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RESEARCH Open Access

Drought severity and all-cause mortality
rates among adults in the United States:
1968–2014
Katie M. Lynch1, Robert H. Lyles2, Lance A. Waller2, Azar M. Abadi3, Jesse E. Bell1,3† and Matthew O. Gribble1,4*†

Abstract

Background: Little is known about the effect of drought on all-cause mortality, especially in higher income
countries such as the United States. As the frequency and severity of droughts are likely to increase, understanding
the connections between drought and mortality becomes increasingly important.

Methods: Our exposure variable was an annual cumulative drought severity score based on the 1-month, county-
level Standardized Precipitation Evapotranspiration Index. The outcome variables of demographic subgroup-specific
all-cause mortality count data per year were obtained from the National Vital Statistics System. Any counts below
10 deaths were censored in that demographic group per county. We modeled county-stratum-year mortality using
interval-censored negative binomial regression with county-level random intercepts, for each combined age-race-
sex stratum either with or without further stratification by climate regions. Fixed effects meta-regression was used
to test the associations between age, race, sex, and region with the drought-mortality regression coefficients.
Predictive margins were then calculated from the meta-regression model to estimate larger subgroup (e.g., ‘race’ or
‘sex’) associations of drought with mortality.

Results: Most of the results were null for associations between drought severity and mortality, across joint strata of
race, age, sex and region, but incidence rate ratios (IRRs) for 17 subgroups were significant after accounting for the
multiple testing; ten were < 1 indicating a possible protective effect of drought on mortality for that particular
subpopulation. The meta-regression indicated heterogeneity in the association of drought with mortality according
to race, climate region, and age, but not by sex. Marginal means of the estimated log-incidence rate ratios differed
significantly from zero for age groups 25–34, 35–44, 45–54 and 55–64; for the white race group; and for the South,
West and Southwest regions, in the analysis that included wet county-years. The margin of the meta-regression
model suggested a slightly negative, but not statistically significant, association of drought with same-year mortality
in the overall population.
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Conclusions: There were significant, heterogeneous-direction associations in subpopulation-stratified models, after
controlling for multiple comparisons, suggesting that the impacts of drought on mortality may not be monolithic
across the United States. Meta-regression identified systematic differences in the associations of drought severity
with all-cause mortality according to climate region, race, and age. These findings suggest there may be important
contextual differences in the effects of drought severity on mortality, motivating further work focused on local
mechanisms. We speculate that some of the estimated negative associations of drought severity with same-year
mortality could be consistent with either a protective effect of drought on total mortality in the same year, or with
a delayed health effect of drought beyond the same year. Further research is needed to clarify associations of
drought with more specific causes of death and with sublethal health outcomes, for specific subpopulations, and
considering lagged effects occurring beyond the same year as the drought.

Keywords: Climate and health, Global warming, Weather, Droughts, Mortality, Epidemiologic methods

Introduction
Drought generally occurs as a result of a water deficit
for a given area, but the actual definition of drought dif-
fers depending on the measures considered, such as pre-
cipitation and temperature [1]. Droughts are commonly
divided into four major types based on their environ-
mental and human impacts, including meteorological
drought (i.e., abnormally low precipitation), hydrological
drought (i.e., precipitation shortages that impact the sur-
face and groundwater levels), agricultural drought (i.e.,
decreased soil moisture that impacts crops), and socio-
economic drought (i.e., decreased water supply that af-
fects people and supply of goods) [1]. Further, droughts
can be characterized by additional factors such as dur-
ation, intensity, spatial distribution, frequency, and rate
of onset [2].
In 2012, the Intergovernmental Panel on Climate

Change (IPCC) reported that medium confidence ex-
ists that droughts in some areas of the world have in-
creased in duration and intensity since the 1950s and
this pattern will likely continue to over the next century,
due to decreased precipitation and/or increased evapo-
transpiration [3]. A recent IPCC special report found
that a shift from 1.5° to 2 °C change in global
temperature would cause some areas to experience hot-
ter extreme temperatures, which could increase the
probability of dryness and reduced water availability [4].
Within the United States, future climate projections sug-
gest that droughts will be more intense in the Southwest
and consecutive dry days are projected to increase over
much of the country [5]. At the same time, increases in
the heaviest precipitation events are also projected for
the U.S., suggesting an increase in both wet and dry ex-
tremes could occur [5].
Droughts can lead to widespread and multifaceted re-

gional impacts. Recent droughts in Kenya, the Mediter-
ranean and California have led to crises including food
insecurity, political instability, and severe economic

damage, respectively [6]. Numerous studies and articles
have researched and constructed pathways that connect
drought to health effects [7–13]. There are multiple
mechanisms by which negative health effects could re-
sult from drought. Droughts can cause decreased fresh-
water availability and impact water quality [13],
including a possible increased risk of microbial contam-
ination and cyanobacteria blooms [8, 13, 14]. Other po-
tential pathways through which drought might affect
health are through effects on agricultural production
and food insecurity [15, 16], increased occurrence and
intensity of heat events [6, 17], effects on air quality [18]
including through increased risk of wildfires [6, 19, 20]
and dust events (which may impact microbial transport
and transmission of coccidioidomycosis (Valley fever))
[6, 21–24], altered vector-borne disease transmission dy-
namics (e.g. West Nile virus) [25, 26], and by possibly
acting as a catalyst for negative behavioral or mental
health outcomes [27]. Some of these mechanisms can re-
sult in disease morbidity and/or mortality [28–44],
which may result in certain populations being more at-
risk.
A recent systematic review of evidence for the health

