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It is important to monitor potential exposure to various chemicals and toxicants 

that may adversely affect both human and environmental health. Biosensors have been 

developed to identify and quantify these analytes of interest in early warning systems and 

diagnosis devices. This dissertation implements nanomaterials, such as nanofibers and 

nanoparticles, into the biological recognition element of a biosensor for selectively and 

sensitively to detect trace analytes in either gas, liquid, or solid phases.  

This dissertation is an agglomeration of several different projects that investigates 

the novel applications of nanomaterials into biosensor designs with two major application 

focuses: nanofibers and surface plasmon resonance (SPR) The first half of this 

dissertation focuses on the application of nanofiber surfaces for sensor developments. 

The nanofibers were fabricated through electrospinning and incorporated into various 

sensor designs. The first project develops polyaniline nanofibers into a chemiresistor 

sensor for sensitive detection of VOCs (small chain alcohols) by employing variants of 

reduced graphene oxides. The second project applies the nanofiber property of high  
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surface area to volume ratio to maximize surface adsorption of EDTA-functionalized 

silver nanoparticles (AgNPs) as the biorecognition element of this sensor. The EDTA-

AgNPs formulates a nickel ion bridge for selective capture and release of NTA and His 

tagged proteins that can be detected through fluorescent spectroscopy.  

The second half of this dissertation transitions into the application of surface 

plasmon resonance for the development of biosensor signal transducers. The third project 

focused on combining the potential of 3D printing with gold nanoparticles (AuNPs) to 

create a novel integrated localized SPR (LSPR) sensor surface capable of sensitive 

protein detection. The synthesis of gold nanoparticles in-situ on a 3D printed prism 

surface enables the fabrication of a biosensor device for the disposable field of site usage 

with qualities comparable performances with sensors using commercial optical prisms. 

The last project focuses on developing an SPR experimental model of a double lipid 

bilayer membrane. This model mimics the unique structure of the double lipid bilayer 

membrane system found in the chloroplast, mitochondria, and gram-negative bacteria. 

This novel experimental model combined with SPR analysis creates a biosensor platform 

that enables the interrogation of chemical and protein interactions at interfaces such as 

the gram-negative bacteria cell wall and membrane system.  
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Chapter 1: Electrospinning, Plasmonic Materials, and Lipid Bilayers 

for Sensor Interface of Chemical Analytes and Environmental Toxins. 

  

1.1 Introduction. 

As the incidents of chemical exposure escalate due to advancing technology 

fostering the tremendous increase of pharmaceutical drugs, consumer products, and toxic 

waste from productions. Demands to ascertain if exposure will consequently induce 

adverse effects and methods to mitigate these detriments will increase. In vivo studies 

have been extensively used to confirm toxicity results but suffer from prohibitive cost 

due to prolonged testing time required to raise, maintain, and sacrifice living animal test 

subjects utilized in series of experiments to confirm findings. While the in vitro study 

excels in identifying chemical pathways, it may suffer from inaccuracy due to the 

minimized scope of interaction of a living system that interacts with various external 

influences. This project aims to develop a biosensor pairing biological interactions with 

measurable responses that can facilitate chemical characterization, toxin interaction, and 

dose-responses at the cellular lipid membrane interface as a prime system for exploring 

primary molecular recognition events that are critical in understanding onset of adverse 

effects in organisms.  
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1.2 Biosensor.  

The term biosensor refers to innovative analytical devices using a biological 

sensing element that can be applied to a wide range of applications areas of safety, 

monitoring, and medicine such as disease diagnosis, novel drug compound discovery, 

detecting trace chemicals and monitoring environmental conditions1–5. The biosensor is 

composed of two main components, a biologically sensitive element and a transducer 

element paired with an appropriate detector.  

The biologically sensitive element is fabricated to interact with, bind, or recognize 

a specific target analyte through various methods that take advantage of bioreceptor 

pairing. The various combination of the biologically sensitive element and signal 

transducer element can form novel biosensors. There are six archetypes of bioreceptors 

used: 1) antibody/antigen, 2) enzyme/ligands, 3) RNA/DNA, 4) aptamers, 5) cells, or 6) 

biomimetic substrates. The transducer element transforms the signal of interaction into a 

measurable signal through physicochemical methods such: optical, piezoelectric, 

electrochemical, chemiluminescence, fluorescence, etc.  

 Biosensors utilizing antibody/antigen are commonly known as immunosensor as 

the target analyte is either the antigen or antibody that serves as a biomarker for the 

study6–9. The interaction between the antibody and antigen pair is akin a lock and key 

respectively such that the antibody typically only binds a single and specific antigen. The 

transducer of these binding pairs often relies on physicochemical changes combined with 

a reporter molecule, such as fluorescent probes, enzymes, or radioisotopes functionalized 
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to either the antibody or antigen to generate a signal. The main benefit of utilizing this 

archetype is that the target selectivity of these binding pairs is well studied and can form 

various binding schemes of known interactions. There are several limitations of using 

antibodies in these sensors. A major concern in these sensors is the assay conditions as it 

can dramatically influence binding interaction between the antibody and antigen because 

this binding interaction can be highly sensitive to both the pH and temperature conditions 

of the assay. While the antibody-antigen interaction is robust, interference with the 

binding interaction can occur through stronger molecular interaction targeting either the 

antibody or antigen. It is noted that some antibodies are more promiscuous as it may bind 

several different antigens, akin to a puzzle piece that maybe slot in with several other 

pieces who share a similar binding segment, leading to non-specific binding and potential 

false positive/negative results. Careful optimizations of the experimental designs are 

required to allow these assays to perform at its peak sensitivity and selectivity.  

Biosensors using enzyme/ligand paring are analytical devices that use an enzyme 

to generate a signal to measure the concentration of the present ligand10–16. The signal 

generated from the enzyme can be changes of 1) proton concentration, 2) consumption or 

production of specific compounds, 3) emission of light or heat, or 4) 

absorption/reflectance. The transducer element can convert this signal into a measurable 

unit: pH, current/potential, temperature, or absorption spectra through electrochemical, 

thermal, or optical methods. Detection of target analyte via enzymatic activity can be 

done in three major methods: 1) the enzymatic activity converts the target analyte into a 

product compound that can be easily detected, 2) turning on or off the enzymatic activity 
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through activation or inhibition by the target analyte, or 3) monitoring changes in the 

enzymatic activity due to influences of the target analyte mainly through electrochemical 

or optical detection methods. With the catalytic property of the enzymes, it is possible to 

generate a large signal via the number of occurring reactions. The enzymatic activity has 

been well studied such that a single enzyme could be used to target various analytes 

through selecting its substrate, product, inhibitor/activator, and modulators as the target 

analyte of interest. Because covalent bonds are not typically involved in the enzymatic 

activity and are not consumed in the process, these types of biosensors can be 

continuously reused and only limited by the stability of the enzyme. Because the enzymes 

are highly specific and the catalytic activity can amplify the signal for lesser amounts, 

these sensors often have lower limits of detection compared to other binding techniques 

which are great for biosensor developments. However, like the antibodies, these 

enzymatic proteins are also influenced by its immediate environmental conditions works 

best in an optimize pH and temperature range with minimum external interferences from 

foreign molecular interactions. 

Biosensors using RNA and/or DNA as part of the biological recognition system17–

26 often employs either one or a combination of the following: 1) complementary 

RNA/DNA sequence, 2) custom RNA/DNA oligomer sequences, or 3) specialized 

aptamers sequences. The transducer of these biosensors can translate the binding events 

into a quantifiable signal through 1) piezoelectric, 2) electrochemical, or 3) optical 

techniques. Single-strand RNA or DNA are well-known biomarkers involved in disease 

detection. The RNA biomarkers can be separated into two categories: 1) messenger RNA 
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(mRNA), or 2) microRNA (miRNA). Messenger RNAs (mRNA) are large single-strand 

RNA transcribed from the RNA or DNA genome and are responsible for carrying 

information for protein translation. The detection of these mRNA is facilitated through 

fluorescently labeled single stand binding (SSB) proteins. However, these proteins will 

bind all single-strand DNAs and RNAs, so samples must be highly purified to accurately 

capture just the target strands. Micro RNA (miRNA) are small (~22 units) of non-coding 

RNA that is involved in RNA silencing and post-transcriptional regulation. The 

repression occurs by pairing with its targeted mRNA and induce cleavage of the target 

transcript which will cause gene suppression. The detection of these miRNA employs 

single-strand RNA that can be coupled with a fluorescence probe or immobilized on an 

electrode for the signal transducer. Another strategy centers around the aggregation of 

nanoparticles functionalized with complementary strands that will only aggregate upon 

the presence of the target strand. Probes for these can directly fish out the target strand 

from the sample and competitive binding to a mismatched strand can aid in suppressing 

non-specific binding as only the target strand will have a higher binding affinity than the 

mismatched probe.  

Biosensors have utilized aptamers, an oligonucleotide or peptide sequence, as the 

biological recognition system for selective capturing of specific target molecules27–33. 

Sequential Evolution of Ligands by Experimental Enrichment (SELEX) is an iterative 

processed developed to screen a large library of ssRNA/ssDNA/peptides for selective 

binding of a specific target process and enrich the selected oligomers. A library of 

ssDNA, ssRNA, or peptide sequence is pre-generated based on ideal parameters that 
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influence target binding. This pool of potential aptamers is screened with an affinity 

column functionalized with the target molecule, which will retain any viable aptamers on 

the column surface. The viable aptamers are eluted from the column, collected, and 

amplified via polymerase chain reaction (PCR). This pool of amplified aptamers is 

subjected to screening again to the same affinity column several times to enrich the 

aptamer pool, typically ending with a large pool of sequences (~106) that can bind to the 

target molecule. The aptamer of choice for target recognition will depend on desired 

binding interaction and often will employ the aptamer with the highest binding affinity 

for target-specific selectivity. There are various strategies employing aptamer for target 

selection. These aptamers have been paired with signal transducers for electrochemical, 

fluorescent, and plasmonic detection. While SELEX allows the fabrication of aptamers 

for various desired targets with high affinity, the screening process of a large pool of 

aptamers to identified optimal aptamer sequences can be costly and time-consuming.  

Biosensors have employed whole cells as the biological recognition system to 

observe cellular response as environmental monitors for pollutants to a medical diagnosis 

of disease, and monitor drug-dosage responses34–43. These biosensor centers around a set 

of reporter genes and their regulatory proteins and monitors the changes in the regulation 

of the expression of the proteins as the signal transducer. These biosensors focus on 

analyzing the bioavailability for the rapid detection of pollutants and toxicants that are 

harmful to the cells. Bioavailability is a crucial factor to monitor as this determines the 

actual exposure amount that is biologically possible to a living organism. While 

bioavailability can estimate with traditional chemical analysis such as high-pressure 
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liquid chromatography (HPLC), whole-cell sensors are much more sensitive to lower 

concentrations of these harmful analytes due to alteration during sample extraction. These 

sensors can be easily deployed for the field of site testing and can identify samples that 

contain a bioavailable contaminant.  

The transducer elements for whole-cell biosensors center around changes in gene 

expression due to intercellular interaction with the target analyte. There are three key 

gene consecutive sequences that are required for this process: 1) the regulatory gene, 2) 

promoter gene, and 3) the reporter gene. The regulatory gene is responsible for coding a 

regulatory protein that can bind the targeted analyte. This regulatory protein is the 

biological recognition element within the cell cytosol. Once the analyte enters the cell, 

the regulatory protein will bind the analyte and enter the nucleus to act upon the promotor 

sequence downstream from the regulatory sequence. The interaction of the promotor 

sequence will alter gene expression levels in the reporter gene. The reporter gene is 

responsible for coding a reporter protein that can be optically observed when expressed. 

The physiochemical detectable signal from the lux (Bacterial luciferase) and luc (firefly 

luciferase) genes produces a bioluminescent signal, while the green fluorescent protein 

(GFP) produce a fluorescent signal. The lacZ (β-galactosidase) gene can be further 

modified to produce bioluminescence, fluorescence, colorimetric, or electrochemical 

signal44–49. These whole-cell biosensors can provide rapid and highly sensitive detection 

of targeted analytes with a variety of detection methods. But these sensors do have issues 

of strict requirements of temperature, O2, ATP, and substrates for cellular functions as 

well as low cellular permeability of some analytes.  
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Biosensors employing biomimetic structures have been developed as the 

biological recognition system to mitigate some of the issues from whole-cell 

biosensors50–55. This archetype takes the best attributes of the biological recognition 

elements such as the binding receptor proteins, cell membrane antigens, etc. from the 

whole-cell biosensors, and immobilizes it on a substrate to remove some of the strict 

biological requirements that are required to sustain the biorecognition process in living 

cells. These recognition elements can be extracted from the cells or synthesis of a 

structure that mimics the recognition function of these elements to replace proteins and 

the cellular membranes.  

These biomimetic biosensors have utilized signal transducer that best matches the 

supporting substrates. Conductive substrates will often employ electrochemical or 

piezoelectric methods to measure the binding events on the surface. Optical detection can 

be achieved through labeling fluorescent probes or chemiluminescent enzymes onto 

secondary recognition elements for fluorescent and chemiluminescent detection of 

surface binding events. Alternatively, plasmonic surfaces such as gold and silver can 

provide a label-free optical detection method through surface plasmon resonance 

(SPR)56–58 and localized SPR59 to quantify these binding events. These biosensors can 

tailor to have high sensitivity (pM-nM) towards the target analyte of interest such that 

they have higher reproducibility and accuracy of detecting these analytes than whole-cell 

biosensors. Notably, these sensors require optimized experimental conditions to excel. 

False-positive/negative from non-specific binding, analysis time, ease of use, 
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multiplexing, and high throughput capability are a few of the issues that are emphasized 

in biomimetic biosensor developments.  

 

Figure 1.1. Four types of ELISA Assays: direct, indirect, sandwich, and competitive. 

 

ELISA (enzyme-linked immunosorbent assay) is an analytical biochemistry assay 

that is often incorporated into biosensor designs60,61. ELISA centers around antibody-

antigen pairing for the biological recognition element and conjugating an enzyme to the 

antibody for signal transducer element, often resulting in colorimetric change upon 

enzymatic reaction with substrate. Biosensor development will employ one of the four 

following types of ELISA assays: 1) direct, 2) indirect, 3) sandwich, and 4) competitive.  

Direct ELISA is simple and straight forward. The antigen is adsorbed to the 

surface and then exposed to antibodies conjugated with enzymes that will facilitate a 

chemical reaction that will induce an observable colorimetric change measured by a 

spectrometer. Sandwich ELISA is a modification to the direct ELISA. It begins with 

coating the surface with capture antibodies before continuing with the procedures of the 
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direct ELISA. This increases the capture of antigens to increase selectivity and sensitivity 

compared to direct ELISA. Competitive ELISA is a modified sandwich ELISA. The 

enzyme-conjugated antibodies will have a weaker binding interaction than the targeted 

antibodies. Upon exposure to the target antibodies in the sample, the targeted antibodies 

will outcompete the labeled antibodies on the surface, causing a detectable decrease in 

signal upon the presence of the targeted analyte. An alternative is that the surface is 

coated with unlabeled antibodies, and the signal is only observable when the labeled 

antibody with higher affinity outcompetes the unlabeled antibodies. This reversed setup 

aids in increasing selectivity towards the target analyte and aids in mitigating false 

positives. ELISA is one of the golden standards that biosensor development must 

compete against. ELISA has nanogram sensitivity and conducted in a 96 well plate, 

allowing for high throughput analysis of samples. One major issue that ELISA has is 

false positive from nonspecific binding of the labeled antibodies onto the surface. 

Glucometer, a blood glucose biosensor, is a well notable example of a biosensor. 

These biosensors employ enzyme/ligand pairing as the biorecognition element with 

electrochemistry as the signal transducer. While the first blood glucose sensor used 

glucose oxidase and colorimetric analysis, these biosensors soon transitions to 

electrochemical detection. The glucose oxidase will convert glucose into gluconic aid and 

produce hydrogen peroxide as a byproduct62,63. The hydrogen peroxide will be oxidized 

at a catalytic anode and measures the electron transfers, allowing for indirect 

measurement of the glucose concentration. These devices provided a quick and accurate 

reading of blood glucose levels to aid in monitoring health and administering medication. 
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These blood glucose biosensors are a notable example of the transition of a clinical tool 

into handheld devices for point of care use by the patients.  

Biosensor development is a growing field of interest for analytical, medical, 

industrial, and environmental purposes. There are many other notable biorecognition and 

transducer elements in found literature. The combination of various biorecognition 

elements and signal transducer provides customizations of a biosensor for specific 

analytes of interest. Advancement in biosensor development can arise from the novel 

application of materials improving biorecognition element and signal enhancement 

strategies to improve the sensitivity of the signal transducers. 

 

1.3 Nanofibers. 

Nanofibers are ultrathin fibers synthesized in the nanoscale through either 

electrochemistry or electrospinning. Fabricated from various polymers allow these fibers 

to have different properties that can be selectively optimized for scaffolds or sensor 

applications. The nanofibers provide advantages over their traditional counterparts of thin 

films, such as a high surface area to volume ratio, strong tensile property, and can be 

tailored for specific purposes across multiple applications. Electrospinning is a widely 

used technique for electrostatic fabrication of nanofibers from polymer solutions with 

diameters spanning from few nanometers to several microns. Electrospinning has been 

utilized extensively throughout literature11,64–69 because of its versatility and ability to 

reproducibly fabricate continuous polymer fibers with nanometer diameters. 
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Electrospinning is an electrohydrodynamic process. A solution droplet is electrified with 

high voltage to produce a jet stream that will stretch and elongate to generate thinner 

fibers. The setup is quite simple and accessible to every lab (Figure 1.2A).  

 

 

Figure 1.2 Basic setup for electrospinning. Diagram depicting the path of an electrospun 
jet.  

 

The main components include a high voltage power supply, a syringe pump, a 

spinneret, and a conductive collector. The electrospinning process begins with polymer 

extruded from the spinneret or a blunt tip hypodermic needle to produce a pendant 

droplet because of surface tension. A Taylor cone is formed when the electrostatic 

repulsion among the surface causes the droplet to deform, and a charged jet is ejected70–

72. The jet will initially travel in a straight line before undergoing vigorous whipping 

B 
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motion caused by bending instabilities. As the jet stretches into finer diameters, the 

solvent evaporates, and the solution solidifies quickly, leading to the deposition of solid 

fibers on the grounded collector.  

The formation of the Taylor cone is an important process and is dependent on 

both the liquid’s surface tension and applied charge. By applying high voltage, an 

external electric field is generated and acts upon the extruded droplet. To force the 

droplet into a conical shape to draw a jet stream, the strength of the electric field needs to 

surpass the capillary pressure caused by the surface tension of the droplet. This allows the 

electrostatic repulsion to be strong enough to overcome the surface tension and deform 

the droplet into the conical shape allowing the proper Taylor cone formation to guide the 

resulting jet towards the collection plate. As the jet travels towards the collection plate in 

a straight line, the diameter decreases monotonically, and the acceleration gradually 

drops to a constant.  

After a certain distance, the straight jet is susceptible to instability because of the 

electrostatic repulsion of the surface charges. The jet is subjected to the far-field regime, 

which can be controlled by fine-tuning the physicochemical properties and the 

electrospinning parameters, (Figure 1.2B). Within this far-field region are two types of 

instabilities that can occur. The first is known as Rayleigh instability, an axisymmetric, 

which can lead to breaking up the jet into droplets. This instability is dictated by surface 

tension and can be mitigated using a strong electric field. The second type of instability is 

known as whipping or bending instability which is non-axisymmetric and is vital for the 

fabrication of ultrathin nanofibers.  
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These instabilities are caused by electrostatic repulsion among the surface charge. 

The jet is compelled to bend in the lateral electro stative force from, causing 

perturbations in a radial direction relative to the jet. This bending creates a lateral force 

perpendicular to the jet axis, which further promotes more bending perturbation to occur. 

Resulting in the jet trajectory to quickly bend at 90° angle and alters into a series of coils 

of continuous spirally and gradually thinning jet that oscillates at a high frequency. This 

causes the boundary of the jet to occupy a wide cone area as the whipping intensify, 

allowing elongation to occur and dramatically reduces the diameter of the jet as it 

continues towards the collection plate. Evaporation of solvent is a principal factor in this 

step as it will constantly reduce the volume and change viscoelastic parameters of the jet, 

which prevents large loop formation leading to thicker nanofibers. Literature has shown 

that the elongation of up to10,000 times can occur during the whipping process is vital 

for the formation of ultrathin nanofibers of nanometer dimensions. 

To fine-tune the electrospinning process to control the fiber diameters, the 

following parameters are optimized: applied voltage, solution flow rate, and distance 

between needle tip and collector. These parameters will significantly influence the 

formation and structure of the produced nanofibers. Static DC high voltage is applied to 

generate the electric field with either negative or positive polarity that affects the 

distribution of the charged molecule within the surface of the jet. The critical voltage and 

correct charge are dependent on the solution and determine if fibers form or 

electrospraying occurs instead. While a higher voltage usually results in the formation of 
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thinner fibers, it may also induce a higher ejection of fluid, resulting in fibers with thicker 

diameters.  

