the results and utility of the 

proposed model in section 6.

2. Background

2.1. Concurrency Metrics

Many of the challenges in establishing empirical evidence supporting the impact of 

concurrency on HIV transmission can be traced back to difficulties in accurately measuring 

concurrency. To assess the effect of concurrent partnership patterns on the trajectory of the 
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HIV epidemic in a population, it is necessary to estimate both the extent and the magnitude 

of concurrency. Specifically, interest lies in estimating the point prevalence of concurrency, 

referred to more generally as the concurrent partnership distribution, and the mean duration 

of concurrency, referred to here as the mean concurrent partnership sojourn time during 

which a person has k ongoing partnerships. We assume both these metrics can be estimated 

using sexual history data obtained by independently sampling individuals from a population 

existing in a stationary state with respect to its partnership patterns. Thus, the concurrent 

partnership distribution and the mean concurrent partnership sojourn times are estimated for 

a population at steady state and are not expressed as a function of time.

• Concurrent partnership distribution πk is the probability that an individual 

member of a population is engaged in k ongoing partnerships at any given 

point in calendar time for k ∈ {0, 1, 2, …}

• Mean concurrent partnership sojourn time for an individual engaged in k 
ongoing partnerships ρk is the the mean duration of time the individual 

will remain in k ongoing partnerships before experiencing the next 

partnership formation or dissolution for k ∈ {0, 1, 2, …}

Estimation of these two population concurrency metrics enables researchers to draw 

inferences about specific populations from which data were collected and to ultimately 

compare patterns of concurrency across different populations or subpopulations. Further, 

empirical estimates of these population concurrency metrics could be used as input when 

constructing infectious disease mathematical models, such as agent-based and social 

network models, which would allow researchers to examine the viability and trajectory of 

the HIV epidemic over time and under variable conditions [12, 13, 14, 15].

2.2. Retrospective Sexual History Data

An optimal study design for estimating these population concurrency metrics would involve 

recruitment of a cohort of individuals prior to sexual debut followed by ongoing collection 

of partnership information from each participant throughout the duration of his or her life. 

Unfortunately, such designs are prohibitively expensive and typically infeasible due to 

implementation obstacles. Instead, partnership data is typically collected retrospectively in 

the form of sexual history information obtained using an approach known as the calendar 

method [16]. Following this approach, researchers administer a cross-sectional survey to a 

sample of individuals from the target population asking respondents to identify each sexual 

partnership, either ongoing or concluded, that occurred in part or in full during the previous 

year or other pre-specified elapsed interval of time. For each identified partnership, 

respondents are then asked to provide the first and last dates of sexual intercourse.

A drawback of the calendar method is that careful consideration needs to be taken when 

attempting to appropriately analyze data obtained using this technique. Traditionally, 

attempts to analyze retrospective sexual history data have used the partnership as the unit of 

observation and have thus ignored heterogeneity across individuals and time. For example, 

the mean partnership duration is usually calculated by averaging across partnership 

durations reported by all individuals across all time points, assuming partnerships to be 

independent and identically distributed [17]. In some instances, these partnership-level 
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analyses have also inadequately addressed right censoring and length-biased sampling[18]. 

Another shortcoming of current analytical approaches is the tendency to use only a snapshot 

of the available information. For example, to obtain an estimate of the concurrent 

partnership distribution, a specific time point is selected, such as one month prior to the 

survey date, and the observed distribution at that time is taken as the estimated distribution 

thereby discarding a large portion of the available data [19, 20]. In 2010, a UNAIDS 

working group developed guidelines for measuring concurrency and recommended that the 

point prevalence at six months prior to the interview be used as an indicator of concurrency 

within a population [21]. Following the dissemination of these guidelines, numerous articles 

were published questioning the validity of the proposed indicator citing issues of recall bias 

and demonstrating the variability in point prevalence estimates across differing points in 

time [20, 22].

Another concern rarely addressed when analyzing retrospective sexual history data is the 

handling of individual partnerships reported as having the same first and last dates of sexual 

intercourse. These partnerships are usually assumed to represent one-time sexual encounters 

and will be referred to as one-offs. Here we distinguish one-offs from other partnerships 

which we will refer to throughout this paper as ongoing partnerships. The high rate of one-

offs reported among many of the populations targeted for prevention and treatment efforts 

necessitates the consideration of these events in the statistical analysis stage. Regardless of 

the per-one-off transmission probabilities, the cumulative effect of relatively high rates of 

one-offs on HIV transmission within a community may be substantial. Another advantage of 

explicitly modeling these one-off events is to account for the potential impact of one-off 

events engaged in by an individual on the likelihood of a subsequent partnership formation 

or dissolution event.