effects of droughts showed that high-quality, quantitative
studies on the association of drought and mortality are
limited; while some studies have shown high prevalence
of mortality at the time of drought, they do not prove
causality [7]. A previous study of all-cause mortality and
drought in the United States estimated the percentage of
drought-associated health risk in adults aged 65 years
and older, comparing full drought, non-drought and
worsening drought periods [12]. The study found a
1.55% increased risk of all-cause mortality during high-
severity worsening drought periods in western counties
of the United States and increased mortality during
worsening drought compared to non-drought periods in
counties where drought occurred less frequently [12]. A
few other studies have examined mortality related to
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drought among populations outside of the United States.
A meta-analysis of aggregated mortality surveys of death
rates in Ethiopia concluded there was no likely associ-
ation between drought and death rates of children under
the age of five, but did find an increase in mortality with
an increase in the prevalence of global acute malnutri-
tion [9]. A study of suicide risk between 1970 and 2007,
among 30–49 year old males in rural New South Wales,
Australia, found the relative risk increased 15% (95%
confidence interval = 8–22%) when the drought index in-
creased from the 1st to the 3rd quartile, after controlling
for season, region and long-term trends; however the
risk decreased for rural females over 30 years of age with
increasing drought index [11]. Also, a recent study in
Spain found statistically significant associations between
drought periods and daily mortality in Galicia, north-
western Spain [45]. Categorizing the death cases into
natural, circulatory and respiratory causes, this article
concludes that respiratory cause of mortality was the
most strongly associated cause of death [45]. These stud-
ies suggest there may be an effect of drought on mortal-
ity, but a dearth of studies on the association between
drought and mortality in higher income countries re-
mains. In addition, drought health effects could differ by
subpopulation, and this is another area in need of more
research. Because of this, we chose to evaluate the asso-
ciations between droughts and same-year all-cause mor-
tality in adults in United States from 1968 to 2014 in the
current study.

Methods
Data
Standardized precipitation evapotranspiration index
Our study’s definition of drought is based on 1-month,
county-level Standardized Precipitation Evapotranspir-
ation Index (SPEI) data for the study period of record
for the contiguous United States. The SPEI is a climatic
drought index based on precipitation and temperature
data [46]. Drought indices are quantitative measures de-
rived from the integration of relevant drought indicators
(i.e. precipitation) into a single numerical value for
drought characterization [2]. Different indices use differ-
ent variables as indicators, and therefore may reflect dif-
ferent characteristics of drought (e.g. meteorological vs.
hydrological). The SPEI is similar to the Standardized
Precipitation Index (SPI), but also accounts for the ef-
fects of temperature variability on drought assessments
through potential evapotranspiration [46]. The SPEI uses
meteorological data to determine the summation of defi-
cits and surpluses of available moisture across time, and
is based off of historical climatology data for the region
[46]. For an SPEI of a given time period, say t months, a
time series is constructed by summing the potential
evapotranspiration (PET) values from the preceding t-1

months, then fitted to a log-logistic density function to
standardize the values (mean 0, SD 1) and make them
comparable across time, space, and time scales [47]. For
the SPEI used in this analysis, we only used a one-
month SPEI. The SPEI ranges from − 3 to 3. Values
above 0 indicate relatively wet conditions, and values
below 0 indicate relatively dry conditions, with numbers
further from zero in either direction representing more
extreme conditions [46].

Drought severity score
We defined drought to be when two or more contiguous
months in a year have each sustained at least at a “mod-
erately dry” category with SPEI ≤ − 1, with the drought
accruing a cumulative SPEI ≤ − 5. Each month is associ-
ated with a binary indicator of 0 or 1, depending on be-
ing part of a drought event or not. We multiplied the
indicator for a month being contained in a drought by
the SPEI of that month providing a monthly drought
score for each county. The annual drought severity score
was then calculated by summing the monthly drought
scores within each year, for each county. The code for
calculating this score is provided in Additional file 1:
Appendix I.
We also created an analogous wetness severity meas-

ure. An abnormally wet period was defined as when 2 or
more contiguous months have sustained at least at a
“moderately wet” category with SPEI ≥1, with the wet
period accruing cumulative SPEI > 5. We multiplied the
wet period indicator by the SPEI value (positive during
wet period) to obtain a monthly wetness score, which
was likewise summed over each year to obtain an annual
wetness severity score.

All-cause mortality
Mortality data and population counts were extracted
from the Mortality Information and Research Analytics
(MOIRA) system (formerly known as the Mortality and
Population Data System (MPDS) [48, 49], which is a re-
pository and retrieval system for detailed mortality data
obtained from the National Center for Health Statistics
(NCHS) and the US Census. The database contains
death counts and populations within the contiguous
United States over 1968–2014, within demographic
strata (i.e., age group, race and sex joint categories). The
counts for any sub-national cell with fewer than 10
deaths are suppressed per NCHS policy. Our analysis in-
cluded data from adults ages 25 and older with age cat-
egories 25–34, 35–44, 45–54, 55–64, 65–74, 75–84, and
85 years and older.