Alternating current (AC) has been used to electrify the liquid for electrospinning, 

but the alternating current induces alternating segments of positive and negative charge 

with lengths dependent on the frequency of the AC potential. These alternating charged 

segments can cause bending instability within the jet hindering fiber elongation and 

forming thicker fiber. The frequency must be tuned so that it is fast enough to effectively 

electrify the liquid for electrospinning and allow bending instability to occur to elongate 

and thin the fibers. The collection of these formed threads may have an issue as these 

fibers do not readily attract toward grounded collector and can be deflected away. The 

parameter for the flow rate of liquid dictates how much material is available. An increase 

in flow rate will typically result in fibers with an enlarged diameter as the initial jet 

becomes thicker as the dynamics of the Taylor cone have changed. The working distance 

between the needle tip and collector determines the stage of the instabilities of the jet that 

is deposited. The longer distance is required to ensure full extension and solidification of 

the jet for thinner fiber formation. These parameters are interlinked, and all parameters 

must be adjusted to ensure optimized fiber formation of the desired size. 

Electrospinning has utilized various polymers dissolved in an appropriate solvent 

to form nanofibers as the solution is stretched, elongated, and thinned by the whipping 

instability as the solvent evaporates. Both natural and synthetic polymers have been used 

in numerous studies to directly produce nanofibers. Example of these applications utilizes 

polystyrene (PS), poly (vinyl chloride) (PVC), etc. nanofibers for commercial application 
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to protect the environment64,73–75. Biocompatible and biodegradable nanofibers composed 

from poly(ε-caprolactone) (PCL), poly (lactic acid) (PLA), etc. have been explored for 

scaffolds in biomedical applications. Natural biopolymers such as silk fibroin, dextran, 

collagen, etc. have been electrospun into nanofibers to explore the physical properties of 

these resources. Conductive polymers such as polyaniline (PANi)64,76–80, polypyrrole 

(PPy)81,82, etc. also have been fabricated into nanofiber to take advantage of piezoelectric 

and/or pyroelectric applications.  

These solutions utilize an optimized organic solvent system to form a solution 

with high volatility to adjust the evaporation and solidification rate of the jet. If volatility 

is too high, the solution jet immediately solidifies and unable to form thin nanofibers. 

However, if volatility is too low, the fibers will still be wet when collected and swell due 

to the solvent content. Melts are a molten polymer solution that uses heat to aid in 

dissolve polymers that are difficult to dissolve in suitable solvents for solution 

electrospinning. It is necessary to add a heating device to keep the polymer in a molten 

state. After ejection, the molten polymer jet cools down and solidifies to generate fiber. 

Because of a lowered electrical conductivity and higher viscosity of the melts, the 

whipping instability of the jet is greatly reduced. 

 Small molecules can be directly integrated into the nanofiber during the 

electrospinning step if there are strong intramolecular interactions between such that 

these small molecules form self-assembled structures in solution. Similarly, colloidal 

particles83 can also be doped into nanofibers if they are a certain size and don’t affect the 

viscosity. Their incorporation can be improved with cross-linking polymer and dopant. 
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Composite nanofibers have been explored as a method to fabricate nanofiber of a novel 

material that cannot normally be electrospun by itself using a carrier polymer and 

removing it afterward. All these diverse types of functionalization increase the scope of 

application of electrospun nanofibers that can be tailored in size and property for the 

desired purpose.  

 

1.4 3D Printing. 

3D printing is an additive manufacturing process of fabricating three dimensional 

solid objects from a digital file. This 3D printing is done through fusing deposited 

material in a layer by layer process, which enables a wide range of complex shapes using 

less traditional manufacturing methods such as milling, subtractive manufacturing which 

cuts, and hollows out the substrate. This process enables rapid prototyping and mass 

production of custom objects for various applications36,84–90. The first application of 3D 

printing was in 1987 by Chuck Hull of 3D Systems utilizing stereolithography (SLA) 

process, which was quickly followed by other 3D printing technologies such as fused 

depositional modeling (FDM) by Stratasys and selective laser sintering (SLS) again by 

3D Systems (Figure 1.3). The prohibitive cost of these printers was restrictive and thus 

mainly used for industrial prototyping until these 3D printing technology patents expired 

in 2009, which opened the market from what used to exclusively be large $200,000 

gigantic units to low-cost desktop 3D printers of $2,000.  
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Figure 1.3 Schematic representation of a typical (A) FDM setup (B) Powder-liquid bed 
setup (C) SLA setup (D) SLS setup. Reprinted from Ref#90, Copyright 2017, with 
permission from Elsevier.  

 

The principles of 3D printing can be divided into several categories: material 

extrusion, vat polymerization, material jetting, binder jetting, and powder bed fusion of 

polymers or metals. Out of these major branches of 3D printing, projects in this 

dissertation focuses on the vat polymerization technique and the advantages over the 

fusion deposition method (FDM) for our target application of optical components for 

sensor fabrication. Selective laser sintering (SLS) will also be discussed in this section as 

it is an exceptionally viable alternative to forming optical objects through porous silica 

sintering. 
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The fusion deposition method (FDM) is a layer by layer fabrication of a 3D object 

through melting and depositing substrates, commonly a spool of plastic filament91 into 

the desired shape.   This process is mechanized with motor controls to provide very 

precise movement of both the extrusion head and the stage to create seamless objects. 

The extrusion head equipped with a heated nozzle is responsible for melting the filament 

substrate and deposit material via motor controls. The molten substrate cools and 

solidifies, forming a single layer. The build platform shifts down to allow the next layer 

to form. The process continues until the object is fabricated. FDM is the most cost-

effective method of producing custom thermoplastic objects for parts and prototypes. 

With a wide range of thermoplastic materials available, FDM is capable of prototyping 

and creating objects of various shapes, sizes, and properties. Objects made with 

thermoplastics can be recycled by melting the object into liquid form, conserving 

materials in cases of failed prototyping. But there are some flaws to FDM. It has the 

lowest dimensional accuracy and will have rough surfaces with visible seam lines from 

layering. It is also inherently anisotropic, which renders the fabricated objects unsuitable 

for critical applications.  

Stereolithography (SLA) is a vat polymerization method that utilizing an 

ultraviolet (UV) light source to cure and solidify liquid resin in a vat through a layer by 

layer processes84,92–94. These printers are equipped with both a motorized build platform, 

and a mirror galvanometer to precisely cure preselected cross-sections of the resin. When 

a layer is complete, the build platform is moved away for a sweeper blade to recoat the 

scanning surface allowing for the next layer to be formed. The fully formed object may 
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not be fully cured when completed, and additional post-processing under UV light is 

required. Unlike the thermoplastics of FDM, the liquid resin is solidified through 

photopolymerization by UV light exciting the photoinitiations, which catalyze the 

polymerization of thermoset polymers creating irreversible and unbreakable bonds. While 

SLA uses a single laser point to cure the resin, Digital Light Processing (DLP) is an 

advancement that takes advantage of a digital light projector to flash a single image of 

each layer at once, increasing the speed of production. The main advantage of utilizing a 

laser to cure resins in SLA and DLP is that these techniques can produce objects with 

extremely high dimensional accuracy with intricate details and exceptionally smooth 

surface finish. Along with a broad range of specialty material including clear, flexible, 

biocompatible resin (ceramic), and other materials tailored for specific interactions are 

available to produce custom objects that suit a variety of needs. However, objects 

fabricated in this fashion are often more brittle than FDM counterparts and not suited for 

physical functional prototypes and may degrade when exposed to prolonged UV radiation 

from the sun.  

Selective laser sintering (SLS) is a powder bed fusion method utilizing powdered 

polymers95,96. The material is heated up to just below its melting point and thinly 

deposited on the build platform before a CO2 laser scans the surface of the powder bed. 

The printer selectively sinters the particles which bind them together in a predetermined 

pattern to form a single layer of the desired object. After a layer is complete, the build 

platformed is lower, and the process repeats, resulting in a bin containing the completed 

object surrounded by unsintered powder. While SLS printers are high-end industrial 
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systems, the type of materials has good mechanical properties such as nylon, polystyrene, 

thermoplastics, polycarbonate, porous silica, etc. which further increases the materials 

available for 3D printing custom objects. Because the object is formed through sintering 

particles, the resolution is limited to the particle size distribution. Additionally, these 

objects tend to finish with a rough surface and internal porosity. 

 

Figure 1.4 3D printing enables a wide range of applications. 3D printing’s ability to 
prototype novel designs can be combined effectively with a range of optical techniques.  

 

In the last decade, 3D printing has been focused on rapid prototyping and mass 

production of functional parts for industrial purposes. With the increase in availability, 

the application of 3D printing has risen around fabrication techniques for scientific 

equipment such as replacement parts, components, and devices. A major focus of this is 

sensor developments as 3D printing provides a reliable process of both rapid prototyping 

and mass production of microfluidic devices and other forms of sensors85,98–103 (Figure 
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1.4).  The investigation of applying 3D printing of optical components for sensor 

development has just begun87,97. Examples of forming glass objects from SLS technology 

have sparked interest in fabricating optical components. These works show that while 

SLS is capable of replicating glass components, these objects have issues with surface 

roughness and internal porosity affecting the light transversal path through the interface. 

Thus, the project in this dissertation utilizes SLA and clear resin as an alternative to form 

optically functional prisms that will be employ in this sensor development.  

 

1.5 Surface plasmon resonance. 

Surface plasmon resonance (SPR) is a nanomaterial facilitated optical phenomenon that 

has emerged as a robust technique for analytical chemistry and brought great 

enhancements to sensor developments. The main benefit of SPR is the ability to conduct 

a label-free analysis of protein affinity, lipid specificity, and a large collection of signal 

enhancement schemes.57,58,104–108     

Principles and Theory. Surface plasmon resonance (SPR) is a phenomenon that occurs 

because of momentum transfer from an oscillating electromagnetic source such as light to 

a field of delocalized electron on metal surfaces. This transfer causes the free electrons to 

oscillate in resonance with the incoming incident light at the metal-dielectric interface, as 

depicted in Figure 1.5a. Several factors affect the conditions under which this transfer is 

possible. One of these factors has is keyed to the shape, size, and composition metal 

material. A key factor is the angular frequency of the incoming incident light, which 
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dictates how much energy is available to be transferred to the surface. The last major 

factor is the dielectric constant of the metal and the surrounding media. The basis of 

common SPR set up utilize today was designed by Kretschmann and Raehter109, forming 

a silver-air interface capable of generating plasmon waves through attenuated total 

reflection geometry.  

 

Figure 1.5 Schematic diagrams illustrating (A) a surface plasmon polariton (or 
propagating plasmon) and (B) a localized surface plasmon for SPR and LSPR, 
respectively.  

 

The Otto configuration is another well-studied SPR set up that acts upon similar 

principles111. They take advantage of electrons collectively oscillating in resonance with 

the incident light source to generate a propagating plasmon wave at the metal-dielectric 

interface. Through their understanding, the many conditions critical for SPR to occur 

were discovered by their work.  
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One of these conditions discovered deals with the coupling of the incident light to 

the metal’s conduction electrons, which is only possible when the defined wavevector of 

incident light (k0) is equal to the wavevector of the surface plasmon polaritons generated 

(ksp) as defined in Eq1. Within this equation: λ is the wavelength of the incident light, εm 

is the dielectric constant of the metal, and εs is the dielectric constant of the surrounding 

medium on top of the metal (Figure 1.5a). SPR does not occur on all metal material 

because the dielectric constant is a complex value that is defined by both a real and 

imaginary component, εm = εm′ + iεm′′, thus only when a material possessing both a 

negative real component and a small imaginary component can the dielectric constant be 

satisfied to generate a surface plasmon wave. Given that εs can be reduced and redefined 

as n2 (n = refractive index), SPR is sensitive to minute changes in the refractive index 

above the metal surface from sources such as large changes in buffer solutions, self-

assemble monolayer adsorption, or molecular binding of protein or analyte of interest. 

This sensitivity promotes SPR development as novel binding techniques are developed to 

take advantage of this trait.  

Because ksp is dependent on the dielectric constants, εm, εs, and ksp cannot be 

equivalent to k0 when freely traversing through a vacuum and thusly resonant conditions 

will not be met and no SPR occurs. This loss of angular momentum has been most 

commonly supplemented by guiding the incoming light through a high refractive index 

prism with ATR geometry to a thin metal surface deposited on the prism face. This will 

increase the effective wavevector of the incident light (keff) according to Eq2, nD is the 

refractive index of the prism, and θ is the angle of the incident light striking the prism-
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metal interface, to reach resonance conditions necessary to generate observable SPR 

response. With this setup, surface plasmon polaritons are generated because ksp is now 

equivalent to keff. This discovery allowed for adjustment of the coupling conditions to be 

tuned to a specific wavelength and or angle of the incident angle of the incoming light for 

many variations viable for different SPR setups. Under these conditions, the SPR 

phenomenon is observed as a dip in the reflectance spectrum of the surface material that 

shifts with incident angle or wavelength of light correspondingly in response due to 

changes in the dielectric constant es or increase of refractive index nD. 
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The generated surface plasmon exponentially decays in the z-direction. Thus, 

after a certain total thickness of the sensor interface, the SPR phenomenon will no longer 

be detected. Penetration depth (δi) is utilized to determine how far any electromagnetic 

radiation, in this case, is the plasmon, can travel through the thin metal surface and what 

optimal range of distance from the substrate that measurements can be taken effectively. 

This distance is defined as the electric field of the surface plasmon decreases to 1/e of the 

maximum value expressed in Eq3. The penetration depth is estimated to be within 200nm 

when working with a 50nm thin gold film immersed in water.  
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Localized Surface Plasmon Resonance (LSPR). Not only can surface plasmon can be 

generated on thin metal film as propagating polaritons, but surface plasmons can also be 

generated and contained onto discrete nanostructures in an event known as localized 

surface plasmon resonance (LSPR)110,112,113. This occurs in cases where the light interacts 

with nanoparticle structures that are much smaller than the wavelength of the incident 

light, generating surface plasmons that oscillate locally around the nanostructure (Figure 

1.5B). This phenomenon results in amplifying the absorption and scattering properties of 

the nanomaterial. This effect is influenced by the nanoparticle shape, size, polarizability 

of the material used in the synthesis of the nanoparticle. Variation in these elements 

complexifies LSPR, which leads to computational work for complex modeling. There is a 

general relationship that can predict shifts in the wavelength of LSPR absorbance peak 

corresponding to changes in the dielectric refractive index of the surface interface as 

described in Eq4. This accounts for the changes in the bulk refractive index response of 

the nanoparticle (m), thickness in the altered layer of the dielectric (d), and the decay 

length of the LSPR field (ld) is akin to the penetration depth of SPR (δi).  
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Despite the similarities between SPR and LSPR, many differences affect senor 

design. The plasmon is localized around the nanoparticles, the working range of plasmon 

detection is limited to 15nm in LSPR, compared to the 200nm of the thin gold film in 

SPR. Another difference is that while SPR utilizes a singular wavelength to probe 

changes in reflectivity due to SPR response of the sensor interface at a wide range of 
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angles, LSPR utilizes a continuous spectrum of wavelength at a fixed angle to observe 

the shift in the absorption spectrum of the nanoparticle structures. Interestingly, because 

LSPR can be conducted either as colloids in solutions or immobilized on a solid support, 

LSPR can be utilized to enhance SPR as the plasmons can couple and generate greater 

sensitivity.  

SPR Instrumentation. There are other variations in SPR configurations that employ 

different techniques to obtain equivalent results. The Otto configuration111 has arranged 

space to exist between the metal and the total internal reflection surface such as a prism. 

Long-range SPR configurations allow the working area of plasmon detection to extend 

from 200nm up to microns. Plasmon waveguide resonance involves optical excitation of 

the plasmon of a thin metal film sandwich between a thicker dielectric film (silica) and 

the surface of a right-angle prism that excites both the S polarization found in 

conventional SPR and as well as the P polarization. The most commonly used in 

commercial and homebuilt instruments is an ATR set up known as “Kretschmann 

configuration”, developed by Kretschmann and Raether109.  
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Figure 1.6 (A)Schematic of real-time biosensing on SPR interface upon analyte binding 
to plasmonic surface. The reflectivity curve (B) shifts right due to analyte binding and 
can be monitored in real-time with a sensorgram (C).  

 

Wavelength scanning instruments have simplified this setup even further by fixed 

light source specifically at an SPR active angle and spectrometer in place of the 

traditional CCD detector allowing for real-time analysis58. These slight changes in the 

resonance angle can be detected and measured in a reflectivity spectrum that exhibits a 

sharp dip due to excitement of the surface plasmon polariton and is expressed in either 

change in the degree of resonance angle or resonance unit (Figure 1.6). This high 

sensitivity to changes in the refractive index mitigates the needs of external fluorescent 

tags or radiolabels, enabling SPR methods to be label-free. Unlike endpoint assays, SPR 

data can be collected in real-time for protein binding and kinetics analysis. While 

conventional SPR suffers from a lack of multiplex analysis, SPR imaging has been 

developed the technique for high throughput analysis.  
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1.6 Lipid Membrane Modeling. 

Because many toxins are required to enter the cell to act, it is important to 

understand how these compounds interact or bypass the plasma membrane, the cell’s 

protective barrier. The plasma membrane is a complex interface that consists of various 

lipid groups, glycolipids, cholesterol, and transmembrane proteins. By creating a 

membrane model, it is possible to observe a toxin’s initial interaction with the membrane, 

elucidating the toxin’s mode of action. This information can aid in discovering new 

pathways for cures or preventive measures to combat these toxins.  

Lipid membrane models have focused on a simplified system to represent single 

lipid bilayers for various applications such as proof of concepts, surface antigen 

recognitions, and molecular interactions. To mimic the lipid bilayer, not only the lipid 

and protein profile matters but so does the fluidity of the membrane. This fluidity grants 

semi-permeability, facilitating passive diffusion of small molecules such as oxygen, 

carbon dioxide, and hydrophobic molecules. Models of lipid membranes can be 

incorporated into biophysical sensors to help us understand protein interactions and 

dynamics. These sensors provide advantages over traditional cell assays, including the 

ability to tailor membrane surface for optimized assay reaction, minimize cellular 

interference, and increase reproducibility and reliability of interrogation of protein 

interactions114–116.  
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Figure 1.6 Lipid Bilayer Models. Design strategies for tethered lipid bilayers on solid 
supports. A wide range of tethering units can support the assembly of tethered lipid 
bilayers on solid supports. 

 

Lipid bilayer membrane models used in conjunction with biophysical sensors 

have centered around four major archetypes117: 1) tethered lipid bilayer 2) hybrid lipid 

bilayer, 3) supported lipid bilayers, and 4) tethered lipid bilayers. The tethered models 

employ polymer, protein, and thiol to tether the membrane to the substrate (Figure 1.6). 
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These single lipid bilayers can be tailored to specific reaction conditions and synthesized 

from a combination of synthetic lipids and or isolated lipids vesicles originated from 

either mammalian or bacterial cells to form bilayer facsimiles of their in vivo 

counterparts.  

While single lipid bilayer has been extensively studied as computational118,119 and 

experimental models105,106,117,120, the double lipid bilayers are also an important system to 

model. Double lipid bilayer membranes are ubiquitous in nature, as they define vital 

organelles such as the mitochondria, chloroplasts, and gram-negative bacteria. Modeling 

these systems can improve our understanding of the complex protein machinery involved 

in these energy-producing organelles, and it can also help us uncover novel drug-

membrane interactions of gram-negative bacteria118,119,121. These models will be better 

equipped than models of single lipid bilayers to study toxin interaction at the 

mitochondria and chloroplasts. By uncovering more compounds capable of interacting 

with the membranes, they can also aid the discovery of new antibiotics.  

Recent literature demonstrates computational122–124 and experimental models125,126 

of multi-lipid membrane layers. These models employ techniques such as tethered 

supported lipid bilayer57,105,117,120,127–129, electrostatic interaction between lipid 

layers130,131, and DNA hybridization132–134 to form stacked lipid bilayers. These 

experimental models124,135,136 form an imperfect double lipid bilayer membrane, with 

flawed incorporation of protein into the membrane, and even incomplete bilayers. The 

project in this dissertation employs an alternative method to form stacks of fully-formed 

and adherent bilayers by utilizing interactions between negatively-charged lipid 
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headgroup and positively-charged polymer of poly-L-lysine130,131. These double lipid 

bilayer systems can be applied to biosensors to elicit a better understanding of protein-

lipid interactions without cellular variance and interferences.  

 

1.7 Dissertation Scope. 

The goal of this thesis is to create a sensor from the novel application of 

nanomaterials for biosensor applications. The first half of this thesis focuses on utilizing 

nanofiber as the main substrate for sensor platforms for different purposes, while the 

second half shifts to the label-free optical detection method of SPR and LSPR. Chapter 2 

is a collaborative work with another member of our lab, Andrew Burris, that focuses on 

applying nanofibers towards gas phase detection of volatile organic compounds like 

small chained alcohol. The main technique applied in the chapter was utilizing 

polyaniline (PANi) doped with camphor-sulfuric acid nanofiber as a chemiresistor for 

sensing application. Graphene oxide and various reduced states of graphene oxide were 

incorporated into the system to enhance the nanofiber’s conductive property and increase 

sensitivity to the analyte. Nanofibers and thin films fabricated from the same solution 

were compared for their sensitivity, reproducibility, and recovery. By combining both 

sets of components into an array system using principal component analysis (PCA) to 

identify and quantify specific small chain alcohols exposed to the system.  

Chapter 3 expands the nanofiber system towards a scaffold for nanoparticle aided 

extraction of protein measured by fluorescence. The nanofiber scaffold synthesized from 
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polyvinyl alcohol (PVA) for increase biocompatibility was crossed linked via glutathione 

to promote fiber stability when exposed to an aqueous environment. Silver nanoparticles 

functionalized with ethylenediaminetetraacetic acid (EDTA) aid in the selective capture 

of the target analyte. The surfaces use the same traditional principles behind NTA 

columns. Upon exposure to a nickel ion solution, this surface could capture nitriloacetic 

acid (NTA) functionalized molecules or poly-histidine tagged (His-tagged) proteins for 

analysis. This capture scheme is reversible. The addition of EDTA can be introduced and 

outcompete the NTA and partial EDTA for the nickel ion chelation, removing the binding 

between the surface and the target analyte. In this work, fluoresce was utilized to verify 

and measure captured proteins analyte. 