3. Methods

3.1. Modeling Objectives

Based on the challenges described above, the present study aims to develop a modeling 

framework that meets four criteria. The proposed model should:

1. Treat individuals as the independent units of observation rather than 

partnerships which may exhibit dependence when engaged in by the same 

individual at the same or different points in time.

2. Allow estimation of population metrics of interest for measuring 

concurrency: the concurrent partnership distribution and the mean 
concurrent partnership sojourn time for an individual engaged in k 
ongoing partnerships.

3. Be flexible enough to incorporate explanatory variables in order to identify 

and characterize factors affecting concurrency.

4. Account for one-offs and allow the occurrence of one-offs to potentially 

impact the subsequent formation and dissolution of ongoing partnerships.
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3.2. The Joint Model

To address the modeling objectives, a joint multistate and point process model is proposed. 

A multistate model is a model for a continuous-time stochastic process which may, at any 

time, occupy one of a number of discrete states [23, 24]. Typically, multistate models are fit 

to longitudinal observations of a categorical variable. For sexual history data, each 

individual’s continuation in and transition through differing states, where state is defined as 

the number of ongoing partnerships an individual is engaged in at a given point in time, can 

be modeled using a multistate modeling approach. In this manner, each individual’s 

partnership patterns over time are treated as a single stochastic process. Figure 1(a) depicts 

data for an individual who reported the first and last dates of sexual intercourse for three 

partnerships occurring within the past year. Figure 1(b) demonstrates the way in which the 

reported partnership information can be translated into process data appropriate for use in 

fitting a multistate model. The depicted individual begins the year interval in a state of zero 

ongoing partnerships. He then experiences three partnership formation events followed by 

two dissolution events and ends the year in a state of one ongoing partnership.

The multistate component of the joint model addresses one of our modeling objectives by 

treating each individual’s sexual history as its own stochastic process. Partnerships engaged 

in by the same individual at the same and different points in time are inherently linked by the 

modeling of transition intensities associated with partnership formation and dissolution. 

However, the point process component of the joint model is necessary to accommodate one-

offs. By proposing a joint model, the state occupied by the multistate process for an 

individual at a given time can influence the rate of occurrence of one-offs. Additionally, the 

joint nature of the model allows the occurrence of one-offs to affect the subsequent intensity 

of transition from one state to another. Joint modeling of a multistate process and a discrete 

event process has been recently demonstrated using medical record data with random 

informative observation times [25].

Let Y(t) denote the number of ongoing partnerships an individual is engaged in at calendar 

time t such that Y(t) takes values in {0, 1, 2, …} for all t where t corresponds to external or 

calendar time. We let Y(t) represent the count of ongoing partnerships, which excludes the 

occurrence of one-offs that are alternatively modeled by the count process component of the 

joint model. Jumps in Y(t) thus correspond to partnership formation or dissolution events. 

Assume multiple partnership formation or dissolution events cannot occur at the exact same 

point in time such that Y(t) can only jump to adjacent states resulting in a birth-death-type 

process. If we assume Y(t) is a time homogeneous continuous-time Markov multistate 

process, Y(t) can be fully characterized by specification of either the transition probabilities 

from state k to state l

for all t ≥ 0 and k, l ∈ {0, 1, 2, …}, or by the transition intensities,
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for k, l ∈ {0, 1, 2, …}, which represent the instantaneous probability of transition to state l 
given occupation of state k. Under the Markov assumption, these transition intensities are 

assumed constant with respect to time yielding exponentially distributed sojourn times. In 

order for the occurrence of one-offs to influence the subsequent intensity of transition we 

must relax this assumption by allowing transition intensities to vary within occupancy of a 

state. We adopt a phase-type Markov model with intensities that fluctuate in response to 

each one-off event that occurs during occupancy of a state [26]. To implement this, we 

choose to parametrically model transition intensities by

(1)

where N(t) represents the count of one-off events at calendar time t having occurred since 

the last transition in Y(t) and X(t) denotes a vector of explanatory variables. For an 

individual who enters a state of k ongoing partnerships, N(t) counts the occurrence of one-

offs since entry into the current state. Each time an ongoing partnership is formed or 

dissolved an individual transitions to a new state and the counting process for one-offs, N(t), 
starts over at zero. To make the definition of N(t) precise, let ν(t) represent the cumulative 

count of one-offs having occurred at time t such that ν(t) represents a true counting process. 