Study sample
This was a complete case analysis that included a total
of 5,099,479 observations from 42 demographic strata in
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3004 counties and county-equivalents with complete
data on stratum-year mortality counts, stratum-year
population, and county-year drought scores. Of the ob-
servations, 1,610,899 (31.6%) were censored. Of the 6,
121,164 observations with mortality counts, county-year-
stratum population size was recorded as 0 for 1,013,237
of the observations. A majority of these were from the
black and “other” race groups: 596 (0.06%) were from
the white race group, 521,091 (51.43%) were from the
black race group, and 491,550 (48.51%) were from the
“other” race group. Of the observations with population
recorded as 0, 1,001,345 (98.85%) had mortality counts
recorded as “null” (0). We regarded observations with
population equal to 0 as indicating missing data for the
actual population size in that county-demographic
stratum-year, although it is possible that in some in-
stances a demographic stratum was not represented
within a county within a year. These records were there-
fore excluded from the complete case analysis.
SPEI data was missing for some months or years of

some counties, and therefore the calculated drought se-
verity score used in this study was missing. This was the
case for 244 county-years (10,248 stratum-county-years).
Nine counties were missing SPEI data for all years
(0.17%) and were thus excluded entirely from our study.
There were 16,380 stratum-county-years without mor-
tality count data. Missing mortality data usually occurred
over a consecutive span of several years. For example, La
Paz County, Arizona was missing 26 county-years (1092
stratum-county-years) from 1968 to 1993, but had
complete data from the remaining years, 1994–2014.
Furthermore, La Paz County, Arizona did not form offi-
cially until 1983 after separating from Yuma County
[50]. This highlights the fact that some of the missing
data may be related to changing counties, or counties
that formed after 1968, and associated Federal Informa-
tion Processing System (FIPS) codes for the given spatial
location. FIPS codes are unique numerical identifiers for
each county or county-equivalent, but the geographic
boundaries of counties can change over time, and new
counties can form or merge with other counties [50]. As
a result, changes to the size and location of a given
county in our dataset could occur across time. For ex-
ample, Yuma County would have decreased in size with
the formation of La Paz County.
Overall, out of 6,137,544 potential stratum-county-

years that could have been included from the combined
datasets, 1,038,065 observations were missing data on
drought conditions, mortality, and/or their population
had been recorded as 0, resulting in 16.9% of potential
county-years being excluded from analysis. However,
some of these missing data may be related to changing
county boundaries (e.g., counties that formed after
1968), and so spatially those areas may have still been

covered even if they appeared to be incomplete records
in our dataset. The climate regions, based on those de-
termined by National Oceanic and Atmospheric Associ-
ation (NOAA), (Table 1) for the United States were used
to explore geographic heterogeneity in the association
between droughts and mortality [51]. Washington, DC
was included with the Northeast climate region because
of its geographical location.

Statistical analysis
We modeled county-stratum-year mortality using an
interval-censored (ranging from 1 to 9) negative bino-
mial regression model with random intercepts. This
model is similar to censored mixed negative binomial re-
gression models used in other studies, except it accounts
for interval censoring rather than left or right censoring
[52, 53]. One other similar-design epidemiological study
used a Bayesian censored mixed-effects Poisson regres-
sion model to estimate associations with censored aut-
ism counts [54].
The interval censoring accounts for the censored death

counts, while the random intercepts allow different
county-level baseline mortality rates and account for
correlations due to repeated observations of the same
county. Our negative binomial regression model as-
sumed a linear predictor for the log of the mean number
of deaths of the following form:

ln μij
� �

¼ β0 þ b0i
� �þ β1Xij þ β2Zþ f ij:

where Xij is the drought score for county i in year j, Z
is the potential confounder (year, centered at 1991), and
(b0i) the random intercept. The offset, fij, is the ln (popu-
lation) for each county-stratum-year. When the number
of deaths (yij) is 0 or > 10 and not censored, the likeli-
hood contribution for county i in year j, conditional on
the random intercept, is given by

Table 1 Climate regions and included states of the United
States

Region States (Abbreviations)

Central IL, IN, KY, MO, OH, TN, WV

East North Central IA, MI, MN, WI

Northeast CT, DE, ME, MD, MA, NH, NJ, NY, PA, RI, VT, DC

Northwest ID, OR, WA

South AR, KS, LA, MS, OK, TX

Southeast AL, FL, GA, NC, SC, VA

Southwest AZ, CO, NM, UT

West CA, NV

West North Central MT, NE, ND, SD, WY
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Pr Yij ¼ yijjXij ¼ xij;Z ¼ z
� �

¼
Г α−1 þ yij
� �
Г α−1ð Þyij!

αμij
1þ αμij

 !yij
1

1þ αμij

 !1
α

where α is the negative binomial dispersion parameter.
When the number of deaths is censored over the inter-
val [1, 9], the conditional likelihood contribution, based
on the negative binomial model, becomes:

Pr 1≤Yij≤9jXij ¼ xij;Z ¼ z
� �

We implemented maximum likelihood (ML) estima-
tion for this model using the general likelihood facility
available in the SAS NLMIXED procedure using SAS 9.3
software (SAS Institute Inc., Cary, NC), which permits
user specification of the log-likelihood conditional on
the random effects. We specified the contributions for
censored observations by taking advantage of recursive
properties of the gamma function.
We ran models separately for each of the 42 age-race-

sex joint strata. In a second analysis, we further stratified
by the nine NOAA climate regions, for a total of 378
strata, to account for potential geographic heterogeneity in
the association of drought score with mortality. We re-
peated the analysis after excluding abnormally wet county-
years (wetness severity score > 0) to obtain a comparison
of “drought” vs. “normal” years, rather than “drought” vs.
“non-drought” years. Forest plots of the results were cre-
ated using SAS University Edition/SAS 9.4 M6.
The focus for each model was the estimate of β1, i.e.,

the natural log of the incidence rate ratio (IRR) corre-
sponding to a 1-unit increase in the yearly drought score.
Using SAS University Edition/SAS 9.4 M6 (SAS Institute
Inc., Cary, NC), we accounted for multiple testing of the
ln(IRR)s against the null of 0 using the SAS PROC
MULTTEST procedure using the FDR option, which esti-
mates false discovery rate (FDR)-adjusted p-values. We ad-
justed all the p-values from the four sets of analyses: with
and without stratification by climate regions, and with and
without inclusion of abnormally wet years. We used the
estimates from the models that successfully converged.
Only models that converged were included in the multiple
testing correction as specified in the Results section below.
For both the analyses with and without abnormally