Chapter 4 begins the second half of the thesis as focus shifts from nanofibers to 

surface plasmon resonance (SPR), specifically localized SPR (LSPR) of nanoparticles 

immobilized for a setup akin SPR. This work also introduces 3D printing applied to the 

field of sensor development. Fabricating 3D printed prisms with the comparable optical 

quality of commercial optical prisms simplifies the experimental setup by fusing the 

sensing layer directly on the prism surface. The sensing layer comprised of nanoparticles 

was grown in-situ onto the prism surface. The surface is functionalized with DNA 

oligomers to aid in selective capture of target model protein, streptavidin. The 

quantification of captured protein was conducted via changes in the LSPR signal of the 

immobilized silver nanoparticles. This scheme can be further applied to target various 

analytes of interest. 
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Chapter 5 focuses on constructing a novel double lipid bilayer membrane model 

from stacking lipid bilayers with poly-L-lysine serving as the adhesive between the 

layers. SPR was used to monitor the fabrication of this lipid system at each step and 

quantify binding interactions that occur on this interface. Streptavidin and Cholera toxin 

was the model analytes studied to show the sensor capability to detect binding 

interactions. This novel interface has the potential to aid in the drug discovery process of 

compounds that acts upon these unique interfaces such as the membrane surfaces of 

mitochondria, chloroplast, and gram-negative bacteria. This work also investigated the 

use of Streptolysin O (SLO) to facilitate pore formation on the lipid bilayer to create a 

novel interface that uses the outer pore filled membrane as a size-selective barrier for 

analyte interaction occurring on the inner bilayer.  
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Chapter 2: Electrospun Nanofiber and Drop-Cast Film Sensors of 

Tunable Graphene/Polyaniline/Poly (ethylene oxide) Composites 

 

2.1 Introduction. 

     The detection of harmful airborne compounds is important to maintain and protect 

human health in both industrial and domestic environments. Accurate and precise 

measurement of gaseous compounds using traditional analytical techniques can be 

tedious and expensive. Thus, innovation for rapid and economical advances, alongside 

portability and real-time analysis, has been in demand for new methods and sensor 

development. Electrospinning, an electrostatic fiber fabrication method, enables the 

production of continuous polymer fibers with diameters ranging between a few 

nanometers to several microns. Electrospun nanofiber has been applied as solid-state 

sensors due to their advantages such as high surface area, mechanical properties, cost 

efficiency, facile fabrication, and modification potential1–3.  

Polyaniline (PANi) is a conductive polymer that has been electrospun into nanofibers for 

chemiresistor sensors due to the facile fabrication and excellent electrical and mechanical 

properties4–7. These PANi sensors have detected many gases, including ammonia (NH3), 

nitrogen dioxide (NO2), hydrogen sulfide (H2S), hydrogen (H2), and carbon monoxide 

(CO)8–11. To improve the fiber performance, (+)-camphor-10-sulfonic acid (HCSA) have 

been doped into the nanofiber matrix to modify the PANi nanofiber conductivity. 

However, there is difficulty in fabricating nanofibers from a PANi/HSCA solution due to 
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the low molecular adhesion of the polymer due to the low molecular weight and rigid 

backbone structure12–14. Thus, poly(ethylene oxide) (PEO) has been added to assist the 

electrospinning fabrication of PANi-based nanofibers, resulting in a conductive 

composite nanofiber15,16. These composite nanofibers can be tuned for selectivity, 

response time, robustness, and further modification by additional dopants, such as 

graphene. 

 Graphene, a single-atom-thick sheet of sp2 hybridized carbon atom network, is 

well known for its unique electrical and chemical properties. Graphene has been used in 

sensing applications for its high specific surface area, mechanical flexibility, and high 

conductivity. While there are a few reported work of PANi/PEO/Graphene nanofibers 

and comparing its properties to PANi/PEO nanofibers, there are few applications of this 

composite nanofiber for sensor applications17,18. Sensing applications of graphene have 

focused on variants of reduced graphene oxides (rGO) and its interaction with gaseous 

analytes19–21. Graphene oxide (GO) readily interacts with gaseous analytes through the 

oxygen-containing functional group on the surface. While conductivity increases as a 

higher degree of reduction occur on the GO, the loss of the oxygen-containing functional 

group reduces surface functionality and solubility in organic solvents. However, it is 

known that partially reduced graphene oxide contains the benefits of both GO and rGO, 

as it has an optimal balance between chemical adsorption capacity provided by GO and 

electronic characteristics of rGO which are key factors for gas sensor development. 

           In this chapter22, electrospun composite PANi/HSCA/PEO nanofibers were 

functionalized by doping variants of reduced graphene oxides (rGOs) and examined its 
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capability as a room temperature gas sensor. Chemical and thermal reduction of GO 

generated two sets of rGO denoted as crGO and trGO, respectively. The time allotted for 

the chemical reduction process was further modified to 6 hours or 12 hours to form two 

variants noted as crGO-6 and crGO-12 for the indicated reaction time. Additionally, the 

temperature for the thermal reduction process was also adjusted to 500 ºC or 900 ºC to 

create two more variants noted as trGO-500 and trGO-900. These rGO variants were used 

to tune the nanofiber sensitivity towards the gaseous analytes. Thin-film sensors were 

fabricated from the electrospinning solutions with the rGO variants. The performance of 

both the nanofiber and thin-film sensors were compared. A sensor array utilizing all the 

rGO variant components in conjunction with principal component analysis was used to 

successfully identify the gaseous analytes: methanol, ethanol, and 1-propanol. 

 

2.2 Experimental Detail. 

Materials. Polyaniline (PANi) emeraldine base (Mw = 65,000), (1S)-camphor-10-

sulfonic acid (HCSA), polyethylene oxide (PEO) (Mw = 2,000,000), sulfuric acid 

(H2SO4), potassium persulfate (K2S2O8), phosphorus pentoxide (P2O5), potassium 

permanganate (KMnO4), hydrogen peroxide (H2O2, 30%), hydrochloric acid (HCl), 

trisodium citrate (Na3C6H5O7), chloroform (CHCl3), dimethylformamide (DMF), 

methanol (MeOH), ethanol (EtOH), and 1-propanol (PrOH) were purchased from Sigma-

Aldrich (St. Louis, MO). Graphite powder was purchased from Alfa Aesar (Haverhill, 

MA). 
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Instrumentation. A Lindberg/Blue M tube furnace (Thermo Fisher, Waltham, MA) was 

used for thermal reduction of graphene oxide. PTFE syringe filters (0.45 µm) were 

purchased from Scientific Strategies (Yukon, OK). Interdigitated microelectrodes were 

purchased from Case Western University, OH. The electrospinning setup utilize a syringe 

pump (KD Scientific, 200 Series) and a high voltage power supply (Spellman 

CZE1000R).  

Atomic force miscopy (AFM) and Raman characterization was conducted on an 

OmegaScope™ 1000 from AIST-NT (Novato, CA). SEM imaging was conducted on a 

Hitachi TM-1000 (Tokyo, Japan). The electrical conductivity was monitored using a 

Keithley 236 electrometer (Cleveland, OH). 

Graphene oxide preparation. Graphene oxide (GO) was synthesized from graphite 

powder using a modified Hummer’s method23. Initial 2 g of graphite powder, 1 g 

K2S2O8, and 1 g P2O5 was mixed with 20mL of concentrated H2SO4 at 80˚C under 

constant stirring with a reflux condenser for an hour. The resulting mixture turns dark 

blue and is cooled to room temperature before diluting (tenfold) with ultrapure water, 

filtered, and washed. After drying the graphene oxide overnight, the GO is mixed in 46 

mL of ice-cold concentrated H2SO4, followed by the gradual addition of 6 g KMnO4. 

The solution is mixed at 35˚C for 2 hours and diluted with 375 mL ultrapure water. 

Dropwise addition of 5 mL of 30% H2O2 proceeded to quench the reaction. The 

resulting yellow solution is filtered and washed with dilute HCl. The graphene oxide 

solution is further purified by several rounds of dialysis. Sonication of the suspension 
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produced a uniform yellow-brown GO solution, which was then subjected to 

centrifugation to remove unreacted graphite. 

Reduction of graphene oxide. The graphene oxide was reduced by two methods: 1) 

thermal or 2) chemical methods. Two sets of thermal reduction of GO was carried out in 

a tube furnace in forming gas atmosphere. The temperature was ramped to either 500 ºC 

or 900 ºC for 15 minutes and held for 30 minutes to form two batches of thermally 

reduced graphene oxide (trGO). The trGO was re-suspended in DMF (5 mg/mL), but the 

trGO reduced at 900ºC is insoluble in the given DMF concentration. The chemical 

reduction of GO was facilitated through citrate reduction. Sodium citrate (688 mg) was 

added to 200 mL of GO (0.267 mg/mL), mixed at 95 ºC with a reflux condenser. The 

reaction lasted for 6 hours or 24 hours to produce two separate sets of reduced graphene 

oxide: crGO-6 and crGO24, respectively. After cooling down to room temperature, the 

crGO solution was purified in several rounds of dialysis to remove residual salts. The 

purified solution was oven-dried at 60 ºC and resuspended in DMF (5 mg/ML) with 

sonication to aid the dissolution.  

Electrospinning solution preparation. The stock solution of the doped PANi solution 

was created from equimolar amounts of PANi (400 mg) and HCSA (520 mg) dispersed in 

chloroform (30 mL), mixed for 12 hours at room temperature, and then sonicated for 20 

mins. The resulting HCSA-PANi solution is a dark green dispersion and is filtered 

through a 0.45 µm PTFE syringe filter to remove large undispersed PANi particles. 

Electrospinning solutions were prepared by combining HCSA-PANi dispersion (750 µL) 

with chloroform (150 µL), PEO (7mg), and DMF (100µL) or graphene oxide solution 
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(GO, trGO, crGO-6, or crGO-24) (100uL). The mixtures were stirred for 2 hours at room 

temperature, yielding a slightly viscous solution. In total, five different sets of 

electrospinning solutions were prepared: PANi, PANi/GO, PANi/trGO, PANi/crGO-6, 

and PANi/crGO-24. 

Electrospun nanofiber sensor fabrication. Electrospun nanofibers were fabricated in a 

home-built device22 and were collected directly onto interdigitated microelectrodes 

(IMEs). IMEs consisted of 8 x 8 mm silicon substrates with a SiO2 passivation layer, a 

10 nm Ti adhesion layer, and a 200 nm Au conductive layer. The interdigitated fingers 

consisted of 30 µm lines and 30 µm gaps (73 lines total). Electrospinning solutions were 

loaded into a glass syringe equipped with a 20 ga blunt-tip dispensing needle mounted on 

a syringe pump set at 1.25 mL/hr. and electrospun using a high voltage power supply at 

10–15 kV. IMEs were attached to a rotating aluminum disc collector (8cm diameter, 

5mm width) placed at a set distance of 14 cm from the syringe needle tip.  

Drop-cast film sensor fabrication. Thin-film sensors were fabricated by depositing 10 

µL of the electrospinning solution directly onto an IME and allowed to dry at ambient 

conditions.  
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Figure 2.1. (A) AFM image of rGO, (B) Raman spectra of rGO variants. 
 

Characterization. The graphene variants GO, trGO, crGO-6, and crGO-24 were 

characterized using Raman spectroscopy (Figure 2.1B) on an SPM with confocal Raman 

using a 532 nm laser source. Graphene oxide was further characterized using atomic 

force microscopy (AFM) (Figure 2.1A) in tapping mode. The electrospun nanofibers and 

drop cast thin film was characterized using scanning electron microscopy (SEM) (Figure 

2.2). 

Alcohol vapor detection. Gas sensing tests were performed in a home-built system using 

a sealed glass chamber with electrode leads running into the chamber. A baseline 

resistance was acquired at ambient laboratory conditions (24 ºC, 42% RH). Exposure to 

analyte vapor was accomplished by injecting known volumes of the volatile liquids 

(methanol, ethanol, or 1-propanol) through a septum housed in the chamber lid. A small 

electric fan placed inside the chamber accelerated analyte diffusion. Analyte 

concentrations were determined by applying the ideal gas law. An electrometer sourced 
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0.1 V to the sensor, and the current was monitored in real-time by a custom LabView 

program. The measured current was converted to resistance using Ohm’s Law. Principal 

component analysis (PCA) was performed on the data set using R software (version 3.0.1 

Mac OS, The R Foundation, Vienna, Austria, www.r-project.org). 

 

Figure 2.2 (A) SEM image of typical PANi/PEO/GO composite nanofibers (TEM inset) 
collected on interdigitated microelectrode and (B) SEM image of PANi/PEO/GO drop-
cast film. 

 

2.3 Results and Discussion. 

Graphene oxide and reduced graphene oxide variants. Graphene oxides (GO) and 

four sets of reduced graphene oxides (rGO) were successfully synthesized. Thermal 

reduction of graphene oxide (trGO) produced two variants based on the temperature set 

for the reduction: 500 ºC (trGO-500) and at 900 ºC (trGO-900). Because the trGO-900 

was insoluble in DMF at 5mg/mL, this trGO variant was not used. The designation of 

trGO-500 is simplified to trGO in the rest of this chapter. Citrate reduction of graphene 
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oxide (crGO) was conducted for 6 hours (crGO06) or 24 hours (crGO-24). Each of these 

GO and rGO variants were then dissolved in DMF to create 5mg/mL stocks of GO, trGO, 

crGO-6, and crGO-24.  

The reduction of the GO species was characterized by Raman spectroscopy (Figure 2.1 

B). The Raman spectra confirm the structural differences between the rGOs as the 

reduction occurred. The GO spectrum displays the characteristic D and G peaks at 1351 

cm-1 and 1591 cm-1, respectively. The change in this D/G intensity ratio of the crGO-6 

(0.98) and the crGO-24 (1.01) compared to that of GO (0.95) is consistent with reduced 

graphene oxide. According to literature, this is due to an increase in the total number of 

sp2 domains accompanied by a decrease in their average size22,24. Furthermore, crGO-24 

exhibits a higher D/G ratio than its crGO-6 counterpart suggesting that reduction has 

proceeded further as the reaction time increased. The Raman spectra of trGO exhibit a 

decrease of the D/G band ratio from GO (0.95) to trGO (0.88), which is consistent with 

partial restoration of graphite lattice reported in the literature25,26. These are four variants 

of GO and rGO that affect the sensor performance towards detecting alcohol vapor can be 

mixed into the electrospinning solution to form four distinct sets of sensors using either 

electrospun composite nanofibers or their drop cast thin-film counterparts. 

Nanofiber sensor fabrication. The electrospinning of the PANi/HCSA/PEO/rGO 

solution produces 5 sets of composite nanofibers: 1) No GO, 2) GO, 3) trGO, 4) crGO-6, 

and 5) crGO-24. These composite nanofibers were collected on an interdigitated 

microelectrodes (IMEs) attached to a grounded rotating aluminum disc collector. The 

rotation of the disc controls the deposition of parallel nanofibers to be perpendicular to 
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the orientation of gold fingers on the IMEs (Figure 2.2A). The roughness depicted in the 

SEM image along with alternating dark and light areas within the nanofibers suggests the 

overlapping of PANi and GOs in the composite. The nanofibers were characterized by 

SEM imaging to show that the fibers had average diameters of 800nm, providing high 

surface area ratios that are fundamental for quick interaction with analyte vapors.  

Drop cast thin film sensor fabrication. Deposition of 10μL of the 

PANi/HCSA/PEO/rGO solution used in electrospinning onto the IMES produces five sets 

of composite thin films: 1) No GO, 2) GO, 3) trGO, 4) crGO-6, and 5) crGO-24. While 

the thickness of the film could be an issue, we attempted to spin-coat the IMEs with the 

electrospinning solutions. But the high speed ended up removing most of the PANi from 

the film, which renders the film non-conductive. Although PEO is used as a carrier 

polymer for electrospinning, it is not required for thin films and would perform better 

without it. The PEO concentrations were maintained in the thin film fabrication to make a 

1:1 comparison of the nanofiber and thin-film sensors. Characterization by SEM shows 

that the surface morphology is very rough, providing more surface area for analyte 

interaction compared to a flat film. 

Conductivity of composite nanofiber and drop cast thin film sensors. The typical 

current-voltage (IV) curves for nanofiber and thin-film sensors (Figure 2.3) synthesized 

from the PANi/PEO/crGO-6 solution was obtained by sweeping the source voltage from -

0.2 to 0.2 V. Both substrate response curves are linear and is consistent with ohmic 

contacts between the PANi composite and gold electrodes for the voltage sourced (0.1 V) 

for all gas sensing experiments. Notably, the thin film sensors exhibited higher 
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conductivity than their nanofiber counterparts. This is due to the increased contact area of 

the film with the electrode surface, as well as higher mass loading of the PANi compared 

to composite Nanofiber. Additionally, PEO, an insulating polymer, acts as a host for the 

formation of uniform films and fibers. Thus, the HCSA-doped PANi and GO variants are 

responsible for the electrical conductivity of the composite sensor material.  

 

 

Figure 2.3. IV curves of typical PANi/PEO/GO composite gas sensors. 

 

Nanofiber and thin film sensor arrays. Five sets of electrospun nanofiber and five sets 

of drop-cast thin-film sensors were prepared from PANi/HCSA/PEO and varying 

graphene material. The four sensing surface composed of 1) GO, 2) trGO, 3) crGO-6, and 

3) crGO-24, while a nanofiber with no GO was used as a control. Thus, a total of 10 

different sensor surfaces were fabricated and assembled for an array-based sensor system. 
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Detection of aliphatic alcohol vapors. The performances of the electrospun nanofiber 

(Figure 2.4) and drop cast thin film (Figure 2.5) surfaces were evaluated as room 

temperature chemiresistor sensors for pure samples of methanol, ethanol, and 1-propanol 

vapors at 50, 200, 350, 500, and 650 ppm. Sensor responses were evaluated using ∆R/R0, 

where R0 is baseline resistance and ∆R changes in resistance upon exposure to analyte 

vapor.  

 

 

Figure 2.4. Changes in resistance of electrospun nanofiber PANi-based composite drop-
cast films doped with different variants of rGO: (A) GO, (B) crGO-6, (C) crGO-24, and 
(D) trGO, upon exposure to different aliphatic alcohols.  

 

Electrospun nanofiber performance. The various rGOs nanofiber variants were 

examined as a room temperature gas sensor, and the results were compiled into 

calibration curves (Figure 2.4). As expected, the nanofiber control with no GO was not 

conductive and did not exhibit any changes in electrical resistance upon exposure to 

alcohol vapors at the tested concentrations. The GO-doped composite nanofibers were 

also non-conductive and there were no observable changes in electrical resistance. Given 

that PEO and GO are innately insulators, these results were not completely unexpected. 
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The remaining three rGO variants: trGO, crGO-6, and crGO-24, exhibited an increase in 

electrical resistance in response to alcohol vapors. These nanofibers exhibit strong linear 

correlations (0.92-1), Among these three nanofiber composites, the crGO-6 doped 

nanofiber exhibited the largest increase in resistance upon exposure to aliphatic alcohols. 

The sensor responses and response time were recorded (Figure 2.6A). The crGO-24 

nanofibers display the highest sensitivity towards methanol (2.3 ppm), ethanol (1.4 ppm), 

and propanol (4.3 ppm). Notably, the sensing response toward different aliphatic alcohol 

vapors is in the order: 1-propanol (PrOH) > methanol (MeOH) > ethanol (EtOH).  

 

 

Figure 2.5. Changes in resistance of electrospun PANi-based composite drop-cast films 
doped with different variants of rGO: (A) GO, (B) crGO-6, (C) crGO-24, and (D) trGO, 
upon exposure to different aliphatic alcohols.  



63 
 

Drop cast thin film sensor performance. The various rGOs thin-film variants were 

examined as a room temperature gas sensor, and the results were compiled into 

calibration curves (Figure 2.5). Similarly, the drop cast thin film control with no GO is 

also nonconductive and exhibited no changes to electrical resistance upon exposure to the 

aliphatic alcohol vapors. Unlike the nanofiber surface, the GO doped thin film sensor was 

conductive due to higher surface contact to the electrode and the mass loading of PANi 

onto the sensor surface compared to the electrospun nanofiber. These nanofibers exhibit 

strong linear correlations (0.83-1). The sensor surface with trGO, crGO-6, and crGO-24, 

also exhibited an increase in electrical resistance in response to alcohol vapors. Among 

these three thin film surfaces, the trGO doped nanofiber exhibited the largest increase in 

resistance upon exposure to aliphatic alcohols. The sensor response and response time 

was recorded (Figure 2.6B). The crGO-6 thin-film displays the highest sensitivity 

towards ethanol (1.4 ppm), propanol (4.3 ppm), while non-responsive to methanol. The 

trGO thin film is sensitive to methanol (3.3 ppm). The response pattern for the drop cast 

thin film toward different aliphatic alcohol vapors is in the order: 1-propanol (PrOH) > 

ethanol (EtOH) > methanol (MeOH).  
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Figure 2.6. Example time response of PANi-based composite (A) nanofiber sensor and 
(B) drop-cast film sensor doped with partially reduced graphene oxide.  