Let N(t) = ν(t)−ν(s(t)) where s(t) = max0≤x<t({x : Y(x) ≠ Y(t)}, 0) such that s(t) represents 

the calendar time at which the last partnership formation or dissolution occurred prior to 

time t. N(t) takes values in {0, 1, 2, …} for all t. Assume no two one-offs can occur at the 

exact same time such that N(t) is a counting process within each state occupied. In general, 

the αkl transition intensities may depend on the history of the process, ℋ, which includes the 

trajectories associated with N(t) and X(t) over time ranging from 0 to t. Here we consider the 

special case in which the history of the process can be ignored and αkl(t|ℋ) can be reduced 

to αkl(t) and expressed as a function of X(t) and N(t) observed at time t. Thus, the intensity 

of transition at time t may depend log-linearly on the number of one-offs having occurred, 

baseline characteristics of the individual, and time-dependent characteristics of the 

individual or his ongoing partners. Time-dependent variables are restricted, however, in that 

they are only allowed to vary along with the phase-type intensities which vary only at the 

instant a partnership is formed or dissolved or a one-off occurs. For example, X(t) could 

contain an indicator for engagement in a main partnership or occurrence of a one-off with a 

commercial sex worker but could not contain information on an individual’s CD4 count as 

measured at arbitrary time points.

We choose to model N(t) as a Markov-modulated Poisson process which allows variation in 

the rates of one-offs over time according to the number of ongoing partnerships an 

individual is engaged in. Markov-modulated Poisson processes are doubly stochastic in that 

the Poisson process rate varies according to a continuous-time Markov chain [27]. In our 

proposed model, the continuous-time Markov chain regulating the rates of one-offs 
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corresponds to the multistate process Y(t) representing the number of ongoing partnerships 

an individual is engaged in at time t. The interaction of both components of the proposed 

joint model are visually depicted in Figure 2. At each day prior to the survey date 

corresponding to time t, an individual can be said to be in a state of Y(t) ongoing 

partnerships and to have experienced N(t) one-offs which can be read from the left and right 

vertical axes of Figure 2, respectively. The dashed line which increments along with each 

partnership or one-off event depicts the times at which the transition intensities for 

partnership formation or dissolution may vary. A Markov-modulated Poisson process can be 

fully characterized through specification of the intensity function λ(t) which represents the 

infinitesimal rate at which events are expected to occur around time t. Thus, in modeling 

N(t) it suffices to model λ(t). We parametrically model intensity functions for individuals in 

a state of k ongoing partnerships by

(2)

where X(t) is a vector of potentially time-dependent explanatory variables with the same 

restrictions as described previously. X(t) does not need to consist of the same explanatory 

variables across the two components of the model and careful consideration of the joint 

nature of the model should be taken prior to selecting covariates for inclusion in both 

components of the model. In choosing to consider the two components of the joint model 

together as a two-dimensional vector, (Y(t), N(t)), the overarching modeling framework can 

alternatively be described as a bivariate continuous-time Markov process in which the 

Markov property holds for states defined through specification of both Y(t) and N(t).

3.3. Parameter Estimation

We fit the joint model described in section 3.2 and specifically given by equations (1) and 

(2) using maximum likelihood estimation. Let βkl = {βkl0, βkl1, βkl2} denote the vector of 

regression parameters expressed in equation (1). In theory, transition intensity regression 

parameters βkl can be estimated for each k, l ∈ {0, 1, 2, …}. In practice, we choose to 

specify a limited number of unique transition intensities. For modeling of sexual history 

data, we will estimate parameters βkl associated with transition from a state of k ongoing 

partnerships to a state of l ongoing partnerships for three distinct types of transitions:

To clarify use of the term monogamous, here we define a monogamous partnership as any 

partnership that is the sole ongoing partnership that an individual has reported being 

engaged in at a given point in time. Thus, engagement in a monogamous partnership does 

not preclude the occurrence of one-offs or the formation of additional concurrent 

partnerships at a future point in time. To simplify notation, let β0, β1, and β2 denote the 

parameters to be estimated for the intensity of formation of a monogamous partnership, 
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formation of a concurrent partnership, and dissolution of a partnership, respectively. 

Additionally, we choose to estimate γk = {γk0, γk1} from equation (2) separately for states 

of no ongoing partnership (k = 0), one ongoing partnership (k = 1) and concurrent 

partnerships (k ≥ 2). For simplicity, we will denote these parameters as γ0, γ1 and γ2, 

respectively. Therefore, the full likelihood will be maximized to obtain parameter estimates 

θ̂ = {β̂0, β̂1, β̂2, γ̂0, γ1̂, γ̂2}.