wet county-years, we calculated estimated mean deaths
for the minimum (0) and maximum (15.01) drought
score and the difference between the two, to estimate at-
tributable deaths, for the West U.S. region. We then cal-
culated the total estimated deaths by summing the
stratum-specific estimated deaths. We chose the West
region because the other regions had models that did
not successfully converge. For this region, the drought
score was 0 for 96.7% of the observations in the main

analysis. We used SAS University Edition/SAS 9.4 M6
(SAS Institute Inc., Cary, NC) for this calculation.
To calculate estimated mean deaths, we exponentiated

the right side of the negative binomial equation ((β0 +
b0i) + β1 Xij + β2 Z + fij)), setting b0i = 0 because the mean
and median are 0 by assumption; Xij = 0 (no drought) or
the maximum of the drought score for years 1968–2014;
Z = 0 (in order to use the mean year, 1991, because we
centered the years at 1991); and fij = ln (mean population
for each demographic subgroup across 1968–2014,
rounded to nearest integer, among observations without
missing values). In calculating the mean population and
minimum and maximum drought score, we excluded
observations where the population was 0, where the
death rate was missing, or where the drought score was
missing, because these were not included in the analyses.
We rounded estimated deaths to the nearest integer.
We applied fixed effects meta-regression to the age-

race-sex-region stratified estimated ln(IRR)s (from
analyses with wet years included, or without wet years
included) using vwls in Stata/SE 14.2. The objective was
to assess the association between the regression coeffi-
cients from the main analysis (i.e., differences in ln-rates
of mortality given drought, within each stratum, adjusted
for year and conditional on fixed effects) and potential
modifiers of the drought-to-mortality association: age,
race, sex, and region. Significance of the association
(alpha = 0.05) of each predictor, adjusted for the others,
with the drought-mortality regression coefficient was
assessed by a Wald test [55].
We then extracted the marginal effects using margins

in Stata/SE 14.2 for each subgroup and overall. The mar-
ginal effects are the adjusted mean value of the esti-
mated ln (IRR) for each demographic and regional
subgroup, and overall across all subgroups.
We also completed a logistic regression of missing

population with drought severity score as a predictor to
check for possible selection bias using SAS University
Edition/SAS 9.4M6 (SAS Institute Inc., Cary, NC).

Results
Most models in the analyses successfully converged, but
there were some estimation problems, where models
failed to converge. This issue occurred among the
“other” race female subgroup for age categories (years)
25–34, 35–44 and 45–54 in age-race-sex stratified ana-
lysis. When stratified by a fourth variable, climate region,
36 of the 378 models failed to converge reliably in the
analysis that included abnormally wet county-years. We
excluded two additional models that converged, but had
estimates suggesting additional convergence issues, i.e.
with incident rate ratios (IRRs) of 0.119 (95% confidence
interval (CI) = 5.001E− 8, 283,832.31) and 0.14062 (95%
CI = 25609E-14, 772,105,431,629). For the analysis
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stratified by climate regions which excluded abnormally
wet county-years, 31 of 378 models failed to converge.
We excluded one additional model that resulted in un-
realistic IRR of 0.119 (95% CI = 4.797E-8, 297,567.77).
The majority of the models that failed to converge were
in the “other” race strata.
Overall, most effect estimates were non-significant

across categories of race, age, sex, and region, with IRRs
for all-cause mortality close to 1. IRRs less than 1 sug-
gest decreasing mortality rates with increasing drought
severity, and IRRs greater than 1 suggest increasing mor-
tality rates with increasing drought severity, for a given
stratum. When further stratified by climate regions, the
majority of results were also null. Exclusion of wet
county-years resulted in little to no change in the effect
estimates.
A small number of the IRRs were significant after ac-

counting for the multiple testing. These results are pre-
sented in Table 2 for the analysis that included
abnormally wet county-years, and Additional file 3:
Appendix III, Table A1 for the sensitivity analysis that
excluded abnormally wet county-years. Among the age-
race-sex stratified results, from both the analyses with
and without inclusion of abnormally wet county-years,
there were significant IRRs, all less than 1, for 5 joint
strata: white males 25–34, 35–44, 75–84, and 85+ years
of age, and white females 25–34 years of age.
When further stratified by climate regions, there were

17 significant IRRs from the analysis that included wet
county-years (Table 3), and 18 from the analysis that ex-
cluded wet county-years (Additional file 3: Appendix
III, Table A2). Most of these significant estimates were
seen in the white, male subgroups, across a range of ages
and regions.
For both analyses, ten of the significant IRRs were less

than 1. Seven significant IRRs were greater than 1 from
the analysis that included abnormally wet county-years,
and 8 were greater than 1 from the analysis that excluded
abnormally wet county-years. The additional significant
IRR from the analysis without abnormally wet county-
years was for the 65 to 75-year-old “other” race males in

the West North Central climate region, with an IRR of
1.066 (95% CI = 1.033, 1.099). This model did not con-
verge in the analysis that included the abnormally wet
county-years.
The age-race-sex-region joint strata with IRRs greater

than 1 included: 65–74 and 75–84 year-old white females
in the Southwest region; 75–84 year-old black males and
females, and 85 and older black females in the Northeast
region; 45–54 year-old white males in the Central region;
and 65–74 year-old black males in the East North Central
region. The results for the black and “other” race sub-
groups usually had wider confidence intervals due to
smaller at-risk populations than the white subgroup in
some climate regions. Results are also displayed in forest
plots in Additional file 4: Appendix IV.
In the attributable deaths analysis, for the West cli-