 

Detection of Aliphatic Alcohol Vapors. The detection of the pure analytes is 

accomplished by measuring changes in the electrical conductivity of the various sensor 

surfaces. The response trend from the nanofiber and thin-film sensor differs due to how 

the analytes interact with the sensor surfaces. There are three main mechanisms by which 

an analyte could influence the conductivity of the surfaces, described individually below. 

The first mechanism of action is the swelling of the host polymer matrix caused 

by the analyte adsorbing onto the sensor surfaces. As the molecules of the analyte are 

adsorbed onto the sensor surface, the polymer matrix will swell. This swelling increases 

the distances between neighboring PANi chains, widening the gaps that the electron must 

transverse27. This effect is more pronounced as the adsorbed molecule increases in size. 

Considering the given analytes, this mechanism would suggest that the sensor would be 

most responsive to 1-propanol, ethanol, and methanol in decreasing order. 

The second mechanism focuses on the ion-dipole interaction of the alcohol 

molecules with the imine nitrogen groups of the PANi. This interaction causes the PANi 
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backbone to shift into a more linter conformation, correlating to a decrease in electrical 

resistance as the path for electron travel becomes shorter6,28,29. Therefore, the polarity of 

the analytes is key to the mechanism, suggesting that the stronger the polarity the 

stronger the confirmation shifts. Given alcohol analytes and their polarity: methanol 

(0.762), ethanol (0.654), and 1-propanol (0.617), this mechanism predicts that the sensor 

would be most responsive towards methanol, ethanol, and 1-propanol in decreasing order.  

The third mechanism centers around the hydrogen bonding between the aliphatic 

alcohols to the oxygen-containing functional groups of the rGOs. This interaction leads to 

a larger distance between the PANi/rGO and or the rGO/rGO interfaces that the electrons 

travel through, causing an increase in electrical resistance30,31. Alcohols with stronger 

polarity will react more strongly with the rGOs. Smaller alcohols are better able to 

penetrate the polymer matrix. Thusly, the predicted response trend for this mechanism 

suggests that the sensor would be most sensitive to methanol, ethanol, and 1-propanol in 

decreasing order. 

The drop cast thin film response pattern of 1-propanol > ethanol > methanol, best 

matches the first mechanism: polymer matrix swelling. Due to the sheer volume used to 

fabricate the film, the drop cast thin film has a higher total surface area allowing for more 

surface adsorption of the gas analytes. Because of the high total surface area, the signal 

contribution from the first mechanism outweighs the other two mechanisms.  
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Figure 2.7. Comparison of the response of (A) drop-cast film and (B) electrospun 
nanofiber sensors to 200 ppm of methanol, ethanol, or 1-propanol.  

 

The nanofiber response pattern does not directly match a single mechanism. Just 

like the thin films, the swelling of the nanofiber matrix caused by the surface adsorption 

of analyte plays a significant role as the sensor was most responsive towards 1-propanol. 

But the nanofiber sensor was more responsive to methanol than ethanol, suggests that 

there are some contributions from the second and third mechanisms of ion-dipole and 

hydrogen bonding influencing the change in electrical resistance exhibited by the sensor. 

Thus, the response pattern of 1-propanol > methanol > ethanol suggests that the primary 

mechanism is the swelling of the nanofiber matrix caused by analyte adsorption while 

ion-dipole and hydrogen-bonding interactions cause the flip in signal response from 

methanol and ethanol.  
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Table 2.1 Compiled sensor component responses at room temperature and 42% 
relative humidity. 

Dopant Analyte 

Sensitivity  

(x10-3, ppmv
-1) 

Correlation 

(r2) 

200 ppm  

Response 

(min) 

200 ppm  

Recovery 

(min) 

Fiber Film Fiber Film Fiber Film Fiber Film 

GO methanol - 14 - 0.98 - 1.6 - 3.4 

 ethanol - 13 - 0.98 - 2.7 - 3.6 

 1-propanol - 15 - 0.97 - 3.9 - 8.3 

crGO-6 methanol 7.9 - 0.98 - 0.4 - 1.4 - 

 

ethanol 2.1 0.9 1.0 0.99 0.5 2.2 4.2 7.4 

 

1-propanol 23 2.9 0.97 0.85 1.0 5.1 4.1 10.3 

crGO-

24 methanol 2.3 

4.2 0.92 0.97 

0.7 

2.2 

1.9 

2.8 

 

ethanol 1.4 24 0.97 0.88 0.8 3.5 1.4 2.5 

 

1-propanol 4.3 38 0.98 0.99 1.4 7.1 3.0 9.2 

trGO methanol 5.2 3.3 0.98 0.96 0.5 1.7 1.9 2.6 

 

ethanol 2.0 17 0.95 0.83 0.6 2.6 4.4 7.5 

 

1-propanol 7.4 40 0.96 0.99 3.2 8.7 6.7 10.1 

 

Sensor Component Comparison. The electrospun nanofiber and drop cast thin-film 

sensor responses were compiled (Figure 2.7) for comparison of the induvial component’s 

sensitivity, linear correlation, response time, and recovery time (Table 2.1). Because 
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nanofiber possesses a high surface area to volume ratio, the sensor observes higher signal 

response for individual analytes interacting with the surface and will have lower limits of 

detection than their thin-film counterparts. Due to the bulk of the thin film, the thin film 

has a higher total surface area in contact with the electrode, thus observes higher signals 

at a given concentration. But the thin-film sensor observes larger fluctuation in signal 

response, lowering the sensor precision compared to the nanofiber counterpart. This is 

supported as the nanofiber components have stronger linear correlations and more 

concise error bars than the thin film counterpart. The nanofiber sensor has a faster 

response and recovery time compared to the thin film counterparts, due to less surface 

area for the analytes to saturate and de-adsorb from. While one component may excel 

over the other in certain aspects, both the nanofiber and thin-film sensor components are 

capable of sensitive detection of the gas analytes. 

 

Principal component analysis (PCA). While both the thin film and nanofiber sensor 

components are sensitive towards analyte detection and provide quantification. The 

sensor is unable to selectively identify the analyte present. Principal component analysis, 

a statistical analytic technique, is used to interrogate the given data and compiled a chart 

that aids in identifying the analyte based on the pattern response of all the components 

and rGO variants. Variability in ∆R/R0 response among the 3 PANi-based drop-cast film 

sensor components doped with different reduced GO variants (trGO, crGO-6, or crGO-

24) was analyzed to distinguish a sample of a single pure aliphatic alcohol. The sensor 

array provided a large data set with many variables (3 analytes x 5 concentrations x 3 
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sensors x triplicate analysis = 135 data points). PCA (Figure 2.8) was performed on the 

data obtained from the film-based sensor array, resulting in 12 principal components 

(PCs). A significant amount of variance in the data was captured by PC1 (77.8%) and 

PC2 (16.6%) for a total of 94.4%. By applying Horn’s parallel analysis to the PCA data, 

it was revealed that only the first PC need be retained. For clarity of presentation, a 2D 

PCA plot was generated (Figure 7) which shows 3 separate clusters, confirming that the 

sensor array successfully classified the 3 short-chain aliphatic alcohols: methanol, 

ethanol, and 1-propanol. The error ellipses (95% CI) indicate good reproducibility of the 

sensor array. PCA with the same parameters was also performed on the data from the 3 

PANi-based nanofiber sensor components doped with different reduced GO variants 

(trGO, crGO-6, or crGO-24). This allows the sensor to further distinguish different 

aliphatic alcohols. The results highlight the ability of both the drop-cast film and 

nanofiber-based sensor arrays to successfully classify alcohol vapors at ppm 

concentrations from a sample containing only one analyte. Like many sensors, this faces 

difficulty in identifying analytes in a mixed sample and will require separation to 

correctly identify the analytes within the mixture. 
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Figure 2.8. PCA plot demonstrating the classification of aliphatic alcohols by a 
PANi/HCSA/PEO (A) Left. nanofiber drop-cast and (B) Right. film sensor array doped 
with three different rGO variants. 

 

2.4 Conclusion. 

In this study, PANi composite nanofiber and drop-cast film sensors doped with rGO 

variants were fabricated and tested as room temperature alcohol sensors. All three sensors 

rGO variants (trGO, crGO-6, and crGO-24) exhibited strong linear responses to aliphatic 

alcohol vapors, strong responses, quick recovery times and PPM level of sensitivity. The 

crGO-6 provided the best balance between electrical conductivity and functional group 

for analyte interaction for the tunability of the electrospun nanofiber sensor. The trGO 

provided similar property and function for the drop cast thin-film sensor. The 

combination of multiple PANi/PEO sensor components doped with rGO (trGO, crGO-6, 

or crGO24) formed a sensor array capable of identifying methanol, ethanol, and 1-

propanol using principal component analysis (PCA). After identification, the signal 

response can be matched to an appropriate calibration curve to quantify the pure analyte 
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present. In the future, the sensor components can be assembled into a singular field-ready 

device. These portable gas sensors can be used in households or industries to monitor air 

samples for alcohol and other VOCs that are PANi or rGO sensitive gases such as NO2, 

NH3, and CO. 

  



72 
 

References: 

(1)  Calderilla, C.; Maya, F.; Cerdà, V.; Leal, L. O. 3D Printed Device Including Disk-Based 
Solid-Phase Extraction for the Automated Speciation of Iron Using the Multisyringe Flow 
Injection Analysis Technique. Talanta 2017, 175 (April), 463–469. 

(2)  Aliheidari, N.; Aliahmad, N.; Agarwal, M.; Dalir, H. Electrospun Nanofibers for Label-
Free Sensor Applications. Sensors (Switzerland) 2019, 19 (16). 

(3)  Lu, Z.; Zhou, Q.; Wei, Z.; Xu, L.; Peng, S.; Zeng, W. Synthesis of Hollow Nanofibers and 
Application on Detecting SF6 Decomposing Products. Front. Mater. 2019, 6 (July), 1–7. 

(4)  Rozemarie, M. L.; Andrei, B.; Liliana, H.; Cramariuc, R.; Cramariuc, O. Electrospun 
Based Polyaniline Sensors - A Review. IOP Conf. Ser. Mater. Sci. Eng. 2017, 209 (1). 

(5)  Abd Razak, S. I.; Wahab, I. F.; Fadil, F.; Dahli, F. N.; Md Khudzari, A. Z.; Adeli, H. A 
Review of Electrospun Conductive Polyaniline Based Nanofiber Composites and Blends: 
Processing Features, Applications, and Future Directions. Adv. Mater. Sci. Eng. 2015, 1–
19. 

(6)  Virji, S.; Huang, J.; Kaner, R. B.; Weiller, B. H. Polyaniline Nanofiber Gas Sensors: 
Examination of Response Mechanisms. Nano Lett. 2004, 4 (3), 491–496. 

(7)  Pandey, S. Highly Sensitive and Selective Chemiresistor Gas/Vapor Sensors Based on 
Polyaniline Nanocomposite: A Comprehensive Review. J. Sci. Adv. Mater. Devices 2016, 
1 (4), 431–453. 

(8)  Arsat, R.; Yu, X. F.; Li, Y. X.; Wlodarski, W.; Kalantar-zadeh, K. Hydrogen Gas Sensor 
Based on Highly Ordered Polyaniline Nanofibers. Sensors Actuators, B Chem. 2009, 137 
(2), 529–532. 

(9)  Ji, S.; Li, Y.; Yang, M. Gas Sensing Properties of a Composite Composed of Electrospun 
Poly(Methyl Methacrylate) Nanofibers and in Situ Polymerized Polyaniline. Sensors 
Actuators, B Chem. 2008, 133 (2), 644–649. 



73 
 

(10)  Ding, B.; Wang, M.; Yu, J.; Sun, G. Gas Sensors Based on Electrospun Nanofibers. 
Sensors 2009, 9 (3), 1609–1624. 

(11)  Talwar, V.; Singh, O.; Singh, R. C. ZnO Assisted Polyaniline Nanofibers and Its 
Application as Ammonia Gas Sensor. Sensors Actuators, B Chem. 2014, 191, 276–282. 

(12)  Qavamnia, S. S.; Nasouri, K. Conductive Polyacrylonitrile/Polyaniline Nanofibers 
Prepared by Electrospinning Process. Polym. Sci. - Ser. A 2015, 57 (3), 343–349. 

(13)  Zhou, Y.; Freitag, M.; Hone, J.; Staii, C.; Johnson, A. T.; Pinto, N. J.; MacDiarmid, A. G. 
Fabrication and Electrical Characterization of Polyaniline-Based Nanofibers with 
Diameter below 30 Nm. Appl. Phys. Lett. 2003, 83 (18), 3800–3802. 

(14)  Aussawasathien, D.; Dong, J. H.; Dai, L. Electrospun Polymer Nanofiber Sensors. Synth. 
Met. 2005, 154 (1–3), 37–40. 

(15)  Pinto, N. J.; Johnson, A. T.; MacDiarmid, A. G.; Mueller, C. H.; Theofylaktos, N.; 
Robinson, D. C.; Miranda, F. A. Electrospun Polyaniline/Polyethylene Oxide Nanofiber 
Field-Effect Transistor. Appl. Phys. Lett. 2003, 83 (20), 4244–4246. 

(16)  Li, C.; Chartuprayoon, N.; Bosze, W.; Low, K.; Lee, K. H.; Nam, J.; Myung, N. V. 
Electrospun Polyaniline/Poly(Ethylene Oxide) Composite Nanofibers Based Gas Sensor. 
Electroanalysis 2014, 26 (4), 711–722. 

(17)  Huang, J.; Virji, S.; Weiller, B. H.; Kaner, R. B. Polyaniline Nanofibers: Facile Synthesis 
and Chemical Sensors. J. Am. Chem. Soc. 2003, 125 (2), 314–315. 

(18)  Zhang, K.; Zhang, L. L.; Zhao, X. S.; Wu, J. Graphene/Polyaniline Nanofiber Composites 
as Supercapacitor Electrodes. Chem. Mater. 2010, 22 (4), 1392–1401. 

(19)  Huang, X.; Hu, N.; Gao, R.; Yu, Y.; Wang, Y.; Yang, Z.; Siu-Wai Kong, E.; Wei, H.; 
Zhang, Y. Reduced Graphene Oxide-Polyaniline Hybrid: Preparation, Characterization 
and Its Applications for Ammonia Gas Sensing. J. Mater. Chem. 2012, 22 (42), 22488–
22495. 



74 
 

(20)  Moayeri, A.; Ajji, A. Fabrication of Polyaniline/Poly(Ethylene Oxide)/Non-Covalently 
Functionalized Graphene Nanofibers via Electrospinning. Synth. Met. 2015, 200, 7–15. 

(21)  Wang, L.; Lu, X.; Lei, S.; Song, Y. Graphene-Based Polyaniline Nanocomposites: 
Preparation, Properties and Applications. J. Mater. Chem. A 2014, 2 (13), 4491–4509. 

(22)  Burris, A. J.; Tran, K.; Cheng, Q. Tunable Enhancement of a 
Graphene/Polyaniline/Poly(Ethylene Oxide) Composite Electrospun Nanofiber Gas 
Sensor. J. Anal. Test. 2017, 1 (2), 12. 

(23)  Zaaba, N. I.; Foo, K. L.; Hashim, U.; Tan, S. J.; Liu, W. W.; Voon, C. H. Synthesis of 
Graphene Oxide Using Modified Hummers Method: Solvent Influence. Procedia Eng. 
2017, 184, 469–477. 

(24)  Ramesha, G. K.; Sampath, N. S. Electrochemical Reduction of Oriented Graphene Oxide 
Films: An in Situ Raman Spectroelectrochemical Study. J. Phys. Chem. C 2009, 113 (19), 
7985–7989. 

(25)  Yang, H.; Hu, H.; Ni, Z.; Poh, C. K.; Cong, C.; Lin, J.; Yu, T. Comparison of Surface-
Enhanced Raman Scattering on Graphene Oxide, Reduced Graphene Oxide and Graphene 
Surfaces. Carbon N. Y. 2013, 62, 422–429. 

(26)  Kaniyoor, A.; Ramaprabhu, S. A Raman Spectroscopic Investigation of Graphite Oxide 
Derived Graphene. AIP Adv. 2012, 2 (3). 

(27)  Low, K.; Horner, C. B.; Li, C.; Ico, G.; Bosze, W.; Myung, N. V.; Nam, J. Composition-
Dependent Sensing Mechanism of Electrospun Conductive Polymer Composite 
Nanofibers. Sensors Actuators, B Chem. 2015, 207 (Part A), 235–242. 

(28)  Pirsa, S. Chemiresistive Gas Sensors Based on Conducting Polymers. Mater. Sci. Eng. 
Concepts, Methodol. Tools, Appl. 2017, 1–3, 543–574. 

(29)  Liu, S. S.; Bian, L. J.; Luan, F.; Sun, M. T.; Liu, X. X. Theoretical Study on Polyaniline 
Gas Sensors: Examinations of Response Mechanism for Alcohol. Synth. Met. 2012, 162 
(9–10), 862–867. 



75 
 

(30)  MacAgnano, A.; Zampetti, E.; Pantalei, S.; De Cesare, F.; Bearzotti, A.; Persaud, K. C. 
Nanofibrous PANI-Based Conductive Polymers for Trace Gas Analysis. Thin Solid Films 
2011, 520 (3), 978–985. 

(31)  Athawale, A. A.; Kulkarni, M. V. Polyaniline and Its Substituted Derivatives as Sensor for 
Aliphatic Alcohols. Sensors Actuators, B Chem. 2000, 67 (1), 173–177. 

 

  



76 
 

Chapter 3: Silver-EDTA Nanoparticle Decorated PVA Nanofibers for 

Reversible Capture and Quantification of Proteins 

 

3.1 Introduction.  

The detection of harmful compounds is important in protecting and maintaining 

both human and environmental health. While volatile organic compounds in the gaseous 

state were the focus in the earlier chapter, there are other physical states of these potential 

analytes. This chapter focuses on applying nanofibers in biosensors for the detection of 

protein analytes in aqueous samples. This requires the implementation of new strategies to 

fabricate a nanofiber sensor capable of detecting and quantifying protein in liquid samples. 

Electrospun Polyvinyl alcohol (PVA) is a water-soluble hydrophobic polymer that 

has been studied for various applications. For example, biological studies have employed 

PVA nanofibers in cell-based studies for cytotoxicity1–3,  drug delivery4–7, and scaffolds 

for cell growth and proliferation 8–11. Electrospun PVA nanofibers have also been examined 

as electrodes in batteries12–16, and employed in conjunction with mass spectrometry as a 

platform for ionizing molecules with minute surface functionalization17,18. Additionally, 

many studies incorporate various elements to enhance the detection of molecules, such as 

carbon nanotubes (CNT)19–22, fluorescent probes23–29, and nanoparticles30–34. 

While applications of PVA are limited due to dissolution, chemical cross-linking 

by glutaraldehyde (GA) can improve stability in aqueous media. This mechanism of the 

cross-linking reaction has been well studied and reveals the hydroxyl group of the PVA 
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reacts with the aldehyde group of GA in the presence of a strong acid. These cross-linked 

nanofiber mats have been utilized in membrane and filtration applications because the 

fibers are rendered insoluble in most solvents35–39. These properties are also beneficial as 

a substrate for biosensor surfaces. 

Cross-linked PVA nanofiber has potential as a biosensor surface, but due to lack of 

both the biorecognition and signal transducer elements, additional modifications are 

required to employ this as a functioning biosensor. Nanoparticles have been incorporated 

into nanofiber as either the biorecognition or signal transducer elements. Nanoparticles 

have been used in electrochemical or chemoresistance based nanofiber sensors as they can 

improve signal sensitivity by increasing conductivity of the nanofibers or by coupling with 

fluorescent probes. They have also shown to improve selectivity by supplying areas of 

biorecognition in these nanofiber biosensors. Silver nanoparticles (AgNPs) are stable, non-

toxic, and has great biocompatibility that have been implemented into biosensor as either 

part of the biological recognition element40,41 or to enhance the signal transducer 

element42,43. This project utilizes AgNPs capped by ethylenediaminetetraacetic acid 

(EDTA) as the biological recognition element of the biosensor.  

The biorecognition element employed in this biosensor leverages the ability of 

EDTA-functionalized AgNPs to chelate metal ion. Metal ion chelation (binding) is an area 

of interest for the development of sensors for two different purposes. Firstly, metal ion 

chelation is an important interaction for heavy metal ion in water for the health safety of 

potable water and water waste treatment and management. Surfaces that can effectively 

and cleanly remove metal ions in aqueous media is highly sought after to improve current 



78 
 

water waste treatment methods and processes. Secondly, metal ion chelation plays a 

significant role in biological studies. One major application is purifying recombinant 

proteins functionalized with polyhistidine tag (His-tag). Nitriloacetic Acid (NTA) has been 

used in Nickel affinity purification columns and resin to facilitate the purification of His-

tag proteins. These His-tag proteins are important in biological experiments involving 

genetic modification to study genetic diseases. Metal ion chelation is vital for 

metalloproteins, a family of protein that binds metal ions. These metalloproteins are 

important in the biological systems as they serve diverse functions, from oxygen transport 

of the hemoglobin to protein transcription and iron-responsive element-binding protein 

(IRE-BP) aids in regulation mRNA transcription.44 Developing biorecognition elements 

for these proteins can provide new avenues in studies related diseases.  

 This biosensor employed silver nanoparticles as the signal transducer using an 

optical detector to monitor shifts in localized surface plasmon resonance (LPSR)45–49. 