In constructing the likelihood we must calculate the probability of survival across intervals 

of time during which the transition probabilities remain constant. The term event will be 

used to signify any one of the following: a partnership formation, a partnership dissolution, 

or the occurrence of a one-off. We assume that multiple events cannot occur at the same 

instant in time. Due to the Markov modeling approach, inter-event times are exponentially 

distributed. For an individual in a state of k ongoing partnerships who experiences an event 

at time t1, the probability of that individual remaining in state k until time t2 without 

experiencing another event is

where α01, αk,k+1, and αk,k−1 denote the transition intensities associated with the formation 

of a monogamous partnership, formation of a concurrent partnership, and dissolution of any 

ongoing partnership, respectively. λk denotes the rate of one-offs for an individual in a state 

of k ongoing partnerships. To construct the likelihood, we must also calculate the 

instantaneous probability of an event occurring at time t. Given an individual in a state of k 
ongoing partnerships experienced an event at time t1 and remained in state k until time t2, 

the probability of a specific event occurring at time t2 > t1 is assumed constant and equal to

where qkk(t1) indicates no change in the number of ongoing partnerships and is used to 

denote the occurrence of a one-off. Let i = 1, …, n index each respondent in an independent 

sample of size n. For each individual i, let mi indicate the total number of events 

experienced, either ongoing partnership events or one-off events, over the course of the year 

interval. Let Ti = {ti0, ti1, …, timi, ti(mi+1)} be the set of event times for individual i such that 

ti0 indicates the time at which the year interval begins, ti1 the time when the first event 

occurs, timi the time when the last event occurs and ti(mi+1) the time at which the year 

interval ends. Event times are ordered such that ti0 < ti1 < … < ti(mi+1). Similarly, let Yi = 

{yi0, yi1, …, yimi} be the sequence of states for individual i such that yi0 and yimi indicate 

the numbers of ongoing partnerships individual i is engaged in at the start and end of the 

year interval, respectively. Importantly, adjacent elements of Yi need not differ, for example, 
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yi2 would equal yi3 in the instance that the third event experienced by individual i was a one-

off. An example demonstrating use of this notation for a single individual is depicted in 

Figure 3.

The likelihood can then be expressed as the product over all individuals and all events

Following maximization of the log likelihood function using numerical optimization 

techniques, the covariance matrix for the parameter estimates can be obtained by inverting 

the negative Hessian. The square root of the diagonal elements of this covariance matrix are 

asymptotically equal to the standard errors for the corresponding parameter estimates.

4. Concurrency Metric Estimators

As a result of the bivariate Markov model specification, which implies constant event 

intensities, the concurrency metric estimators can be expressed in terms of the model 

parameter estimates. Let Ck be an integer valued random variable representing the number 

of one-offs that occur from the moment an individual enters a state of k ongoing partnerships 

until the individual leaves that state by either forming or dissolving an ongoing partnership. 

Let Hk be the random variable indicating the concurrent partnership sojourn time, that is the 

duration of time an individual remains in a state of k partnerships prior to an ongoing 

partnership formation or dissolution event. For an individual in a state of k ongoing 

partnerships who has experienced r one-offs since the last partnership formation or 

dissolution event, let μkr denote the mean duration of time until the next event (partnership 

formation, dissolution, or one-off). Thus, μkr is the mean inter-event time after entry into a 

state of k ongoing partnerships and after a total of r one-offs since entry into the current 

state. Inter-event times are exponentially distributed because the event occurrence intensities 

are constant given k and r. Therefore, for a fixed Ck = c, Hk will be equal to the amount of 

time spent in state k with a cumulative total of exactly 0 one-offs, plus the amount of time 

spent in state k with a cumulative total of exactly 1 one-off, summing all the way up to c 
one-offs. For an individual in a state of k ongoing partnerships who has experienced r one-

offs, let Δkr represent the probability that the next event (formation, dissolution, or one-off) 

that occurs is either a partnership formation or dissolution event resulting in escape from the 

state of k ongoing partnerships. Therefore, P(Ck = 0) = Δk0 and P (Ck = 1) = Δk1(1−Δk0) 

which is equal to the probability of the first event being a one-off and the second event being 

the formation or dissolution of an ongoing partnership. The mean concurrent partnership 

sojourn times for all k ∈ {0, 1, 2, …} can then be derived as follows using iterative 

expectation
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(3)

To calculate ρ̂k, we first define

(4)

(5)

Depending on the variables comprising X(t), E[X(t)|Y(t) = k, N(t) = r] can usually be 

estimated given the available data. For instance, if X(t) is an indicator for engagement in a 

main partnership, E[X(t)|Y(t) = k, N(t) = r] would simply equal the probability of being in at 

least one main partnership for an individual who experienced r one-offs since transition into 

a state of k ongoing partnerships. As a result of the homogeneous Markov assumption which 

implies independent and exponentially distributed inter-event times,

for all k ∈ {1, 2, …}. For k = 0, μ̂kr = [α̂01r + λ̂0r]−1 and Δ̂kr = [α̂01r] [α̂01r + λ̂0r]−1. For 

practical purposes, in estimating the mean concurrent partnership sojourn times, infinite 

sums can typically be truncated such that the sum extends only until P(Ck = c) becomes 

negligible.