mate region, in the analysis with wet county-years in-
cluded, we estimated that 8837 fewer deaths would have
occurred at a drought score of 15.01 (most severe) com-
pared to a drought score of 0 (no drought) in 1991
(Table 4). Excluding the wet county-years, the total esti-
mated attributable deaths for the West climate region
was − 8638 (Additional file 3: Table A4). The attribut-
able deaths ranged from − 2092 for 75–84 year old white
females to 121 for 65–74 year old black males in the
analysis including wet county-years, and from − 2061 for
75–84 year old white females to 124 for 75–84 year old
black males for the analysis without wet county-years.
Most of the estimated increases in deaths were among
minority subpopulations and decreases in deaths were
among with white subpopulations.
The tests for the significance of associations of the cat-

egories of race, age, and climate region, with the
drought-mortality regression coefficient from the meta-
regression, were significant at alpha = 0.05 in the ana-
lyses with and without inclusion of wet county-years
(Table 5).
For the marginal effect estimates, besides a couple of

differences, the results were mostly similar between the
analyses with and without inclusion of wet county-years
(Table 6 with wet county-years; Additional file 3:
Appendix III, Table A3 without wet county-years)
For the marginal effects, by region, IRRs were signifi-

cant for the Southwest, South, and West regions for
both the analyses with and without wet county-years.
The IRR for the Southwest region was greater than 1,
while the IRRs for the South and West regions were less
than 1. When stratified by race, the IRR for the white
subgroup was significant, with a pooled IRR 0.999 (95%
CI = 0.998–0.999) for both analyses. The age group
stratified meta-regression margins for the analyses that
included wet county-years resulted in significant IRRs
for 4 age groups: 25–34, 35–44, 45–54, and 55–64 year-
olds. The IRRs for the 25–34 and 35–44 year-olds were

Table 2 Incidence Rate Ratio (IRR) of all-cause mortality per
increasing drought severity by demographic subgroup, with
95% confidence intervals (LCL, UCL), raw p-values and false
discovery rate-adjusted p-values, for IRRs with adjusted p values
< 0.05. Abnormally wet years included in analysis

Age Race Sex IRR LCL UCL Raw P Adjusted P

25–34 White Male 0.991 0.987 0.995 < 0.0001 0.0006

25–34 White Female 0.992 0.987 0.997 0.0024 0.0464

35–44 White Male 0.994 0.991 0.997 < 0.0001 0.0036

75–84 White Male 0.998 0.997 0.999 0.0001 0.0049

85 + White Male 0.998 0.997 0.999 0.0004 0.0116
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less than 1, while the IRRs for 45–54 and 55–64 year-
olds were greater than 1. Differing from the analysis with
wet county-years, results for the 85 year and older age
group were significant (IRR > 1), and results for the 25–
34 year-old age group were not significant, when wet
county-years were excluded. The overall marginal effect
estimate without stratification, after adjusting for
drought-mortality heterogeneity by demographic and cli-
mate variables, was not significant.

Discussion
The majority of demographic and climate region joint
strata showed no significant effect of drought severity on
mortality rates within the same year in the contiguous
United States from 1968 to 2014. Nonetheless, after
adjusting for the false discovery rate, we found signifi-
cant associations remained for some of the stratified
analyses, which differed by subpopulation, suggesting
possible health effects for certain groups. Based on the
estimated attributable deaths, the net effect of drought
severity on mortality was a reduction in deaths in the
same year. However as shown in Table 4, a majority of
increases in deaths occurred with minority populations.
The tests for significance of the fixed effects meta-

regression suggest a linear relationship may exist be-
tween the regression coefficients from the main analyses
and race, age, and climate region, but not sex, after
adjusting for year and other demographic and region
variables. The marginal effect estimates showed

significant results for specific subgroups of these covari-
ates. In the analysis that included wet county-years, the
results of the marginal effect estimates suggest that, after
adjustment, average mortality rates decreased slightly
with increasing drought severity for 25–34 and 35–44
year-olds, while mortality rates increased slightly with
increasing drought severity for 45–54 and 55–64 year-
olds. In the analysis with wet county-years, the results
did not reflect an increase in mortality rate with increas-
ing drought severity in any of the age groups 65 years or
older, but when wet county-years were excluded, the re-
sults suggested an increase in mortality with increasing
drought severity for the 85 year and older age group.
The significant IRRs less than 1 for the 25–34 and 35–
44 year-olds could suggest that drought is protective
against all-cause mortality in these age strata. If there
exist both protective and harmful effects of drought on
mortality rates, the protective effects, such as potentially
decreased flooding, may drive the IRR below 1 for age
groups more likely to be exposed to such events, even
though harmful effects might still occur. Older popula-
tions may be especially vulnerable to a broader range of
the potential effects of drought, such as changes in air
quality and heat waves [30, 56], and exposures might dif-
fer by age group based on factors such as level of out-
door activity or occupational status, which could explain
differential effects of drought on mortality rates by age.
A possible protective effect of drought severity on

mortality rates was also seen with the significant

Table 3 Incidence Rate Ratio (IRR) of all-cause mortality per increasing drought severity by demographic and climate region
subgroup, with 95% confidence intervals (LCL, UCL), raw p-values and false discovery rate adjusted p-values, for IRRs with adjusted p
values < 0.05. Abnormally wet years included in analysis