LSPR is a phenomenon occurring in structures that are much smaller than the wavelength 

of incoming light. This causes the electrons on these nanostructures to oscillate, generating 

an evanescent field surrounding the nanostructure50. Various interactions with the surface 

of these structures will alter the peak absorption wavelength of the nanoparticles. LSPR 

analysis of nanofiber-nanoparticles interface has shown that these substrates are sensitive 

to changes in refractive indexes.51 In our initial study, we were able to demonstrate that 

PVA nanofibers decorated with EDTA-AgNP’s do exhibit this LSPR property of high 

sensitivity to changes in the bulk refractive indexes. Unfortunately, our preliminary results 

from metal ion binding demonstrated that the surface is not sensitive to small analytes. 
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Further examination also showed that the sensor surface was not responsive to protein 

binding. While the literature has demonstrated LSPR can detect protein binding, due to the 

current arrangement of adsorbing the nanoparticle on the nanofiber surface prevents 

nanoparticle aggregation. Aggregation is one of the main attributes contributing to 

nanoparticle LSPR sensitivity in solution. Thus, this sensor surface would require further 

modifications to increase its sensitivity to protein binding. Fluorescence spectroscopy was 

used as an alternative detection method to confirm protein binding on the surface by 

employing Rhodamine tagged proteins.  

 

3.2 Experimental Details. 

Materials. Polyvinyl Alcohol (PVA, Mw 146-180 kDa), isopropyl alcohol (IPA), silver 

nitrate (AgNO3), ethylenediaminetetraacetic acid (EDTA), sodium hydroxide (NaOH), 

nickel (II) chloride (NiCl2), copper (II) Sulfate Pentahydrate (CuSO4), Biotin-Nitriloacetic 

Acid (NTA), and Neutravidin (Mw 66 kDa) were purchased from Sigma-Aldrich (St. 

Louis, MO). 50 wt. % Glutaraldehyde was purchased from Electron Microscopy Services 

(Hatfield, PA). NHS-Rhodamine was purchased from Thermo Fisher Scientific (Waltham, 

MA). The Amicron centrifuge filter columns (3 kDa) were purchased from EMD Millipore 

(Burlington, MA). 

Instruments. The electrospinning was conducted on a home-built device composing of a 

variable power supply controller, a syringe pump, and a rotating disc collector. A Hitachi-

1000 scanning electron microscope (SEM) was used to characterize the nanofiber and 

nanoparticle dimensions. Absorbance spectra were a Cary50 from Agilent (Santa Clara, 
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CA). Fluorescence spectroscopy was conducted on a QM-400 Fluorometer from Horiba 

Scientific (Kyoto, Japan). 

Sol Gel Preparation. A 6.6% w/v PVA sol-gel solution was prepared by dissolving 330mg 

of PVA into 4mL of deionized water obtained from an ultrapure filtration system. While 

PVA does dissolve in water, it requires time to fully hydrate and increased temperature to 

fully dissolve the polymer. The polymer was split into three portions to assist the 

dissolution process. The first portion was placed into 4ml of deionized water and heated 

close to boiling to dissolve the polymer. Once the first portion was fully dissolved, the 

second portion was added, and the process repeated for the final portion. The resulting 

solution is a clear homogenous mixture of dissolved PVA with no clumps. An aliquot of 

0.5mL glutaraldehyde solution (50 wt.% concentration) was added into the sol-gel to 

facilitate the cross—linking process to ensure the nanofibers would not dissolve in water. 

A small amount (0.5mL) of isopropyl alcohol to act as a surfactant and lower the surface 

tension of the sol-gel to maintain a constant Taylor cone was used to ensure the fabricated 

fibers were uniform and have smaller diameters. 

Electrospun Nanofiber Fabrication. The PVA sol-gel solutions were loaded into a plastic 

syringe equipped with a 23-gauge blunt-tip dispensing needle and was electrospun using a 

high voltage power supply (Spellman, CZE1000R) at 15kV. Untreated precut glass slides 

of 1cm x 1cm were attached to foil strips taped onto a rotating aluminum disc collector (8 

cm diameter, 5mm width), placed 15 cm from the syringe needle tip. A steady flow of the 

sol-gel solution was maintained at 1.00 mL/hour using a syringe pump (KD Scientific, 200 

Series) to form a Taylor cone for nanofiber formation.52 The fibers were deposited on top 
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of the glass slides during the electrospinning process. These substrates were then exposed 

to hydrochloric acid vapor in a sealed chamber for ten minutes to induce cross-linking of 

the glutaraldehyde to the hydroxyl groups of the PVA. The substrates were then transferred 

to a vacuum desiccator for one hour to remove any lingering solvent on the substrate. This 

cross-linking of the PVA nanofiber made the nanofiber stable in an aqueous environment 

where untreated fibers would dissolve when in an aqueous environment. The fiber 

dimensions were characterized by SEM imaging. 

EDTA-Silver Nanoparticle Synthesis. Ethylenediaminetetraacetic acid (EDTA) capped 

silver nanoparticles were prepared as followed from Simpson et al’s paper53,54 with some 

minor modifications55,56. All glassware was cleaned with Aqua Regia and rinsed 

thoroughly with distilled water to remove all lingering acidity. 200mL deionized H2O with 

0.12 mM (9.2mg) EDTA was heated in a 250mL Erlenmeyer flask while stirring at 90° C. 

4 mM (32mg) of sodium hydroxide was added to the mixture and heated to boiling. Once 

boiling, 8.8mg of silver nitrate in 5mL deionized H2O was slowly added dropwise while 

stirring. The solution was then boiled for a further 30 minutes with stirring before removing 

the flask from heat. The solution cooled to room temperature while stirring. These EDTA-

capped silver nanoparticles (EDTA-AgNP) were stored in plastic containers wrapped in 

foil to avoid direct sunlight exposure.  

Nanoparticle Attachment to PVA Nanofiber. Nanoparticles were adsorbed onto the 

PVA nanofiber through electrostatic interaction between the negative charge of 

deprotonated alcohol groups on the surface from the hydrochloric acid vapor treatment to 

cross-link hydroxyl group of the PVA to glutaraldehyde. Incubation of 1mL aliquot of 
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EDTA-capped AgNPs deposited on the surface of the PVA nanofiber substrate. The 

spotted nanoparticles dried and rinsed with deionized water several times to remove 

unbound EDTA-AgNPs Both UV-Vis spectroscopy (Figure 3.1) and SEM imaging 

(Figure 3.2) were used to characterize the AgNPs. 

 

Figure 3.1 Absorbance spectra of the 
Ethylenediaminetetraacetic acid 
(EDTA) silver nanoparticles (AgNPs) 
having a max absorbance peak of 421 
nm and a full-width half maximum of 
73 nm, correlating to AgNPs with 
diameters of 50nm. 

 

 

 

 

Sample Preparation. Biotin-NTA was diluted to a 1mM stock concentration. Neutravidin 

was diluted to 1uM aliquots for stocks used in the experiments. NHS-Rhodamine was 

diluted to 10uM concentration and mixed with 1uM Neutravidin to fluorescently tag the 

proteins. The tagged Neutravidin proteins are processed through a 3 kDa centrifuge filter 

to remove excess unbound Rhodamine molecules and were reconstituted into the desired 

concentration. The Neutravidin mixed with biotin in a 1:10 ratio of NHS-Neutravidin to 

Biotin NTA to initiate binding of the Neutravidin-Biotin complex as the sample. 

Bulk Refractive Index Sensitivity Study. This study was carried out using UV-Vis 

spectroscopy for the analysis of EDTA-AgNP PVA nanofibers prepared on a narrow glass 
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slide, which was then placed into a plastic cuvette. The cuvette was filled with varying 

solvents to induce a change in the refractive index observed by the sensing substrate. UV-

VIS readings were taken by the Cary-50 from the 300 nm to 600 nm range to study the 

maximum peak shift and correlate it with changes in the refractive index. The solvents used 

were water, methanol, ethanol, propanol, 10%, and 20% glucose solution, which had a 

refractive index of 1.330, 1.3314, 1.3617, 1.3768, 1.3477, and 1.3635, respectively.  

Metal Ion Chelation Study. This study (Figure 3.4) tested the EDTA-AgNP ability to 

chelate metal ions. Metal ions tested in this study were Silver (I), Nickel (II), and Copper 

(II). The metal ions salt was dissolved into a stock solution and diluted down to varying 

concentration to verify the chelation property of EDTA-AgNP persist. 1mL of 10nM 

EDTA-AgNP was mixed with Silver(I) at 170, 850, 1700 PPM; Nickel (II) at 2.4, 12, 24 

PPM; and Copper (II) at 2.5, 12.5, 25 PPM. The mixed solution was examined with UV-

Vis spectroscopy by a Carry 50. 

Fluorescent Detection. This study was carried out a QM-400 fluorescent spectrometer. 

The EDTA-AgNP/PVA nanofiber incubated a solution 3 mM of nickel (II) chloride on the 

surface. The substrate was rinsed thoroughly to remove any non-specific binding and 

excess material off the surface. Various amounts (1 to 15uM) of Rhodamine-NeutrAvidin-

Biotin-NTA was spotted on the surface for 10mins before rinsed to remove any unbound 

protein complex and salts (Figure 3.5). Experiments for control parameters were tested by 

not including the Biotin-NTA to examine non-specific binding and background signal. 

Another control experiment tested varying amount of Ni2+ effects on the binding of the 
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fluorescent protein complex. The prepared sample was analyzed via fluorescent 

spectrometry, and the fluorescent intensity exhibited by the surface was recorded.  

 

3.3 Results and Discussions. 

The polyvinyl alcohol (PVA) nanofibers were synthesized from a sol-gel, a mixture 

of monomers in a colloidal solution (sol) that facilitates the integerated network (gel) of 

polymers. The electrospinning of a sol-gel provides a quick and reproducible method of 

fabricating nanofiber in bulk. The sol-gel for the PVA nanofiber synthesized in this 

experiment is composed of 6.6% wt. PVA monomers (MW 146-180 kDa) dissolved in 

deionized water. While PVA monomers readily dissolve in water, creating small batches 

(<20mL) of solutions comprised of PVA concentrations above 2% will often require 

additional aid to fully dissolve the polymer.The PVA monomers were split into three equal 

portions to facilitate the dissolution of the PVA monomers. The first PVA portion was 

dissolved in deionized water while mixing. The second and third portions were sequentially 

added to the mixture as the monomers dissolved over time. This dissolution process takes 

several hours (12+ hrs) at room temperature and can be accelerated (4 hrs) by heating the 

solution to near boiling temperatures (99 C). Nanofibers can be produced from this 6.6% 

wt PVA sol-gel with diameters of 300nm with the parameters detailed in the experimental 

section.  

While these pure PVA nanofibers readily dissolving in water is a good factor 

biodegradability for various applications, this prevents liquid sample handing when 

utilized in sensor applications. In order to prevent the dissolution of these nanofibers upon 



85 
 

incubation of an aqueous sample, glutaraldehyde cross-linking as implemented. This was 

facilitated by mixing a 50% solution of glutaraldehyde solution with the dissolved PVA 

mixture. The electrospinning fabrication of nanofibers from this two-part sol-gel has 

complications. The glutaraldehyde mixture increased sol-gel viscosity, causing several 

issues. The increase in surface tension of the extruded droplet greatly alters the parameters 

required to maintain a constant formation of the Taylor cone in electrospinning. The 

extruded amount of solution becomes sporadic, greatly affecting the fabrication of 

nanofibers, resulting in nanofibers with diameters of varying sizes (100-800nm) and 

broken segments instead of continuous strands. 

To alleviate these issues, isopropanol was added to the sol-gel for two purposes. 

The isopropanol behaves as a surfactant and lowers the surface tension of the extruding 

droplet, which allows the electrospinning process to maintain a consistent and constant 

flow of solution. Isopropanol also increases the volatility of the sol-gel, allowing the 

electrified jet to uniformly evaporate as it travels in the Taylor cone towards the sample 

collection plate. The final mixture composition of 4mL of 6.6%wt PVA (MW 146-180 

kDa) in deionized water, 0.5mL of 50% glutaraldehyde, and 0.5mL of isopropanol resulted 

in continuous and uniformed glutaraldehyde infused nanofibers with diameters of 350nm. 

These nanofibers are then exposed to hydrochloric acid vapor to facilitate the cross-linking 

of the glutaraldehyde. The cross-linked nanofibers are then thoroughly washed in deionized 

water to confirm the cross-linking did occur and remove any remaining hydrochloric acid. 

The wet nanofibers are then dried and stored for future use. The characterization of the 

nanofibers was conducted via SEM imaging (Figure 3.2A) and confirming continuous 
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nanofiber with diameters of 350nm. Silver nanoparticles were utilized in this sensor 

application as the functionalized surface for the biological recognition element in this 

biosensor. Three differnet methods of functionalizing these PVA nanofibers with silver 

nanoparticles (AgNPs) were explored. The first method attempted to fabricated nanofibers 

infused with silver nanoparticles. This was accomplished by incorperating silver nitrate 

into the sol-gel mixture to electrospun nanofibers evenly infused with silver nitrate57,58. 

These nanofibers were then treated with UV exposure to facilitate the transformation of 

silver nitrate into silver nanoparticles.57,58 This process did successfully create AgNP 

infused PVA nanofiber, the density of the AgNPs was not high enough to be optically 

observed via UV-VIS spectroscopy and not abundant enough to provide areas of 

functionalization for surface chemistry.  

The second method was to separately synthesize silver nanoparticles (AgNPs) and 

infuse them into the sol-gel to create nanofibers embedded with AgNPs31,34,59,60. The 

AgNPs were synthesized in the process described in the experimental section earlier in this 

chapter. The ethylenediaminetetraacetic acid (EDTA) serves as the capping reagent to stop 

nanoparticle growth and stabilizes the nanoparticle in solution. Characterization of the 

silver nanoparticle was done through UV-VIS spectroscopy (Figure 3.1), showing a λ max 

at 420.93nm, FWHM at 72.95nm, and estimated61 to be roughly 50nm in diameter from 

the λ max and confirmed in SEM images. The initial stock concentration of the EDTA-

AgNPs of 2.4nM was concentrated through centrifugation to a max concentration of 15nM. 

Concentrations higher than 15nM suffer from irreversible aggregation and was not used as 

the resulting sol-gel mixture was not homogenous. While the characterization of these 
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nanofibers via SEM imaging (Figure 3.2B) did show successful incorporation of AgNPs, 

the resulting nanofibers did not exhibit any signs of AgNP trait when observed in UV-VIS 

spectroscopy regardless of the EDTA-AgNPs used.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 (A) Top Left. Polyvinyl alcohol (PVA) nanofiber cross-linked with 
glutaraldehyde (GA). (B) Top Right. PVA nanofiber with silver nanoparticles (AgNPs) 
generated from embedded silver nitrate (AgNO3) and exposure to UV irradiation. (C) 
Bottom Left. PVA nanofibers incubated with ethylenediaminetetraacetic acid (EDTA) 
capped AgNPs. (D) Bottom Right. PVA nanofiber with EDTA-AgNP after thorourghly 
rinsing. 

 

The third method utilizes surface adsorption of the EDTA-AgNPs onto the PVA 

nanofibers. Because of the high surface area to volume ratio of nanofibers, this provided 
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higher surface adsorption than a flat substrate. A 1mL aliquots of EDTA-AgNPs were 

incubated on the nanofiber surface and dried over time in a vacuum desiccator. The EDTA-

AgNPs decorated nanofibers (Figure 3.2C) are then thoroughly rinsed and re-dried in the 

vacuum desiccator (Figure 3.2D) and saved for future use. This EDTA-AgNP adsorbed on 

the nanofiber substrate through this process resulted in a local surface plasmon resonance 

(LSPR) responsive surface to bulk refractive index with strong linear correlation (R2=0.98) 

that could be observed through UV-VIS spectroscopy (Figure 3.3). 

 

Figure 3.3 Calibration of the PVA-EDTA-AgNP sensor’s LSPR response to changes in 
the bulk refractive index with liner correlation of R2=0.98. 
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Because EDTA was used as the capping reagent for the silver nanoparticles, the 

EDTA-AgNPs may retain metal chelating properties. Exposing the EDTA-AgNPs 

adsorbed on the nanofiber substrate to metal ions of Silver (I), Nickel (II), and Copper (II) 

did not show a sensitive LSPR response. Thus, the metal ion chelation study was conducted 

with the nanoparticles and metal ions in solution. UV-VIS spectroscopy (Figure 3.4) of 

the EDTA-AgNPs and metal ion mixture verifies that aggregation of the nanoparticles 

occurred proportionally to the concentrations of the metal ions. This confirmed that the 

EDTA-AgNPs on the nanofiber surface is capable of chelating metal ions and by adsorbing 

the nanoparticles on the nanofiber surface prevented aggregation of the nanoparticles. This 

novel surface can be used as a biological recognition element in a biosensor. 

 

Figure 3.4 Metal ion chelation to the EDTA-Silver Nanoparticles as they bind to various 
metal ions. (A) Silver (I) ions. Black: 0 PPM, Red: 170 PPM, Blue: 850 PPM, and Green: 
1700 PPM. (B) Nickel (II) ions. Black: 0 PPM, Red:2.4 PPM, Blue: 12 PPM, and Green: 
24 PPM. (C) Copper (II) Ion. Black: 0 PPM, Red: 2.5 PPM, Blue: 12.5 PPM, and Green: 
25 PPM. 

A    B      C 
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Figure 3.5 Polyvinyl alcohol (PVA) nanofibers with diameter of 350nm are electrospun 
onto the surface of a glass slide. A 6nM solution of 50nm EDTA-AgNPs is incubated 
onto surface of the PVA fibers for 1 hour and then thoroughly rinsed with diH2O. Once 
the substrate is dried a 3.4mM solution of NiCl solution is incubated on surface of 
substrate to induce chelation of Ni2+ ions to the EDTA for 30 mins and then thoroughly 
rinsed with diH2O. Analyte samples of 0.1mg/ml to 1.0mg/ml of Rhodamine-tagged 
Neutravidin-Biotin-NTA complex were incubated on the surface for 10 mins to bind to 
the Ni2+ ions that have been chelated by the EDTA-AgNP surface and then the substrate 
is thoroughly rinsed with diH2O.  
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Nickel (II) and NTA is a well-studied metal chelation system often used in 

functionalized silica gel columns.62 Figure 3.5 outlines the surface chemistry binding 

mechanism used in this experiment. The electrospun PVA nanofibers collected on glass 

slides and are incubated with EDTA-AgNP to give surface specificity with the EDTA 

functional group. Using the EDTA metal ion chelating property, Ni2+ chelated onto the 

EDTA surface but was still exposed enough to facilitate the binding of Ni2+ to NTA 

molecules. By having the EDTA-AgNP bound to a surface, as is the case with the PVA 

nanoparticle system, it prevents the nanoparticles from aggregating when incubating with 

the Ni2+ ions. These exposed Ni2+ ions provide good binding sites for NTA and other NTA 

modified molecules. The NeutrAvidin-Biotin binding complex has been well studied as a 

model protein-ligand binding interaction. The biotin used was modified with an NTA 

attachment, which will allow biding to the exposed Ni2+ ions on the surface. NTA-Biotin 

attachment to the surface before incubation of NeutrAvidin was tested but showed very 

low levels of binding, which may have been due to the orientation of the NTA-biotin on 

the surface63,64, thus prior mixing of the NTA-Biotin with NeutrAvidin was performed and 

showed much higher binding. The detection of the binding was carried out using NHS-

Rhodamine, a fluorescent dye. NHS-Rhodamine was attached to NeutrAvidin following a 

standard procedure from Thermo Fisher Scientific. These Rhodamine-NeutrAvidin 

preparations also included sample purification with a 3kDa centrifuge filter from Amicron 

to remove non-reacted dyes and were prepared weekly and stored in a refrigerator before 

use. Characterization (Figure 4A) of the labeled protein was carried out, revealing the 

stoichiometry between Rhodamine to Neutravidin was 4:1 ratio. This fluorescent dye 
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allowed confirmation of the binding events. Control tests (Figure 3.6) show that without 

the NTA-Biotin that the protein did exhibit nonspecific binding to the surface when using 

Avidin but was significantly reduced when using NeutrAvidin.  

 

Figure 3.6 (A) Left. Control study for unspecific binding, no Biotin-NTA, showing a 
baseline amount of nonspecific binding of the NHS-Neutravidin to the EDTA-AgNP 
PVA nanofiber surface. (B) Right. Control study for nickel dependency of complex 
binding to the surface shows a linear correlation between the increase in nickel ion 
concentration and resulting fluorescence signal from bound protein. 

 

Control studies were carried out to examine both the background fluorescence and 

effects of Ni2+ concentration on NTA-protein complex binding on the surface. The 

background control tested the non-specific binding of NHS-Neutravidin onto the surface 

by not including the NTA-Biotin. The results (Figure 3.6A) shows that the background 

signal from the non-specific binding is the same level regardless of the amount (1 μM to 

15 μM) of NHS-Neutravidin incubated on the surface. Ni2+ concentration on NTA-protein 

complex binding experiment was tested by using a set concentration of 1 μM Rhodamine-

NeutrAvidin-Biotin-NTA complex while varying the concentration (0 μM to 3.4 μM) of 

A 

 

B 
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Ni2+ to examine the relationship between Ni2+ concentration and fluorescent intensity 

from the protein binding (Figure 3.6B). The linear correlation (R2=0.964) indicates that 

the NTA-protein complex binding onto the surface is dependent on the presence of Ni2+ 

chelated to the EDTA-AgNP on the surface of the PVA nanofibers.  