Assuming stationarity of the bivariate continuous-time Markov process, an estimator for the 

concurrent partnership distribution can be derived by solving the equilibrium equation πQ = 

0 for π where Q is the infinitesimal generator matrix for the two-dimensional process [28]. 

We will assume maximal values for possible counts of ongoing partnerships and one-offs in 

order to obtain a finite dimensional Q matrix and to make the calculations tractable. The 

resulting approximation is thus accurate up to arbitrary numerical error stemming from 

truncation of the state space. Allowing a maximum of K ongoing partnerships and R one-
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offs, such that π = {π00, π10, π20,.., πK0, π01, π11, …, πKR} where πkr denotes the 

probability that, at any given point in time, an individual is engaged in k ongoing 

partnerships after the occurrence of r one-offs since the last formation or dissolution event. 

For r ∈ {0, 1, …, R}, let

where λr, Γr, and Ar are (K + 1)-dimensional square matrices. Then, Q is a (K + 1)(R + 1)-

dimensional square matrix that can be defined using the above notation and a series of block 

matrices.

The structure of Q is such that the A0 + Γ0 − Λ0 block yields the transition rates between 

states (k, 0) and (l, 0) and the first Λ0 block yields the transition rates between states (k, 0) 

and (k, 1) [25, 29]. The rest of the generator matrix is structured similarly. There is 

insufficient information to solve the set of balance equations resulting from πQ = 0 and we 

must therefore incorporate our knowledge that . After solving for π, we 

obtain the concurrent partnership distribution by summing across numbers of one-offs such 

that  for all k ∈ {0, 1, 2, …, K}.

Estimation of standard errors for all ρ̂k and πk̂ can be completed using a nonparametric 

bootstrap approach for multistate processes [30, 31]. For an observed sample of size n, the 

approach entails sampling with replacement a total of n individuals and using all of each 

sampled individual’s sexual history data to calculate ρ̂k and πk̂ for k ∈ {0, 1, …} as 

described above. This entails fitting the proposed model, obtaining the parameter estimates 

and then using the formulas presented in this section to calculate the concurrency metrics of 

interest. This resampling process is repeated until g bootstrap samples have been drawn and 

estimates computed where g is usually large. The variances of ρ̂k and πk̂ can then be 

estimated as the empirical variances of the g replicates of ρ̂k and πk̂.
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5. Application

The retrospective sexual history data that motivated the development of the proposed model 

came from a National Institute of Drug Abuse (NIDA)-funded research study officially titled 

Transmission Behavior in Partnerships of Newly HIV Infected Southern Californians and 

commonly referred to as the MetroMates study (PI: Dr. Pamina Gorbach). Between February 

2009 and May 2012, MSM seeking testing for HIV through the Sexual Health Program at 

the Los Angeles LGBT Center were recruited to participate in the MetroMates study 

involving a baseline interview, testing for HIV and other sexually transmitted infections, and 

a year of follow-up interviews. Criteria for enrollment included: male, at least 18 years of 

age, report of sex with a male partner in the past 12 months, and a new HIV test. 

Demographic, behavioral, and other data were collected using Audio Computer-Assisted 

Self-Interview (ACASI). Data were collected at the respondent level and respondents could 

elect to provide information for up to six named partners with whom they reported having 

sexual intercourse within the past year. Using the calendar method, respondents reported the 

lengths of time since first and last intercourse in days, weeks, months, or years creating 

variation in precision. To distinguish between partnerships that were ongoing versus 

dissolved at the time of the survey, responses to an item asking how likely it is that a 

respondent will have sex with the partner again were used. Responses of “extremely 

unlikely” and “very unlikely” were assumed to indicate a terminated partnership.

Data were collected for 326 participants in the MetroMates study. Among these participants, 

1,050 partnerships were reported. Invalid partnerships consisting of 64 partnerships with 

missing first or last dates of intercourse, 39 partnerships with a last date of intercourse 

preceding the first date of intercourse, and 47 partnerships with last dates of intercourse 

prior to the year interval were excluded. Following these exclusions, data were available for 

295 male participants with at least one valid partnership. Participants ranged in age from 19 

to 62 years (mean = 30.03, standard deviation = 7.85). The MetroMates study protocol 

called for oversampling of HIV positive men. Among the 295 respondents, 196 received a 

positive HIV diagnosis and the remaining 99 were HIV negative at the time of the survey. 