Age Race Sex Region IRR LCL UCL Raw P Adjusted P

25–34 White Male South 0.987 0.980 0.993 < 0.0001 0.0038

35–44 White Male South 0.990 0.985 0.995 0.0001 0.0049

45–54 White Male Central 1.011 1.004 1.018 0.0011 0.0253

45–54 White Male Southeast 0.990 0.984 0.996 0.0008 0.0196

55–64 White Male Northeast 0.991 0.987 0.996 0.0002 0.0051

55–64 White Male Southeast 0.992 0.988 0.996 0.0002 0.0051

65–74 White Male South 0.996 0.994 0.998 0.0001 0.0049

65–74 White Female Southwest 1.007 1.002 1.011 0.0022 0.0464

65–74 White Female West 0.991 0.988 0.995 < 0.0001 0.0019

65–74 Black Male East North Central 1.034 1.012 1.057 0.0027 0.0464

75–84 White Male South 0.996 0.994 0.998 < 0.0001 0.0035

75–84 White Female Southwest 1.005 1.002 1.009 0.0020 0.0429

75–84 White Female West 0.995 0.992 0.997 < 0.0001 0.0045

75–84 Black Male Northeast 1.015 1.008 1.022 < 0.0001 0.0042

75–84 Black Female Northeast 1.012 1.005 1.019 0.0006 0.0160

85+ White Male South 0.995 0.993 0.997 < 0.0001 0.0012

85+ Black Female Northeast 1.012 1.004 1.019 0.0026 0.0464
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Table 4 Expected same-year deaths in Nevada and California in 1991 for counterfactual scenarios of no drought or most severe
drought (from years 1968–2014), and attributable deaths for each age-race-sex stratum. Abnormally wet county-years included in
analysis
Age Race Sex Maximum Drought Severity No Drought Attributable Deaths

Total 212,746 221,582 −8837

25–34 White Male 3752 3748 4

25–34 White Female 1367 1373 −6

25–34 Black Male 303 334 −31

25–34 Black Female 226 226 0

25–34 Other Male 417 387 30

25–34 Other Female 170 173 −3

35–44 White Male 4624 5041 −417

35–44 White Female 2573 2568 4

35–44 Black Male 506 463 44

35–44 Black Female 461 424 37

35–44 Other Male 544 538 6

35–44 Other Female 337 317 20

45–54 White Male 8777 9055 −278

45–54 White Female 5184 5471 −287

45–54 Black Male 874 876 −2

45–54 Black Female 700 723 −23

45–54 Other Male 873 944 −71

45–54 Other Female 568 583 −15

55–64 White Male 15,377 15,403 −26

55–64 White Female 9241 9661 −420

55–64 Black Male 1440 1408 32

55–64 Black Female 1154 1061 93

55–64 Other Male 1384 1272 113

55–64 Other Female 937 881 56

65–74 White Male 21,343 22,427 −1084

65–74 White Female 14,485 16,525 −2040

65–74 Black Male 1799 1678 121

65–74 Black Female 1516 1409 107

65–74 Other Male 1682 1677 5

65–74 Other Female 1182 1259 −77

75–84 White Male 26,065 27,114 −1049

75–84 White Female 24,864 26,956 −2092

75–84 Black Male 1533 1415 119

75–84 Black Female 1563 1639 −76

75–84 Other Male 1770 1899 −129

75–84 Other Female 1634 1666 −32

85+ White Male 17,249 17,487 −238

85+ White Female 29,979 30,958 −979

85+ Black Male 590 629 −39

85+ Black Female 1181 1306 −125

85+ Other Male 1109 1182 −74

85+ Other Female 1410 1427 −17
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marginal effects estimate for the white race group. Al-
though no significant marginal effect estimates were
found for the black and “other” race groups, smaller
sample sizes and non-converging models could result in
bias. If these groups are more sensitive to the effects of
drought, the results could be conservative and towards
the null. Heterogeneity by race subgroup could exist be-
cause race is related to socioeconomic status, which is in
turn associated with health disparities [57]. Even after
controlling for socioeconomic status, disparities exist
which may be attributable to factors such as psycho-
social stressors, for example [57].
Finally, for the climate regions, the significant marginal

effects estimate for the Southwest region (IRR > 1) sug-
gests average increasing mortality rates with increasing
drought severity, while the significant marginal effect es-
timates for the South and West regions (IRRs < 1) sug-
gest average decreasing mortality rates with increasing
drought severity. Particulate matter has been shown to
increase in the Southwest during droughts, with one
study projecting a 20–130% increase in premature attrib-
utable deaths due to particulate matter in this region
under a number of climate change projections [58]. This
may be a potential mechanism for increased mortality
rates with increased drought severity, although this
mechanism could exist in other climate regions as well
[18]. The results of the West and South regions were
unexpected, e.g., because harmful mechanisms such as
wildfires in the West are expected to exist, and further
research would be needed to see if the results could be
replicated.
Overall, based on these results, to the extent to which

heterogeneity within different combined demographic
groups is negligible, there seems to be a region, age and
race effect. Since the marginal effect estimates represent
an average of the effects across the joint age-race-sex-re-
gion strata from the analyses, certain results could be
driving the significance of the groups in the meta-

regression, and heterogeneity may still exist. This pos-
sible heterogeneity is supported by the significant IRRs
found for certain subpopulations.
Regarding age, heterogeneity of effects is suggested by

the significant results for some of the age-race-sex-re-
gion stratified estimates. Within the 25–34 and 35–44
year-old age groups, results suggested decreasing mortal-
ity with increasing drought severity for white males in
the South, however there were no other significant race-
sex-region subgroups. Among 65–74 year-olds, the IRR
was greater than 1 for white females in the Southwest,
but the remaining significant stratum-specific IRRs for
this age group were less than 1. This heterogeneity
within age groups is further supported by IRRs both

Table 5 Meta-regression p values by covariate, with and
without abnormally wet years included in analysis