With the control studies done, the next study was the sensitivity of detection of 

varying amounts of the protein complex binding to this novel substrate surface. The 

concentration of Ni2+ on the surface was set by incubating 3.4 mM of NiCl2 on the surface 

and thoroughly rinsed to remove non-bound nickel and chloride ions. With a high 

concentration of Ni2+ on the surface, this sets up a large surface area of possible binding 

sites for these protein complex containing NTA. The NTA binds to the exposed Ni2+ ion 

that is partially chelated onto the EDTA molecules, which are bound to the silver 

nanoparticles on the nanofiber surface. The sensitivity of the substrate to the bound protein 

complex was tested using varying concentrations of the rhodamine-NeutrAvidin-biotin-

NTA complex. 

The data was collected from concentrations ranging from 0 to 14 μM were plotted 

into a calibration curve (Figure 3.7), which shows a strong linear correlation (R2=0.964) 

between the amount of protein complex incubated and the fluorescent intensity recorded. 

This sensor has a limit of detection at 1.11μM (66.6 μg/mL) and a limit of quantification 

at 3.70μM (222 μg/mL) of the rhodamine tagged NeutrAvidin. Secondary chelation was 

conducted with concentrated EDTA solution to rinse the nanofiber surface to dislodge the 

bound NTA-protein complex. The unbound EDTA outcompetes the NTA bound on the 
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Ni2+ ions on the surface and breaks the bridge between the protein complex and the surface, 

facilitating the removal of the analyte and regenerating the sensor surface.  

 

Figure 3.7 Fluorescent reading of various sample concentration was taken and a 
calibration curve showing linear correlation (R2 = 0.964) between fluorescent intensity 
and concentration of the sample with error bars showing the variation between substrate 
sensitivity. 

 

3.4 Conclusions. 

We have created a nanofiber substrate capable of forming metal ion bridges for 

selective capture of metal ions binding analytes such as NTA or His-tagged 

functionalized biomolecules. This enables on-chip enrichment and detection with a 

fluorescent spectrometer. In this study, nickel (II) ions were incorporated into the binding 
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scheme to facilitate the recruitment of NTA-biotin to the sensor surface. The biotin 

moiety surface as the surface ligand-receptor for the Neutravidin tagged with rhodamine 

and fluorescence spectroscopy was used to optically confirm and quantify the presence of 

the bound proteins. Control studies that were carried out showed a low level of 

nonspecific binding. But the amount of nonspecific binding observed was uniform across 

the concentration gradient, signifying that increases in fluorescent readings can be 

attributed to binding events from the Rhodamine-Neutravidin-NTA-Biotin complex 

anchored onto the surface.  

While this novel platform can concentrate analytes on the surface through this 

specific binding interaction, this surface interaction is simple and can be further used for 

protein separation techniques that target his-tagged protein. This sensor surface can also 

chelate as copper and iron ions. These metal ions can serve as anchor points to facilitate 

biorecognition to metal binding entities or metalloproteins, such as Copper Binding 

Protein (CBP) family found in the liver that binds copper ions, and iron \-binding proteins 

include transferrin, hemoglobin among many others. Additionally, post-experimental 

washing of the sensor surface with a high EDTA concentration solution has shown to 

elute the bound analyte due to EDTA’s higher binding affinity to the nickel ions than 

both the partial EDTA and the NTA, enabling the regeneration of this sensor surface for 

future use.  
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Chapter 4. Fabrication of 3D printed Prisms as Optical Components for 

LSPR Detection of Proteins 

 

4.1 Introduction. 

3D printing is an additive manufacturing process of fabricating three dimensional 

solid objects through fusing deposited material in a layer by layer process (see Chapter 1: 

Introduction for more details). This enables a wide complexity of shapes for rapid 

prototyping and mass production of custom objects for various applications1–8.  3D printing 

technology has open a new avenue in science through the facile fabrication of custom 

components with high resolution and cost efficiency of both additive manufacturing1 and 

translating novel ideas into versatile applications3,9,10. 

While 3D printing has been focused on additive manufacturing for custom parts, it 

has recently been applied to fabricating whole sensor devices. The main route of 

application has been demonstrated in 3D printing microfluidic devices. This simplifies the 

traditional PDMS mask and mold techniques by fabricating a fully functioning device in 

one simple task and mitigates key issues such as improper sealing and bubbles in the 

PDMS. The application of 3D printing has been exploited for the fabrication of custom 

mechanical parts and microfluidic devices11,12. These advancements aid in sample 

preparation seen in the recent fabrication of silica gel patterns for chromatography13 and 

solid-phase extraction14,15, which can be used for sample enrichment2,16 for further analysis.  
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This project aims to turn 3D printing into a different area of application, 3D printed 

optical components integrated into biosensors, specifically fabricating quality optical 

components that can substitute existing optical components in current experimental setups, 

such as prisms. The direct 3D printing of prisms allows for facile fabrication of custom-

designed optical components with a notably high-quality surface for bio-sensing4,17. While 

this stereolithography technique does fabricate prisms with variable surface roughness, 

simple benchtop sanding procedures can generate a surface amenable to high precision 

optical techniques. Our previous work applied a thin film of gold to study surface for 

surface plasmon resonance performance compared against commercial prisms, in this work 

we focus on fabricating a biosensor without the need for cleanroom technology to increase 

the accessibility of optical biosensor to a larger community. The new 3D printed prism 

utilizes in-situ nanoparticle growth18 to fabricate a local surface plasmon resonance 

responsive surface to carryout bio-sensing of proteins. Our group has recently been 

working with 3D printed prisms and studying their ability to mimic glass prisms to become 

disposable prims substrates for surface plasmon resonance (SPR) studies4. The 3d printed 

prisms coated in a thin gold film allows covalent binding to occur directly on the prism 

face. This removes the needs for matching fluids, which would be normally applied to 

transition the gap between the prism and a functionalized glass slide to retain proper optical 

configurations. This direct modification of the prisms will decrease the noise and variation 

from set up to set up, which will affect the reproducibility of both a thin gold film and a 

layer of gold nanoparticles for SPR and localized SPR (LSPR) respectively. 
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Localized surface plasmon resonance (LSPR) occurs when the excitation of the 

electrons on the dielectric interface of the metal nanoparticle is localized around the metal 

nanoparticle due to the size of the nanoparticle (see Chapter 1 for a detailed explanation of 

LSPR). The excitation can be induced using a photon guided through a prism. The LSPR 

is extremely sensitive to minor changes in the refractive index surrounding the 

nanoparticles. This allows the detection of changes in bulk refractive index and binding 

interaction that alter the localized refractive index. Protein binding interaction and changes 

on the nanoparticle surface can be observed through monitoring either the sensing layer 

absorption or reflectivity spectrum19,20. Shifts in the wavelength where these peaks occur 

can correlate to a direct shift in either the bulk refractive index or binding events that occur 

on the surface20–22. Traditionally LSPR studies are conducted with a homogenous solution 

of gold nanoparticles and utilize UV-VIS to track the changes to the LSPR peak of the gold 

nanoparticle in solution23–26. This method is very sensitive to the nM range27 but prone to 

the aggregation of nanoparticles interfering with results.  LSPR on substrate surfaces 

mitigates the aggregation issue using a homogenous solution of nanoparticles adhered to a 

substrate. This can greatly improve sensitivity compared to a polydisperse nanoparticle 

solution and slightly rough surface of 3D printed prism28,29.  

Table 4.1 DNA Oligonucleotides Sequences. 
Oligomer Sequence 

T20-SH 5′−T20−(CH2)3−SH−3′ 

Biotin-T20-SH 5′−biotin−NH2−(CH2)2O(CH2)2−PO4−T20−(CH2)3− SH−3’ 
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4.2 Experimental Design. 

Materials. Polydopamine, Trizma hydrochloride (HCl), gold (III) chloride trihydrate 

(AuCL3), and Streptavidin were obtained from Sigma Aldrich (St. Louis, MO). Clear 

Resin v2 was purchased from Formlab30 (Somerville, MA). All-Purpose polishing blocks, 

Blue and Brown, were purchased from Enkay Polishing System (Edgewood, New York). 

Functionalized oligonucleotides (Table 4.1) were obtained from Integrated DNA 

Technologies (San Diego, CA). 

Instrumentation. Sandpaper of 100, 400, and 600 grit were used to smooth the prism 

surface. One speed polishing wheel from Central Machinery was used to buffer the prism 

surface to increase optical clarity. 3D printed prisms were mass-produced by a Form2 3D 

printer from FormLab2(Somerville, MA). Absorbance spectra were collected using a 

USB 2000+ UV-Vis spectrometer with an HL2000 Tungsten-Halogen light source 

guided through 200 μm optical fibers (Ocean Optics, Dunedin, FL). FT-IR analysis was 

performed on a Nicolet 6700 spectrometer (Thermo Scientific, Rockville, IL), and 

ellipsometry was performed on a UVISEL M200 (Horiba Jobin Yvon, France). Scanning 

electron microscopy (SEM) was conducted on FEI NNS450 SEM (Hillsboro, OR) in 

CFAMM at UC Riverside. Atomic force microscopy was conducted on a Veeco 

Dimension 5000 (Santa Barbara, CA) under tapping mode at a scan rate of 1 Hz. Prisms 

parameters were designed in SketchUp: 3D Design Software from Trimble (Sunnyvale, 

CA). Preform from FormLabs (Somerville, MA) was used to upload the STL file to the 

Form2. 
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Fabrication of optical 3D printed prisms. The dove prism dimension was drafted in 

SketchUP software and exported to Preform to load object file ono the Form2 3D printer. 

Multiple prisms can be fabricated in a single print job with Formlab’s Clear Resin v2 at 

100nm resolution for the z-direction. The 3D-printed prisms were carefully removed 

from the build-stage and rinsed with isopropanol. These prisms were transferred to a UV-

oven to cure any remaining resin for 1 hour at 405nm wavelength. The resulting cured 

prisms are opaque and require post-processing to achieve adequate optical properties for 

optical sensor development. The opaque prisms are hand sanded with 100 grit sandpaper 

for 30 seconds followed by an additional second 30 seconds sanding using 400 grit 

sandpaper to minimize the ridges created from layer by layer fabrication technique of 3D-

printing. The sanded prism is subjected to two rounds of buffer treatment to increase 

optical clarity so that light can pass and reflect through a prism for LSPR detection31. The 

process can be seen in (Figure 4.1). The surface of the finished 3D printed prism was 

characterized by AFM. 

In-situ growth of gold nanoparticle on 3D printed prism. The 3D printed prism 

requires a coating of polydopamine to initiate and catalyze the in-situ growth of gold 

nanoparticles. A solution of 2mg/mL polydopamine in a Trizma-HCl buffer was 

incubated on the prism surface for 18 hours in a moisturized environment. The prism is 

thoroughly rinsed with deionized water and dried with nitrogen. This polydopamine 

coated surface is then incubated with a gold chloride solution for 24 hours to growth 

nanoparticles on the surface. After the nanoparticles' growth phase is complete, the prism 

is again thoroughly rinsed with deionized water and dried with nitrogen gas. The dove 
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prisms are stored in a dried environment for later usage. High-resolution SEM was used 

to characterize the nanoparticle on the prism surface (Figure 4.2). A simple salt 

calibration was used to test the LSPR sensitivity of the sensor surface (Figure 4.3). 

 

 

Figure 4.1 Dove prism fabrication. (A) Absorbance setup with dove prism, with total 
internal reflection of the light path depicted. (B) Polydopamine-mediated nanoparticle 
growth schematic. (C) Photographs of dove prisms during various stages of nanoparticle 
functionalization. (D) Absorbance spectra of nanoparticle growth on the polydopamine 
functionalized dove prism surface over a 24 h period. Reprinted from Ref#4 
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Figure 4.2 Characterization of the surface via SEM. (A) Density of gold nanoparticle 
catalytically grown via polydopamine on 3D printed prism surface is shown to distrusted 
across the surface and not highly packed. (B) Polydopamine sheets coating the prism 
surface supporting and adhering the gold nanoparticles. (C) The catalytic growth of the 
gold nanoparticles promotes large aggregation and clusters formation of gold 
nanoparticles in diverse sizes across surface. (D) Close up of nanoparticle clusters shows 
that individual nanoparticle diameter varies from 10-100nm with average at 50nm and 
forms clusters with diameter spanning from 50-300nm. 

 

Surface Bindings of Proteins onto 3D printed prisms. The binding scheme for this 

experiment centers around DNA oligomers. The gold nanoparticles on the prism are 

functionalized with 10nM DNA oligomers, Biotin-T20-SH, via thiol-gold chemistry to 

activate the surface for selective capture of streptavidin. A range of streptavidin 

concentrations was exposed to the surface and tested the prism for its selective sensitivity 
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and detection. Gold nanoparticles fabricated with DNA oligomer coating of a 1:1 mixture 

of Biotin-T20-SH: T20-SH24 was used as a secondary set of a gold nanoparticle for signal 

enhancement. 

 

Figure 4.3 RI sensitivity of functionalized PDA-AuNP coated 3D printed prism. 

 

4.3 Results and Discussion. 

Characterization of 3D printed prism. The characterization of these 3D printed prisms 

as an alternative to commercial optical prisms was done in our group’s previous work4 

and confirmed again in this project. The surface roughness is the main aspect of concern 
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when comparing these 3D printed prototypes to commercial optical prisms. The surface 

roughness of the 3D printed prisms was characterized through atomic force microscopy 

(AFM) and had results an average surface roughness of 20nm and compared to data from 

commercial optical prisms with an average surface roughness of 2nm. The refractive 

index of the prism was measured through ellipsometry. The resin composition makeup 

was determined to resemble poly (methyl methacrylate) (PMMA) as the main polymer 

through FT-IR analysis. Our group’s previous work investigated both the surface 

roughness of the sanding procedure and ellipsometry of the prism to find the wavelength-

dependent refractive index and extinction coefficient of the printed resin. The results 

(Figure 4.4) show that the 3D printed prism is functionally comparable to conventional 

glass prisms with sensitivity to changes in refractive indexes.  

 

Figure 4.4 SPR Sensitivity comparison between 3D printed, SF2, and BK7 prisms. 
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Sensor Application of 3D printed prism. We have previously deposited both a thin gold 

film and a layer of gold nanoparticles onto the 3D printed prism as an integrated sensor 

prism as proof of concept for SPR and LSPR, respectively. This work continues the 

project for LSPR sensing with the in-situ growth of gold nanoparticle as the integrated 

sensor layer of these 3D printed prisms as a novel detection platform. Initially, 50nm gold 

nanoparticles were synthesized and incubated onto the prism surface. Nanoparticles will 

not naturally adhere to the PMMA surface of the 3D printed. These nanoparticles rinsed 

off randomly during experimentation, causing large unexpected changes in the signal 

observed. 

Since gold nanoparticles do not naturally adhere to the polymer of the 3D printed 

prisms, another method was used to create an LSPR responsive surface. The in-situ 

growth of gold nanoparticle catalyzed by polydopamine was adapted from literature32. A 

polydopamine (PDA) in Trizma-HCl buffer is incubated on the surface of the 3D printed 

prism to form a coated layer of self-polymerizing PDA. This PDA layer serves as both an 

adhesive and a catalyst for in situ growth of gold nanoparticle from gold chloride solution 

incubated on top of the PDA coating of the prism to form gold nanoparticles on the 

surface of the prism for LSPR sensing18. These gold nanoparticles can be further 

functionalized to capture specific molecules using capture ligands, for example, 

antibodies or aptamers.  

High-resolution SEM images (Figure 4.2) showed that the nanoparticles have 

varying diameters between 50nm to 200nm and form large clusters throughout the 

surface of the 3D printed prism. The lack of surface uniformity increases the variation of 
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sensitivity due to the heterogeneous distribution of nanoparticle size33,34 and surface 

fabrication reproducibility from the random aggregation pattern of the gold nanoparticles.  

Results from testing bulk sensitivity (Figure 4.3) demonstrate that the prism is LSPR 

sensitive to changes in the refractive index and has a linear correlation, R2=0.986. 

 

Figure 4.5 Streptavidin sensitivity of 3D Printed Prisms surface created with. (•) 0.5mM 
AuCl3, (•) 1.5mM AuCl3. 
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Surface Binding Sensitivity. Optimization of the concentration for initial gold (III) 

chloride was tested to examine the effects on gold nanoparticle distribution and resulting 

LSPR sensitivity. Two concentrations were examined, 0.5 and 1.5mM of AuCl3 (Figure 

4.5). At the higher concentration, the nanoparticle did increase in size and density on the 

prism surface compared to the nanoparticles formed at the lower concentration, resulting 

in an increase in the sensor surface area. The surface fabricated from the 1.5mM AuCl3 

performed better as it had higher signal observed from protein binding than the surface 

formed from the 0.5mM AuCl3. An even higher concentration of 5mM AuCl3 was 

examined.  

While the nanoparticles did form, the resulting layer was not sensitive to changes 

in the LSPR peak as the absorption peak was extremely broad. Thus, the concentration of 

1.5mM AuCl3 was used in the rest of the experiment. The sensitivity of surface binding 

events on the localized surfaces of these gold nanoparticles coated prisms is tested with the 

model binding pair biotin and streptavidin. Concentrations of 1-10 μM streptavidin were 

exposed to the surface and observed the resulting linear, R2=0.9-0.93, LSPR shift due to 

these binding events on the surfaces (Figure 4.4). The sensor can detect binding response 

at a minimum of 0.668 μM of streptavidin and can accurately quantify at 2.228 μM of 

streptavidin. The variation in signal response of the protein binding is due to the non-

homogenous structures of the self-assembled nanoparticle on the surface.  
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Figure 4.6 Secondary AuNP for signal enhancement (•) increases from protein bound to 
the surface (•). 

 

Secondary gold nanoparticles were utilized to increase signals from protein 

binding, allow the sensor to attempt to enhance sensor sensitivity at lower concentrations 

(Figure 4.6). While the signal resolution at a lower concentration was enhanced by two-

fold through the secondary nanoparticles, the sensor performance did drop with the limit 

of detection and quantification at 1.798 μM and 5.994 μM of streptavidin respectively due 

to nonspecific binding. The nanoparticle signal enhancement utilized 2nm gold 
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nanoparticles coated with a 1:1 mixture of biotinylated and non-biotinylated DNA 

oligomer with a thiol group to facilitate binding between the protein and the secondary 

gold nanoparticle to induce a larger LSPR shift due to increase mass loaded on the analyte 

surface. There is a nonspecific binding interaction between the gold nanoparticles and the 

polydopamine surface, which hinders the lower limit of detection.  

 

4.4 Conclusion. 

Traditionally, the sensor chip is fabricated from a plasmonic material of a thin 

gold film deposited on a glass substrate. Careful handling of matching fluid is required to 

interface the glass substrate and the optical prism to allow light to travel correctly. While 

it is possible to simplify experimental setup by depositing a thin gold film directly onto 

the prism surface, most sensing schemes utilize covalent binding to the gold surface, 

rendering the prism non-reusable. This study emphasizes the integration of a thin layer of 

gold nanoparticle on the 3D printed prism for simple, convenient, and disposable 

integrated sensor component for the field of site usage  

The simplicity of this prism fabrication does not require special tools or facilities 

to generate an LSPR responsive surface. The interface has a limit of detection and a limit 

of quantification of 0.668 μM and 2.228 μM of streptavidin, respectively. Secondary gold 

nanoparticles were successfully employed as a signal enhancement to differentiate signals 

at the lower concentration range of 0.5-3 μM range. However, this also decreases the 

sensor sensitivity as the limit of detection and limit of quantification shifted to 1.798 μM 
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and 5.994 μM of streptavidin, respectively. This decrease in the sensor performance can 

be attributed to the nonspecific binding of the secondary gold nanoparticle to the sensing 

surface.  

While the sensor performs in the μM range of streptavidin, the ideal concentration 

target of pM – nM range has yet to be achieved with this platform. The sensing layer 

would require further optimization to achieve higher sensitivity. Primarily focusing on 

optimizing the nanoparticle layer in multiple parameters: 1) size dispersion, 2) density, 

and 3) packing/arrangement on the prism face is important in controlling the LSPR 

responsive absorption peak. Ideally, a monolayer of densely packed monodispersed gold 

nanoparticle would result in a very tight absorption peak that would be extremely 

sensitive to changes and able to detect extremely low concentrations of targeted analytes. 

In summary, these 3D printed prisms are easily mass-produced at a low cost and 

can be used as disposable units. The application of a 3D printed prism as an integrated 

optical sensor component was investigated in this project demonstrated proof of concepts 

for fabricating 3D printed prisms with parameters functionally comparable commercially 

available optical prisms. While there is still room for improvement for the 3d printed prisms 

to fully match the parameter of traditional prisms, the current parameters are suitable to 

allow integration of a thin layer of gold film or gold nanoparticle for SPR and LSPR 

detection, respectively. These 3D printed prisms can be used in substitution of 

commercially available optical prisms to facilitate the direct integration of a sensing layer 

onto the prism face.   
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Chapter 5: Investigation of a Biomimetic Double lipid bilayer 

membrane interface for protein-lipid interactions via SPR. 

 

5.1 Introduction. 

 Humans increasingly synthesize new chemical compounds for new 

pharmaceutical drugs, consumer products, and various other advances in productions. 

These compounds can be directly toxic to humans, have synergistic effects with known 

toxins, or rarely, inhibit toxins. Exposure to these compounds has increased as more of 

these compounds make their way into the environment from direct exposure or improper 

disposal. Because of the potentially dire effects on human and environmental health, it 

has become crucial to detect trace exposure of these toxic compounds before any adverse 

effect begins. An understanding of the toxin’s mechanism of action, specifically with 

respect to how the toxin interact with cell membranes, provides a basis for developing 

biosensors that can take advantage of initial binding interactions to detect compounds, 

even at low concentrations. 