The MetroMates study also selectively enrolled men whose new HIV diagnosis suggested a 

recent or acute infection. As described by Gorbach et al. [32], during the initial phase of 

enrollment only men with a recent diagnosis were recruited. To complete enrollment, men 

with any new diagnosis, including chronically infected men, were recruited. Of the 295 men 

included in our sample, 74% reported one or more one-off during the year interval for a total 

of 534 one-offs. Of the 896 partnerships reported, 60% were one-offs, 7% were of duration 

30 days or less, 24% were of duration 31–365 days, and 9% were reported as lasting longer 

than 365 days.

The Markov nature of the proposed model assumes exponentially distributed sojourn times 

conditional on the number of ongoing partnerships and the number of one-offs having 

occurred since the last partnership event. To assess the appropriateness of this assumption 

for the MetroMates sample, we performed graphical diagnostics [33]. Specifically, we 

plotted the Nelson-Aalen estimated cumulative hazard rate versus time for each condition 

defined by HIV status, the number of ongoing partnerships, and number of one-offs. For 

conditions with a sufficient sample size, we assessed the linearity of the plotted curve. 
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Across most conditions, the assumption of exponentially distributed sojourn times appeared 

valid.

In applying the modeling approach described previously to the MetroMates data, we fit a 

number of models including explanatory variables such as respondent age and HIV status. In 

the model selection stage, explanatory variables were incorporated into either or both the 

multistate and point process components of the model. The model we selected for 

presentation included the number of one-offs and an indicator for HIV status as covariates in 

the multistate portion of the model. One-off event rates were estimated separately for 

individuals in no ongoing partnerships, one ongoing partnership, and concurrent 

partnerships. The log likelihood function was constructed using code written in R version 

3.2.0 and available in the supplementary materials. Minimization of the negative log 

likelihood function was accomplished using the general-purpose optimization function 

optim available in the base R stats package. The Nelder-Mead direct search method was 

specified and differing sets of initial values were used to verify the results obtained. To 

enable calculation of standard errors, a numerical approximation to the Hessian matrix was 

generated using the R numDeriv package. Parameter estimates for the model fit to the 

MetroMates data are displayed in Table 1. Relative to HIV negative men, HIV positive men 

were estimated to have higher hazard of forming a monogamous partnership, higher hazard 

of forming a concurrent partnership, and lower hazard of partnership dissolution during the 

previous year, although these results were not statistically significant. The number of one-

offs was significantly associated with rates of subsequent partnership dissolution. Following 

the occurrence of each additional one-off, an individual was estimated to experience a 56% 

increase in the hazard of dissolution of an ongoing partnership.

Using the analytic expressions derived previously and the parameter estimates in Table 1, the 

population concurrency metrics were estimated. The concurrent partnership distribution and 

the mean concurrent partnership sojourn times were estimated separately for HIV positive 

and negative individuals in this sample (Table 2). Standard errors for the concurrency 

metrics were calculated based on g = 1000 bootstrap samples. The concurrent partnership 

distribution was calculated across states ranging from 0–7 ongoing partnerships and 0–4 

one-offs, as these ranges encompassed the majority of the observed data. States of ≥2 

ongoing partnerships were combined for presentation in Table 2. At any given point in time, 

approximately 18% of the HIV positive sample would be expected to be engaged in 

concurrent partnerships as compared to 10% of the HIV negative sample. Sixteen percent of 

the HIV negative sample was estimated to be engaged in a monogamous partnership at any 

given point in time relative to 19% of the HIV positive sample.

The mean concurrent partnership sojourn times for states of 0, 1, and 2 or more ongoing 

partnerships are displayed in Table 2. Regardless of HIV status, the mean length of time an 

individual was expected to remain engaged in a state of 2 or more partnerships prior to 

forming or dissolving a partnership was approximately 4 months. The mean duration of time 

spent in a state of one ongoing partnership was also approximately 4 months and did not 

appear to differ substantially according to HIV status. HIV negative individuals were 

estimated to remain in a state of no ongoing partnerships for an average duration of 15.5 

months, as compared to approximately 14.5 months among HIV positive individuals.
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The mean numbers of one-offs per year for individuals engaged in no ongoing partnerships, 

one ongoing partnership, or concurrent partnerships were obtained by taking the inverse of 

each element of γ̂. Not surprisingly, individuals in a single monogamous partnership had the 

lowest estimated rate of one-offs per year (0.81). On average, men engaged in concurrent 

partnerships experienced an estimated 1.40 one-offs per year and men engaged in no 

partnerships experienced 1.75 one-offs per year.