Covariate P value

Wet Years Included

Race 0.001

Sex 0.992

Age 0.002

Region < 0.001

Wet Years Excluded

Race < 0.001

Sex 0.975

Age 0.001

Region < 0.001

Table 6 Incident Rate Ratios (IRRs) by demographic and NOAA
climate region subgroup and overall across all groups of
margins from fixed effects meta-regression controlling for
demographic and climate region variables with 95% confidence
intervals (LCL, UCL) and p-values. Abnormally wet years included
in analysis

Subgroup P value Estimated Mean IRR LCL UCL

Age Group

25–34 0.034 0.997 0.995 1.000

35–44 0.031 0.998 0.996 1.000

45–54 0.029 1.002 1.000 1.003

55–64 0.043 1.001 1.000 1.002

65–74 0.208 1.001 1.000 1.002

75–84 0.657 1.000 0.999 1.001

85+ 0.059 1.001 1.000 1.002

Race

White < 0.001 0.999 0.998 0.999

Black 0.121 1.001 1.000 1.002

Other 0.727 1.000 0.998 1.002

Sex

Male 0.961 1.000 0.999 1.001

Female 0.968 1.000 0.999 1.001

Region

Central 0.731 1.000 0.998 1.001

East North Central 0.567 1.000 0.999 1.002

Northeast 0.213 1.001 1.000 1.002

Northwest 0.796 1.000 0.997 1.002

South < 0.001 0.997 0.996 0.998

Southeast 0.079 0.999 0.998 1.000

Southwest < 0.001 1.004 1.003 1.005

West < 0.001 0.998 0.997 0.999

North West Central 0.220 1.001 0.999 1.004

Overall

0.962 1.000 0.999 1.001
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greater than 1 and less than 1 for strata of age groups
75–84 and 85 years and older.
Among race, heterogeneity was also seen. The white

race subgroup had the greatest number of significant
IRRs after adjusting for multiple testing. The majority of
these significant IRRs suggested decreasing mortality
rates with increasing drought severity, across a range of
age, sex, and climate region subgroups. One possible
reason for the greatest proportion of significant findings
from the white race subgroup is that this subgroup fre-
quently had the largest sample size, and more precise es-
timates. The fact that all significant IRRs for the black
race group were greater than 1 could indicate this group
is more sensitive to the effects of drought severity on
mortality rate, for a given age, sex and region combin-
ation. For example, among 75–84 year-old black males
and females, and 85 and older black females, in the
Northeast, all IRRs were greater than 1. Additionally, the
only significant result for “other” race group was also
greater than 1 and resulted in the largest effect estimate
of all the strata-specific results (IRR:1.066 (95% CI =
1.033, 1.099)); this was for 65–74 year-old males in the
West North Central region, in the analysis that excluded
abnormally wet years. Although the meta-regression and
margins did not indicate sex-specific differences in the
average effects of drought severity on mortality rates,
there are again certain significant age-race-region sub-
groups, further supporting heterogeneity by combined
strata.
Finally, by region, the results align with the marginal

effect estimates in that all the significant results for the
Southwest region had IRRs greater than 1 and the South
and West regions had IRRs less than 1. These results
again suggest heterogeneity because they were only
found for certain joint strata. It is possible that any ef-
fects of drought severity on mortality rates seen in the
Southwest region could differ by exposure and vulner-
ability among certain demographic groups. There may
also be specific health effects related to drought in the
Northeast that leave vulnerable populations susceptible
to exposure or harmful effects, as seen by the significant
results of certain combined age-race-sex strata in this re-
gion. The observed heterogeneity indicates differential
effects and suggests the effects of drought are context-
ual, based on specific characteristics of the drought and
the vulnerability of the populations. However, we cannot
exclude the possibility of false positive results. Further
research could determine if the results can be replicated
in other settings.
Differences in exposure and vulnerability to climate-

related events, potential key determinants of disaster risk
and impacts, often leave marginalized groups dispropor-
tionately impacted [59]. These can often be attributed to
intersecting social processes such as discrimination

based on class, gender, or ethnicity, for example, rather
than to a single cause, and the effects of the individual’s
experiences [59]. Stratifying the analysis by age, race, sex
and region may be an oversimplification of this potential
intersectionality, because the effects of the individual’s
experiences based on these categories may not be addi-
tive [60]. Future analyses may examine differences in risk
at a local level to examine population and drought het-
erogeneity on a finer spatial scale. Additionally, other
variables not considered in the analysis, such as socio-
economic status or rural vs. urban residence, may be im-
portant modifiers to examine in future studies.
Although we did not detect significant associations of

drought severity with same-year mortality for most sub-
groups, it is possible that drought conditions could in-
crease some cause-specific mortality rates while
decreasing others, resulting in an overall null result. Our
analysis only considered all-cause mortality, and specific
types of mortality, such as respiratory mortality or car-
diovascular mortality, may still have increased rates due
to drought and merit further investigation. If there are
cause-specific mortalities that increase due to drought, it
is important to understand the causes for targeted inter-
ventions. The net effect of a reduction in deaths in the
same year could be consistent with a lagged effect of
drought severity on mortality beyond the same-year time
interval considered in the study.
A recent study of drought and the risk of all-cause

mortality among people ages 65 years and older in the
western United States found no significant association
during full-drought periods or low-severity worsening
drought periods, but did find an increased risk of mor-
tality during high-severity worsening drought periods
[12]. They also found increased mortality during worsen-
ing drought compared to non-drought periods in coun-
ties where drought occurred less frequently [12]. This
study differed from ours in that it focused on counties
west of the Mississippi river only, and was restricted to
ages 65 and older [12]. Additionally, the study compared
days in drought versus non-drought periods, using the
weekly U.S. Drought Monitor, so it used a different
index for classifying drought and a different temporal
scale [12]. This study further stratified by drought sever-
ity, instead of using a continuous variable, and consid-
ered factors such as worsening drought, or frequency of
droughts in the county, which were not included in our
study [12]. For these reasons, the results may not be dir-
ectly comparable. Considering worsening droughts or
frequency of droughts in our models could be an option
for further analysis.
A strength of the study was the creation of a novel