Toxicity studies are conducted on cell assays to examine onset of adverse effects 

and which systems are affected. Cell culturing is time consuming and may obtain 

conflicting results due to varying cellular responses. Biosensors provide an alternative for 

simple analysis of biological interaction on a reproducible model interface to obtain quick 

and reproducible results. Previous research into the development of biophysical sensors 

use a highly simplified experimental model of the plasma membrane as an interface for 
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protein and small chemical analyte interaction on the membrane surface. These surfaces 

have been tailored for optimized assay reactions, minimalizing cellular biological 

interferences, increasing reproducibility and reliability of examining protein 

interactions1–3. These studies drafted various strategies to tailor their single lipid bilayer 

interface for optimized binding interactions to its target of interest through a range of 

fabrication methods. In early studies employing SPR for investigating lipid membrane 

systems, the hybrid lipid bilayer constructed from hydrophobic tails of phospholipids 

adsorb to a monolayer of alkane thiols has been exploited extensively. Tethered lipid 

bilayers have been developed to model cellular membrane system constructed from 

isolated lipid vesicles originating from either mammalian or bacterial cells to form 

bilayer facsimiles of their in vivo counterparts. Recently, solid-supported lipid bilayer 

system has been developed to study interactions on a fluid single lipid bilayer membrane 

interface. 

Experimental models of single lipid bilayer system have been extensively studied 

on sensor system such as surface plasmon resonance (SPR) and quartz crystal 

microbalance (QCM). These works provided novel insights into biomolecular 

interactions on the cellular membrane in a computational model4–7 or a simplified 

experimental system1,8–10. These interactions of membrane protein, antibodies, and small 

molecules elucidates new pathways that can be exploited for novel binding mechanism 

for specific targeting and discover new potential drug candidates that target these 

interactions. While applications of single bilayer membrane systems will continue 

examine all possible novel interactions, single bilayer are not the only lipid layer system 
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that requires elucidating. Double bilayer systems are unique to the membranes of 

mitochondria, chloroplasts, and gram-negative bacteria. While theoretically model and 

cell assays exist to examine interactions at these interfaces, an experimental model 

capable of monitoring interactions on this mimicked surface will aid in uncovering 

mechanisms that occur on these interfaces with greater speed and reproducibility.  

The principle and technique behind single lipid bilayer computational7,11 and 

experimental models10,12–14 serve as the foundations for the experimental models of 

double lipid bilayer system, an important field of interest as these unique membrane 

interfaces serve vital roles in the mitochondria, chloroplast, and the gram-negative 

bacteria5,7,11. Modeling these systems will improve understanding of protein interactions 

at this unique lipid interface. Early examples of computational and simple experimental 

model of the double lipid bilayer membrane system have been reported in literature. 

These models demonstrated partial success as these surfaces is only capable of 

mimicking partial aspects of the mitochondria or gram-negative bacteria with no sensing 

or monitoring binding interactions. Interactions at a single lipid bilayer may behave 

differently when it is placed in a double bilayer system. This project aims to rectify this 

and develop a double lipid bilayer system that mimics gram-negative bacteria cell walls 

and investigate binding interaction studies as a proof of concept for a novel sensor design 

that will aid in discovering novel compounds for potential drug application.  

Computational4,6,15 and experimental models6,16–19 of these double lipid bilayer 

systems will aid in improving the understanding mechanism involved in these energy 

producing organelles and uncovering novel drug-membrane interactions of gram-negative 
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bacteria5,7,11. Early works in literature demonstrates the fabrication of multi-layers lipid 

membrane systems utilizing an assortment of tethered supported lipid bilayer10,12,14,20–23, 

electrostatic interaction between lipid layers24,25, and DNA hybridization26–28 to form 

multiple stacked lipid bilayers . Simple facsimile6,18,19 of  the double lipid membrane 

system have attempted lackluster characterization of interactions occurring on this 

interface. This project applies a double lipid bilayer system (Figure 5.1) formulated from 

two stacked and adherent lipid bilayers facilitated by charge interaction between 

negatively charged lipid headgroups and positively charged polymers of poly-L-

lysine24,25 for SPR applications to elicit better understanding of protein-lipid interactions. 

 

 

Figure 5.1 Double lipid model system for mimicking gram-negative bacteria cell walls 
begins with simple model (A) shown in this study and planned improvements to increase 
modelling accuracy by replacing PLL layer with peptidoglycans (B) and incorporating 
polysaccharides (C) to mimic bacteria recognition for potential drug interactions. 

 

Surface plasmon resonance (SPR) has emerged as a robust technique employed in 

biosensor development for label free analysis of protein affinity, lipid specificity, and 

signal amplification through a diverse set of binding schemes.8,12,13,22,29 Due to principles 

behind the resonance conditions explained in Chapter 1, SPR is very sensitive to changes 

on or near the sensing surface of a thin gold film. Many works have taken advantage of 
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this to conduct analysis of small analyte binding through specific target binding of its 

specific ligands immobilized on gold surfaces to test protein binding affinity and kinetics. 

Other applications of SPR have aimed for the development of novel binding mechanisms 

to aid in complex binding assays and signal enhancement techniques to expand targetable 

analytes and amplify response signals from low concentration of analyte binding, 

respectively. Previously, SPR has been utilized to study single lipid membrane 

interactions using hybrid lipid bilayer on Biacore HPA hydrophobic hips, protein tethered 

membranes, and solid-supported lipid membranes for modeling and analyte binding 

analysis. While experimental model of single lipid bilayers systems has been extensively 

studied, experimental models of double lipid bilayers has sparked interest. The 

development of experimental models of double lipid bilayer systems can further elicit 

better understand of interactions at the surfaces of mitochondria, chloroplasts, and gram-

negative bacteria. Thusly, this project aims do develop a SPR biosensor pairing biological 

interactions with measurable responses that can facilitate chemical characterization, toxin 

interaction, and dose-responses at the novel double lipid bilayer membrane interface for 

exploring primary molecular recognition events that are critical in understanding onset of 

adverse effects in organisms. 

The step by step assembly of this complex double lipid bilayer system was 

monitored in real time using a BiacoreX unit and SPR analysis to confirm proper 

formation of the lipid membrane model. The model was probed with chemical and 

protein interactions to examined if the lipid layers properly formed into lipid bilayers 

through analysis of SPR response exhibited by the model interface. It is important to 
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characterize the formation of the lipid bilayer to ensure proper formation of desired 

model system as improper formation will flaw the model design and application. The 

layer by layer assembly of double lipid bilayer system form from two full lipid bilayers 

adhered by charge interactions of PLL. Beside fabricating a double lipid bilayer 

membrane model, application of the membrane model for sensing binding interaction is 

also examined. For protein binding interactions, two model protein binding systems: 

Streptavidin to Biotin and Cholera Toxin to Ganglioside-monosialic acid (GM1), were 

used to study SPR responses at the single and double lipid bilayer interfaces. Additionally 

this model was used to examine Streptolysin O (SLO), a cholesterol-dependent pore 

forming toxin, incorporation into the membrane to facilitate self-assembly of large pore 

structures24,30,31 and monitored its influence on protein interactions in this novel double 

lipid bilayer system. This novel double lipid bilayer system was examined a novel 

membrane model mimicking bacteria cell walls and applied as sensor interface which 

exhibited high sensitivity to cholera toxin down to nanogram per milliliter range. The 

utilization of SLO introduces the concept of biomimetic size selective filter via 

streptolysin O pores in the outer lipid membrane.  

 

5.2 Experimental Details. 

Materials and reagents. 16:0-18:1 PC (POPC) 1-palmitoyl-2-oleoyl-glycero-3-

phosphocholine, 16:0-18:1 (PG) 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-

glycerol), 16:0-18:1 (PE) 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine, 18:1 
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(PE-PEG5000)1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy 

(polyethylene glycol)-5000], 18:1 (Biotinyl PE) 1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine-N-(biotinyl) and 1-palmitoyl-2-6-[(7-nitro 2-1,3-benzoxadiazol-4-

yl)amino]hexanoyl-sn-glycero-3-phosphocholine (NBD-PC) were obtained from Avanti 

Polar Lipids, Inc. (Alabaster, AL). Monosialoganglioside GM1 (NH4+salt) was obtained 

from Matreya LLC. (State College, PA). Cholesterol, Poly-L-lysine (PLL) hydrobromide 

(mol wt. 150,000-300,000), Cholera toxin (CT) from Vibrio cholerae, Streptolysin O 

(SLO) from Streptococcus pyogenes, Trypsin, Horseradish Peroxidase, 3,3',5,5'-

Tetramethylbenzidine (TMB), Aniline, 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide 

(EDC), N-Hydroxysuccinimide (NHS) were obtained from Sigma-Aldrich (St. Louis, 

MO) . Streptavidin PierceTM and Bk-7 microscope cover slips were obtained from 

Thermo Fisher Scientific (Waltham, MA). Chromium and gold used for electron-beam 

evaporation were acquired as pellets of 99.99% purity from Kurt J. Lesker (Jefferson 

Hills, PA). 

Instrumentation. A BiacoreX (GE Healthcare Life Sciences, Chicago, IL) with a light 

source (λmax ~ 800 nm)32 was used for all real-time binding measurements. SPR Chip 

carriers protype were 3D printed with Formlab2 (Somerville, MA) and mass produced on 

Object 3D Pro (Eden Prairie, MN.)  SPR experiments were conducted at ambient 

temperature (~23 °C), with 1×PBS (10 mM Na2HPO4, 1.8 mM KH2PO4, 137 mM 

NaCl, 2.7 mM KCl, pH 7.4) used as the running buffer set to a flow rate of 20 μL min-1. 

Fluorescence microscopy was carried out on an inverted Leica TCS SP5 II (Leica 
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Microsystems, Buffalo Point, IL) using the 488 nm Argon laser line (for NBD), in 

conjunction with a 40× objective and Leica HyD hybrid detector.  

SPR Gold Chip Fabrication. BK-7 glass microscope coverslips (18mm x18mm) were 

first cleaned using a boiling piranha solution (3:1 v/v H2SO4 and 30% H2O2) for 30 min, 

followed by rinsing with deionized water and drying under compressed nitrogen. 2 nm of 

chromium (0.5 Å s-1), followed by 46 nm of gold (1.0 Å s-1) were then deposited using 

electron-beam evaporation (Temescal, Berkeley, CA) at 5.5×10-6 Torr in a Class 1000 

cleanroom facility (UCR Center for Nanoscale Science & Engineering). The gold coated 

coverslips were split in half (18mm x 9mm) using a glass cutter and cleaned with 

isopropanol and ultrapure water before mounting via Gorilla Super Glue (Cincinnati, 

OH)on painted 3D printed Biacore chip carriers from Object 3D Pro (Eden Prairie, MN) 

that were reversed engineered to be operate on the BiacoreX. 

 
Table 5.1 Lipid vesicle composition used in this study for layer by layer assembly 
and optimization of double lipid bilayer system and protein binding interactions. 
Lipid  Lipid Vesicle composition 
POPC 100% POPC 
Pegulated Vesicles 99.5% POPC 0.5% PE-PEG5000 
POPC: POPG 1:1 (50% POPC 50% POPG) 

3:1 (75% POPC 25% POPG) 
3:1 POPC: POPG w/ 
(GM1 or Biotin) 

72.5% POPC, 22.5% POPG, 5% GM1  
72.5% POPC 22.5% POPG] 5% Biotinyl-PE 

3:1POPC: POPG w/ 
Cholesterol 

37.5% POPC 12.5% POPG 50% Cholesterol  
67.5% POPC 22.5% POPG 10% Cholesterol 
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Vesicle Preparation. Appropriate amounts of POPC, PE, Biotinyl-PE, PE-PEG5000, 

PG, NBD-PC, Cholesterol, and/or GM1 from stock solution in chloroform were dried in a 

glass vial under nitrogen to form a thin lipid film of varying ratios (Table 5.1). The vial 

was stored in a vacuum desiccator for at least two hours to aid in the removal any 

residual solvent. These dried lipids films were resuspended in 1×PBS to reconstitute a 

lipid concentration of 1.0 mg mL-1. Vigorous vortexing was required to desorb all 

remnants of the lipid film from the vial wall, resulting in a partially cloudy solution. This 

solution was then bath sonicated for a minimum of thirty minutes to obtain a clear 

solution, indicating the large lipid clouts had broken down into smaller vesicles. The 

vesicle solution was then extruded repeatedly through a lipid extruder kit equipped with a 

polycarbonate filter (100nm) to produce small unilamellar vesicles (SUVs) of uniform 

size. All prepared vesicle solutions were used within a week and stored at 4 °C. Vesicles 

with a 1:1 molar ratio of lipid content to cholesterol were specially prepared to from 

Streptolysin O incubated vesicles. Incubation of a final concentration of 10 hemolytic 

units (HU) Streptolysin O into the cholesterol filled vesicles was done thirty minutes 

prior to injection onto the BiacoreX unit. 
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Figure 5.2 Fabrication of double lipid bilayer system through layer by layer assembly of 
poly-L-Lysine (PLL) and 3:1 POPC: POPG lipid vesicles with additional PEG5000 
incubation to induce vesicle rupture to ensure lipid bilayer formation. 

 

Double Lipid Bilayer Formation. All incubation and rinsing steps were conducted and 

monitored on the BiacoreX with intervals at thirty minutes to allow injected compounds 

time to interact to the surface and remove any unbound compounds from the system to 

acquire signal corresponding directly to surface binding interaction and minimizing 

signal from nonspecific binding. The gold chip sensor is first incubated with 0.01mg/mL 

poly-L-lysine (mw 150kda-300kda) to form a monolayer of PLL on the surface. Initial 

lipid bilayer solution was then injected and incubation to assemble a base layer of lipids 

on the PLL coated gold surface. The self-assembly process of the lipid bilayer requires 
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assistance from an incubation of a 10% Peg5000 solution to ensure full vesicle rupture to 

confirm self-assembly of bilayer on the PLL monolayer. Another 0.01mg/mL PLL 

solution was incubated to initiate layer by layer stacking of the proceeding lipid bilayer. 

The second solution of vesicles is injected, forming the second bilayer, with another 

sequential incubation of 10% Peg5000 to ensure lipid bilayer formation on the second 

PLL monolayer. This fully formed double lipid bilayer platform (Figure 5.2) mimics 

double bilayer systems found in nature and can be used in applications to improve 

understanding of lipid-protein interactions at these specific biological interfaces. 

 

5.3 Results and Discussion. 

Traditional studies utilizing a single lipid bilayer on a Biacore instrument require 

branded hydrophobic HPA chips which uses a self-assemble monolayer of alkane-thiols 

to facilitate a formation of a hybrid lipid bilayer. This project employs a BiacoreX 

instrument and custom 3D printed Biacore chip carriers paired with bare gold sensor 

surfaces to monitor the fabrication of our single and double lipid bilayer system and to 

measure protein binding response via SPR. Our lab has previously shown that lipid 

vesicles readily self-assemble into lipid bilayers on silicated gold surfaces13,29,33–35 due to 

the hydrophilic interaction between the silica and the head groups of the lipid vesicles. 

Due to the hydrophobicity of a bare gold surface, POPC lipid vesicles will not readily 

adsorb to the surface and self-assemble into a lipid bilayer. Tethered lipid bilayers have 

been studied as a method to attach lipid bilayers; but covalently tethering can decrease 
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the fluid mobility of the assembled bilayer. To retain lipid fluidity of a self-assemble lipid 

bilayer on bare gold surfaces, we first proposed to harness POPC/PE-PEG5000 lipids to 

formulate polymer supported lipid bilayers to facilitate vesicles adsorption and lipid 

bilayer assembly on the gold surface. Upon examination on the BiacoreX instrument, the 

observed response of the PEG-PE bilayer resulted in less than 200 Resonance Units (RU) 

which indicates little to no adsorption and self-assembly of the into a lipid bilayer 

compared to non-pegylated lipid vesicles which achieved a signal response of 

approximately 4000 RU.  

Silicated gold sensor chips fabricated by depositing a thin layer of silica (2-4nm) 

were initially employed to facilitate lipid vesicles adsorption, but initial testing of these 

silicated chips revealed a major flaw in surface integrity when initial baseline attempts 

resulted in unstable signal. Thusly, poly-L-lysine (PLL), frequently applied in culture 

plate for cell adhesions was applied to the surface via incubation of a 0.01mg/mL 

solution of PLL resulting in an SPR signal of ~500 RU. The process of layering and 

adhering the bilayers to the PLL was facilitated through charge interaction between the 

positively charged poly-L-lysine and the negatively charge lipid heads groups of PEs. 

Two sets of lipid molar ratios, a 1:1 and a 3:1 of POPC to POPG, were examined to 

determine optimal lipid ratio for lipid membrane assembly onto the PLL layer. The 3:1 

ratio induced stronger and reproducible SPR signals of 4000 RU compared to the 1:1 

ratio SPR signal response of 1300 RU, thusly this 3:1 ratio was set as the standard for the 

lipid vesicles used in this double lipid bilayer system. The successful application of PLL 

and additional lipid vesicle adsorption with SPR responses of 500 RU and 3000 RU 
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respectively, formed the second bilayer. This system mimics the double lipid membrane 

systems found in the mitochondria and the bacteria cell wall-membrane. 

  

Figure 5.3 Sensorgram of single (black) and double (red) lipid bilayer system. PLL is 
first incubated onto the surface to facilitate adsorption of a 1:1 POPC: POPG vesicles. 
PEG5000 incubation ruptures intact vesicles to ensure full formation of lipid bilayer. 
Another round of PLL is incubated followed by a 3:1 POPC: POPG vesicles repeated 
with PEG5000 incubation. Streptavidin exposure on surface to show nonspecific binding 
on both bilayer sets.  

 

Investigation of the double lipid membrane system as a platform for SPR 

detection using model protein binding pairs with the protein specific target embedded 

into the lipid bilayer. Both biontinyl-PE and GM1 were incorporated at 5% of the lipid 

ratio to ensure high surface coverage of the antigen was available for lipid-protein 
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binding interactions. Biotinyl-PE and Streptavidin binding pair was used as a proof of 

concept (Figure 5.3) with SPR response of 900 RU for 1mg/mL of streptavidin to 

confirm that biotin embedded in the first bilayer and that when antigen is covered by the 

second bilayer that no streptavidin binding occurs. To test the sensitivity of the sensor 

platform, cholera toxin and GM1 binding interaction was exploited to compare the SPR 

response to binding on the surface of a single bilayer versus on a double bilayer system 

(Figure 5.4).  

The resulting calibration curve (Figure 5.5) show that SPR sensitivity is similar 

on both the single and double bilayer system. The sensor was able to detect binding at 

low concentration of Cholera toxin, at 0.1ng/mL on both a single and double bilayer 

system with high linear correlation of R2=0.999. The binding sensitivity is slightly higher 

on the single bilayer as the binding interaction is closer to the surface. The linear 

detection range spans from 0.1ng to 10 ng/mL and the signal begins to saturate at 

100ng/mL with SPR response ranging from 50 to 6000 RU. This quantitate analysis 

provides suitable confirmation that the double lipid bilayer system can be applied as a 

sensor surface for studying binding interactions imitating the surface interfaces of 

biological targets such as mitochondria, chloroplasts, and gram-negative bacteria cell 

walls by slightly altering lipid to match targeted lipid profile.  
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Figure 5.4 Sensorgram of Cholera Toxin binding on a (A) single lipid bilayer and (B) 
double lipid bilayer system. PLL incubated onto the surface to facilitate adsorption of a 
3:1 POPC: POPG vesicles. PEG5000 incubation ruptures intact vesicles to ensure full 
formation of lipid bilayer. Second set of PLL followed by 3:1 POPC: POPG vesicles with 
5% GM1 incubated on the surface. Incubation PEG5000 again to ensure lipid bilayer 
formation followed by 10μ/mL(A) and 0.1mg/mL(B) Cholera Toxin exposure (red) to 
bind to the exposed GM1 on the second bilayer.  

 

 

Figure 5.5 Calibration curve of cholera toxin (CT) binding to GM1 embedded in a single 
(Red) or double (Black) lipid bilayer system showing high sensitivity and linear 
correlations with detection limits at 0.1ng/mL of CT, linear range up to 10ng/mL CT, and 
upper limit of detection at 0.1mg/mL CT shown in inset. 

A B 
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Streptolysin O incorporation into lipid bilayer model system.  

Proteins are major constituents of a lipid membrane profile, particularly transmembrane 

proteins which play major roles either as signal transduction and cascades for intra-

cellular signaling or as transport channel to actively or passively facilitate movement of 

important molecules across the cellular membranes. Additionally, proteins can interact 

with specific polysaccharides that extends from the lipid membrane for various functions 

such as cell-to-cell recognition, antibody interaction, and many other protein interactions 

that may be either beneficial or detrimental to cellular health. In this work, a specific 

protein, Streptolysin O (SLO) was selected as it behaves as toxic transmembrane protein 

capable of self-insertion into lipid bilayers concertedly forming pores with diameters up 

to thirty nanometers. It is to be noted that this insertion process is heavily assisted by the 

presence of cholesterol embedded in the lipid bilayer as described in the following.  

 

Figure 5.6 Diagram illustrating the pore formation process of streptolysin O.  
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Figure 5.7 Sensorgram of single lipid bilayer formation followed by trypsin incubation 
and digestion. (Inset) Calibration curve of Trypsin digestion of Streptolysin O embedded 
in lipid bilayer demonstrating correlation between increasing streptolysin O concentration 
and increasing signal (RU) loss. 