6. Discussion

We have described a novel approach for the joint modeling of sexual partnership patterns 

using retrospective sexual history data containing one-off sexual encounters. The proposed 

model can be applied to answer pertinent questions in the field of HIV transmission 

research. Implementation of this approach was demonstrated using epidemiological data 

collected from a sample of MSM seeking HIV testing at a Los Angeles clinic. Despite the 

limitations associated with retrospective sexual history survey data, we were able to estimate 

several important population concurrency metrics using a technique that accounted for 

different sources of variation and fully utilized the available data.

The joint multistate and point process model addresses all of the modeling objectives 

outlined previously. The proposed method accounts for dependence among partnerships 

engaged in by the same person at the same or different points in time by translating the data 

collected at the partnership-level into individual-level trajectories and modeling these 

trajectories as independent stochastic processes. Another advantage of the joint model is the 

explicit modeling of rates of partnership formation and dissolution. Many of the agent-based 

and other mathematical models constructed to examine the impact of concurrency on HIV 

transmission have relied on simple empirical estimates of the mean partnership duration or 

concurrent partnership distribution as input [15, 12, 34]. Our proposed method provides 

improved estimates of these quantities but also provides formation and dissolution rates that 

are perhaps more useful in creating a dynamic mathematical model involving forward 

simulation of concurrent partnership patterns over time. As shown in Figure 4, state 

transition intensities and one-off rates estimated based on the MetroMates data can be easily 

used to generate simulated sexual partnership trajectories at the individual level. Rates of 

partnership and one-off events that are dynamic with respect to time could be useful in 

adapting current network models such that the probabilities of a partnership formation or 

dissolution between two individuals in a network are variable and more accurately reflect the 

sexual partnership patterns observed in a a population. The proposed joint model is also 

flexible enough to allow for the incorporation of explanatory variables to further account for 

heterogeneity between individuals. Lastly, we have developed a joint model that includes the 

random occurrence of one-offs. This important extension enables examination of the relative 

importance of one-offs in driving the spread of HIV within a population and also allows for 

one-offs to impact HIV transmission indirectly, by affecting rates of subsequent partnership 

formation and dissolution. Among populations such as the MSM surveyed in the 

MetroMates study, the high reported rate of one-offs makes this a valuable feature of the 

proposed model. The joint modeling approach also distinguishes between one-offs and 

short-term partnerships which may be important for determining factors impacting HIV 

transmission. One-offs could potentially have a higher probability of transmission for a 
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given sexual encounter due to differences in the type of sex occurring during a one-off. For 

example, one-offs may be more frequently associated with drug use leading to longer 

duration of sex or more vigorous sex which could in turn enhance infectiousness. The 

proposed model could enable identification of such differences in the risk of transmission.

Participants in this study do not represent a random sample of all MSM living within Los 

Angeles nor do they represent all MSM living within the community served by the Los 

Angeles LGBT Center. This sample was obtained by recruiting individuals who sought HIV 

testing and the recent sexual activity they reported on would be expected to include 

behaviors that influenced their decision to seek testing. Further, the study protocol called for 

the oversampling of HIV positive individuals and, in particular, recently-infected HIV 

positive individuals[32]. Thus, the generalizability of results presented in this study is 

limited. We assume that the removal of invalid partnerships resulting in exclusion of 31 

respondents did not significantly bias our results although we have limited means of 

assessing this assumption. Sixty-one percent of the 31 excluded individuals were HIV 

positive as compared to 66% of individuals included in the analyzed data. In removing 

invalid partnerships, we further acknowledge that the partnership rate estimates presented 

here could be biased downward if the removed partnerships represented actual partnerships 

occurring during the year interval.

Several sources of uncertainty were present in our analysis of the MetroMates data. Since 

respondents were only allowed to report on a maximum of six sexual partnerships that 

occurred in part or in full during the previous year, individuals engaging in larger numbers 

of partnerships across the year interval may have provided incomplete partnership data that 

could potentially bias the estimates presented. Of the 295 participants included in the final 

sample, 60 (20.3%) reported on 6 partnerships. Methods to address this issue in future 

studies need further development but could include alternative questionnaire designs or 

consideration of subject-specific time intervals of observation during the analysis stage. 

Additionally, since respondents were allowed to choose the unit of measurement with which 

they reported time since first and last dates of sexual intercourse, dates used in analyses were 

often approximated. Future studies are required to explore the potential impact of this source 

of uncertainty, especially in the context of multistate models with bidirectional transitions. 