drought severity score designed to capture drought in-
tensity and duration over the year with a continuous
scale from the available one-month SPEI data. This scale
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allowed us to look for effects related to drought severity,
and not simply classify exposure as drought vs. non-
drought in the analysis. Another strength of the study is
that we developed a way to deal with interval-censored
CDC mortality data through an interval-censored negative
binomial regression model with random county effects. We
then supplemented the subgroup-specific model results by
performing the meta-regression and marginal effects ana-
lyses. This provides a principled way to incorporate all of
the available information about county/month-specific
mortality counts, while accounting for the differences be-
tween the combined age-race-sex-region strata.
This study has some limitations, including the eco-

logical study design; future analyses might consider al-
ternative designs. There was censoring of the number of
deaths over the interval 1 to 9 in the dataset. We used
interval censored negative binomial regression to handle
the missing data, but this necessarily reduces estimation
precision relative to the unavailable complete data, par-
ticularly for strata with small numbers at risk. Addition-
ally, there were missing data on population, mortality,
and SPEI, further decreasing sample size, and potentially
leading to bias in our estimated drought effects if the
missing observations differed in terms of drought expos-
ure or mortality from those included. A logistic regres-
sion of missing population frequency with drought score
as the predictor was completed for the overall dataset,
and for the significant strata (Additional file 3: Table
A5). Several of the analyses found the drought score es-
timate significant in the model. As there was an associ-
ation between exposure and inclusion of a county-year,
there is a formal possibility that there could be selection
bias if inclusion of a county-year was also differential by
the mortality rate in that county-year.
Small strata resulted in non-convergence and wide con-

fidence intervals for some models. This especially affected
the “other” race category, which had the greatest number
of non-converging models. If the more frequently ex-
cluded demographic groups due to smaller sample size are
more vulnerable than the included groups, and if they also
differ in terms of inclusion based on drought exposure sta-
tus, selection bias could result for the overall effect esti-
mate, and we may be unable to detect impacts of drought
on mortality among particularly vulnerable groups.
Also, despite the strengths of the SPEI, we only used

one index for creating the annual drought severity score,
whereas another index might have resulted in different
classification of drought periods and severity. Additionally,
the analysis did not specifically account for differences in
the types of droughts, such as agricultural vs. meteoro-
logical, which could potentially affect health outcomes dif-
ferently since they focus on different issues (e.g. effects on
crops for agricultural drought) [1]. Further, we did not ac-
count for the effect of previous years of drought, except

when classifying drought vs. non-drought months for the
derivation of the drought severity score. Differences in
duration or frequency could theoretically result in differ-
ent exposure durations to potentially harmful or preventa-
tive drought-related conditions or impact a community’s
adaptive capacity to droughts.
This analysis did not account for potential lagged effects

of drought, or interactions between abnormally wet pe-
riods following drought, or drought following abnormally
wet periods. Differences could hypothetically exist from
mechanisms resulting from increased rainfall after a
drought such as landslides, or indirect factors such as
changes in water quality [61] and disease transmission
(e.g. increased incidence of Valley fever after a period of
rain following drought) [7, 62]. Drought and wildfires
(which might occur more frequently during droughts) [20]
could lead to landslides, in part due to removal of protect-
ive vegetation [63], and landslides may be triggered by pe-
riods of intense rainfall [63]. Interaction mechanisms
could also occur from drought following wet periods. In-
creased plant growth from a wet period followed by
drought might lead to build-up of fuel for wildfires in the
form of vegetation, which is related to fire risk and spread
[64]. The mechanisms that could impact health related to
dry or wet conditions could also differ by geographic loca-
tion, as suggested by a study that found differences by lo-
cation (i.e. California and Arizona) in direction of the
association between coccidioidomycosis incidence and soil
moisture [65]. These types of interactions may be useful
avenues for further investigation. Future investigations
might also consider a larger suite of potential confounders.
While we also did not directly include a variable for

temperature in the analysis, SPEI accounts for temperature
when calculating evapotranspiration [46]. Temperature has
a complex relationship with drought. Since heat can impact
heat-related mortality [37] and influence drought severity
through evapotranspiration [47, 66, 67] it could be consid-
ered a confounder. Multiple variables are considered in the
calculation of evapotranspiration [46] and two droughts of
the same SPEI could have different extreme or average high
temperatures, and therefore differences in heat-related
deaths; however, because heat is a component of drought
[46] it may not be logical to separate the two. Heat could
also be a mediator on the causal pathway between drought
and mortality, since drought conditions can increase heat
events [17], which can in turn impact heat-related mortal-
ity. Interactions could also possibly occur between the ef-
fects of heat and drought on all-cause mortality.

Conclusions
The lack of significant association between drought se-
verity and all-cause mortality overall, and for many, but
not all, subgroups after adjusting for multiple testing,
could be, in part, due to the heterogeneity of effects
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based on categories of race, age, climate region, or other
unmeasured variables. Other potential explanations in-
clude: contextual heterogeneity in the effects of drought,
an observed null effect of subgroups due to cancellation
of the protective and harmful effects, effects of drought
on cause-specific but not all-cause mortality, limitations
in the methods of our analysis, lagged effects of drought
on mortality, or some combination of these factors. Our
results suggest that the potential associations between
drought and all-cause mortality could differ by race, age,
and climate region and might be more nuanced than the
situations considered here. Therefore, the associations
may merit additional research based on more detailed
data.
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