 

The consensus mechanism of pore forming toxins self-assembly into proper 

formation to form pores is a multi-staged process starting with initial individual 

monomeric binding to the lipid membrane facilitated by cholesterol (Figure5.6). 

Proceeded by oligomerization and  pore formation in the protein complex structure 

forming C-structure lesion and full open pores with diameters ranging up to 30nm in 

size31,36–38. The inclusion of streptolysin O into the outer membrane transforms a 

protecting bilayer into a biological facsimile of a size selective filters that can be 

exercised in conjunction with lipid bilayer surfaces. This altered model of a double lipid 

bilayer system will examine this potential surface for a sensor design applying this size 
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selective filter aspect for selective binding of small biomolecules within a certain size 

range.  

Based on our group’s previous electrochemistry work39,40, the optimal cholesterol 

concentration exhibited at a one-part lipid content to one-part cholesterol, which retain 

high lipid fluidity assisting in the transition of the transmembrane protein and the 

diffusing of lipids away from the site of pore formation. This project aims to confirm 

similar findings via surface plasmon resonance on the BiacoreX. To achieve this, trypsin 

digestion was harnessed as a mean of simple confirmation that streptolysin O was 

embedded successfully in a single lipid bilayer model. The SPR data (Figure 5.7) 

exhibits a correlation between increasing concentration of streptolysin O incorporated 

into the bilayer and SPR signal loss as the trypsin digestion removed the streptolysin O 

off the surface of the membrane, confirming the presences of embedded streptolysin O in 

the lipid bilayer. 

While this does indicate that streptolysin O is associated with the lipid bilayer, 

this SPR response does not prove that the protein is correctly inserted in the membrane; 

an alternative conclusion could be that streptolysin O is adsorbed to the membrane 

surface which will exhibit similar results upon exposure to trypsin digestion. To fully 

confirm structural orientation, streptolysin O pore forming functionality can be exploited 

to determine if the toxin self-inserts and assembles into pores on the lipid membranes. 

The first study attempted to repeat previous work40 utilizing horseradish peroxidase 

(HRP) to catalyze a 3,3',5,5'-Tetramethylbenzidine (TMB) precipitation reaction that 

would generate precipitate that would adsorb onto the surface generating a corresponding 
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SPR response. The experiment begins with functionalizing the base poly-L-lysine (PLL) 

monolayer on the gold surface with EDC/NHS linking reaction to covalently attach HRP. 

An incubation of SLO infused vesicles solution was then injected onto the surface to self-

assemble into a bilayer, followed by a 10% w/w PEG5K injection to rupture any 

remaining intact vesicle, and ensure full lipid bilayer formation. If the streptolysin O 

toxin is embedded in the lipid bilayer and forming pores, TMB will have access to the 

HRP bound to the PLL beneath the membrane catalyzing TMB precipitate formation 

which should adsorb to the bilayer surface resulting in increased SPR response. 

Unfortunately, the SPR response did not match expectation as the hydrogen peroxide 

induced unstable and unexpected SPR responses during the TMB incubation and lack of 

SPR signal increase indicates either that TMB precipitate did not form or did not adsorb 

to the bilayer surface. SPR responses recorded did not correspond to colorimetric changes 

observed in the experimental sample outflow. In control runs testing pure membranes, the 

eluents exhibited no colorimetric change as predicted with matching SPR data indicates 

lack of TMB reaction and intact lipid bilayer. However, in experimental runs with using 

streptolysin O incubated vesicles, the eluent that exits the channel has changed into dark 

blue indicating the TMB reaction did occur and that TMB had direct access to the HRP 

below the lipid bilayer through the SLO pores. But the corresponding experimental SPR 

data did not indicate any signal shift due to TMB reaction, it was nearly identical to the 

sensorgram recorded from control runs. 
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 With conflicting findings from the TMB precipitation reaction, another strategy 

was implemented to confirm formation of streptolysin O pores. Biotin-PEG2000-SH was 

functionalized directly on the bare gold surface to facilitate specific binding of 

streptavidin. Subsequent incubation of PLL solution formed a thin monolayer of PLL 

immersed with Biotin-PEG2000 to adhere the subsequent SLO incubated lipid vesicles. 

As per protocol, a 10% PEG5000 incubation to ensure full lipid formation followed the 

vesicle incubation. Streptavidin was then incubated onto the interface to monitor binding 

interaction directly on the lipid bilayer via SPR. After subtracting non-specific binding, 

the resulting data did exhibit correlating results as SPR signal did increase, ~900 RU for 

0.5mg/mL of streptavidin in channels utilizing streptolysin O incubated vesicles 

confirming successful formation of pores induced by incubation of streptolysin O into the 

vesicle solutions.  

Advancing this proof of concept to the double bilayer system, the experiment 

scheme alters the previously stated double bilayer formation procedure by embedding a 

target molecule, GM1, into the first lipid bilayer and incorporating streptolysin O into the 

second bilayer to form pores. The SLO pore formation allows cholera toxin to bind to the 

previously covered GM1 in the first bilayer, and this process can be monitored through 

SPR (Figure 5.8). By operating a control channel to account for non-specific binding, 

signal for specific binding of CT to GM1 can be approximated and this data demonstrates 

that channels containing streptolysin incubated lipid vesicles does elicit a stronger 

response upon exposure to cholera toxin indicating that the streptolysin O pores did 

successfully form on the outer lipid bilayer.  
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Figure 5.8 Sensorgram of double lipid bilayer formation with streptolysin incubated 
vesicle. PLL facilitates adsorption of 3:1 POPC to POPG with 5% GM1 lipid vesicles 
followed by 10% PEG5000 to rupture intact vesicles to ensure full lipid bilayer 
formation. Second PLL layer facilitates the second set vesicles with cholesterol at a 1:1 
molar ratio (Red) and incubated with 10 HU of streptolysin O (Black) again followed by 
10% PEG5000 to ensure full lipid bilayer formation. Upon exposure to 1ug/mL of 
cholera toxin (CT), indicates successful streptolysin O pore formation as the resulting in 
signal difference ~700 RU for specific binding of CT to GM1 embedded in the first lipid 
bilayer. 

 

Notably, non-specific binding is present and is attributed to high cholesterol 

content, which literature suggests promotes the disassociation of the catalytic CTA1 

subunit from the rest of the toxin and self-insertion into the lipid membrane41. Upon 

exposure to a minimum of 1ug/mL of CT, an SPR response of 100 RU can be induced 

and confirms that cholera toxin can pass through the pores, but the sensor interface is 

quickly saturated at 100ug/mL of CT with SPR responses of 1000 RU. The narrow limit 

of detection and comparability smaller detection range of this novel double lipid bilayer 
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interface can be attributed to the physical dynamics of local diffusion limit in order to 

pass the pores and hinderance of the second PLL monolayer poses to CT from reaching 

the GM1 embedded in the primary lipid bilayer. 

 

Optimizations of PLL and cholesterol were conducted to elicit how PLL and 

cholesterol affects binding interaction between Cholera Toxin and its target GM1 

embedded in the base lipid bilayer of this double lipid bilayer system. Firstly, 

concentrations of PLL were investigated to determine optimal concentration to form a 

monolayer that retains its adhesive property for formation of the double lipid bilayer 

structure yet does not hinder cholera toxin interaction with GM1 on the surface of the 

first bilayer underneath the PLL monolayer. Data from low concentration of PLL 

(0.001mg/mL) exhibits substantially lowered SPR signal ~100 RU for the PLL and ~ 500 

RU for the second lipid bilayer formation step, this difference in SPR response indicates 

that low concentration (0.001mg/mL) of PLL did not fully adsorbed vesicles to fully form 

an intact lipid bilayer.  Data from high concentration of PLL (0.1mg/mL) exhibits proper 

self-assembly of second lipid bilayer, yet the SPR response of ~20 RU upon 10μg/mL 

cholera toxin exposure lead to an abnormally weak interaction likely due to the steric 

hindrance from an increase in the PLL monolayer thickness hindering the binding 

between CT to GM1. 
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Cholesterol concentration was briefly investigated as the high lipid fluidity may 

be a cause of non-specific interaction within this system31,42. A comparatively lower 

cholesterol ratio of 9:1 lipid to cholesterol was examined to observe the effects of a 

lowered cholesterol concentration on streptolysin O pore formation. Data from second 

lipid bilayer with lowered cholesterol concentration did exhibit an overall decrease in 

SPR response of cholera toxin interaction, this decrease in specific binding can be 

attributed to weaker streptolysin O pore formation within the second lipid bilayer which 

in turns reduces access to GM1 embedded in the first lipid bilayer. Non-specific binding 

is also reduced, aligning to the previously inferred41 that non-specific binding is 

attributed to CTA1 subunit integration into the second lipid bilayer due to high 

cholesterol content. 

 

5.4 Conclusion. 

In summary, this double lipid bilayer system investigated in this project provided 

proof of concepts for a biomimetic of double lipid bilayers interface for modeling 

complex lipid membranes systems present in nature such as the mitochondria, 

chloroplasts, and gram-negative bacteria on a SPR based sensor. Comparison of the 

single lipid bilayer and double lipid bilayer systems demonstrated that this surface 

interface is capable as a biomolecule sensor with sensitivity spanning from 0.1ng/mL to 

10ng/mL of cholera toxin with upper limit of detection of 100ng/mL similar to previous 

SPR immunosensors using antibody bindings43,44. Streptolysin O toxin was utilized to 
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examine this sensor interface potential to interrogate transmembrane protein and protein-

lipid interaction via SPR. Streptolysin O toxin was confirmed to have self-assembled into 

the lipid bilayer and form pores, this additionally tested the novel application of 

streptolysin O pore functionalized lipid bilayer as a size selective membrane system. 

Optimization of double lipid bilayer system were examined to the PLL layer density to 

obtain balance between successful adsorption of the second bilayer onto the surface and 

allowing cholera toxin reach GM1 within the first lipid bilayer underneath the PLL layer.  

To increase accuracy of modeling gram negative bacteria cell walls, the lipid 

composition was adjusted to mimic lipid ratios found within living gram-negative 

bacteria of 81% PE and 19% POPC and the double bilayer system was successfully 

formed with similar sensitivity to streptavidin-biotin binding. This double lipid bilayer 

system is a novel platform for SPR analysis of complex lipid bilayer assembly as a sensor 

for protein-lipid interactions. This platform can be directed towards discovering new 

potential drug-protein interaction directly at the lipid membrane interface without need 

for antibodies or signal amplification techniques. To aid in this avenue of interest, 

revamping the model to improve gram-negative bacteria wall model accuracy is essential. 

Restructuring the current model by replacing the base PLL layer with silicate gold 

surface to improve lipid membrane mobility and the second PLL layer with 

peptidoglycan will better resemble gram negative bacteria and may improve the 

platform’s ability to elicit understanding of interactions directly at membrane interfaces. 
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Chapter Six: Conclusion and Future Work 

 

The work in this dissertation has demonstrated the development of various 

biosensors for VOCs, biochemicals, and bacterial analysis using nanofibers and surface 

plasmon resonance. Nanofibers were developed into biosensor designed for detecting and 

quantifying VOCs (Chapter 2) and biochemical analytes (Chapter 3). Localized surface 

plasmon resonance was used in tandem with 3D printing to develop novel biosensors for 

biochemical analysis (Chapter 4). In the last experimental chapter (Chapter 5), an 

experimental bacterial cell wall model was developed for SPR analysis as a novel tool for 

studying compound interactions at the double lipid bilayer interface.  

In Chapter 2, we detailed the successful approach to VOCs monitoring through 

composite polyaniline (PANi) nanofiber chemiresistor to achieve PPM level of sensitivity 

towards aliphatic alcohols. Chemiresistor sensors is a mature application of conductive 

nanofiber that has generated a significant amount of interest due to its facile development 

and customization to sensitively detect various gaseous analytes. We have demonstrated 

both the conductivity and sensitivity of composite PANi nanofiber chemiresistor can be 

tuned by incorporating various states of reduced graphene oxide (rGO). We also have 

compared the performances of the nanofiber sensors with their thin-film counterparts.  

Like many nanofiber chemiresistor, not only is the sensor susceptible to noise from 

humidity but also analyte selectivity remains an issue1–4. A pressurized sample chamber 

can be employed to maintain a consistent testing environment to mitigate noise from 

humidity. This chapter has shown that the pattern of the analyte responses from the various 
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rGO component can be analyzed and used to identify the analyte through principal 

component analysis (PCA). After identifying the analyte, the response can be compared to 

the calibration curves to quantify the analyte with PPM sensitivity. 

The future direction of this project focuses on coating the nanofibers with 

nanoparticles to further tune the conductivity of nanofibers and incorporate molecular 

binding interactions to improve the biological recognition element. Coaxial 

electrospinning, a well-studied strategy to fabricate nanofibers with a distinct outer and 

inner layer, has recently been used to coat nanofibers with nanoparticles5,6. Not only will 

conductive nanoparticles further increase the conductivity, but it may also improve the 

sensor sensitivity by increasing the sensor response when exposed to the analyte. The lack 

of a selective biorecognition element of the PANi/HCSA/rGO composite nanofiber sensor 

can also be addressed using these nanoparticles. The nanoparticles reside on the nanofiber 

exterior exposed to the analytes. The nanoparticle surfaces can be either modified before 

electrospinning or post electrospinning to introduce target analyte-specific binding 

interactions for this sensor surface to improve its selectivity. 

In Chapter 3, we detailed the application of polyvinyl alcohol (PVA) nanofibers as 

a sensor substrate functionalized with silver nanoparticles (AgNPs) for fluorescence 

detection of biochemical analytes. Recently reported works using nanofibers and silver 

nanoparticles have employed the nanofibers as a scaffold that inherits the AgNPs’ 

antimicrobial properties for applications in medical or food industrial purposes. In this 

project, the nanofiber also serves as a scaffold, but the AgNPs have not used for its 

antimicrobial properties, but as a biorecognition element in a fluorescent-based sensor for 
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biochemical analysis. This is accomplished by functionalizing the AgNPs with 

ethylenediaminetetraacetic acid (EDTA) to chelate metal ions. These metal ions are used 

to bind metal-binding ligands or proteins such as nitrilotriacetic acid (NTA) and poly-

histidine tagged proteins, respectively. NTA can be added to ligands to selectively bind 

specific analytes. In this case, NTA was functionalized to biotin to allow the sensor to 

selectively bind NeutrAvidin with sub-micromolar sensitivity.  

In this chapter, we have also demonstrated that the AgNPs are also capable of 

localized surface plasmon resonance (LSPR) detection as the sensor surface was sensitive 

to changes in the bulk refractive index with a strong linear correlation (R2=0.98). The 

sensor was sensitive to changes in the bulk refractive index, yet experimental studies of 

detecting metal ions resulted in no correlation between the observed LSPR response and 

the concentrations of metal ions bound on the sensor surface. The binding of NTA-Biotin 

also suffered from a lack of LSPR detection due to the small size. While nanoparticle LSPR 

is known to be able to detect small analytes like metal ions, this is normally facilitated 

through the amplification effect of the aggregation of free nanoparticle in solution7,8. The 

aggregation of the AgNPs is not possible as they are adsorbed onto the nanofiber surface. 

However, this arrangement creates a surface capable of binding metal ions proven through 

the fluorescent study. can still be applied to large compounds such as proteins. The current 

density of the nanofiber mat influenced the light scattering, which some complications for 

LSPR detection. Future direction for this project focuses on optimizing the parameters of 

the nanofiber substrate to reduce the interfering scattering effect. A single layer of 

nanofiber functionalized with the EDTA-AgNPs should have the least interference and 
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would improve the LSPR signal for protein detection and possible the metal ion detection 

as well.  

In Chapter 4, we demonstrated the novel application of 3D printing to fabricate a 

cost-effective and disposable surface for LSPR detection of biochemical analytes. The 3D 

printed prisms were modified with several rounds of hand-sanding and polishing to obtain 

parameters that are functionally comparable to commercial prisms. These prisms were 

coated with gold nanoparticles (AuNPs) grown in-situ on the prism surface to fabricate an 

LSPR responsive surface. The biorecognition element was crafted by functionalizing the 

AuNPs with DNA oligomers. These DNA oligomers can either capture complementary 

DNA single strands or be directly functionalized with a ligand to directly capture a targeted 

analyte. Complimentary strands functionalized with biotin were recruited to DNA 

functionalized AuNPs surfaces to selectively capture streptavidin with sub-micromolar 

sensitivity. Because avidin has been used as a bridge to recruit biotin-tagged antibodies, 

this sensor can incorporate the same strategy to selectively detect an increased range of 

target analytes. However, increasing the number of binding steps tends to further decrease 

sensitivity and increase variance in signal response. There are many directions for future 

work that can be derived from this project.  

First and foremost, the ten-fold difference in the surface roughness between the 3D 

printed and commercial prisms can be reduced by increasing the thoroughness of the post-

fabrication treatment. By reducing the surface roughness, this will reduce the difference of 

the light scattering effect experienced on the AuNPs due to differential z position on the 

sensor surface9–11, which in turn will decrease the width of the absorption peak and increase 
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the sensor sensitivity for all future applications. Another solution is the alteration of the 

nanoparticle synthesis to create nanoparticles with homogenous diameters. This will also 

decrease the broadness of the absorbance peak, which again will increase the sensor 

sensitivity12–14. 

The next future direction is to modify the DNA oligomers functionalized to the 

AuNPs surface to capture complementary single-strand DNA or RNA that serves as disease 

biomarkers. Because these nanoparticles are immobilized on the surface, normal DNA-

AuNPs aggregation strategies will not work. A strategy to ensure sensitive detection is to 

customize the DNA oligomer sequence to capture a majority (50-80%) of the targeted 

complementary strand. This signal can be amplified through signal enhancement from 

AuNPs. The AuNPs' large mass will cause a significant increase in the LSPR shift and can 

also couple with the LSPR exhibited by the bound AuNPs. The secondary set of AuNPs 

will be functionalized with DNA oligomers to only capture the remaining (20-50%) of the 

targeted DNA strand. Focusing the oligomers with unique DNA sequences will aid in 

minimizing nonspecific binding from interfering DNA or RNA sequences that may also be 

present in the sample15–18. 

In Chapter 5, we detailed the fabrication of a double lipid bilayer model system for 

SPR analysis to serve as a novel tool to investigate interactions that occur on bacterial 

membranes. Current bacterial membranes models are mostly theoretical models19–21 with 

a few simplified experimental models22–25 without any sensing applications. This 

experimental double lipid bilayer model was designed to mimic the membrane system of 

the gram-negative bacteria. This model aid in eliciting understanding of chemical and 
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biological interaction occurring at this unique interface, which can be a useful tool for novel 

drug discovery. Experimental studies exploring this model’s potential as a sensor system 

used cholera toxin (CT) binding to monosialic gangliosides (GM1) demonstrated 

nanomolar level of sensitivity. The study also showed that there was minimal sensitivity 

loss at the double lipid bilayer interface compared to the single lipid bilayer interface. This 

model demonstrated the ability to monitor and detect transmembrane protein interactions 

using a pore-forming toxin, streptolysin O (SLO). Because of the rigidity of this lipid 

bilayer from the poly-L-lysine (PLL) adhesive layer, the actual intercalation of the SLO 

toxin was not observed. Thus, the SLO toxin was incubated with the lipids forming the 

outer lipid membrane as an alternative. The incorporation of SLO was investigated and 

confirmed through several methods.  

The future direction of this work focuses on improving the model accuracy of 

replicating the gram-negative bacteria cell wall and membrane. Adjustment of the lipid 

fluidity within this double lipid bilayer model is required. The strategy of utilizing PLL as 

an adhesive between the lipid bilayers was sourced from Heath et al’s work26. PLL was 

also implemented as the adhesive layer between the gold surface and the initial lipid 

bilayer. As mentioned previously, the low lipid mobility negatively affects the model 

performances as intercalation of transmembrane protein strongly is affected by lipid 

mobility. The first step in solving this issue is to silicate the surface of the gold substrate. 

This is silication has already been proven and implemented in our groups work27–30 with 

SPR and lipid bilayers but was not adapted to this project due to concerns with the 

BiacoreX instrument. These concerns have recently been addressed and silicate gold 
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surface can now be utilized with this instrument. This silication will remove the need for 

the first PLL layer underneath the double lipid bilayer model, which would improve the 

lipid mobility of the model.  

To further improve lipid mobility, the remaining PLL is to be substituted with 

peptidoglycans. Peptidoglycans are naturally found on the surface of gram-positive 

bacteria and between the lipid layers of a gram-negative bacteria. While peptidoglycans 

serve as surface antigens of gram-positive bacteria, they facilitate the anchoring of the two 

sets of lipid bilayers in gram-negative bacteria. This process is facilitated by teichoic acid 

(TA) and lipoteichoic acids (LTA) present in the inner layers of both the lipid membranes. 

The LTA interacts with the peptidoglycans layer to tie the two sets of lipid bilayer together. 

By incorporating LTA into both sets of lipid membranes, peptidoglycan can substitute the 

remaining PLL layer. Not only will the incorporation of peptidoglycan facilitate the 

mimicking of a gram-positive bacteria membrane, but also the peptidoglycan replacement 

of PLL should further increase lipid fluidity to match natural membranes of the gram-

negative bacteria.  

In conclusion, the development of biosensors and experimental models utilized on 

these sensors are important to aid in monitoring chemicals and biological analytes of 

interest in the industrial and medical fields. The objective of this research was to fabricate 

several types of biosensors to address some of these issues that are assessed in 

environmental and health related issues. As new biosensor designs develop and evolve, 

they will create new tools for detection and analysis of trace analytes vital for diagnosing, 

monitoring, and preventing the degradation of both environmental and human health. 
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