Similarly, this issue of coarseness in the reporting of dates introduces uncertainty 

surrounding the distinction between one-offs and ongoing partnerships of short duration 

which is an area for future work. Lastly, due to the questionnaire instructions, respondents 

were not asked to report partnerships occurring prior to the year interval and therefore the 

number of one-offs an individual had engaged in at the start of the year interval was 

unknown. In analyzing the MetroMates data, we assumed zero one offs having occurred 

since the last formation or dissolution event, which could potentially bias our results. Future 

studies may choose to consider attempting to capture or impute this missing data.

In considering these results, it is important to recall the sampling approach with regard to 

HIV status. The HIV positive sample received their positive diagnosis at the time of the 

survey. Thus, the sexual behaviors these individuals were reporting on occurred prior to their 

knowledge of their HIV status. The sexual patterns attributed to HIV positive men within 

this sample should not be assumed to reflect the behaviors an HIV positive man aware of his 
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status would engage in. Additionally, some of the behaviors reported on by recently infected 

HIV positive individuals within this sample may have occurred prior to the individual’s 

acquisition of HIV. Although the retrospective reporting of the data relative to the date of 

diagnosis limits some of the conclusions that can be drawn, the timing of calendar method 

data collection may be advantageous when attempting to answer questions about the 

association between concurrency and acquisition of HIV. If a significant association between 

concurrency and subsequent diagnosis of acute HIV infection had been identified, it would 

not directly support the hypothesis that concurrency impacts HIV transmission at the 

population-level. In theory, an individual who engages in concurrent partnerships does not 

put him or herself at greater risk than if he or she had engaged in the same numbers and 

types of risky behaviors with the same individuals but in a serially monogamous setting. 

Therefore, we would expect an increase in the rate of transmission among individuals 

engaging in concurrent partnerships but not necessarily an increase in the rate of acquisition. 

It is, however, reasonable to consider that individuals engaging in concurrent partnerships 

are (1) also engaging in more total partnerships and engaging in risky behaviors at a greater 

rate relative to individuals in monogamous partnerships, and (2) more likely to be engaging 

in concurrent partnerships with individuals who themselves are engaging in concurrent 

partnerships. Both of which could explain an association between increased point prevalence 

of concurrency and subsequent diagnosis with HIV among samples reporting retrospective 

sexual history data at the time of screening.

We have demonstrated implementation of this joint modeling approach using model 

specifications that were selected to be appropriate for use with the MetroMates data and to 

reduce complexity in this initial presentation of the proposed model. Future applications of 

this model for analysis of sexual history data could select a different set of covariates, 

including the addition of other time-varying explanatory variables such as partnership-level 

characteristics. Although the assumption of stationarity is critical for calculation of the 

concurrency metrics as described herein, inclusion of covariates such as respondent age or 

calendar date at the time of interview is possible. In this instance, the concurrency metrics 

can be calculated for categorical age or date strata as done for HIV status in the present 

application, or calculations can be completed after taking the expected value of these 

covariates as shown in equations (4) and (5). Although the presented model for the 

MetroMates data did not include any explanatory variables significantly associated with the 

rate of one-offs, the parametric formulation of the point process rate function can easily 

accommodate inclusion of these variables. A simple modification to the proposed model 

would allow for a different definition of N(t). For instance, one might elect to let N(t) reflect 

the count of one-offs occurring only during some specific time interval prior to time t, for 

instance, one month, such that the impact of one-offs on subsequent events is limited in 

duration. The proposed model is also general enough to allow for selection of different 

counting processes in instances when the assumptions surrounding the Poisson process are 

not valid. For instance, when it is not acceptable to assume that the variance of the counts of 

one-offs over any given interval of time equals the mean, an alternative counting process 

distribution, such as the negative binomial, may be more appropriate. Another consideration 

is the use of zero-inflated count models in instances in which time intervals during which no 

one-offs occur are observed in excess. The model specified herein also assumes a bivariate 
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continuous-time Markov structure. This framework requires that transition intensities are 

constant within subintervals of time defined by the occurrence of one-offs, allowing 

transition intensities from one state to another to differ across the interval of time spent in a 

given state. Advantages of this framework are the flexibility to allow one-offs to affect 

subsequent intensities and ease of construction of the likelihood. Alternative non-Markovian 

models that do not rely on the phase-type intensities assumption are possible although the 

derived concurrency metric estimators would not be directly applicable.

Future applications of the proposed model to sexual history data may use the general joint 

multistate and point process framework presented here and alternatively adapt it to meet 

their needs. Researchers investigating sexual partnership dynamics impacting HIV 

transmission should consider analyzing sexual history data using a modeling approach such 

as the one proposed here, that jointly models both ongoing and one-off sexual partnerships 

and treats the individual, rather than the partnership, as the independent unit of observation.
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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